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Abstract

The main result of this paper is the following theorem, related to the missing link in the proof of the
topological version of the classical result of Helly: Let {Xi}2

i=0 be any family of simply connected

compact subsets of R
2 such that for every i, j ∈ {0,1,2} the intersections Xi ∩Xj are path connected

and
⋂2

i=0 Xi is nonempty. Then for every two points in the intersection
⋂2

i=0 Xi there exists a cell-

like compactum connecting these two points, in particular the intersection
⋂2

i=0 Xi is a connected
set.
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1. Introduction

A topological space X is said to be simply connected if it is path connected and has a
trivial fundamental group, π1(X) = 1. It is well known that for every subspace X ⊂ R

2

of the plane, π1(X) = 1 if and only if for every Jordan curve J ⊂ X and every point
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y ∈ R
2\J from the bounded component of R

2\J , y lies in X (see, e.g. [13, Chapter 10,
§61. II, Theorem 5] or [16, p. 107, Proposition 2.51]) or equivalently, no Jordan curve
J ⊂ X is a retract of X.

Throughout this paper all singular and Čech (co)homology groups will be assumed to
have the integer coefficients Z. A topological space X is called a singular cell if all its
singular homology groups are trivial, H∗(X) = H∗(pt). Next, X is said to be acyclic if all
its Čech cohomology groups are trivial, Ȟ ∗(X) = Ȟ ∗(pt). A planar compactum is acyclic
if and only if it is cell-like (see, e.g. [6]). A space X is said to be cell-like connected if for
every two points a and b there exists cell-like continuum C in X such that a, b ∈ C.

If a subspace X ⊂ R
2 of the plane is not simply connected then, as it was mentioned

above, X contains a Jordan curve T ⊂ X which is a retract of X and therefore the group
H1(X) cannot be trivial. If a space X is simply connected then by the Hurewicz Theorem
(see, e.g. [15, Theorem VII.5.5]), all homotopy groups of X are naturally isomorphic to the
corresponding singular homology groups of X. However, all planar spaces are aspherical
(see, [17,3]). Therefore a subspace X of the plane R

2 is a singular cell if and only if X is
simply connected.

On the other hand, there exist simply connected spaces which are not acyclic (e.g. the
Warsaw circle, see [14, p. 5]). The following classical result is due to Helly (see, e.g. [5,8,
10]):

Theorem 1.1 (Topological Helly Theorem). Let K = {Ki}mi=0, m � n, be any finite family
of closed subsets of the n-dimensional Euclidean space R

n such that the intersection of
every k members of K, is a singular cell, for every k � n, and is nonempty, for k = n + 1.
Then the intersection

⋂m
i=0 Ki is a singular cell.

All known proofs of Theorem 1.1. are inductive and the initial step (i.e. when m =
n = 2) is based on the following assertion:

(∗) Any family {Xi}2
i=0 of three simply connected compact subsets of the plane R

2 has
a simply connected intersection provided that the intersection Xi ∩ Xj , i, j ∈ {0,1,2}
of any two of its members is path connected and the intersection

⋂2
i=0 Xi of all three

members is nonempty.

Apparently, for several years nobody questioned the validity of assertion (∗). However,
Bogatyi [1, p. 399] has recently pointed out that no complete proof of (∗) can be found in
the existing literature.

Any intersection
⋂

λ∈Λ Xλ of simply connected subsets Xλ ⊂ R
2, λ ∈ Λ, has a trivial

fundamental group, with respect to any of its points. Indeed, consider any Jordan curve
J ⊂ ⋂

λ∈Λ Xλ. Since by hypothesis, every element Xλ, of the family is simply connected,
the bounded region of R

2 determined by J is a subset of Xλ, therefore it is a subset
of the intersection

⋂
λ∈Λ Xλ for every λ ∈ Λ. Consequently, the fundamental group of

the intersection is trivial, π1(
⋂

λ∈Λ Xλ) = 1. Hence, in order to prove assertion (∗) it is
necessary to verify that the intersection

⋂2
i=0 Xi of all three sets is path connected. In the

present paper we provide the first step towards filling this gap—by establishing the cell-like
connectedness of

⋂2
Xi :
i=0
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Theorem 1.2. A family {Xi}2
i=0 of three simply connected compact subsets of R

2 has a cell-

like connected intersection
⋂2

i=0 Xi provided that the intersection Xi ∩Xj , i, j ∈ {0,1,2},
of any two of its members is path connected and the intersection

⋂2
i=0 Xi of all three is

nonempty.

