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Abstract

The paper provides examples of planar “homotopically two-dimensional” compacta, (i.e., of com-
pact subsets of the plane that are not homotopy equivalent to any one-dimensional set) that have
different additional properties than the first such constructed examples (amongst them cell-like, triv-
ial 1, and “everywhere” homotopically two-dimensional). It also points out that open subsets of
the plane are never homotopically two-dimensional and that some homotopically two-dimensional
sets cannot be in such a way decomposed into homotopically at most one-dimensional sets that the
Mayer-Vietoris Theorem could be straightforwardly applied.
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1. Introduction

The well-known example of Barratt and Milnor [1] shows that there exists a Peano
continuumX in R3 whose singular homology groups with integer coefficigi{gX) are
nontrivial for everyn > 1.

Planar sets behave more naturally with respect to their algebraic topology: By [13,6]
they are all aspherical, and by [14] also acydtichigher dimensionsvith respect to sin-
gular homology, i.e.H, (M) of any planar seM, M c R?, is trivial for all n > 1. The
proof in [14] is very delicate and complicated. However, for certain kinds of spaces there
exist simpler proofs, e.g., for the spaces which are homotopy equivalent to a 1-dimensional
separable metric space [7]. Not all planar sets are homotopy equivalent to 1-dimensional
spaces: Most recently Cannon and Conner [5] characterized when a discrete subset of the
plane satisfies that its complement has this property, but the first (not codiscrete) examples
with this property have already appeared before ([6, 85], [13, A.4.13]). The fundamental
group of these spaces are uncountable.

This is one of the aspects in which we improve upon these results by providing the
following three examples:

Brief description of our main examples

All these spaces are planar continua that are not homotopy equivalent to any one-
dimensional space. In addition

Example 1 (see Fig. 1(a)shows that it is not necessary to have fundamental group to
obtain this effectindeed this space, which is constructed by wedging a null-sequence
of two comb-spaces to the boundary of a disk, is path-connected, simply connected and
cellular (cf. 3.1-3.2).

Example 2 (see Fig. 1(b)shows that this effect can also be achieved for a Peano contin-
uum that is a disjoint union of a disk and open intervéiss built by similarly wedging
countably many Hawaiian Earrings to the boundary of a disk (cf. 3.1-3.2).

Example 3 (see Fig. 1(c)shows that one can also construct planar Peano contima
part’” of which is homotopy equivalent to any one-dimensional reete precisely the
continuum is everywhere homotopically 2-dimensional (cf. Definition 2.1(ii)). Here the
construction is based on the Sidrgki Carpet, by filling (instead of removing) an appro-
priate subset of all holes (cf. 3.3-3.4).

More precise definitions of these examples and proofs of these claims will follow in
Section 3. Section 4 will then be devoted to proving the following facts:

Proposition 1.1. A subset of the plane that is not homotopy equivalent to a one-dimen-
sional space can neither be

(i) simply connected and a Peano continufaf Propositiond.1), nor be
(ii) open(cf. Remari4.2).
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Fig. 1. Pictures of our main examples.

Towards the end we will return to the question that was raised at the very beginning of
this paper: We will point out that, although Examples 1 and 2 are not homotopy equivalent
to any one-dimensional space, the proof of their higher acyclicity can be given in a simple
way by reducing the situation to one-dimensional spaces. However, we will also point out
that this way of reduction is not available for our Example 3.

2. Preliminaries

The (Triangular) Comb spacés the following subspace of the plane:
11

E, 5, e
TheHawaiian earringis the planar space defined as:

2 2
H::{(x,y)eRZKx—}) +y2=<}> ,neN}.
n n

Definition 2.1.

c::{(x,y)eRz(xe {o, 1, } 0<y<(l—x)orxel01], y=0}.

(i) A spaceX is said to bhomotopicallyz-dimensionalor to havehomotopy dimension
n, abbrev. hdink = n), if it is homotopy equivalent to somedimensional space and
is not homotopy equivalent to arfy — 1)-dimensional space (cf. [3, p. 111]). Here
by dimension of space we mean covering dimension.

(i) We say that a spac¥ is everywhere homotopically-dimensionalf for every open
subsetU of X and every id-homotopy : X x I — X which is stableon X \ U,
i.e., H(x,t) =x for everyx € X \ U and for every, the intersectio/ N H(X, 1) is
n-dimensional. By afd-homotopywe mean any mapping/ : X x I — X such that
H(x,0)=x forall x € X.

