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a Department of Economics, Babeş-Bolyai University, 400591 Cluj-Napoca, Romania
b Faculty of Education, and Faculty of Mathematics and Physics, University of Ljubljana, P.O. Box 2964, 1001 Ljubljana, Slovenia

a r t i c l e i n f o a b s t r a c t

Article history:
Received 18 December 2012
Available online xxxx
Communicated by Z. Shen

MSC:
53C23
53C24

Keywords:
Metric projection
Curvature
Alexandrov NPC space
Busemann NPC space
Minkowski space

In this paper two metric properties on geodesic length spaces are introduced by means
of the metric projection, studying their validity on Alexandrov and Busemann NPC spaces.
In particular, we prove that both properties characterize the non-positivity of the sectional
curvature on Riemannian manifolds. Further results are also established on reversible/non-
reversible Finsler–Minkowski spaces.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The curvature notions on geodesic length spaces are formulated in terms of the metric distance. Most of them refer to
non-positively curved spaces (shortly, NPC spaces) defined by means of certain metric inequalities. Here, we recall (non-
rigorously) three such notions:

(a) Alexandrov NPC spaces (see [1]): small geodesic triangles are thinner than their Euclidean comparison triangles;
(b) Busemann NPC spaces (see [5]): in small geodesic triangles the geodesic segment connecting the midpoints of two sides

is at most half as long as the third side;
(c) Pedersen NPC spaces (see [14]): small capsules (i.e., the loci equidistant to geodesic segments) are geodesic convex.

It is well known that

“Alexandrov NPC spaces ⊂ Busemann NPC spaces ⊂ Pedersen NPC spaces,”

where the inclusions are proper in general. However, on Riemannian manifolds, all these curvature notions coincide, and
they characterize the non-positivity of the sectional curvature. For systematic presentation of NPC spaces, we refer the
reader to the monographs of Bridson and Haefliger [3], Busemann [5], and Jost [9].
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The aim of our paper is to capture new features of non-positively curved geodesic length spaces by means of the metric
projection map. Roughly speaking, on a metric space (M,d), we consider the following two properties we are dealing with
in the sequel (for precise notions, see Definitions 2.1 and 2.2):

(I) Double-projection property: a point is the best approximation element between two small geodesic convex sets
S1, S2 ⊂ M if and only if it is a fixed point of the metric projection map P S1 ◦ P S2 .

(II) Projection non-expansiveness property: the metric projection map P S is non-expansive for small geodesic convex sets
S ⊂ M .

Our results can be summarized as follows (for precise statements and detailed comments, see Section 2). Although Buse-
mann NPC spaces do not satisfy in general the above properties (see Remark 2.1), Alexandrov NPC spaces satisfy both
of them (see Theorem 2.1, and Bridson and Haefliger [3, Proposition 2.4]). Furthermore, generic Finsler–Minkowski spaces
satisfy the global double-projection property (see Theorem 2.2), but not the global projection non-expansiveness property.
Finally, we prove that both properties (I) and (II) encapsulate the concept of non-positive curvature in the Riemannian
context; namely, we prove that for Riemannian manifolds the double-projection property, the projection non-expansiveness
property and the non-positivity of the sectional curvature are equivalent conditions (see Theorem 2.3).

2. Main results and remarks

Let (M,d) be a metric space and let

P S(q) =
{

s ∈ S: d(q, s) = inf
z∈S

d(q, z)
}

(2.1)

be the usual metric projection of the point q ∈ M onto the nonempty set S ⊂ M . If S ⊂ U ⊂ M , the set S is called U -proximinal
if P S (q) �= ∅ for every q ∈ U (w.r.t. the metric d), and U -Chebyshev if P S(q) is a singleton for every q ∈ U .

Definition 2.1. The metric space (M,d) satisfies the double-projection property if every point p ∈ M has a neighborhood
U ⊂ M such that (U ,d) is a geodesic length space, and for every two geodesic convex, U -proximinal sets S1, S2 ⊂ U and for
some q ∈ S1 the following statements are equivalent:

(DP1) q ∈ (P S1 ◦ P S2 )(q);
(DP2) there exists q̃ ∈ P S2 (q) such that d(q, q̃) � d(z1, z2) for all z1 ∈ S1, z2 ∈ S2.