The corresponding result for acyclic spaces can be found in [4,7,9,12]. The requirement
from assertion (∗) that the intersection Xi ∩ Xj of any two of the sets be path connected
cannot be weakened to just connectedness—as the following result from [11] demonstrates:

Theorem 1.3. There exist three simply connected compact subsets of R
2 such that inter-

section of any two of these sets is connected and the intersection of all three of them is
a disconnected two-point set.

2. Preliminaries

Lemma 2.1. Let A and B be disjoint subcontinua of a compactum X. Then there exists
a continuum C ⊂ X such that A ∩ C �= ∅ and B ∩ C �= ∅ if and only if the inclusion-
induced homomorphism ϕ : Ȟ 0(X) → Ȟ 0(A ∪ B) of the Čech cohomology groups is not
an epimorphism.

Proof. (⇒) Suppose that there exists a continuum C ⊂ X connecting A and B , i.e. A ∩
C �= ∅ and B ∩ C �= ∅. Then obviously, Ȟ 0(A ∪ B ∪ C) ∼= Z. Since A ∩ B = ∅ it follows
that Ȟ 0(A ∪ B) ∼= Z ⊕ Z and the composition of the inclusion-induced homomorphisms
Ȟ 0(X) → Ȟ 0(A ∪ B ∪ C) → Ȟ 0(A ∪ B) cannot be an epimorphism.

(⇐) Conversely, let U be a clopen (i.e. open and closed) subset of X which contains A.
Such a set always exists, take for example X. Let C be the intersection of all such sets (i.e.
C is the quasi-component of the set A). Note that the quasi-component of any compact
space is always a continuum (see, e.g. [13, Chapter 5, §47. II, Theorem 2]).

Suppose that B ∩ C = ∅. Then there exists a clopen set U ⊂ X which contains A and
does not intersect B . Recall that zero-dimensional Čech cohomology Ȟ 0(Y ) is always
naturally isomorphic to the group of locally constant functions from Y into the group of
integers Z with the discrete topology. Now, since A and B are connected and U is clopen
in X, any locally constant function on A U B in this case can be extended over A ∪ B ∪ U

and hence over X. Therefore ϕ must be an epimorphism. Contradiction. �
Lemma 2.2. Let C and D be acyclic subcontinua of the plane R

2. Then each component
of connectedness of the intersection C ∩ D is an acyclic continuum.

Proof. Consider the cohomology Mayer–Vietoris exact sequence:

· · · → Ȟ 1(C) ⊕ Ȟ 1(D) → Ȟ 1(C ∩ D) → Ȟ 2(C ∪ D) → ·· ·
Since C and D are acyclic spaces and C ∪ D is a planar set we have that Ȟ 1(C) ∼=
Ȟ 1(D) ∼= Ȟ 2(C ∪ D) ∼= 0. It follows that Ȟ 1(C ∩ D) ∼= 0. Again by the Mayer–Vietoris
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exact sequence it follows that for every quasi-component A of C ∩ D the first cohomol-
ogy vanishes, Ȟ 1(A) ∼= 0. Since in compact spaces every quasi-component is a component
and for any planar set M the higher Čech cohomologies are trivial, Ȟ n(M) = 0, n � 2, it
follows that every component of C ∩ D is an acyclic space. �

Let Δn, n ∈ N, be the standard n-dimensional simplex [e0e1 · · · en] with vertices
e0, e1, . . . , en. Let In+1 be the (n + 1)-dimensional prism Δn × [0,1]. Let I[i0i1···ik],
0 � k � n, be its (k + 1)-dimensional face [ei0ei1 · · · eik ] × [0,1], generated by the vertices
ei0, e11 , . . . , eik . Denote by A = Δn × {1} and B = Δn × {0} the top and the bottom faces
of the prism, respectively. Let Ji = A ∪ B ∪ Ii , where Ii = I[01···î···n] is the n-dimensional
face generated by all vertices e0, e1, . . . , en, except the vertex ei .

