

Available online at www.sciencedirect.com

Topology and its Applications 133 (2003) 65-68

www.elsevier.com/locate/topol

On nonacyclicity of the quotient space of \mathbb{R}^3 by the solenoid

Umed H. Karimov^a, Dušan Repovš^{b,*}

^a Institute of Mathematics, Academy of Sciences of Tajikistan Ul. Ainy, 299^A, Dushanbe 734063, Tajikistan ^b Institute of Mathematics, Physics and Mechanics, University of Ljubljana, P.O. Box 2964, Ljubljana 1001, Slovenia

Received 29 May 2001; received in revised form 2 May 2002

Abstract

It is well-known that the quotient space of the 3-dimensional Euclidean space \mathbb{R}^3 by the dyadic solenoid is not simply connected. We prove that the singular homology of this quotient space is uncountable.

© 2003 Elsevier B.V. All rights reserved.

MSC: primary 54B15; secondary 55N10, 55Q52

Keywords: Fundamental group; Simple connectivity; Solenoid; Projective telescope; Hawaiian earrings

1. Introduction

Bing [1] was the first to observe that the quotient space \mathbb{R}^3/Σ_2 of the 3-dimensional Euclidean space \mathbb{R}^3 by the dyadic solenoid Σ_2 has a nontrivial fundamental group (a complete proof of this result was first published in [8,9]). However, not much is known about its properties. Therefore it is of interest to understand the nature of this group.

The quotient space \mathbb{R}^3/Σ_2 is homotopy equivalent to the dyadic projective telescope $\mathcal{P}_2\mathcal{T}$. Bogley and Sieradski have shown that the fundamental group $\pi_1(\mathcal{P}_2\mathcal{T})$ is non-Abelian [2,11]. The purpose of the present paper is to show that the abelianization of the fundamental group $\pi_1(\mathbb{R}^3/\Sigma_{\mathcal{P}})$ of the quotient space \mathbb{R}^3 by any solenoid $\Sigma_{\mathcal{P}}$ is an *uncountable* group.

* Corresponding author. E-mail addresses: umed@ac.tajik.net (U.H. Karimov), dusan.repovs@uni-lj.si (D. Repovš).

^{0166-8641/\$ –} see front matter $\,$ © 2003 Elsevier B.V. All rights reserved. doi:10.1016/S0166-8641(03)00054-3 $\,$

Theorem 1.1. The quotient space $\mathbb{R}^3 / \Sigma_{\mathcal{P}}$ of \mathbb{R}^3 by any solenoid $\Sigma_{\mathcal{P}}$ is homotopy equivalent to the projective telescope \mathcal{PT} and the singular homology group $H_1(\mathbb{R}^3 / \Sigma_{\mathcal{P}}; \mathbb{Z})$ is uncountable.

2. Preliminaries

Let S^1 be the oriented unit circle in the complex plane \mathbb{C} . Consider the following inverse sequence \mathcal{P} :

$$P_0 \xleftarrow{f_0} P_1 \xleftarrow{f_1} P_2 \xleftarrow{f_1} \cdots$$

where P_0 is a point, P_k is the circle S^1 and $f_k : S^1 \to S^1$ is the standard continuous mapping of degree n_k , $n_k > 1$, for every k > 0. The inverse limit $\lim_{k \to \infty} \mathcal{P}$ is called the *solenoid* $\Sigma_{\mathcal{P}}$. The space $\Sigma_{\mathcal{P}}$ is one-dimensional, compact and metric. It has a standard embedding into \mathbb{R}^3 (see, e.g., [5, pp. 230–231]). If $n_k = 2$ for all k, then $\Sigma_{\mathcal{P}}$ is called the *dyadic solenoid* and denoted by Σ_2 .

Let $C(f_0, f_1, f_2, ...)$ be the *infinite mapping cylinder* (see, e.g., [6,7,10]) and let $\widetilde{\mathcal{P}}$ be its natural compactification by the solenoid $\Sigma_{\mathcal{P}}$. The projective telescope \mathcal{PT} is the onepoint compactification of $C(f_0, f_1, f_2, ...)$ by some point $\{pt\}$. We consider $\{pt\}$ as the base point of \mathcal{PT} and the circles P_k for $k = \{1, 2, 3, ...\}$ as the natural subspaces of \mathcal{PT} .

Hereafter, by homology we shall mean the singular homology with integer coefficients. Since the one-dimensional homology group of a path-connected space is the abelianization of the fundamental group, our results strengthen Bing's theorem mentioned above [1,8,9].