(iii) A subsetX of the planeR? is calledsimply connectedf it is path-connected and
its fundamental group is trivial, and it is callezbllular in R? if it is the inter-
section of a decreasing sequence of topological disks, X.es (72, Dl?, where
D? c R? are homeomorphic to the standard diBk = {(x, y) e R? | x2 + y2 < 1}
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Fig. 2. A wedge of two comb spaces, as used in the construction of Example 1.

andD? , C Int(D?). See [11], [8, §11.15] for the relevance of cellular sets and their

generalization, cell-like sets.

Definition 2.2. A point xg of a spaceX is called ahomotopically fixed pointhf-poin) if,
for any id-homotopyH : X x I — X and for everyt € I, the pointxg is a fixed point of
the mappingH (-, t), i.e., H(xg, t) = xo, forallt € I.

Lemma 2.3. The wedg€ Vv C, if constructed as in FigR, is a space where the wedge-point
is homotopically fixed.

Proof. Take two copies of comb-spacasand B, embedded into the plane and denoted as
shown in Fig. 2, and call the resulting space

The pointv* is homotopically fixed inX. Indeed, suppose that it is not so. Then there
exists an id-homotop¥ : X x I — X and a numbefy € [0, 1] such thatH (v*, rg) = x* #
v*. Since the spacg is path connected we can suppose thiat= by and thatr, is the
minimal number such that

H®*, 1) = bo. (*)

Let U and V be disjoint neighborhoods dfy and v*, respectively, and suppose that
UNA=¢.LetW=VnH 1)U). This is an open nonempty set. Sinceis the
limit point of the a,,, there exists a numberf such thatz, € W N A if n > ng. Consider
the pathH (a,, -): [0, t,] — X for somen > ng. SinceH (a,,0) € W andH(a,, t,) € U,
there exists,, € [0, #,] such thatH (a,, t,) = ag. Becausd is sequentially compact and
a, — v*, there exists a numbey, ¢, < 1, such thatH (v*, t,) = ag. Since the condition
H(v*, 1,) = ag # v* is similar to ), there exist; < 1, < 1, such thatH (v*,¢,) = bo. This
contradicts the minimality of the numbey. Sov* is a homotopically fixed point of the
spaceX. O

Remarks 2.4. The proofs of our claims that come with Examples 1-3 all use the following
principles:

(i) They are all based on having one or more two-dimensional digksvhose boundary
is homotopically fixed at a dense set (and hence at all its points). This also was the
main idea of the examples in [6, 85], [13, A.4.13]. If th&nis one of our examples,
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Y is 1-dimensional and 4, Y -5 Xisa composition of a homotopy equivalence
and its inverse, the properties of the one-dimensidnaiake it impossible thag o
fl3p2 Would be the identity contradicting the homotopy fixednessf.

(i) An argument whyg o f|,p2 # id was given for metri in [6, Theorem 5.2(1)] by
quoting [4]. The condition “metric” is not necessary when instead working @étbh-
cohomology: Since it is defined via the same coverings as covering dimension, the
secondéech-cohomology groups of a one-dimensional space are trivial. Therefore,
when combined with the natural inclusiéninto and the retraction onto D? of X,
the mapr o g o f o i cannot induce the identity df2(D?, 9 D?) = Z.

(i) If X > Z >z andz is homotopically fixed inZ, we have to ask whether it is also
homotopically fixed inX. The following two observations (iv) and (v) suffice to deal
with all cases that come up in discussing our examples.

(iv) Let X be a topological spaceA a retract of X and ag an hf-point ofA, and let
r: X — A be a retraction such that=1(ag) = ap. Thenag is an hf-point ofX. This
follows, since an id-homotop# of X that moves:g can viar o H be turned into an
id-homotopy ofA with this property.

(v) Leta metric spac& be the union of two closed subspadgsand X o, let X1 N X2 be
an AR and letxg € X1 be an hf-point of the path-connected nontrivial sp&ge Then
xo is an hf-point of the spac&; U X»,. The proof is, similarly as for the preceding
item, based on turning an id-homotopyof X that movesc to a into one ofX; that
movesxg. This task is only not trivial, ifH (xg, (0, 1]) C X2\ X1 andxp € X1 N Xo.
Connectxg anda by an arcA C H(xop, [0, 1]), and then find another nontrivial arc
B that connectsg to some poinb. If possible, choos® inside X1 N X2, but in any
case insideX;. As anAR, X1 N Xy is either a singleton, or it contains nontrivial
arcs. TheA R-property of X1 N X2 and of B gives that a homeomorphism between
arcs,f : A — B, xo— xo, a > b extends to a continuous mappiggX, — X1 with
glx,nx, = id. Thereforeg can via the identity ok; be extended to a map X — X1,
andh o H is the desired homotopy that movesto b.

