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Abstract—The splitting obstruction groups depend functorially on the square of fundamental
groups. In the paper the problem of splitting along a submanifold of codimension two under
some restrictions on the square of fundamental groups is considered. New exact sequences
and commutative diagrams containing Wall groups, splitting obstruction groups, and surgery
obstruction groups for manifold pairs are obtained. Examples of computation of splitting
obstruction groups and natural maps are presented.
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1. INTRODUCTION

The splitting obstruction groups LSn−q(F ) arise naturally in the problem of doing surgery on a
submanifold N ⊂M of codimension q inside the n -dimensional manifold M . If the codimension
of the submanifold N is greater than 2, then the groups LSn−q(F ) do not depend on the man-
ifold M and coincide with the abstract surgery obstruction groups Ln−q(π1(N)) , where π1(N)
is the fundamental group of the submanifold N , equipped with an orientation homomorphism
w : π1(N)→ {±1} (see [1] and [2]).

Consider a simple homotopy equivalence f : M → Y of the manifold M and an n -dimensional
geometric Poincaré complex Y with a subcomplex X of codimension q . The corresponding
problem of splitting the map f along X is to deform f up to homotopy into a map g transversal
to X for which the restrictions

g|N : N → X, g|M\N : (M \N)→ (Y \X), N = g−1(X)

are simple homotopy equivalences. The obstruction to splitting σ(f , Y ) lies in LSn−q(F ) , which
is a group depending functorially on a pushout square F of fundamental groups with orientations

F =


π1(∂U) −→ π1(Y \X)

↓ ↓
π1(X) −→ π1(Y )


 , (1.1)

where ∂U is the total space of the normal spherical fibration of X in Y . In addition, the groups
LSn−q(F ) are 4-periodic, i.e., n − q may be regarded as equal to 0, 1, 2, 3 mod 4 ([1] and [2]).
For convenience, we denote the groups with orientations entering in the square F in the following
way:

F =


A −→ C
↓ ↓
B −→ D


 . (1.2)

The groups LS∗(F ) fit into the following commutative diagrams of exact sequences (see [1] and [2]):
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SPLITTING OBSTRUCTION GROUPS IN CODIMENSION 2 47

→ Ln+q(C) −→ Ln+q(D) −→ LSn−1(F ) →
↗ ↘ ↗ ↘ ↗ ↘

LPn(F ) Ln+q(C → D)
↘ ↗ ↘ ↗ ↘ ↗

→ LSn(F ) −→ Ln(B) −→ Ln+q−1(C) →

, (1.3)

→ Ln+1(B) −→ Ln+q+1(C → D) −→ Ln+q+1(F )→
↗ ↘ ↗ ↘ ↗ ↘

Ln+q+1(A→ B) LSn(F )
↘ ↗ ↘ ↗ ↘ ↗

→ Ln+q+2(F ) −→ LSn(Ψ) −→ Ln(B)→

, (1.4)

where LP∗(F ) are the surgery obstruction groups for manifold pairs, and Ψ denotes the pushout
square of the groups

Ψ =


A −→ A
↓ ↓
B −→ B


 . (1.5)

Note that the map LS∗(Ψ) → LS∗(F ) in the diagram (1.4) is induced by the natural map of
squares Ψ→ F .

In the case of codimension 1, the methods of investigation of the splitting problem are essentially
different in two cases. Rather complete results for the case of a two-sided submanifold N with
connected or disconnected complement are given in [1, 2], and [3].

In the case of a one-sided submanifold of codimension q = 1 when the horizontal maps in
the square F are isomorphisms, the groups LS∗(F ) coincide with the Browder–Livesay groups
LN∗(A → B) , which are the Wall groups of the ring with antistructure (see, for example, [2]
and [3]). Using the Quinn–Ranicki spectra from the papers [4, 5] and [6] for the case of one-
sided submanifold and epimorphic horizontal maps in the square F , the new exact sequences and
commutative diagrams are obtained. These diagrams determine a close connection between the
groups LS∗(F ) , LP∗(F ) , and the Wall groups.

In this paper we consider the splitting obstruction groups for the case of codimension q = 2.
A quite complete survey of the results and the applications to the geometric problems in this case
is given in [2] and [7]. In general, we use the methods developed in [4, 5], and [6] for the case
of one-sided submanifolds to investigate the splitting problem in the case of codimension 2. In
this case,, under some natural restrictions on the square F , we obtain new exact sequences and
diagrams containing the groups LS∗(F ) and LP∗(F ) . Also we compute some splitting obstruction
groups and natural maps in diagrams that are interesting for geometric applications. In particular,
we consider an example of a nontrivial map, the map Θ : Ln(D) → LSn−3(F ) , which is an
analog of the Browder–Livesay invariant (see [8] and [9]). Therefore, it makes sense to determine
an analog of the iterated Browder–Livesay invariants (see [8]), using a sequence of embedded
submanifolds of codimension 2. A surgery spectral sequence based on a sequence of submanifolds
in codimension 2 is defined as well. The construction of this spectral sequence formally coincides
with the construction from [10]. In this case, the question of how to compute differentials and to
find nontrivial differentials of higher order is open.

Note as well that it is possible to consider the groups L∗ , LS∗ , LN∗ , and LP∗ with different
decorations “s”, “h”, “p” (see [1] and [2]). In this paper we shall consider only the case of groups
decorated by “s”, which corresponds to the problem of obtaining a simple homotopy equivalence
by doing surgery. All the results of sections 3 and 5 are valid as well for groups decorated by
“h” and “p”. Further we assume that all groups are equipped with the decoration “s”, unless
otherwise stipulated.
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48 J. MALEŠIČ et al.

2. THE SPLITTING OBSTRUCTION GROUPS AND THE WALL GROUPS

Recall the geometric definition of the splitting obstruction groups [1] for the case of codimension 2
and the connection of the splitting obstruction groups with the Wall groups of rings equipped with
antistructures.