If U = M , then (M,d) satisfies the global double-projection property.

The element q ∈ S1 satisfying (DP2) is called the best approximation point from the set S1 to S2. We notice that P Si (i = 1,2)
may be set-valued maps in the Definition 2.1.

Definition 2.2. The metric space (M,d) satisfies the projection non-expansiveness property if every point p ∈ M has a neigh-
borhood U ⊂ M such that (U ,d) is a geodesic length space, and for every geodesic convex, U -proximinal set S ⊂ U , one
has

d
(

P S(q1), P S(q2)
)
� d(q1,q2) for every q1,q2 ∈ U . (2.2)

If U = M , then (M,d) satisfies the global projection non-expansiveness property.

Note that if a set S satisfies (2.2), it is necessarily a U -Chebyshev set.

Remark 2.1. Let us discuss first the relationship between these properties and Busemann NPC spaces. We recall that every
Minkowski space in the classical sense (i.e., normed linear space with strictly convex unit ball) is a Busemann NPC space,
see Busemann [5].

(a) Double-projection property fails in Busemann NPC spaces: Let (R3, F ) be a Minkowski space with strictly convex unit
balls. Assume that F is non-differentiable at p ∈ I = {p ∈ R

3: F (p) = 1}; then due to the symmetry of F , the same holds
at q = −p ∈ I . On account of this assumption, we may consider supporting planes H p and Hq at p and q to the unit
ball B = {p ∈ R

3: F (p) � 1}, respectively, such that H p ∩ Hq �= ∅. We translate Hq to the origin, denoting it by H0. Let
us finally consider an arbitrary plane H containing the origin and the point p, and H0 ∩ H p ∩ H = {z}. If S1 = [p, z] and
S2 = [0, z], then by construction, one has P S1 (0) = p and P S2 (p) = 0, thus (P S2 ◦ P S1 )(0) = 0. If the double-projection
property holds (up to a scaling of the indicatrix I), then we have that dF (0, p) � dF (z1, z2) for every z1 ∈ S1 and z2 ∈ S2.
Let z1 = z2 = z ∈ S1 ∩ S2; the latter inequality implies the contradiction 1 = F (p) = dF (0, p) � 0.

(b) Global projection non-expansiveness property fails in Busemann NPC spaces: Due to Phelps [15, Theorem 5.2], a Minkowski
space (with dimension at least three) which satisfies the global projection non-expansiveness property, is necessarily Eu-
clidean.



604 A. Kristály, D. Repovš / Differential Geometry and its Applications 31 (2013) 602–610
Next, we treat these two properties on Alexandrov NPC spaces. First, it is a well known fact that every Alexandrov NPC
space satisfies the projection non-expansiveness property, see Bridson and Haefliger [3, Proposition 2.4]. Our first result
reads as follows.

Theorem 2.1. Every Alexandrov NPC space satisfies the double-projection property.

Remark 2.2. (a) We provide two independent proofs of Theorem 2.1, each of them exploiting basic properties of Alexandrov
NPC spaces: (1) Pythagorean and Ptolemaic inequalities; (2) the first variation formula and non-expansiveness of the metric
projection.

(b) With respect to Remark 2.1, if we assume that a Busemann NPC space is also Ptolemy (i.e., the Ptolemaic inequality
holds for every quadruple), the double-projection property holds. In fact, the latter statement is precisely Theorem 2.1,
exploiting the famous characterization of CAT(0)-spaces by Foertsch, Lytchak and Schroeder [8], i.e., a metric space is a
CAT(0)-space if and only if it is a Ptolemy and a Busemann NPC space.

We now present a genuinely different class of spaces where the double-projection property holds.

Theorem 2.2. Every reversible Finsler–Minkowski space satisfies the global double-projection property.

Remark 2.3. (a) Hereafter, the Finsler–Minkowski space is understood in the sense of Finsler geometry, see Bao, Chern and
Shen [2]; in particular, we assume that the norm F belongs to C2(Rn \ {0}); see Section 3. As we already pointed out in
Remark 2.1(a), the double-projection fails on Minkowski spaces with non-differentiable unit balls.

