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1. INTRODUCTION

Recent progress in the study of the topological structure of the Banach–Mazur compact space
Q(n) [1, 2] is largely based on the following result concerning the preservation of extensor properties
by the orbit functor.

Theorem 1.1. If G is a compact Lie group and X is a metric G-A[N]E space, then the orbit
space of X is an A[N]E space.

The application of this theorem to the groups O(n) and the space L(n) of convex bodies, whose
unit balls are the outer Löwner ellipsoids, gives, in particular, an answer to an old question about
the extensor properties of Q(n) . The initial proof of Theorem 1.1 was fairly cumbersome [3].
Later, a shorter proof based on the Curtis theorem and applicable to arbitrary compact groups
was obtained [4] (see also [5], where locally compact Lie groups are considered). However, the
problem of the preservation of equivariant extensor properties by the orbit functor was tackled
much earlier by Jaworowski, who studied the symmetric product functor SPnG [6]. He proved the
following theorem.

Theorem 1.2. If X is a compact metric ANE space and G is the group of permutations of n el-
ements, then the symmetric product SPnGX associated to G is an A[N]E .

In the language of the equivariant theory of extensors, this result can be written as follows:

X ∈ ANE =⇒ Xn ∈ G-ANE =⇒ SPnGX = Xn/G ∈ ANE .

Thereby Jaworowski proved Theorem 1.1 for any finite subgroup G < Sn and any compact met-
ric G-ANE space Xn . Jaworowski’s paper is concerned with a special topic and contains a
gap [7, 8] (which can easily be fixed, though); however, the potential of the approach is very high.
Thus, from the standpoint of the modern theory of equivariant extensors, there is no difficulty in
making Jaworowski’s argument rigorous enough and obtaining a very elegant proof of Theorem 1.1.
It is easy to see from the proof given below that Theorem 1.1 extends to an arbitrary class of spaces
for which the Whitehead–Borsuk–Hanner theorem is valid. We used to believe that such classes
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included the class of stratifiable spaces [9], but Professor R. Cauty kindly informed us that his
paper [10] had a gap, and the validity of its main result was an open question.

2. PRELIMINARIES

Below, we give the basic notions of the theory of G-spaces [11, 12]. By an action of a compact
group G on a space X , we understand a continuous map µ from the product G × X to X with
the following properties:

(1) µ(g, µ(h, x)) = µ(g · h, x) ;
(2) µ(e, x) = x for all x ∈ X and g, h ∈ G (here e is the identity of the group G).

Instead of µ(g, x) , we usually write g ·x or simply gx . A space X with an action of a group G
is said to be a G-space. A map f : X → Y of two G-spaces is called a G-map, or an equivariant
map, if f(g · x) = g · f(x) for all x ∈ X and g ∈ G .
The orbit G(x) of a point x ∈ X is the subset {g · x | g ∈ G} = G · x ; it is always closed. The

natural map p : X → X , defined by x 	→ G(x) , of the space X to the quotient space X � X/G
is said to be the orbit projection. The quotient space X endowed with the quotient topology
generated by p is called the orbit space.
For any subset A ⊂ X , its saturation by orbits is p−1p(A) = G · A . If the saturation coincides

with the initial subset A , then A is said to be invariant, or a G-subset.
For each point x ∈ X , the subset Gx = {g ∈ G | g · x = x} is a closed subgroup in the

group G ; it is called the stabilizer of the point x . For a closed subgroup H < G , the set
XH = {x ∈ X | H · x = x} is called the set of H-fixed points. Recall the definition of the cross
product : if Y is an H-space and H < G , then G ×H Y is the orbit space of G × Y with action
h · (g, y)� (g ·h−1 , h · y) ; i.e., an arbitrary element of the cross product can be represented in the
form

H · (g, y) = {(g · h−1 , h · y) | h ∈ H}.
Note that

(3) G×H Y is a G-space with action g1 · (H · (g, y)) = H · (g1 · g, y) .
Let us introduce a number of notions related to the extension of G-maps. A space X with an

action of a compact group G is an equivariant absolute neighborhood extensor for metric spaces
(symbolically, X ∈ G-ANE) if any G-map ϕ : A → X defined on a closed G-subset A ⊂ Z of
a metric G-space Z (such a map is called a partial G-map) can be G-continued over some G-
neighborhood U ⊂ Z of the set A , i.e., there exists a ϕ̂ : U→ X such that ϕ̂ �A= ϕ . If it is always
possible to G-extend ϕ over U = Z , then X is called an equivariant absolute extensor (symboli-
cally, X ∈ G-AE). If the action of the group G is trivial (i.e., the spaces are considered without
actions), then the notion introduced above coincides with the notion of absolute (neighborhood)
extensors (A[N]Es) for metric spaces. Our further consideration essentially uses the following two
facts.