Suppose that for the pushout square of groups F (1.2) we are given a universal fibration p :
X → Y with fiber S1 which induces the map of fundamental groups A → B . Denote by Z the
topological space K(C, 1) . We assume that the mapping cylinder Mp of the map p intersects
K(C, 1) in the subspace X . Then the fundamental group of the topological space MY ∪ Z is
equal to D . Denote by K(F ) the triad (M∪Z ; MY , Z ; X) . The group LSn(F )(n ≥ 5) is the
cobordism group of mappings of triads (W ; N , S) into the triad K(F ) , assuming that all maps
are compatible with the orientation homomorphisms.

Here W is a manifold of dimension n+2 and N is a finite Poincaré complex of dimension n given
with a Poincaré embedding N →W . By the definition from [1], the Poincaré embedding consists
of a fibration p : E → N with fiber S1 , a finite Poincaré pair (S, E) , and a simple homotopy
equivalence h : S ∪Mp → W , where S ∩Mp = E . In the case of a manifold with boundary
and Poincaré pair, we assume, as usual, that the Poincaré embedding is already smoothed on the
boundary.

According to [1], there exists an exact sequence functorially depending on the square F ,

→ Ln+1(B)→ Ln+3(C → D)→ LSn(F )→ Ln(B)→ (2.1)

in which the map Ln+1(B) → Ln+3(C → D) is the composition of the transfer map p! induced
by the fibration p and the natural map of the relative Wall groups induced by the horizontal maps
of the square F :

Ln+1(B)
p!−→ Ln+3(A→ B) −→ Ln+3(C → D). (2.2)

Note that the exact sequence (2.1) is contained in the commutative diagrams (1.3) and (1.4).
Consider the square Ψ (1.5), which corresponds to the pair of manifolds (U , X) of codimension 2

obtained from the pair (Y , X) , where U is a tubular neighborhood of X in Y . For the fibration

ξ : S1 → ∂U → X,

we have the following part of the exact sequence of the fibration

Π : Z
l→ A

p→ B → 1. (2.3)

Let w1 : B → {±1} be the first Stiefel–Whitney class of the fibration ξ , and let the pair (Π, w1)
denote the exact sequence (2.3) with the homomorphism w1 . Then, according to [2],

gtg−1 = tw1p(g) , t = l(1), g ∈ A.

Denote by wY : B → {±1} the orientation homomorphism given on the space Y . Then we take
the restriction wY |π1(U) as the orientation homomorphism on the space U , which is homotopy
equivalent to X . The orientation homomorphism on the subspace X is given by the condition
(see [1], 2)

wξ = wY w : B → {±1}.
Thus the orientation on the left group B = π1(X) in the square Ψ may be different from the
orientation on the right group B = π1(U) . To avoid misunderstandings, in what follows we shall
denote by Bξ the left group B with the orientation wξ mentioned above. In particular, the exact
sequence (2.1) for the square Ψ has the form

→ Ln+1(B
ξ)→ Ln+3(A→ B)→ LSn(Ψ)→ Ln(Bξ)→ . (2.4)
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Note that in codimension 2, as before, the groups LSn(Ψ) are denoted by LNn(A → B) , just as
the Browder–Livesay groups.

According to [1] and [2], there exists a universal S1 -fibration

S1 → E → V (2.5)

for which the part of the exact sequence of the fibration

Z→ π1(E)→ π1(V )→ 1 (2.6)

coincides with the exact sequence Π, and the first Stiefel–Whitney class coincides with w1 .
If two pairs (Π, w) and (Π′ , w′) are given, then a morphism (f , g) : (Π, w) → (Π′ , w′) in the

category of such pairs is defined in a natural way (see [2]) as a commutative diagram

Z −−→ A −−→ B −−→ 1∥∥∥ �f �g
Z −−→ A′ −−→ B′ −−→ 1

, (2.7)

in which the map g commutes with the orientation homomorphisms, w′g = w . If the pairs (Π, w)
and (Π′ , w′) correspond to some S1 -fibrations, then any morphism of pairs

(f , g) : (Π, w)→ (Π′ , w′)

is induced by an morphism of universal S1 -fibrations (see [1] and [2]).
In the general case (see [11, 12], and [13]), the Wall groups are defined for an arbitrary ring with

antistructure (R, α, u) , where R is the ring with 1, u ∈ R is an invertible element of the ring,
and α : R→ R is an antiautomorphism for which

α(u) = u−1 , α2(x) = uxu−1 ∀x ∈ R.

According to [2], for the case of a submanifold of codimension 2 the groups LN∗(A → B) are
the Wall groups of the group ring ZA equipped with certain antistructure. Recall the necessary
results from the [2].

Let (Π, w) be the exact sequence (2.3) with the homomorphism w1 = w . Define homomorphism
w
B

: B → {±1} corresponding geometrically to the orientation wY of the ambient manifold. In
this case,, the antistructure ZA, β, t) on the group ring ZA is defined in the following way:

β :
∑
g∈A

ngg →
∑

wp(g)=+1

ngwBp(g)g−1 −
∑

wp(g)=−1
ngwBp(g)tg−1 ∀g ∈ A, t = l(1). (2.8)

In addition, we have the morphism of antistructures (ZA, β, t) → (ZB, αξ , 1) induced by the
homomorphism p , where αξ denotes the standard involution∑

ngg →
∑

ngw
ξ(g)g−1 , ng ∈ Z, g ∈ B,

on the group ring ZB with the orientation homomorphism wξ : B → {±1} .
According to [2], we have the isomorphism

LNn(A→ B, wB ) ∼= Ln(ZA, β, t). (2.9)

Note that the morphism A→ B in the notation for the group LN∗ for the splitting problem in
codimension 2 is a part of the exact sequence (2.3), given with the orientation homomorphism w .
Thus the groups LN∗ in formula (2.9) depend functorially on the triple ((Π, w), wB ) .

In the case of the square Ψ when the fibration ∂U → X is trivial, we have an isomorphism
A = B × Z , and according to [1] and [7]

LSn(Ψ) = LNn(A→ B) = Hn+1(Wh(B)),

where Hn+1(Wh(B)) are the Tate cohomology groups of the Whitehead group of the group B .
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3. NATURAL MAPS

In this section, we consider the groups LS∗(F ) in codimension 2. Under some natural restric-
tions on the square F , we obtain new diagrams and exact sequences connecting these groups with
the Wall groups and the groups LN∗ . For the case of one-sided submanifolds in codimension 1,
analogous results were obtained in [4, 5] and [6].