(b) We emphasize that the proof of Theorem 2.2 cannot follow any of the lines described in Remark 2.2(a). First, a rigid-
ity result due to Schoenberg [16] shows that any Minkowski space on which the Ptolemaic inequality holds is necessarily
Euclidean; see also Buckley, Falk and Wraith [4]. Second, if we want to apply the global projection non-expansiveness
property, we come up against the rigidity result of Phelps [15, Theorem 5.2], see also Remark 2.1(b). However, the funda-
mental inequality of Finsler geometry and some results from Kristály, Rădulescu and Varga [12] provide a simple proof of
Theorem 2.2, where the fact that F belongs to C2(Rn \ {0}) plays an indispensable role.

In spite of the above remarks, the following characterization can be proved in the Riemannian framework which entitles
us to assert that the notions introduced in Definitions 2.1 and 2.2 provide new features of the non-positive curvature.

Theorem 2.3. Let (M, g) be a smooth Riemannian manifold and dg be the induced metric on M. Then the following assertions are
equivalent:

(i) (M,dg) satisfies the double-projection property;
(ii) (M,dg) satisfies the projection non-expansiveness property;

(iii) the sectional curvature of (M, g) is non-positive.

The proof of Theorem 2.3 is based on the Toponogov comparison theorem and on the formula of the sectional curvature
given by the Levi-Civita parallelogramoid.

In order for the paper to be self-contained, we recall in Section 3 some basic notions and results from Alexandrov NPC
spaces and Finsler–Minkowski spaces. In Section 4 we present the proof of Theorems 2.1 and 2.3, while in Section 5 we
prove Theorem 2.2 and also discuss some aspects of the double-projection property on non-reversible Finsler–Minkowski
spaces.

3. Preliminaries

3.1. Alexandrov NPC spaces

We recall those notions and results from the theory Alexandrov NPC spaces which will be used in the proof of Theo-
rems 2.1 and 2.3; for details, see Bridson and Haefliger [3, Chapter II], and Jost [9].

A metric space (M,d) is a geodesic length space if for every two points p,q ∈ M , there exists the shortest geodesic segment
joining them, i.e., a continuous curve γ : [0,1] → M with γ (0) = p, γ (1) = q and l(γ ) = d(p,q), where

l(γ ) = sup

{
m∑

i=1

d
(
γ (ti−1), γ (ti)

)
: 0 = t0 < · · · < tm = 1, m ∈N

}
.

We assume that geodesics are parametrized proportionally by the arc-length.
Given a real number κ , let M2

κ be the two-dimensional space form with curvature κ , i.e., M2
0 = R

2 is the Euclidean
plane, M2

κ is the sphere with radius 1/
√

κ if κ > 0, and M2
κ is the hyperbolic plane with the function multiplied by 1/

√−κ
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if κ < 0. If p,q, r ∈ M , a geodesic triangle �(p,q, r) in (M,d) is defined by the three vertices and a choice of three sides
which are geodesic segments joining them (they need not be unique). A triangle �(p,q, r) ⊂ M2

κ is a comparison triangle
for �(p,q, r) ⊂ M , if d(p,q) = d(p,q), d(p, r) = d(p, r), and d(r,q) = d(r,q). If d(p,q) + d(q, r) + d(r, p) < 2Dκ (where
Dκ = diam(M2

κ )), such a comparison triangle exists and it is unique up to isometries. A point x ∈ Im(γ ) is a comparison
point for x ∈ Im(γ ) if d(p, x) = d(p, x), where γ : [0,1] → M and γ : [0,1] → M2

κ are geodesic segments such that γ (0) = p,
γ (0) = p, and l(γ ) = l(γ ).

Let �(p,q, r) ⊂ M be a geodesic triangle with perimeter less than 2Dκ , and let �(p,q, r) ⊂ M2
κ be its comparison

triangle. The triangle �(p,q, r) satisfies the CAT(κ )-inequality, if for every x, y ∈ �(p,q, r), for the comparison points x, y ∈
�(p,q, r) one has d(x, y) � d(x, y). The geodesic length space (M,d) is a CAT(κ )-space if all geodesic triangles in M with
perimeter less than 2Dκ satisfy the CAT(κ )-inequality. The metric space (M,d) is an Alexandrov NPC space if it is locally a
CAT(0)-space, i.e., for every p ∈ M there exists ρp > 0 such that B(p,ρp) = {q ∈ M: d(p,q) < ρp} is a CAT(0)-space.

