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Abstract

We study the following problem for closed connected oriented manifoldsM of dimension 4. Let
Λ = Z[π1(M)] be the integral group ring of the fundamental groupπ1(M). SupposeG ⊂ H2(M;Λ)

is a freeΛ-submodule. When do there exist closed connected 4-manifoldsP and M ′ such that
M is homotopy equivalent to the connected sumP #M ′, whereπ1(P ) ∼= π1(M), π1(M

′) ∼= 0,
andH2(M

′;Z) ⊗Z Λ ∼= G. An answer is given in terms ofπ1(M) and the intersection forms o
H2(M;Λ) andH2(M;Z).
 2004 Elsevier B.V. All rights reserved.
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1. Introduction

We study the problemof splitting a closed topological manifoldM into a nontrivial
connected sum according to some algebraic data. In dimension 3 the Kneser conjectu
gives the answer ifπ1(M) = G1 ∗ G2. In dimension 4 a splitting may be given accordi
to a free product ofπ1(M) or a direct sum ofπ2(M), or of both (see, for example, [8,1
12]). In the present paper we study splittings of closed 4-manifoldsM4 up to homotopy
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equivalence according to a direct sum decompositionπ2(M) = H2(M;Λ) = H ⊕ G (as

Kreck

ses
f
.

if
t

lts we

d

ny
Λ-modules), whereΛ = Z[π1(M)] is the integral group ring ofπ1(M). Previous results
were proved in [2–4]. Our results are built on those obtained by Hambleton and
in [9]. If D → Bπ1(M) is the second Postnikov decomposition ofM4, i.e., πq(D) = 0
for everyq � 3 and there is a mapM → D which induces isomorphisms onπ1 andπ2,
Hambleton and Kreck definedSPD

4 (D) to be the set of homotopy equivalence clas
of polarized oriented 4-dimensional Poincaré complexes. We recall that an element o
SPD

4 (D) is represented by a 3-equivalencef :X → D, whereX is a Poincaré 4-complex
Let [X] ∈ H4(X;Z) be the fundamental class ofX. Then the map

SPD
4 (D) → H4(D;Z)

sending(X,f ) to f∗([X]) is well-defined. It was shown in [9] that this map is injective
π1(M) is infinite andH2(D;Q) 	= 0. If π1(M) is finite of orderm, then there is an exac
sequence

0 → Tor
(
Γ2

(
π2(D)

) ⊗Λ Z
) → SPD

4 (D) → Zm × H4(D;Z)

whereΓ (·) denotes the Whitehead functor (see [9, Theorem 1.1]). To state our resu
introduce theZ- andΛ-intersection forms

λC :H2(M;C) × H2(M;C) → C

whereC is Z or Λ. If G ⊂ H2(M;C) is a submodule, letλC
G be the restriction ofλC to

G × G. We denote the adjoint morphism by

λ̂C
G :G → HomC(G,C) = G∗.

Then we prove

Theorem A. Let M4 be a closed connected oriented topological4-manifold with infinite
fundamental group. LetG ⊂ H2(M;Λ) = π2(M) be aΛ-submodule such that

(1) G is Λ-free andλ̂Λ
G :G → G∗ is an isomorphism;

(2) Either H 2(Bπ1(M);Λ) ∼= 0 or H2(M;Λ)/G is trivial as Λ-module(that is, the
fundamental groupπ1(M) acts trivially on it);

(3) λΛ
G is extended fromλZ

G⊗ΛZ
.

Then there exists a homotopy equivalenceψ :M → M1 = P #M ′, where P is a
Poincaré4-complex withπ1(P ) ∼= π1(M), M ′ is a simply connected closed4-manifold,
andG = H2(M

′;Z) ⊗Z Λ.

Moreover, if π1(M) is “good” (see [7] or [6] for slightly different conditions) an
w2(G ⊗Λ Z2) = 0, thenP can be realized as a manifold.