The following result is of its own interest and its special case for n = 2 will play the key
role in the proof of our Theorem 1.3:

Proposition 2.3. Suppose that the prism In+1 is covered by a family {Fi}ni=0 of closed
sets and that for every i, the face Ii is contained in Fi . Then there exists a continuum
C ⊂ ⋂n

i=0 Fi such that C ∩ A �= ∅ and C ∩ B �= ∅.

3. Proof of Proposition 2.3: Special case

First, suppose that Ji ⊂ Fi . By Lemma 2.1 it suffices to prove that the inclusion-induced
homomorphism Ȟ 0(

⋂n
i=0 Fi) → Ȟ 0(A ∪ B) is not an epimorphism. From the Mayer–

Vietoris exact sequence for the pair (
⋂n−k−1

i=0 Fi,
⋃n

j=n−k Fj ) and the equalities:

n⋂
i=0

Fi =
(

n−1⋂
i=0

Fi

)
∩ Fn,

(
n−k⋂
i=0

Fi

)
∪

(
n⋃

j=n−k+1

Fj

)

=
(

n−k−1⋃
i=0

Fi ∪
(

n⋃
j=n−k+1

Fj

))
∩

(
Fn−k ∪

(
n⋃

j=n−k+1

Fj

))
,

and (
n−k−1⋂

i=0

Fi ∪
(

n⋃
j=n−k+1

Fj

))
∪

(
Fn−k ∪

(
n⋃

j=n−k+1

Fj

))

=
(

n−k−1⋂
i=0

Fi

)
∪

(
n⋃

j=n−k

Fj

)
,

we get for k = 0 the natural boundary homomorphism:

Ȟ 0

(
n⋂

Fi

)
→ Ȟ 1

((
n−1⋂

Fi

)
∪ Fn

)
,

i=0 i=0
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whereas for every 1 � k � n we obtain the homomorphisms:

Ȟ k

((
n−k⋂
i=0

Fi

)
∪

(
n⋃

j=n−k+1

Fj

))
→ Ȟ k+1

((
n−k−1⋂

i=0

Fi

)
∪

(
n⋃

j=n−k

Fj

))
.

The composition of these homomorphisms for k = 0,1, . . . , (n − 1) yields the following
homomorphism:

Ȟ 0

(
n⋂

i=0

Fi

)
→ Ȟ n

(
n⋃

j=0

Fj

)
.

By the Mayer–Vietoris exact sequence for the pair (
⋂n−k−1

i=0 Ji,
⋂n

j=n−k Jj ) we obtain for
k = 0 the following natural epimorphism:

Ȟ 0

(
n⋂

i=0

Ji

)
→ Ȟ 1

((
n−1⋂
i=0

Ji

)
∪ Jn

)
→ 0

and for every k ∈ {1, . . . , n} the following epimorphisms:

Ȟ k

((
n−k⋂
i=0

Ji

)
∩

(
n⋃

j=n−k+1

Jj

))
→ Ȟ k+1

((
n−k−1⋂

i=0

Ji

)
∩

(
n⋃

j=n−k

Jj

))
→ 0

since the spaces
⋂n−k−1

i=0 Ji and
⋃n

j=n−k Jj are contractible for every k = 0,1, . . . , (n−1).
Since

⋂n
i=0 Ji = A ∪ B , the composition of these homomorphisms for k = 0,1, . . . , n

gives an epimorphism δ : Ȟ 0(A ∪ B) → Ȟ n(
⋃n

j=0 Jj ). So we obtain the following com-
mutative diagram:

Ȟ 0(
⋂n

i=0 Fi)

ϕ0

Ȟ n(
⋃n

j=0 Fj )

ϕn

Ȟ 0(A ∪ B)
δ

Ȟ n(
⋃n

j=0 Jj ) 0

Since
⋃n

j=0 Fj = In+1 and In+1 is a contractible space, the group Ȟ n(
⋃n

j=0 Fj ) is triv-
ial and so the homomorphism ϕn must also be trivial. However, the epimorphism δ is
not trivial since

⋃n
j=0 Jj = ∂(In+1) and Hn(

⋃n
j=0 Jj ) ∼= Z. Therefore ϕ0 cannot be an

epimorphism. Hence by Lemma 2.1 there must exist a continuum C ⊂ ⋂n
i=0 Fi which

connects A and B .

4. Proof of Proposition 2.3: General case

Suppose now that Ii ⊂ Fi . Let Gi = Fi ∪A∪B . As we have already proved in Chapter 3,
there exists a continuum C ⊂ ⋂n

i=0 Gi which connects A and B . Let C0 = C ∩ (
⋂n

i=0 Fi)

and let Cx be the component of the point x in the space C0. Let M be a clopen set in C0
containing Cx . Then M intersects either A or B . Indeed, if M ∩A = ∅ and M ∩B = ∅ then
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for some open in C set U we would get M = C0 ∩ U = C0 ∩ (U\(A ∪ B)) = U\(A ∪ B)

and M would be clopen in C. However, this is impossible since C is a continuum.
It follows that Cx must intersect A ∪ B . Consider now the union

⋃
x∈C0∩A Cx . This

space is closed in C0. Indeed, consider any limit point x0 of the set
⋃

x∈C0∩A Cx . Let M be
a clopen set in C0 containing x0. Since sets Cx are connected it follows that either Cx ⊂ M

or Cx ∩ M = ∅. Since x0 is the limit point there exists x such that Cx ⊂ M . It follows that
M ∩ A �= ∅. Thus Cx0 ∩ A �= ∅ and

⋃
x∈C0∩A Cx is a closed in C0, hence a compact space.

Similarly,
⋃

x∈C0∩B Cx is a compact space. It follows that

C ⊂
(

A ∪
( ⋃

x∈C0∩A

Cx

))
∪

(
B ∪

( ⋃
x∈C0∩B

Cx

))

and since C is connected(
A ∪

( ⋃
x∈C0∩A

Cx

))
∩

(
B ∪

( ⋃
x∈C0∩B

Cx

))
�= ∅.

Therefore for some x, Cx ∩ A �= ∅ and Cx ∩ B �= ∅. So there again exists a continuum
Cx ⊂ ⋂n

i=0 Fi which connects A and B .

5. Proof of Theorem 1.2

Consider any two points a and b of the intersection
⋂2

i=0 Xi . Since Xi ∩ Xi+1 is path
connected (indices are considered mod 3) there exists an arc γi in Xi ∩ Xi+1, connecting
a and b. The union γi ∪ γi+1 ⊂ Xi+1 is a Peano continuum. Let Ri+1 be the unbounded
complementary domain of γi ∪ γi+1 in the plane R

2. Let Ci+1 be the union of γi ∪ γi+1
with all bounded complementary domains. The boundaries of Ri and Ci are the same.
It follows by the characterization theorem for planar continua [16, p. 113] that Ci are
simply connected Peano continua, for every i. By the Borsuk Theorem [2, Theorem 13.1,
Chapter V] we can therefore conclude that all Ci are AR’s. Since Xi is simply connected,
it follows that Ci ⊂ Xi , for every i.