To prove Theorem 1.1 we shall need the following results:

Theorem 2.1 (Borsuk [3,9]). Let W be a strong deformation retract of \widehat{W} and let X be any continuum in W. Then W/X is a strong deformation retract of \widehat{W}/X . Thus in particular, W/X and \widehat{W}/X have the same homotopy type.

Proposition 2.2. The compactum \mathcal{PT} is an absolute retract.

Proof. The proposition is a direct consequence of well-known results (see, e.g., [7, p. 104]). \Box

Consider the following closed subset of S^1 :

$$A = \left\{ e^{2\pi i t} \in S^1 \mid t = \frac{1}{k}, \ k \in \mathbb{N} \right\}.$$

The quotient space S^1/A is homeomorphic to the *Hawaiian earring* \mathcal{H} , i.e., to the compact bouquet of a countable number of circles $\{S_k^1\}_{k \in \mathbb{N}}$.

Let $p: S^1 \to \mathcal{H}$ be the canonical projection, \mathbb{Z} the infinite cyclic group and \mathbb{Z}_n the finite cyclic subgroup of order *n* of S^1 :

$$\mathbb{Z}_n = \left\{ e^{2\pi i t} \in S^1 \mid t = \frac{k}{n}, \ k = 1, 2, \dots, n \right\}.$$

3. Proof of Theorem 1.1

Since the space $\widetilde{\mathcal{P}}$ is a 2-dimensional compactum, it can be considered as a closed subspace of \mathbb{R}^5 . Since \mathbb{R}^5 and (by Proposition 2.2) $\widetilde{\mathcal{P}}$ is an absolute retract, $\widetilde{\mathcal{P}}$ is a strong deformation retract of \mathbb{R}^5 . The compactum $\Sigma_{\mathcal{P}}$ is a subset of $\widetilde{\mathcal{P}}$, therefore by Theorem 2.1 the quotient space $\mathbb{R}^5/\Sigma_{\mathcal{P}}$ is homotopy equivalent to the quotient space $\widetilde{\mathcal{P}}/\Sigma_{\mathcal{P}}$, which is obviously homeomorphic to the projective telescope \mathcal{PT} .

Since the homotopy type of $\mathbb{R}^5 / \Sigma_{\mathcal{P}}$ does not depend on the way in which $\Sigma_{\mathcal{P}}$ is embedded into \mathbb{R}^5 (see Theorem 1 in [9]), we can assume that $\Sigma_{\mathcal{P}}$ is embedded into \mathbb{R}^5 as the composition of the standard embeddings $\Sigma_{\mathcal{P}} \subset \mathbb{R}^3 \times \{0\} \subset \mathbb{R}^3 \times \mathbb{R}^2$, where 0 is the origin of \mathbb{R}^2 . By Theorem 2.1, $\mathbb{R}^3 / \Sigma_{\mathcal{P}}$ is homotopy equivalent to $\mathbb{R}^5 / \Sigma_{\mathcal{P}}$ and therefore to the projective telescope \mathcal{PT} . The first part of Theorem 1.1 is thus proved.

Suppose now that to the contrary, $H_1(\mathcal{PT})$ were a *countable* group. Consider \mathcal{PT} as the union: $\mathcal{PT} = C(f_0) \cup C(f_1, f_2, f_3, ...)^*$, where $C(f_0)$ is the cylinder of the constant mapping $f_0: S^1 \to S^1$ and therefore is a contractible space, and $C(f_1, f_2, f_3, ...)^*$ is the one-point compactification of the infinite mapping cylinder $C(f_1, f_2, f_3, ...)^*$ the intersection of these two subspaces of \mathcal{PT} is the circle S^1 . Thus it follows by the Mayer-Vietoris exact sequence:

$$\to H_1(S^1) \to H_1(C(f_0)) \oplus H_1(C(f_1, f_2, f_3, \ldots)^*) \to H_1(\mathcal{PT}) \to \cdots$$

that the group

$$H_1(C(f_1, f_2, f_3, ...)^*)$$
 is countable. (3.1)

Consider now $C(f_{n+1}, f_{n+2}, f_{n+3}, ...)^*$ as a subspace of $C(f_1, f_2, f_3, ...)^*$. Let X_n and $p_n : C(f_1, f_2, f_3, ...)^* \to X_n$ be the corresponding quotient space and the quotient mapping. For every sequence of units and zeros $\alpha = (\alpha_1, \alpha_2, \alpha_3, ...)$, let $g_\alpha : \mathcal{H} \to \mathcal{H}$ be the mapping such that