Consider the square F (1.2) corresponding to some splitting problem in codimension 2. Denote
the groups and the maps in the following way:

F =


 A

f−→ C
↓ i ↓ j

Bξ
g−→ D


 . (3.1)

All groups in the square F are equipped with orientations. From now on we make the following
agreement about the orientations of these groups. We fix a certain orientation homomorphism
w : D → {±1} on the group D . The composition of w with the natural maps from the square F
gives orientations on all groups appearing in the square. We denote these orientations by w and
do not include them into the notation. Besides, following section 2, we denote by Bξ the group B
with the orientation wξ . Denote by (Π, w1) the exact sequence

Π : Z→ A
i→ B → 1 (3.2)

given by the left column of the square F with the orientation w1 = wξw .
For the square F , let the following conditions be satisfied:
i) the map j in the square F is an epimorphism;
ii) there exists a pair (Π′ , w′1):

Π′ : Z→ C
j→ D → 1 (3.3)

such that the pair of maps (f , g) induces a morphism (Π, w1)→ (Π′ , w′1) .

Definition. The pushout square of the groups F for the splitting problem in codimension 2 for
which conditions i), ii) are satisfied is said to be a geometric diagram in codimension 2.

The notion of a geometric diagram was introduced in [14] for the square F arising in the
splitting problem along a one-sided submanifold when the horizontal maps are epimorphisms. In
particular, the horizontal maps give a morphism of quadratic extensions (see [4, 5] and [6]). Thus
this definition preserves the analogy with codimension 1.

Remark. Under the assumption that the map j is an epimorphism, condition ii) is satisfied if
there exists a homomorphism w′1 on the group D for which w′1g = w1 . In particular, if j is an
epimorphism, this condition ii) is satisfied automatically for w1 ≡ 1.

For the geometric diagram F , there exist natural maps

Ψ
S−→ F

P−→ Φ

of pushout squares of the groups with orientations


 A −→ A
↓ i ↓ i
Bξ −→ B


→


 A

f−→ C
↓ i ↓ j

Bξ
g−→ D


→


 C −→ C
↓ j ↓ j
Dξ −→ D


 , (3.4)

where the orientation on the group Dξ is defined as wξ = w′1w : Dξ → {±1} .
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Similarly to (2.9), there exists an antistructure (ZC, β′ , t′) for which the isomorphism

LNn(C → D, w) ∼= Ln(ZC, β′ , t′)

take place. The composition of the maps PS gives rise to a morphism of antistructures

(ZB, β, t)→ (ZC, β′ , t′).

Hence the relative groups
LNn(Ψ→ Φ) ∼= Ln(ZB → ZC, β, t)

are defined. These groups fit into the long exact sequence

→ LNn(A→ B, w) −→ LNn(C → D, w) −→ LNn(Ψ→ Φ)→ . (3.5)

In what follows, we shall not indicate the orientation w in the groups LN whenever it is clear
from the context.

Theorem 1. Let F be a geometric diagram of groups corresponding to a pair of manifolds for
a splitting problem in codimension 2. Then we have the following commutative diagrams of exact
sequences:

→ Ln+1(B
ξ) −→ Ln+3(C → D) −→ LNn(C → D)→

↗ ↘ ↗ ↘ ↗ ↘
Ln+1(D

ξ) LSn(F )
↘ ↗ ↘ ↗ ↘ ↗

→ LNn+1(C → D) −→ Ln+1(B
ξ → Dξ) −→ Ln(Bξ)→

, (3.6)

→ LNn+1(C → D) −→ Ln+1(B
ξ → Dξ) −→ Ln+3(F )→

↗ ↘ ↗ ↘ ↗ ↘
LNreln+1 LSn(F )

↘ ↗ ↘ ↗ ↘ ↗
→ Ln(F ) −→ LNn(A→ B) −→ LNn(C → D)→

, (3.7)

where we denote by LNreln the relative groups LNn(Ψ→ Φ) .

Proof. There exist simplicial Ω-spectra with homotopy groups isomorphic to the correspond-
ing L -groups or LN -groups (see, for example, [13]). According to the results of [1], the map
p0 : Ln+1(B

ξ) → Ln+3(A → B) from the sequence (2.2) is realized on the level of spectra. Since
the natural map of relative groups is realized on the spectrum level as well (see [1] and [13]), we
obtain the fibration of spectra

L(Bξ)→ Ω2L(C → D). (3.8)

For the homotopy groups of the homotopy cofiber LS(F ) of the map (3.8), we have an isomorphism
πn(LS(F )) = LSn(F ) . In addition, the exact sequence (2.1) is the homotopy long exact sequence
of the fibration of spectra (3.8). The map P induces a map of the corresponding fibrations. Thus
we obtain the homotopy commutative diagram of spectra

LS(F ) → L(Bξ)
↓ P ↓

LN(C → D) → L(Dξ)
, (3.9)

in which the vertical maps are induced by P . The cofibers of the horizontal maps in the di-
agram (3.9) are homotopy equivalent to Ω2L(C → D) , and the map P induces a homotopy
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equivalence between them. Thus the square (3.9) is the pushout square of spectra, and, hence,
the cofibers of the vertical maps are homotopy equivalent to the spectrum L(Bξ → Dξ) as well.
Now the exact long homotopy sequences of the maps from the square (3.9) give the commutative
diagram (3.6).

Consider the diagram of spectra

LN(A→ B)
S−→ LS(F ) −→ Ω3L(F )

↓ P
LN(C → D)

,

in which the maps P and S are induced by the maps P and S of the pushout squares respectively.
Passing to the spectra in the commutative diagram (1.4), we see that the homotopy cofiber of the
map S is homotopy equivalent to the spectrum Ω3L(F ) .

The homotopy cofiber of the composition PS is the spectrum LN(Ψ → Φ), and the exact
sequence (3.5) is the exact homotopy sequence of the fibration PS . Thus we obtain a pushout
square of spectra

LS(F ) → Ω3L(F )
↓ P ↓

LN(C → D) → LN(Ψ→ Φ)
.