A set S ⊂ M is geodesic convex if for every two points p,q ∈ S , there exists a unique geodesic segment joining p to q
whose image is contained in S . The projection map P S : M → 2S is defined by (2.1).

Proposition 3.1. Let (M,d) be a CAT(0)-space. Then the following properties hold:

(i) (See [3, Proposition 2.2]) The distance function d is convex.
(ii) Projections (see [3, Proposition 2.4]): If S ⊂ M is a geodesic convex M-proximinal set, then it is M-Chebyshev, i.e., P S (q) is

a singleton for every q ∈ M. Moreover, P S is non-expansive, i.e., (2.2) holds on M. If q /∈ S and z ∈ S, then � P S (q)(q, z) � π/2,
where � p(z1, z2) denotes the Alexandrov angle between the unique geodesic segments joining p to z1 and z2 , respectively.

(iii) First variation formula (see [3, Corollary 3.6]): If γ : [0,1] → M is a geodesic segment with γ (0) = p, and z ∈ M is a distinct
point from p, then

cos � p
(
γ (t), z

) = lim
s→0+

d(p, z) − d(γ (s), z)

s
, t ∈ (0,1].

(iv) Pythagorean inequality (see [9, Theorem 2.3.3]): If p ∈ M, γ : [0,1] → M is a geodesic segment, and γ (0) = P Im(γ )(p), then

d2(p, γ (0)
) + d2(γ (0), γ (1)

)
� d2(p, γ (1)

)
.

(v) Ptolemaic inequality (see [8,10]): For every quadruple qi ∈ M, i = 1, . . . ,4, one has

d(q1,q3) · d(q2,q4) � d(q1,q2) · d(q3,q4) + d(q1,q4) · d(q2,q3).

Remark 3.1. If P S (q) is a singleton for some q ∈ M , we do not distinguish between the set and its unique point.

3.2. Finsler–Minkowski spaces

Let F :Rn → [0,∞) be a positively homogeneous Minkowski norm, i.e., F satisfies the properties:

(a) F ∈ C2(Rn \ {0});
(b) F (ty) = t F (y) for all t � 0 and y ∈R

n;
(c) The Hessian matrix g y = ∇2(F 2/2)(y) is positive definite for all y �= 0.

The Minkowski norm F is said to be absolutely homogeneous if in addition, we have

(b′) F (ty) = |t|F (y) for all t ∈R and y ∈ R
n .

If (a)–(c) hold, the pair (Rn, F ) is a Finsler–Minkowski space, see Bao, Chern and Shen [2, §1.2], which is the simplest (not
necessarily reversible) geodesically complete Finsler manifold whose flag curvature is identically zero, the geodesics are
straight lines, and the intrinsic distance between two points p,q ∈ R

n is given by

dF (p,q) = F (q − p). (3.1)

In fact, (Rn,dF ) is a quasi-metric space and in general, dF (p,q) �= dF (q, p). In particular, g y = g−y for all y �= 0 if and only
if F is absolutely homogeneous; if so, (Rn, F ) is a reversible Finsler–Minkowski space.

Let S ⊂ R
n be a nonempty set. Since (Rn, F ) is not necessarily reversible, we define the forward (resp. backward) metric

projections of q to S as follows:

• P+
S (q) = {s f ∈ S: dF (q, s f ) = infs∈S dF (q, s)};

• P−(q) = {sb ∈ S: dF (sb,q) = infs∈S dF (s,q)}.
S
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Proposition 3.2. Let (Rn, F ) be a (not necessarily reversible) Finsler–Minkowski space. Then the following properties hold:

(i) (See [12, Theorem 15.8]) If S ⊂ R
n is convex and R

n-proximinal, then S is both forward and backward R
n-Chebyshev, i.e.,

P+
S (q) and P−

S (q) are singletons for every q ∈ R
n.

(ii) (See [12, Theorem 15.7]) If S ⊂ R
n is closed and convex, then

• s ∈ P+
S (q) if and only if gs−q(s − q, z − s) � 0 for all z ∈ S;

• s ∈ P−
S (q) if and only if gq−s(q − s, z − s) � 0 for all z ∈ S.