3. Discussion of our main examples

Construction 3.1. For constructing Examples 1 and 2 consider in the pRéhthe standard
disk D2 and a countable dense subset= {m;}:2, of the boundary oD?2. Attach to each
pointm; a spaceX,, with anhf-point at this point such that the spaces do not intersect each
other and the diameters of these spaces tend to zerg,.lig(diamX,,) = 0. In case of
Example 1 choose eachy,, to be homeomorphic t6 v C, in case of Example X, ~ H

for eachm. UseX to denote the resulting space.

Proof 3.2. The proof that hdinaX) = 2 for both, Examples 1 and 2, follows 2.4, using 2.3
and 2.4(ii) as basis for getting the points@h? homotopically fixed. Example 1 is cellular,

as can be seen by explicitly constructing disks as required by Definition 2.1(iii) in the spirit
of that one that we painted in grey in Fig. 4(b). The verification of the remaining claims is
elementary. O
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Construction 3.3. Example 3 (see Fig. 1(c)) is constructed according the following in-
ductive process that is analogous to the construction of the SgipCarpet: As for the
Sierpihski Carpet, the construction is based on iteratively subdividing a square into nine
congruent subsquares, one “central squarddur “corner squaresd;, while the remain-

ing four squares will be denoted iy (i = 1,...,4). The & squares om iteratively
subdivision steps are bijectively associated to the words of lengtkier the alphabet

{a1, b1, ..., a4, ba, c}, Where thejth letter describes the relative position of the square

in the jth subdivision step. The spacenow, our Example 3, is defined as the comple-
ment of the interior regions of those squares that can be described by a word of the form
“wa;c”, wherew is a word over the reduced alphaljet, b1, . .., as, ba}. In Fig. 1(c) those
areas which have such words of length at most three are white. In black we painted those
areas which entirely belong t8, since after three subdivisions it is already clear that
no subregion can match the condition for not belonging tavhile in grey we painted
those regions which will split up into white and black areas on forthcoming subdivision
steps.

Remark. Note that neither the open, nor the closed disk is everywhere homotopically two-
dimensional in the sense of Definition 2.1(ii), since the condition is not satisfied, e.g., for
U = D?. In contrast to this we prove:

Proposition 3.4. S is an everywhere homotopicalBtdimensional planar Peano contin-
uum.

Proof. This proof essentially rests on two observations:

(i) the fact that the black squares of Fig. 1(c) are denseafter infinitely many iterates.
This in particular ensures that all points®have local dimension 2.

(i) Conversely, the white squares satisfy an analogous density-property which, in partic-
ular, ensures that a dense subset of boundary points of each black square consists of
singular points of subspaces®&fthat are homotopy equivalent to Hawaiian Earrings.
Therefore all boundary points of all black squares will be homotopically fixed.

The squara!i2 in Fig. 3(a) represents a black square and Fig. 3(b) represents the interior
structure of each of the smaller squares in Fig. 3(a). Essentially Fig. 3 shows one way of
how retractions can be defined that reduce the problem of showing the homotopic fixed-
ness of the boundary of black squares to situations where Propositions 2.4(ii)—(v) can be
applied.

Having observed that the black squares are dense with homotopically fixed boundaries,
it follows that H(S, 1) = S for every id-homotopyH; for the interior points of the black
squares the proof is analogous as for Examples 1 and 2. Since this in particularly holds for
those homotopies that, in the spirit of Definition 2.1(ii), fix the outside of some neighbor-
hood, the proof of this proposition is complete
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4. Proofs of additional propositions
The proof of Proposition 1.1(i) will follow from

Proposition 4.1. Every simply connected planar Peano continuum isAgh space and
therefore it is homotopy equivalent to a point.

Proof. If the complement of a Peano spaceRRR is not connected, then there exists a
Jordan curve/ in this space which is its retract, and therefore the space is not simply
connected (see [10, Chapter 10, 8§61, I, Theorem 5]). Vice versa, if the complement of a
continuum inR? is connected, then it follows by the Alexander duality that this contin-
uum is acyclic with respect to ti@ech cohomology. By our assumption, the continuxim

is simply connected, therefore its complement is connectedXaadyclic. By [2, Chap-

ter V, Theorem 13.1], every planar acyclic Peano continuum i$ RnSoX is anAR and

therefore homotopy equivalent to a pointa

Remark 4.2. Proposition 1.1(ii) seems to be folklore knowledge since Bing’s time, includ-
ing its generalization to triangulable opendimensional manifolds. On the other hand,
we are not aware of a written version of this general claim apart from [12]. However, in
the two-dimensional case that is of interest for us, we can provide the following simpler
argument, and for that argument we are indebted to the referee:

Proof of Proposition 1.1(ii). The following construction is to be performed separately for
each of the at most countable many connected components, therefore we may assume that
our open set is &gion, i.e., an open connected subseffsf Each simply connected re-

gion in R? is an open disk and therefore homotopy equivalent to a point. Any nonsimply
connected region iik? is homeomorphic to the complement of a compact 0-dimensional
subset ofR? (see, e.g., [10, Chapter 10, 61, IV, Corollary 9]. Every 0-dimensional compact
subset ofR? is tame [10, Chapter 10, 61, V, Theorem 4], i.e., there exists an autohome-
omorphism of the plane which maps this 0-dimensional set to a compact stbskt

R = {(x,y) e R? | y =0} Cc R?. So it is sufficient to prove that hdif®? \ F) < 2. The
fundamental groups of such sets have been investigated by Eda [9].
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Let F be a compact zero-dimensional subseRof Since it is compact, there exiss
andeg such that(ag — €, ap + €0) O F. Choosecg as (one of) the nearest point(s) 6f
with respect taig. SinceF is zero-dimensional, it cannot contain an entire interval, hence
{co} already is a connected component/®f For similar reasons it is always possible,
if ap = co and if (co — ¢, cp) and o, co + ¢) intersect for alle > 0 with F, to find two
monotone sequences of closed disjoint intervals that have empty intersectiof aitt
converge from different sides in such a waydyg that the complementary intervals all
intersect with7. Choose(q;);en as the sequence of midpoints of these complementary
intervals and; as the corresponding sequence of radii. As a result of this construction, we
have thal J72, U (a;, €;) covers the entireéF \ {co} whileag —eo <a1 <az<as<--- <
co<---<dag<a4<a<ag+&g. LetRl > £:= (ap—€0,a1—&e1)U (a2 +¢€2,a0+ €o) U
U?O:]_(az.j_l +e0j_1,a2.j+1 — €2.j41) U (a2 j42 + €2.j42, a.j — €2.;). Observe that by
constructionl U |72, dU (a;, &;) has empty intersection witk. Furthermore, obviously
U (ao, €0) — ({co} U U724 Ula;, €;)) retracts to this one-dimensional set (see Fig. 4(a)).

We then iteratively continue to build this one-dimensionalet| J;2dU (a;, &;) into
the interior of each of the diskE (a;, ;) by applying the same scheme of construction
as before to the diskK (ao, £0). Finally, from combining the retraction constructed above
with the analogous retractions insitiéq; , ¢;) (i > 1), and from simultaneously retracting
the outside ofJ (ag, €p) to its boundary, the desired result follows. Observe that the case,
where any of the setgg, co+ &) N F or (co — &, co) N F is empty for sufficiently smal, is
not markedly different: In this case just a finite (or empty) set of neighborhbd@ds ¢;)
suffices to cover the corresponding segmentof O

Remark. Since the vertices of the above system of circles and intervalR’othat we
constructed as a retract f&? \ F do only accumulate at points o, this line-system
can be regarded as a locally tame grapiRfh\ F, and hence it has the topology of a
one-dimensional CW-complex.

Definition 4.3. A planar spaceX is said to behomotopically decomposabifethere exist
open subset¥; andX2 such thatX = XU X2, hdim(X1) = hdim(X2) = hdim(X1NX>2) <
1andH1(X1N X>2) - H1(X1) ® H1(X2) is a monomorphism. In this case it follows from
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Mayer-Vietoris exact sequence and from Curtis’ and Fort’s result [7] that all decomposable
spaces are acyclic in higher dimensions.

Note that our Examples 1 and 2 and the examples from [6, 85] and [13, A.4.13] are
homotopically decomposable, e.§3 = complement of the mid-poink, = a small disk-
neighborhood of the mid-point. Such decompositions should also exist for all spaces where,
similarly as in the proof of Proposition 1.1(ii), all holes can be reduced to a closed set that
is arranged along a line. However, planar Peano continua without such a decomposition
do exist, e.g., Examples 3 or 4.4 below. The proofs are analogous, we restrict ourselves to
exposing the proof in the simpler case of Example 4.4.

Example4.4. Let X be our Example 2{X;},cn be a countable number of copiesXfand
let W =\/72; X; be the compact wedge with respect any base point lying on the boundary
of D?. This gives a Peano continuum that can be embedded into the plane.

Proposition 4.5. Example4.4is an indecomposabl2-dimensional planar Peano contin-
uum.

Proof. Every open subsal/ of W which contains the base point &Y should contain
one of the factors(; ~ X. By Remark 2.4(v) alhf-points of X; arehf-points of U and
henceU is homotopically 2-dimensional. It follows that the spagé”, X; is nondecom-
posable. O
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