Passing to the exact long homotopy sequences of fibrations of the maps in the obtained square, we
obtain a commutative diagram of exact sequences.

The diagrams obtained in Theorem 1 are similar to the diagrams (22.1), (22.2) from [4].

Now we shall describe the connections between the groups LP∗ for the squares Ψ, F , Φ. We
assume, as before, that F is a geometric diagram of groups. Consider the diagrams (1.3) for the
squares Ψ and Φ. We see that the groups LP∗(Ψ), LP∗(Φ) fit into exact sequences

→ LPn(Ψ)→ Ln(Bξ)→ Ln+1(A)→ LPn−1(Ψ)→, (3.10)

→ LPn(Φ)→ Ln(Dξ)→ Ln+1(C)→ LPn−1(Φ)→ . (3.11)

Thus the groups LP∗(Ψ) are the relative groups for the composition

Ln+1(B
ξ)

p!−→ Ln+3(A→ B)
∂−→ Ln+2(A)

of the transfer map p! and the map ∂ : Ln+3(A→ B)→ Ln+2(A) from the relative exact sequence
of L -groups for the map A→ B (see [2]). Since the maps p! and ∂ are realized on the spectrum
level (see [1] and [2]), we can define the spectrum LP(Ψ) as the homotopy fiber of the map of
spectra

L(B)→ ΩL(A), (3.12)

which induces the map ∂p! . Then we have an isomorphism πn(LP(Ψ) ∼= LPn(Ψ) , and the exact
sequence (3.10) is the exact long homotopy sequence of the fibration (3.12). The spectrum LP(Φ)
is defined similarly. In particular, the relative groups LP∗(Ψ → Φ) fitting into the long exact
sequence

· · · → LPn(Ψ)→ LPn(Φ)→ LPn(Ψ→ Φ)→ · · · (3.13)

are defined.
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Theorem 2. Let F be the geometric diagram of groups corresponding to the pair of manifolds for
a splitting problem in codimension 2. Then we have the following commutative diagrams of exact
sequences:

→ Ln+1(B
ξ) −→ Ln+2(C) −→ Ln+2(A→ C)→

↗ ↘ ↗ ↘ ↗ ↘
Ln+2(A) LPn(F )

↘ ↗ ↘ ↗ ↘ ↗
→ Ln+3(A→ C) −→ LPn(Ψ) −→ Ln(Bξ)→

, (3.14)

→ Ln+1(B
ξ → Dξ) −→ Ln(Bξ) −→ Ln+1(C)→

↗ ↘ ↗ ↘ ↗ ↘
LPn(F ) Ln(Dξ)

↘ ↗ ↘ ↗ ↘ ↗
→ Ln+2(C) −→ LPn(Φ) −→ Ln(Bξ → Dξ)→

, (3.15)

→ Ln+1(B
ξ → Dξ) −→ Ln+2(A→ C) −→ LPn−1(Ψ)→

↗ ↘ ↗ ↘ ↗ ↘
LPn(F ) LP reln

↘ ↗ ↘ ↗ ↘ ↗
→ LPn(Ψ) −→ LPn(Φ) −→ Ln(Bξ → Dξ)→

, (3.16)

→ Ln+1(B
ξ → Dξ) −→ LPn(F ) −→ Ln+2(D)→

↗ ↘ ↗ ↘ ↗ ↘
LSn(F ) LPn(Φ)

↘ ↗ ↘ ↗ ↘ ↗
→ Ln+3(D) −→ LNn(C → D) −→ Ln(Bξ → Dξ)→

, (3.17)

where LP reln denote relative groups LPn(Ψ→ Φ) .

Proof. Using the diagram (1.3), we can define the spectrum LP(F ) . Thus we have the pushout
square of spectra for which the exact long homotopy sequences of the maps give the diagram (1.3).
Consider the homotopy commutative square of spectra

Ω2L(A) → LP(Ψ)
↓ ↓

Ω2L(C) → LP(F )
,

in which the vertical maps are induced by S , and the horizontal maps are the fibrations of spectra
from the diagram (1.3). This square is pushout, since the cofibers of the horizontal maps are
naturally homotopy equivalent, and they are homotopy equivalent to the spectrum L(Bξ) . Hence
the cofibers of the vertical maps are homotopy equivalent to the spectrum Ω2L(A → C) . The
exact long homotopy sequences of the maps of this square give the diagram (3.14). The other
diagrams are obtained in a similar way. The theorem is proved. �

The diagrams obtained in Theorem 2 are analogs of the diagrams (3.6) from [6]. There also
exists a diagram of another type connecting the groups LS∗ and LP∗ in the case considered.
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Proposition 1. Under the assumptions of Theorem 2 we have the following commutative diagram
in which the rows and columns are exact sequences

...
...

...� � �
· · · −−−−→ LNn(A→ B) −−−−→ LPn(Ψ) −−−−→ Ln+2(B) −−−−→ · · ·� � �
· · · −−−−→ LSn(F ) −−−−→ LPn(F ) −−−−→ Ln+2(D) −−−−→ · · ·� � �
· · · −−−−→ Ln+3(F ) −−−−→ Ln+2(A→ C) −−−−→ Ln+2(B → D) −−−−→ · · ·� � �

...
...

...

. (3.18)

Proof. The map S : Ψ→ F in (3.4) induces a homotopy commutative diagram of spectra

LN(A→ B) −−−−→ LP(Ψ)� �
LS(F ) −−−−→ LP(F )

.

Hence, considering the exact long homotopy sequences of maps, we obtain the commutative dia-
gram (3.18). �

The diagrams obtained in Theorems 1, 2, together with the diagrams (1.3), (1.4) from [1], give
very effective methods for computations of the splitting obstruction groups and natural maps. Thus
in [15] the squares of geometric antistructures are considered. These squares naturally generalize
the squares of groups in the case of a one-sided submanifold. In the case of a finite 2-group in [15],
the projective groups LS∗ and LP∗ and natural maps in the diagrams are completely computed.