(iii) Fundamental inequality of Finsler geometry (See [2, pp. 6–10]): For every y �= 0 �= w, one has∣∣g y(y, w)
∣∣ � √

g y(y, y) · √gw(w, w) = F (y) · F (w).

4. Proof of Theorems 2.1 and 2.3

Proof of Theorem 2.1. Let p ∈ M be fixed. Since (M,d) is an Alexandrov NPC space, there exists ρp > 0 small enough such
that B(p,ρp) is a CAT(0)-space. We fix arbitrary two geodesic convex B(p,ρp)-proximinal sets S1, S2 ⊂ B(p,ρp). According
to Proposition 3.1(ii), S1, S2 are B(p,ρp)-Chebyshev sets. We will prove that (DP1) is equivalent to (DP2). Let q ∈ S1.

Step 1. “(DP2) ⇒ (DP1)”. Let us choose z2 = P S2 (q) ∈ S2 in (DP2). Therefore, it follows that d(q, P S2 (q)) � d(z1, P S2 (q))

for all z1 ∈ S1, which implies that q ∈ P S1 (P S2 (q)). Since S1 is B(p,ρp)-Chebyshev, the claim follows.
Step 2. “(DP1) ⇒ (DP2)”. Since S1 and S2 are B(p,ρp)-Chebyshev sets, we may assume that (P S1 ◦ P S2 )(q) = q in (DP1).

Furthermore, there exists a unique element q̃ ∈ S2 with P S2 (q) = q̃ and P S1 (q̃) = q. We shall assume that d(q, q̃) > 0; other-
wise, (DP2) trivially holds. Fix z1 ∈ S1 and z2 ∈ S2 arbitrarily. Applying the Pythagorean inequality (see Proposition 3.1(iv))
to the point q̃ and the geodesic segment joining q to z1, we have

d2(q, q̃) + d2(q, z1) � d2(z1, q̃). (4.1)

In a similar way, one has

d2(q̃,q) + d2(q̃, z2) � d2(z2,q). (4.2)

Since (B(p,ρp),d) is Ptolemaic (see Proposition 3.1(v)), for the quadruple of points z1, z2, q̃,q ∈ B(p,ρp), we obtain

d(z1, q̃) · d(z2,q) � d(z1, z2) · d(q̃,q) + d(z1,q) · d(z2, q̃). (4.3)

Assume to the contrary that d(z1, z2) < d(q, q̃) = d(q, P S2 (q)). Then, relation (4.3) yields

d(z1, q̃) · d(z2,q) < d2(q, q̃) + d(z1,q) · d(z2, q̃).

Combining this relation with (4.1) and (4.2), we obtain[
d2(q, q̃) + d2(q, z1)

] · [d2(q̃,q) + d2(q̃, z2)
]
<

[
d2(q, q̃) + d(z1,q) · d(z2, q̃)

]2
,

which is equivalent to [d(q, z1) − d(q̃, z2)]2 < 0, a contradiction. Therefore, we have

d
(
q, P S2(q)

) = d(q, q̃) � d(z1, z2),

which concludes the proof. �
Remark 4.1. For “(DP1) ⇒ (DP2)” we can give an alternative proof. As above, let q̃ ∈ S2 with P S2 (q) = q̃ and P S1 (q̃) = q, and
fix z1 ∈ S1 and z2 ∈ S2 arbitrarily. Let γ : [0,1] → M be the unique geodesic joining q = γ (0) and q̃ = γ (1). We claim that

P Im(γ )(z1) = q and P Im(γ )(z2) = q̃. (4.4)

Since P S1 (q̃) = q, due to Proposition 3.1(ii), one has that � q(γ (t), z1) � π/2, t ∈ (0,1]. The first variation formula (see
Proposition 3.1(iii)) yields that

0 � cos � q
(
γ (t), z1

) = lim
s→0+

d(q, z1) − d(γ (s), z1)

s
.

Since d is convex, the function s �→ d(q,z1)−d(γ (s),z1)
s is non-increasing. Combining the latter two facts, it follows that

0 � d(q, z1) − d(γ (s), z1)

s
, s ∈ (0,1].