Theorem 2.1 (Whitehead–Borsuk–Hanner [13, 14]). If

(4) Y ∈ A[N]E is a closed subset of a metric space X ;
(5) X \ Y ∈ A[N]E ;
(6) Y is a strong deformation (strong deformation neighborhood) retract of X (i.e., there
exists a homotopy Ht : U → X of a space U � X (of some neighborhood U of Y ) such
that H0 = Id , Ht �Y= Id , and H1 is a retraction of U into Y ),

then X ∈ A[N]E .
The application of the inductive argument in the proof of Theorem 1.1 is based on the slice

theorem.
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Definition 2.2. We say that a G-subset A ⊂ X is K-tubular, where K < G is a closed subgroup,
if there exists a K-invariant subset S ⊂ A such that

(7) G · S = A ;
(8) the natural map θ : G×K S→ A defined by θ(K · (g, s)) = g · s is a G-homeomorphism.

A K-invariant subset S ⊂ A is said to be a K-slice of the set A .

Note that a K-slice S of a tubular set A = G×K S satisfies the following conditions:
(9) S is a K-invariant closed subset of A ;
(10) g · S ∩ S = ∅ ⇐⇒ g ∈ K .
The following assertion is easy to verify.

Proposition 2.3. Any subset S ⊂ A satisfying conditions (8), (9), and (10) is a K-slice of
the K-tubular set A , and A = G×K S .
Theorem 2.4 (on slices of G-spaces [11]). If a compact Lie group G acts on a completely regu-
lar G-space X , then each point x ∈ X has a Gx-tubular neighborhood U = G×Gx S .
The slice theorem implies that any orbit in X is an equivariant neighborhood extensor for the

class of completely regular G-spaces.

It is easy to show that the dimension indG� dimG+KG , where KG is the number of connected
components in the group G , satisfies the following conditions:

(11) indG ≥ 2; indG = 2 if and only if G is the trivial group;
(12) if H � G , then indH < indG .

For x /∈ XG , the subgroup Gx is proper, and hence indGx < indG ; therefore, in many
situations, the slice theorem makes it possible to argue by induction and reduce studying the
equivariant extensor properties of X\XG to studying the equivariant extensor properties of spaces
with actions of groups Gx having smaller indices.

In [15], the relation between the equivariant extensor properties of tubular neighborhoods and
those of their slices is established.

Theorem 2.5. If a compact Lie group G acts on a completely regular G-space X and a tubular
neighborhood U = G×Gx S ⊂ X is a G-ANE , then the slice S at the point x is a Gx-ANE .
This theorem is a corollary of the following two assertions, which are also proved in [15, p. 500].

Theorem 2.6. If X ∈ G-A[N]E , then X ∈ H-A[N]E for any subgroup H < G .
Theorem 2.7. If H is a subgroup of G and G×H S ∈ G-A[N]E , then S ∈ H-A[N]E .

3. PROOF OF THE THEOREM

We shall consider in detail only the implication X ∈ G-ANE =⇒X ∈ ANE, believing that this
will make the proof of the global assertion obvious to the reader.

If the group G is trivial, then, clearly, X ∈ ANE. Arguing by induction, we assume that the
assertion is valid for all groups with indG < n and prove it for G with indG = n . First, note
that the set XG of G-fixed points is a strong deformation neighborhood G-retract of X ; therefore,
it is a G-ANE. Hence

(1) (XG)/G = XG is a strong deformation neighborhood retract of X = X/G ;
(2) XG ∈ ANE.
Now, if we prove that

(3) Y = X \XG ∈ ANE,
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then the Whitehead–Borsuk–Hanner theorem will imply the required inclusion X ∈ ANE.
To prove (3), it suffices to show that

(4) any point y = p(x) ∈ Y , where x /∈ XG , has a neighborhood O(y) ∈ ANE.
By Theorem 2.4, the point x ∈ X has a Gx-tubular neighborhood U = G ×Gx S . Being an

invariant neighborhood of a G-ANE-space, U belongs to the class G-ANE. By Theorem 2.6
U(x) ∈ Gx-ANE. Since Gx is a proper subgroup of G , we have U(x)/Gx ∈ Gx-ANE by the
induction hypothesis ( ind(Gx) < n).
But the orbit space U(x)� U(x)/G is a retract of U(x)/Gx ∈ ANE. To see this, consider the

map h : S/Gx → U(x) defined by h(Gx(z)) = G(z) for z ∈ S , which is obviously a homeomor-
phism. Since S is closed in U(x) , S/Gx is closed in U(x)/Gx . A direct verification shows that the
map H : U(x)/Gx → U(x) defined by H(Gx · z) = G(z) for z ∈ U(x) is a continuous extension of
the homeomorphism h , i.e., H �S/Gx= h . Hence h−1 ◦H is a retraction of U/Gx onto the space
S/Gx , which is therefore an ANE. Consequently, U(x) ∼= S/Gx is also an ANE.
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