4. COMPUTATION OF SOME LS∗ -GROUPS

One of the possible appoaches to the closed manifold surgery problem is based on the dia-
gram (1.3) in the case of a one-sided submanifold. In this case,, the closed manifold surgery
problem is closely connected with the action of Wall groups on the set of homotopy smoothings
(triangulations) of the given manifold (see, for example, [8]). Then the diagram (1.3) is consid-
ered for the square Ψ (1.5) in which horizontal maps are isomorphisms, and vertical maps are
inclusions of index 2. In this case,, the groups LS∗(Ψ) coincide with the Browder–Livesay groups
LN∗(A→ B) . In many cases this approach yields complete results (see [8, 9, 16, 17], and [18]).

In this section,, we describe similar methods that use submanifolds in codimension 2 and com-
pute splitting obstruction groups for some pairs of manifolds.

First, recall the necessary results from papers [1] and [2]. The homotopy triangulation or s-
triangulation of a simple n -dimensional geometric Poincaré complex Y is a simple homotopy
equivalence f : M → Y , where M is a compact n -dimensional triangulated topological manifold.
Up to the end of this section, we assume that n ≥ 5. Two triangulations fi : Mi → Y , i = 1, 2,
are equivalent if there exists a homeomorphism h : M1 → M2 such that the maps f1 and f2h
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are homotopic. The set of equivalence classes of s -triangulations of the complex Y is denoted by
STOP (Y ) .

Assume that Y is already a triangulated topological manifold of dimension n . Then we have
the Sullivan exact sequence

σ∗−→ Ln+1(π1(Y )) −→ STOP (Y ) −→ [Y , G/TOP ]
σ∗−→ Ln(π1(Y )) . (4.1)

We do not explicitly display the homomorphism w in the notation for the L -groups if this does
not lead to misunderstandings. From the construction of the exact sequence (4.1), it follows that
the elements of the group Ln(π1(Y )) lying in the image of the map σ∗ are realized by normal
maps of closed manifolds (see [1] and [2]). In addition (see [2]), if X ⊂ Y is a closed submanifold
of codimension q = 1, 2, then we have the commutative diagram

σ∗−→ Ln+1(π1(Y )) −→ STOP (Y ) −→ [Y , G/TOP ]
σ∗−→ Ln(π1(Y ))

|| ↓ ↓ ||
−→ Ln+1(π1(Y ))

Θ−→ LSn−q(F ) −→ LPn−q(F ) −→ Ln(π1(Y ))

, (4.2)

in which the bottom row is the exact sequence from the diagram (1.3). From the diagram (4.2) it
follows immediately that elements x ∈ Ln+1(π1(Y )) with Θ(x) �= 0 act nontrivially on the set of
homotopy triangulations STOP (Y ) . Furthermore, all elements lying in the image of σ∗ , lie in the
image of the map

LPn−q(F )→ Ln(π1(Y ))

from the diagrams (1.3) and (3.17).
In the case of a Browder–Livesay pair (a one-sided submanifold of codimension 1, B = D) the

map

Θ : Ln(D)→ LNn−2(A→ B)

determines the Browder–Livesay invariant Θ(x) , which is the first obstruction to realization by
closed manifolds (see [8] and [16]). In this case,, if Θ(x) �= 0, then the element X is not realized
by normal maps of closed manifolds and acts nontrivially on any homotopy triangulation of a
manifold M with π1(M) = D .

Example 1. Consider the natural embedding of the real projective spaces S1 = RP 1 ⊂ RP 3 .

Lemma 1. The normal fibration of the submanifold S1 ⊂ RP 3 is trivial.

Proof. The manifolds S1 and RP 1 are parallelizable. Denote by νS1 a normal fibration of S1

in RP 3 . Let τS1 be a tangential fibration of S1 , and τRP 3 ∼= ε3 be a tangential fibration of RP 3 .
We have the isomorphisms

νS1 ⊕ τS1 ∼= τRP 3 ∼= ε3.

Since τS1 ∼= ε1 , we have νS1 ⊕ ε1 ∼= ε3 .
Now we can use the following result from [19]. Let ξm is m -dimensional vector fibration over

the CW -complex K of dimension k < m . Then ξm is a trivial vector fibration if and only if the
fibration ξm ⊕ ε1 is trivial. The lemma is proved. �

Lemma 2. Let S1 → RP 3 be the standard embedding of projective spaces inducing an epimor-
phism of fundamental groups. Then we have the isomorphism π1(RP 3 \ S1) ∼= Z .

Proof. Consider as a model of RP 3 \S1 a closed three-dimensional ball D3 with deleted segment
connecting the poles and identified antipodal points on the boundary. The obtained space is homo-
topy equivalent to a closed two-dimensional ball D2 with deleted center and identified antipodal
points of the boundary. Hence π1(RP 3 \ S1) ∼= Z . The lemma is proved. �
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Multiply the pair (RP 3 , S1) by a simply connected manifold M of high dimension. We obtain
the pair of manifolds (Y , X) = (RP 3 ×M, S1 ×M) of codimension 2. It follows from Lemma 1
and Lemma 2 that the pushout square F in the splitting problem for the submanifold S1 ×M is

F =


 A

f−→ C
↓ i ↓ j

B
g−→ D


 =


Z⊕ Z

f−→ Z

↓ i ↓ j

Z
g−→ Z/2


 . (4.3)

The map i is the projection onto the first summand,
Orientations on the all groups in the square F are trivial by Lemma 1. The maps j and g are

reductions modulo 2. The map f is given by the formula f(a, b) = a − 2b , which follows from
Lemma 2 and the universal property. It is easy to verify that the square F is a geometric diagram
in codimension 2.

Now we compute some groups LS∗ for the square (4.3). As corollaries, we present some results
of some geometric interest.

All Wall groups of the groups from the square (4.3) are known (see [1]). We have the isomor-
phisms:

Ln(Z) =

{
Z for n = 0, 1 mod 4,

Z/2 for n = 2, 3 mod 4,

Ln(Z/2) =



Z⊕ Z for n = 0 mod 4,

0 for n = 1 mod 4,

Z/2 for n = 2, 3 mod 4,

Ln(Z⊕ Z) =



Z⊕ Z/2 for n = 0, 2 mod 4,

Z⊕ Z for n = 1 mod 4,

Z/2⊕ Z/2 for n = 3 mod 4.