In particular, d(q, z1) � d(γ (s), z1) for every s ∈ (0,1], which concludes the first part of (4.4); the second relation is proved
similarly. Now, from the non-expansiveness of the projection P Im(γ ) (see Proposition 3.1(ii)) and relation (4.4), we obtain

d(q, q̃) = d
(

P Im(γ )(z1), P Im(γ )(z2)
)
� d(z1, z2).
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Proof of Theorem 2.3. “(iii) ⇒ (i)&(ii)” If the Riemannian manifold (M, g) has non-positive sectional curvature, (M,dg)

is an Alexandrov NPC space, see Bridson and Haefliger [3, Theorem 1A.6]. Consequently, by Theorem 2.1, (M,dg) has the
double-projection property. Moreover, by Proposition 3.1(ii) it follows that the projective non-expansiveness property also
holds.

“(i) ⇒ (iii)” We assume that (M,dg) satisfies the double-projection property, i.e., every p ∈ M has a neighborhood U ⊂ M
such that (U ,d) is a geodesic length space, and for every two geodesic convex, U -proximinal sets S1, S2 ⊂ U , the statements
(DP1) and (DP2) are equivalent.

Let p ∈ M be fixed and B g(p, ρ̃p) ⊂ U be a totally normal ball of p, see do Carmo [7, Theorem 3.7]. Clearly, B g(p, ρ̃p) in-
herits the above properties of U . Fix also W0, V 0 ∈ T p M \ {0}. We claim that the sectional curvature of the two-dimensional
subspace S = span{W0, V 0} ⊂ T p M at p is non-positive. One may assume without loss of generality that V 0 and W0 are
g-perpendicular, i.e., g(W0, V 0) = 0.

Let κ be an upper bound for the sectional curvature over the closed ball B g[p, ρ̃p] = {q ∈ M: dg(p,q) � ρ̃p}, and let
κ1 = max{1, κ}. We fix δ > 0 such that

δ
(‖W0‖g + ‖V 0‖g

)
<

1

2
min

{
ρ̃p,

π√
κ1

}
. (4.5)

Let σ : [0, δ] → M be the geodesic segment σ(t) = expp(tV 0) and W be the unique parallel vector field along σ with
the initial data W (0) = W0. For any t ∈ [0, δ], we define the geodesic segment γt : [0, δ] → M by γt(u) = expσ(t)(uW (t)).
Having in our mind these notations, we claim that

P Im(γt )(p) = σ(t) for every t ∈ [0, δ]. (4.6)

To show this, fix t ∈ [0, δ]. Due to (4.5), for every u ∈ [0, δ], the geodesic segment γt |[0,u] belongs to the normal ball
B g(p, ρ̃p); thus, γt |[0,u] is the unique minimal geodesic joining the point γt(0) = σ(t) to γt(u). Moreover, since W is the
parallel transport of W (0) = W0 along σ , we have g(W (t), σ̇ (t)) = g(W (0), σ̇ (0)) = g(W0, V 0) = 0; therefore,

g
(
γ̇t(0), σ̇ (t)

) = g
(
W (t), σ̇ (t)

) = 0. (4.7)

Since Im(γt) is compact, P Im(γt )(p) �= ∅; let q ∈ P Im(γt )(p), and assume that q �= σ(t). It is clear that the geodesic triangle
�(p,q, σ (t)) is included into B g(p, ρ̃p), and on account of (4.5), its perimeter satisfies the inequality

dg(p,q) + dg
(
q,σ (t)

) + dg
(

p,σ (t)
)
<

π√
κ1

. (4.8)

Moreover, due to the fact that q ∈ P Im(γt )(p) and (4.7), the angles in the geodesic triangle �(p,q, σ (t)) fulfill

�q � π

2
and �σ(t) = π

2
. (4.9)

Now, we are in the position to apply Toponogov’s comparison theorem for triangles (where the curvature is bounded from
above by the number κ1 > 0), see Klingenberg [11, Theorem 2.7.6]. Namely, if �(p,q, σ (t)) is the comparison triangle for
�(p,q, σ (t)) on the two-dimensional sphere with radius 1√

κ1
, the comparison angles in �(p,q,σ (t)) are not smaller than

their corresponding angles in �(p,q, σ (t)). Combining this fact with (4.9), we get that

�q � π

2
and �σ(t) � π

2
.