We shall associate to points a and b of the intersection
⋂2

i=0 Ci , the mapping f : I 3 →⋃2
i=0 Ci of the prism I 3 in the following manner. Let f 0 map the faces A and B (defined in

Chapter 2) to points a and b, respectively. Let f 1 be a mapping f 1 :A∪B ∪ (
⋃2

i=0 I[i]) →⋃2
i=0 Xi , which maps I[i], i ∈ {0,1,2}, bijectively on the corresponding γi .
Since the sets Ci are simply connected there exists a mapping f 2 : ∂(I 3) → ⋃2

i=0 Ci

which is an extension of f 1. Now, all planar subsets are known to be aspherical ([17],
see also [3]), so there exists an extension f : I 3 → ⋃2

i=0 Ci of the mapping f 2 such that
Ji ⊂ f −1(Ci).

By Proposition 2.3 there exists a continuum C ⊂ ⋂2
i=0 f −1(Ci) which connects A

and B . Then f (C) ⊂ ⋂2
i=0 Ci and f (C) is a continuum. By Lemma 2.2 the component

of connectedness of
⋂2

i=0 Ci containing f (C) is acyclic and therefore a cell-like contin-
uum connecting a and b in

⋂2
i=0 Xi . Since a, b were arbitrary points of the intersection⋂2

Xi if follows that this intersection is a cell-like connected set.
i=0
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6. Epilogue

We remark that a special case of assertion (∗), namely for Peano continua, has recently
been verified by Bogatyi [1]:

Theorem 6.1. Any finite family of simply connected Peano continua in R
2 has a nonempty

simply connected intersection, provided that intersection of any two of its members is con-
nected and the intersection of any three of its members is nonempty.

Bogatyi’s proof of Theorem 6.1 is based on the following technical lemma [1, p. 395]:

Lemma 6.2. Suppose that the square [0,1] × [0,1] is a union of two closed sets B0 and
B1 such that {i} × [0,1] ⊂ Bi, i ∈ {0,1}. Then there exists a continuum C ⊂ B0 ∩ B1 such
that C ∩ ([0,1] × {i}) �= ∅, i ∈ {0,1}.

We wish to point out that Lemma 6.2 follows from our Proposition 2.3 (for n = 1). We
shall conclude the paper by the following conjecture, a positive answer to which would
prove Assertion (∗).

Conjecture 6.3. Every component of the intersection of any finite family of planar ARs is
an AR.

Note that there exist two topological disks X1 and X2 in R
3 such that the intersection

X1 ∩X2 is homeomorphic to the Topologist’s Sine Curve T and hence is not an AR. Indeed,
let X1 be the square [0,1] × [0,1] × {0} ⊂ R

3. The set T can be considered as a subspace
of X1. Let X2 be the square X1 slightly deformed in such a way that only the points which
do not belong to T are moved to the points with the same first and second coordinates
and with the positive third coordinate. Obviously, such a deformation always exists and the
intersection X1 ∩ X2 is clearly homeomorphic to T , as asserted.

There also exist two Peano continua Y1 and Y2 in R
2 such that the intersection Y1 ∩ Y2

is homeomorphic to the Topologist’s Sine Curve T and hence is not an AR. Let us demon-
strate this: define the following subsets of the plane:

A = {
(x, y) ∈ R

2 | x ∈ [0,1] and y = 0 or y = 1/n, n ∈ N
}
,

Bn,m = {(
m/2n, y

) ∈ R
2 | y ∈ [

0,1/2n−1], 0 < m < 2n, n ∈ N
}
,

Cn,m = {(
m/3n, y

) ∈ R
2 | y ∈ [

0,1/2n−1], 0 < m < 3n, n ∈ N
}
,

and

Dn = {((
(−1)n + 1

)
/2, y

) ∈ R2 | y ∈ [
1/2n,1/2n−1], n ∈ N

}
.

Define the planar Peano continua Y1 and Y2 as follows:

Y1 = A ∪
( ∞⋃

Dn

)
∪

( ∞⋃( ⋃
n

Bn,m

))

n=1 n=1 0<m<2
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and

Y2 = A ∪
( ∞⋃

n=1

Dn

)
∪

( ∞⋃
n=1

( ⋃
0<m<2n

Cn,m

))
.

Obviously, Y1 ∩ Y2 = A ∪ (
⋃∞

n=1 Dn) ∼= T , so our assertion follows.
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