Theorem 3. Let F be the geometric diagram of groups (4.3) in codimension 2. Then we have
the following isomorphisms

LSn(F ) ∼=
{
Z/2 for n = 2 mod 4,

Z⊕ Z for n = 1 mod 4.

The groups LS3(F ) and LS0(F ) fit into the exact sequence

0 −→ LS0(F ) −→ Z −→ Z −→ LS3(F ) −→ Z/2 −→ 0.

Proof. Consider the long exact sequence

→ LSn(Ψ)→ LSn(F )→ Ln+3(F )→

from the diagram (1.4). The left vertical map in the square F is the projection. Hence, according
to [1], we have the isomorphism

LSn(Ψ) = LNn(Z⊕ Z→ Z) ∼= Hn+1 (Wh(Z)) ,

where Hn+1 (Wh(Z)) are the Tate cohomology groups of the Whitehead group (see [1]). Since the
Whitehead group Wh(Z) is trivial, we obtain isomorphisms

LSn(F ) ∼= Ln+3(F ) ∀n = 0, 1, 2, 3 mod 4.
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The groups Ln(F ) fit into the commutative diagram of exact sequences (see [1] and [2])

↓ ↓ ↓
→ Ln(A)

f∗→ Ln(C) → Ln(f) →
↓ i∗ ↓ j∗ ↓

→ Ln(B)
g∗→ Ln(D) → Ln(g) →

↓ ↓ ↓
→ Ln(i) → Ln(j) → Ln(F ) →

↓, ↓ ↓

, (4.4)

where the maps f∗ , g∗ , i∗ , and j∗ are induced by the corresponding maps from the square F .
The maps i, f have right inverse maps. Hence the maps i∗ , f∗ give projections of the Wall groups
on the direct summand for arbitrary dimension. Thus we have isomorphisms

Ln(i) ∼= Ln(f) ∼=
{
Z/2 for n = 0, 1 mod 4,

Z for n = 2, 3 mod 4.

The maps g∗ , j∗ are isomorphisms in dimensions 2 and 3 according to [1]. In dimension 1 they are
trivial, since the group L1(Z/2) is trivial.

In dimension 0, the maps g∗ and j∗ are inclusions in a direct summand, since they have right
inverse maps (see [5]). It is clear that Ln(j) ∼= Ln(g) . Now consider the relative exact sequence of
the L -groups for the map j:

L0(Z)
mono−−−−→ L0(Z/2) −−−−→ L0(Z→ Z/2) −−−−→ L3(Z)

∼=−−−−→ L3(Z/2)→�= �= �= �=
Z Z⊕ Z Z/2 Z/2

→ L3(Z→ Z/2) −−−−→ L2(Z)
∼=−−−−→ L2(Z/2) −−−−→ L2(Z→ Z/2) −−−−→

epi
L1(Z)

�= �= �=
Z/2 Z/2 Z

.

From this we obtain the isomorphisms

Ln(g) ∼= Ln(j) ∼=
{
Z for n = 0, 2 mod 4,

0 for n = 1, 3 mod 4.

From the diagram (4.4), we obtain the exact sequence

L1(g) −−−−→ L1(F ) −−−−→ L0(f) −−−−→ L0(g)
mono−−−−→ L0(F ) −−−−→

epi
L3(f)

�= �= �= �=
0 Z/2 Z Z

,

in which the map L0(F )→ L3(f) is epimorphic, since the group L3(g) is trivial. Hence

L1(F ) ∼= Z/2 and L0(F ) ∼= Z⊕ Z.
By virtue of the isomorphism

LSn(F ) ∼= Ln+3(F ) ∀n = 0, 1, 2, 3 mod 4,

we obtain the result of the theorem for n = 1, 2. The exact sequence of the theorem now follows
from the commutative diagram (1.3). �
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Corollary 1. For the square (4.3), we have the following isomorphisms:

LP1(F ) ∼= LP2(F ) ∼= Z⊕ Z/2, LP3(F ) ∼= LS3(F ), LP0(F ) ∼= LS0(F )⊕ Z/2.

Proof. It suffices to consider the diagram (1.3) for the square F and use the results of Theo-
rem 3. �
Corollary 2. For the square F under the assumptions of Theorem 3, the map

Θ : Z⊕ Z ∼= L0(Z/2)→ LS1(F ) ∼= Z⊕ Z
has the image Z .

Proof. Consider the following part of the diagram (1.3):

L0(C) −→ L0(D)
Θ−→ LS1(F )

↘ ↗ ↘ ↗
LP 2(F ) L0(C → D)

↗ ↘ ↗ ↘
LS2(F ) −→ L2(B) −→ L3(C)

.

From Theorem 3 and Corollary 1, we see that this part has the following form:

Z
mono−→ Z⊕ Z Θ−→ Z⊕ Z

↘ ↗ ↘ ↗
Z⊕ Z/2 Z

↗ ↘ ↗ ↘
Z/2

∼=−→ Z/2
0−→ Z/2

.

The top and bottom rows are chain complexes with isomorphic homology groups. This implies the
assertion of the lemma. �
Corollary 3. Elements of the group L0(Z/2) ∼= Z⊕ Z that do not lie in the subgroup

Z = Im{L0(1)→ L0(Z/2)}
act nontrivially on the set STOP

(
RP 3 ×M4k

)
, where M4k is a simply connected manifold of

dimension 4k, k ≥ 1 .

Proof. The image of L0(1) coincides with the image of L0(Z) in the group L0(Z/2) . Now the
result follows from Corollary 2 and the commutative diagram (4.2). �
Remark. The result of Corollary 3 is known. It is interesting that we obtained this result using
the map Θ for the manifold of codimension 2. It is possible to obtain this result by considering
the one-sided submanifold RP 2 ×M4k ⊂ RP 3 ×M4k and using the Browder–Livesay invariant
(see [17]).

Consider one more example of a geometric diagram, for which we compute the groups LS∗ and
LP∗ in all dimensions.