By the cosine rule for sides of a spherical triangle, the latter inequalities yield

cos dg
(

p,σ (t)
) − cos dg(p,q) cos dg

(
q,σ (t)

) = sin dg(p,q) sin dg
(
q,σ (t)

)
cos q � 0;

cos dg(p,q) − cos dg
(

p,σ (t)
)

cos dg
(
q,σ (t)

) = sin dg
(

p,σ (t)
)

sin dg
(
q,σ (t)

)
cos�σ(t) � 0.

Adding these inequalities and rearranging them, we obtain[
1 − cos dg

(
q,σ (t)

)] · [cos dg(p,q) + cos dg
(

p,σ (t)
)]

� 0,

which is equivalent to

sin2 dg(q,σ (t))

2
cos

dg(p,q) + dg(p,σ (t))

2
cos

dg(p,q) − dg(p,σ (t))

2
� 0.

Since q �= σ(t), the first term is positive. On account of (4.8), the third term is also positive. Thus, the second term is
necessarily non-positive, i.e., dg(p,q)+dg(p, σ (t)) � π , which contradicts (4.8). Consequently, P Im(γt )(p) contains the unique
element σ(t), which concludes the proof of (4.6).
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In the same way as in (4.6), we can prove

P Im(γ0)

(
σ(t)

) = p for every t ∈ [0, δ]. (4.10)

Thus, we can conclude from (4.6) and (4.10) that for every t ∈ [0, δ],
P Im(γ0)

(
P Im(γt )(p)

) = p,

i.e., (DP1) holds for the point p ∈ Im(γ0) and sets S1 = Im(γ0) and S2 = Im(γt), respectively. Since these sets are geodesic
convex and compact (thus, B g(p, ρ̃p)-proximinal), the validity of the double-projection property implies that (DP2) holds
too, i.e., p is the best approximation point from Im(γ0) to Im(γt). Formally, we have

dg
(

p, P Im(γt )(p)
)
� dg(z1, z2) for all (z1, z2) ∈ Im(γ0) × Im(γt) and t ∈ [0, δ].

In particular, for every t, u ∈ [0, δ], we have

dg
(

p,σ (t)
)
� dg

(
γ0(u), γt(u)

)
. (4.11)

By using the parallelogramoid of Levi-Civita for calculating the sectional curvature K p(S) at p and for the two-dimensional
subspace S = span{W0, V 0} ⊂ T p M , see Cartan [6, pp. 244–245], we obtain from (4.11) that

K p(S) = lim
u,t→0

d2
g(p,σ (t)) − d2

g(γ0(u), γt(u))

dg(p, γ0(u)) · dg(p,σ (t))
� 0.

This concludes the proof of “(i) ⇒ (iii)”.
“(ii) ⇒ (iii)” Let us keep the notations and constructions from above. A similar geometric reasoning as in the proof of

(4.6) yields that

P Im(σ )

(
γt(u)

) = σ(t) for every t, u ∈ [0, δ]. (4.12)

Since S = Im(σ ) is a geodesic convex B g(p, ρ̃p)-proximinal set and the projection non-expansiveness property holds, on
account of (2.2) and (4.12) we obtain for every t, u ∈ [0, δ] that

dg
(

p,σ (t)
) = dg

(
σ(0),σ (t)

) = dg
(

P Im(σ )

(
γ0(u)

)
, P Im(σ )

(
γt(u)

))
� dg

(
γ0(u), γt(u)

)
,

which is nothing but relation (4.11). It remains to follow the previous proof. �
5. Proof of Theorem 2.2 and the double-projection property on non-reversible Finsler–Minkowski spaces

Proof of Theorem 2.2. Let S1, S2 ⊂ R
n be two convex and R

n-proximinal sets. Note that the implication “(DP2) ⇒ (DP1)” is
proved analogously as in Theorem 2.1.

Let us prove “(DP1) ⇒ (DP2)”. To do this, let q ∈ S1 such that q ∈ P S1 (P S2 (q)). Due to Proposition 3.2(i), both sets S1 and
S2 are R

n-Chebyshev. Consequently, there exists a unique element q̃ ∈ S2 such that P S2 (q) = q̃ and P S1 (q̃) = q. On account
of Proposition 3.2(ii), the latter relations are equivalent to

gq̃−q(q̃ − q, z1 − q)� 0 for all z1 ∈ S1;
gq̃−q(q − q̃, z2 − q̃)� 0 for all z2 ∈ S2.