 $g_{\alpha}|_{S_k^1} = \begin{cases} \text{the identity mapping onto its image,} & \text{if } \alpha_k = 1, \\ \text{the constant mapping into the base point,} & \text{if } \alpha_k = 0. \end{cases}$

Let g be a mapping of \mathcal{H} to $C(f_1, f_2, f_3, ...)^*$ which maps the base point of \mathcal{H} to the base point $\{pt\}$ of $C(f_1, f_2, f_3, ...)^*$ and such that the restriction $g|_{S_k}$ only wraps once around the circle P_k in the positive direction.

The set $\{g_{\alpha}\}$ is uncountable. However, the group $H_1(C(f_1, f_2, f_3, ...)^*)$ is countable (3.1). Therefore there exist two sequences α and β such that $\alpha \neq \beta$ and such that for the mappings $S^1 \xrightarrow{p} \mathcal{H} \xrightarrow{g_{\alpha}} \mathcal{H} \xrightarrow{g} C(f_1, f_2, f_3, ...)^*$ and $S^1 \xrightarrow{p} \mathcal{H} \xrightarrow{g_{\beta}} \mathcal{H} \xrightarrow{g} C(f_1, f_2, f_3, ...)^*$ we obtain the same homomorphism of the corresponding homology groups:

$$(gg_{\alpha}p)_{1} = (gg_{\beta}p)_{1} : H_{1}(S^{1}) \to H_{1}(C(f_{1}, f_{2}, f_{3}, \ldots)^{*}).$$
(3.2)

On the other hand, let *m* be the minimal number such that $\alpha_m \neq \beta_m$. To the projection $p_m : C(f_1, f_2, f_3, \ldots)^* \to X_m$ there correspond two homomorphisms of homology groups: $H_1(S^1) \xrightarrow{(p_m gg_\alpha p)_1} H_1(X_m)$ and $H_1(S^1) \xrightarrow{(p_m gg_\beta p)_1} H_1(X_m)$. Since $\alpha_k = \beta_k$ for k < m and $\alpha_m \neq \beta_m$, by construction we have $(p_m gg_\alpha p)_1(1) \neq (p_m gg_\beta p)_1(1)$, contradicting (3.2).

Question 3.1. Let *X* be the Case–Chamberlin continuum [4]. Is then the homology of quotient space $H_1(\mathbb{R}^3/X)$ nontrivial?

Acknowledgements

We acknowledge the support by the Ministry for Education, Science and Sport of the Republic of Slovenia research program No. 0101-509 and research grants No. SLO-KIT-04-14-2002 and No. SLO-US-2002-01. The first author thanks Professor B.U. Makhmadaliev for the support during the work on this paper. We thank the referee for comments and suggestions.

References

- R.H. Bing, Conditions under which monotone decomposition of E³ are simple connected, Bull. Amer. Math. Soc. 63 (1957) 143, Abstract No. 325.
- [2] W.A. Bogley, A.J. Sieradski, Omega-groups II: Weighted presentation for omega-groups, Preprint, Univ. of Oregon, Eugene, OR, 1997.
- [3] K. Borsuk, On the homotopy type of some decomposition spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astron. Phys. 18 (1970) 235–239.
- [4] J.H. Case, R.E. Chamberlin, Characterization of tree-like continua, Pacific J. Math. 10 (1960) 73-84.
- [5] S. Eilenberg, N. Steenrod, Foundation of Algebraic Topology, Princeton University Press, Princeton, NJ, 1952.
- [6] U.H. Karimov, D. Repovš, On suspensions of noncontractible compactum of trivial shape, Proc. Amer. Math. Soc. 127 (1999) 627–632.
- [7] J. Krasinkiewicz, On a methods of constructing ANR-sets. An application of inverse limits, Fund. Math. 92 (1976) 95–112.
- [8] D.R. McMillan, N. Shrikhande, On the simple connectivity of a quotient space, Glasnik Mat. 66 (1983) 113–124.
- [9] N. Shrikhande, Homotopy properties of decomposition spaces, Fund. Math. 66 (1983) 119-124.
- [10] L.C. Siebenmann, Chapman's classification of shapes. A proof using collapsing, Manuscripta Math. 16 (1975) 373–384.
- [11] A.J. Sieradski, Omega-groups: Group theory for wild topology, Preprint, Univ. of Oregon, Eugene, OR, 1998.