Let

F =


 A

f−→ C
↓ i ↓ j

B
g−→ D


 =


Z⊕ Z

f−→ Z/2⊕ Z
↓ i ↓ j

Z
g−→ Z/2


 (4.5)

be a commutative square of groups, in which the maps i and j are projections on the first
summand, the map g is reduction modulo 2, and f(a, b) = (a mod 2, b) . Thus F is the geometric
diagram of groups in codimension 2.
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Theorem 4. Let F be the commutative square of groups (4.5). Then we have the following
isomorphisms

LSn(F ) ∼=
{

0 for n = 0, 2 mod 4,

Z for n = 1, 3 mod 4.

Proof. There exist isomorphisms [1]:

Ln(Z/2⊕ Z) =




Z⊕ Z⊕ Z/2 for n = 0 mod 4,

Z⊕ Z for n = 1 mod 4,

Z/2 for n = 2 mod 4,

Z/2⊕ Z/2 for n = 3 mod 4.

Consider the commutative diagram (see, for example, [2])

Ln(Z)
g∗→ Ln(Z/2)

↓ α ↓ β

Ln(Z⊕ Z)
f∗→ Ln(Z/2⊕ Z)

↓ ↓
Ln−1(Z)

g∗→ Ln−1(Z/2)

,

in which the vertical columns give the natural decompositions of the groups of the middle row into
direct sums

Ln(Z⊕ Z) = Ln(Z)⊕ Ln−1(Z), Ln(Z/2⊕ Z) = Ln(Z/2)⊕ Ln−1(Z/2).

In this case, i∗α = Id and j∗β = Id are the identity maps. This yields the isomorphism

Ln(f) = Ln(g) ⊕ Ln−1(g).

The map g∗ is described in the proof of Theorem 3. In the same way as in Theorem 3, we
obtain isomorphisms

LSn(F ) ∼= Ln+3(F ) ∀n = 0, 1, 2, 3 mod 4.

Now from the diagram (4.4) we obtain the exact sequence

L1(g) −−−−→ L1(F ) −−−−→ L0(f)
epi−−−−→ L0(g)

mono−−−−→ L0(F ) −−−−→
epi

L3(f)
�= �= �= �=
0 Z Z Z

,

in which the map L0(F )→ L3(f) is epimorphic since the group L3(g) is trivial. Hence L1(F ) ∼= 0
and L0(F ) ∼= Z . Similarly, the other part of the exact sequence gives L3(F ) ∼= 0 and L2(F ) ∼= Z .
Now it is sufficient to use the isomorphism

LSn(F ) ∼= Ln+3(F ) ∀n = 0, 1, 2, 3 mod 4.

The theorem is proved. �
Corollary 4. For the square (4.5), we have the isomorphisms

LPn(F ) =




Z/2 for n = 0 mod 4,

Z⊕ Z/2 for n = 1 mod 4,

Z⊕ Z for n = 2 mod 4,

Z for n = 3 mod 4.
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Proof. It is sufficient to consider the diagram (1.3) for the square F and use Theorem 4. �

Note also that for the square (4.5) the maps LP2k(F ) → L2k+2(Z/2) , which correspond to
forgetting the submanifold, are isomorphisms. This follows easily from the diagram (1.3).

We give yet one more example in which the map Θ is nontrivial even for the groups LN in
codimension 2. This result is very unexpected, since the kernel of the map Θ is usually very large
for a submanifold of codimension 2.

Let

Φ =


 Z −→ Z

↓ j ↓ j
Z/2 −→ Z/2


 ,

then by definition LNn(Z→ Z/2) ∼= LSn(Φ) .

Theorem 5. We have the isomorphisms

LNn(Z→ Z/2) ∼=
{
Z for n = 1 mod 4,

Z/2 for n = 2 mod 4

and the exact sequence

0→ LN0(Z→ Z/2)→ Z⊕ Z→ Z→ LN3(Z→ Z/2)→ Z/2→ 0.

Proof. The rows of the diagram (1.3) for the square Φ are chain complexes with isomorphic
homology groups for the corresponding members. The map in the top row

Z ∼= L0(Z)→ L0(Z/2) ∼= Z⊕ Z

is an inclusion in a direct summand. In the corresponding place of the bottom row, we have the map
LN2 → L2(Z/2) ∼= Z/2. This is a monomorphism since L1(Z/2) = 0, and it is an epimorphism
since the map L3(Z) → L3(Z/2) is an isomorphism, according to [1]. Hence, LN2 ∼= Z/2. This
implies that the map L0(Z/2) ∼= Z⊕Z→ LN1 is an epimorphism with kernel Z , which is a direct
summand. The exact sequence for the groups LN for others dimensions now follows immediately
from the diagram. The theorem is proved. �

Corollary 5. Under the assumptions of Theorem 5 for the square Φ , the map

Θ : Z⊕ Z ∼= L0(Z/2)→ LN1(Z→ Z/2) ∼= Z

is an epimorphism.

Proof. This follows from Theorem 5. �

In [1], the groups LN∗(Z→ Z/n) are applied to investigate the false lens spaces. For odd n it
was proved that they are trivial in even dimensions, and in odd dimensions they are isomorphic to
the groups L1(Z/n) , which are trivial according to [8]. Thus we see that for even n the splitting
obstruction groups LN∗(Z→ Z/n) are nontrivial already in the case n = 2.
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5. SUBMANIFOLDS OF CODIMENSION 2
AND A SURGERY SPECTRAL SEQUENCE

A surgery spectral sequence was first constructed in [10]. For this construction, the case of one-
sided submanifolds and Browder–Livesay groups in the diagram (1.3) was considered. From the
algebraic point of view, the diagram (1.3) in this case is constructed for a pair π ⊂ G , where π is a
subgroup of index 2 in the group G equipped with an orientation homomorphism. The realization
of the diagram (1.3) on the spectrum level is the main tool used to construct the spectral sequence.
Using this property in [18], spectral sequences of Tate cohomology groups of K-groups for quadratic
extensions of antistructures were constructed and the first differentials in these spectral sequences
were described.

In this section, we study the surgery spectral sequence constructed on the basis of the di-
agram (1.3) for the case of a submanifold of codimension 2. Since we shall use constructions
from [9], we can perform the construction in the general case.