Adding these inequalities, we obtain gq̃−q(q̃ − q, q̃ − q − z2 + z1) � 0. By applying the fundamental inequality (see Proposi-
tion 3.2(iii)) and relation (3.1), we have

d2
F (q, q̃) = F 2(q̃ − q) = gq̃−q(q̃ − q, q̃ − q)

� gq̃−q(q̃ − q, z2 − z1)

� F (q̃ − q) · F (z2 − z1)

= dF (q, q̃) · dF (z1, z2).

Consequently, dF (q, q̃) � dF (z1, z2) for every z1 ∈ S1 and z2 ∈ S2, which means that q ∈ S1 is the best approximation element
from S1 to S2. �
Remark 5.1. Let (Rn, F ) be a not necessarily reversible Finsler–Minkowski space; the metric distance dF is usually only a
quasi-metric. Even in this case, it is possible to state a similar result as Theorem 2.2, slightly reformulating the double-
projection property.

Let S1, S2 ⊂ R
n be two convex and R

n-proximinal sets, and q ∈ S1. Note that S1, S2 are forward and backward R
n-Cheby-

shev sets, see Proposition 3.2(i). In the forward case, we consider the following statements:
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Fig. 1. Apart from the case P−
S1

◦ P+
S2

, the compositions of forward and/or backward metric projections at q = (0,0) are scattered away from q.

(DP+
1 ) q = (P−

S1
◦ P+

S2
)(q);

(DP+
2 ) dF (q, P+

S2
(q)) � dF (z1, z2) for all z1 ∈ S1, z2 ∈ S2.

In the backward case, we consider similar statements:

(DP−
1 ) q = (P+

S1
◦ P−

S2
)(q);

(DP−
2 ) dF (P−

S2
(q),q) � dF (z2, z1) for all z1 ∈ S1, z2 ∈ S2.

Exploiting Proposition 3.2(ii) in its full generality, we can show as in Theorem 2.2:

Theorem 5.1. Let (Rm, F ) be a Finsler–Minkowski space. Then for every two convex and R
n-proximinal sets S1, S2 ⊂ R

n, we have:

(i) (DP+
1 ) ⇔ (DP+

2 );
(ii) (DP−

1 ) ⇔ (DP−
2 ).

Remark 5.2. Usually, the map P−
S1

◦ P+
S2

in (DP+
1 ) cannot be replaced either by P+

S1
◦ P+

S2
or by P+

S1
◦ P−

S2
or by P−

S1
◦ P−

S2
.

(The same is true for P+
S1

◦ P−
S2

in (DP−
1 ).) In order to give a concrete example, we recall the Matsumoto norm, see [13],

which describes the walking-law on a mountain slope (under the action of gravity), having an angle α ∈ [0,π/2) with the
horizontal plane. The explicit form of this norm F : R2 → [0,∞) is

F (y) =
⎧⎨
⎩

y2
1+y2

2

v
√

y2
1+y2

2+ g
2 y1 sin α

, y = (y1, y2) ∈R
2 \ {(0,0)};

0, y = (y1, y2) = (0,0),

(5.1)

where v [m/s] is the constant speed on the horizontal plane, g ≈ 9.81 [m/s2], and g sinα � v . The pair (R2, F ) is a typical
non-reversible Finsler–Minkowski space, and it becomes reversible if and only if α = 0.

Let v = 10 and α = π/3 in (5.1), and consider the convex and closed sets

S1 = {
(y1, y2) ∈R

2: y1 + y2 = 0
}
,

S2 = {
(y1, y2) ∈R

2: y1 + y2 = 1, y1 � 1/2
}
.

Let also q = (0,0). A direct calculation yields (P−
S1

◦ P+
S2

)(q) = q, and dF (q, P+
S2

(q)) � dF (z1, z2) for all z1 ∈ S1, z2 ∈ S2.
However, we have
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(
P+

S1
◦ P+

S2

)
(q) = (0.32338512,−0.32338512) �= q,(

P+
S1

◦ P−
S2

)
(q) = P+

S1
(1/2,1/2) = (0.23349577,−0.23349577) �= q,(

P−
S1

◦ P−
S2

)
(q) = P−

S1
(1/2,1/2) = (−0.08988935,0.08988935) �= q,

see also Fig. 1.
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