Let Ψ be the universal square (1.5) of groups in the splitting problem along a submanifold of
codimension q = 1, 2. In this case, the groups LS∗(Ψ) are denoted by LN∗(A→ B) . We assume
that the right group B in the square Ψ is equipped with an orientation homomorphism. We denote
by Bξ the left group B together with the orientation homomorphism. The whole diagram (1.3) is
realized on the spectrum level (see [1] and [10]). Consider the central square of the diagram (1.3)
realized on the spectrum level:

L(B)
↗ ↘

ΣqLP(Ψ) L(A→ B)
↘ ↗

ΣqL(Bξ)

, (5.1)

where Σ denotes a functor from the category of spectra into itself. This functor is given for any
spectrum A = {An} by the condition (ΣA)n = An+1 . The square (5.1) is a homotopy push-out
square of spectra for which the fibers and the cofibers of parallel maps are homotopy equivalent.
Denote by Ψ− the push-out square of groups with the orientation reversed

Ψ− =


A −→ A
↓ ↓
B −→ Bξ


 . (5.2)

Now we can construct the diagram of spectra:

L(B)
↗ ↘

ΣqLP(Ψ) L(A→ B)
↘ ↗

ΣqL(Bξ)
↗ ↘

Σ2qLP(Ψ−) ΣqL(A→ Bξ)
↘ ↗

Σ2qL(B)
↗ ↘

Σ3qLP(Ψ) Σ2qL(A→ B)
↘ ↗

Σ3qL(Bξ)
. . .

. (5.3)
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The squares (5.1) are written in the vertical column of the diagram (5.3) for Ψ and Ψ− with a
shift of dimension. The diagram (5.3) is extended naturally up and down. Using push-out squares
of spectra, it is possible to extend this diagram to the left and to the right (see [10]). Let us
introduce the following notation (see [10] and [19]):

X0,0 = L(B), X1,1 = ΣqL(Bξ),
X2,2 = Σ2qL(B), X3,3 = Σ3qL(Bξ),

... ...
X1,0 = ΣqLP(Ψ), X2,1 = Σ2qLP(Ψ−),
X3,2 = Σ3qLP(Ψ), X4,3 = Σ4qLP(Ψ−),

... ...
X0,1 = L(A→ B), X1,2 = ΣqL(A→ Bξ),

X2,3 = Σ2qL(A→ B), X3,4 = Σ3qL(A→ Bξ),
... ...

.

Now the spectrum Xk,k−2 is constructed by means of known maps

Xk−1,k−2 → Xk−1,k−1 ← Xk,k−1

in such a way that the square
Xk,k−2 → Xk−1,k−2
↓ ↓

Xk,k−1 → Xk−1,k−1
is a homotopy pull-back square. A similar construction with homotopy push-out squares is used
to construct the spectrum Xk,k+2 . The further construction of spectra Xm,l is analogous. Thus
we obtain an infinite homotopy commutative diagram of spectra

↘
X−1,0

↘ ↗
X0,0

↘ ↗ ↘
X1,0 X0,1

↘ ↗ ↘ ↗
X2,0 X1,1

↗ ↘ ↗ ↘
X2,1 X1,2

↗ ↘ ↗
X2,2

↗ ↘
X2,3

↗

. (5.4)

To construct the surgery spectral sequence, we consider the filtration (see [10])

...→ X3,0 → X2,0 → X1,0 → X0,0 → X−1,0 → ... (5.5)

Then, by definition (see [10]),

Ep,s1 = πs−p(Xp,0 , Xp+1,0) = πs−p(Xp,i , Xp+1,i) ∀i.
The differential

dp,s1 : Ep,s1 → Ep+1,s1
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is the natural composition

πs−p(Xp,p , Xp+1,p)
∼=→ πs−p(Xp,p+1 , Xp+1,p+1)→ πs−p−1 (Xp+1,p+1 , Xp+2,p) .

Thus

Ep,s1 = πs−p(Xp,p , Xp+1,p) = πs−p(Xp−1,p)

= πs−p
(
Σ(p+1)q+1LS(Ψ(−)

p

)
)

= πs−(q+1)(p+1)LS(Ψ(−)
p

).

Recall that for q = 1 we have the isomorphism Ep,s1 = LNs+2(A→ B) (see [10]). For q = 2, the
group Ep,s1 already depends on p and we have the isomorphism

Ep,s1 = LSs+p+1(Ψ
(−)p) = LNs+p+1(A→ B(ξ)

p

).

In the case q = 1, the differential d1 is sufficiently simple and is completely described in algebraic
terms in [10] and [16].

Proposition 2. For q = 2 , the first differential is the composition of maps from the diagram
(1.3):

dp,s1 : LSs+p+1(Ψ
(−)p)→ Ls+p+1(B

(ξ)p+1)→ LSs+p−2(Ψ(−)
p+1

).

The first map appears in the diagram (1.3) for the square Ψ(−)
p

, and the second map appears in

the diagram (1.3) for the square Ψ(−)
p+1

.

Proof. This follows from the construction of the spectral sequence as in [10] and [20]. �

The general properties of the surgery spectral sequence for q = 1 described in [10] are preserved
for q = 2, since these properties only use the diagram (5.4) and the filtration (5.5), which is infinite
in both directions. In particular, maps analogous to the iterated Browder–Livesay invariants are
defined.

Even for q = 1, this spectral sequence was not studied very extensively. Thus in [10] an example
of a nontrivial second differential is given, but it is not known whether there exist pairs of groups
with a nontrivial differential of higher order. In the case of finite abelian 2-groups, all differentials
except the first one are trivial (see [10] and [17]).

In the case q = 2, the isomorphism (2.9) allows to write splitting obstruction groups as Wall
groups of certain rings with antistructures. The question of describing the first differential in
algebraic terms on the level of rings with antistructures as in the case q = 1 remains open. It is
natural to expect that the second differential (and all differentials of higher order) will be always
trivial in the case q = 2. But at the present time the authors do not even have an example of a
square Ψ in codimension 2 for which the first differential is nontrivial.
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