Remark. The connected sumM1 = P #M ′ can be performed by using the top cell ofP .
The hypotheses implyG ⊗Λ Z ⊂ H2(M;Z). The first part of the theorem holds for a
Poincaré 4-complexM.
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To prove Theorem A we have to constructP andM ′ and a polarizationM1 = P #M ′ →

et
n

that
: let us
r
8].

an
cture
lence
[19,

e

s

of
D (see Sections 2 and 3). This can be done for any fundamental groupπ1. More precisely,
we prove the following result:

Theorem B. Let M4 be a Poincaré4-complex with an arbitrary fundamental group. L
G ⊂ H2(M;Λ) be a freeΛ-submodule such that̂λΛ

G :G → G∗ is an isomorphism. The
there is a homotopy equivalenceψ :M(3) → (P #M ′)(3) between3-skeleta, whereP is a
Poincaré4-complex andM ′ is a closed simply connected topological4-manifold.

In order to prove Theorem A we have to show that the images of[M] and[P #M ′] under
SPD

4 (D) → H4(D;Z) coincide. This will be analyzed in Section 4. Ifπ1(M) is finite, one
can extend the homotopy equivalenceM(3) → (P #M ′)(3) to a mapM → P #M ′. But
there is no control over the degree of the map. This defines a component inZm. On the
other hand ifπ1(M) is infinite, then the degree is shown to be one. Finally, we recall
there are many important results on connected sum decompositions of 4-manifolds
just mention the papers [8,13,14,17], and thebook [7] (see [5] for corrections). Furthe
results for 4-manifolds with special fundamental groups were proved in [2–4,12,15,1

2. Preliminary constructions

Let M4 be (as in Section 1) a closed connected topological 4-manifold with
orientation and a CW-structure with only one 4-cell. We need this special CW-stru
only for homotopy constructions, hence it suffices to have a (simple) homotopy equiva
to a 4-dimensional CW-complex with only one 4-cell. By a theorem of Wall (see
Lemma 2.9]) this can be assumed ifM is smooth or PL. LetG ⊂ H2(M;Λ) ∼= π2(M)

be aΛ-free submodule of rankr such that̂λΛ
G :G → G∗ is aΛ-isomorphism. We choos

a Λ-basise1, . . . , er of G and form the CW-complexP obtained fromM by attaching
3-cells alonge1, . . . , er . We note thatHp(P,M;Λ) (respectivelyHp(P,M;Λ)) is trivial
for p 	= 3, and isomorphic toG (respectivelyG∗) for p = 3. Furthermore,Hp(P,M;Z)

(respectivelyHp(P,M;Z)) is trivial for p 	= 3, and isomorphic toG ⊗Λ Z (respectively
G∗ ⊗Λ Z) for p = 3. We will denote byf : M → P the canonical inclusion map. It follow
that

0 → H3(P,M;C) → H2(M;C)
f∗−→ H2(P ;C) → 0

is exact for C = Λ or Z. In particular, the inclusion induced homomorphismf∗ :
H4(M;Z) → H4(P ;Z) is bijective, and we set[P ] = f∗([M]), where [M] is the
fundamental class ofM. Sinceλ̂Λ

G is an isomorphism, we get the following diagram
short exact sequences:

0 H 2(P ;Λ)
f ∗

⋂[P ]
H 2(M;Λ)

⋂[M]∼=
H 3(P,M;Λ) = G∗ 0

0 H2(P ;Λ) H2(M;Λ)
f∗ H3(P,M;Λ) = G

λ̂Λ
G

∼=
0
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From this we conclude that

ing

f
d
a

f ∗ :H 3(P ;Λ) → H 3(M;Λ), f∗ :H3(M;Λ) → H3(P ;Λ),

and ⋂
[P ] :H 2(P ;Λ) → H2(P ;Λ)

are isomorphisms. From the diagrams

H 1(P ;Λ)
f ∗
∼=⋂[P ]

H 1(M;Λ)

∼= ⋂[M]

H3(P ;Λ) H3(M;Λ)
f∗
∼=

and

H 3(P ;Λ)
f ∗
∼=⋂[P ]

H 3(M;Λ)

∼= ⋂[M]

H1(P ;Λ) H1(M;Λ) ∼= 0
f∗
∼=

we obtain isomorphisms⋂
[P ] :Hq(P ;Λ) → H4−q(P ;Λ)

for anyq = 1,3; similarly, forq = 0,4. Hence we have proved the first part of the follow
lemma:

Lemma 2.1. TheCW-complexP is a Poincaré duality complex of formal dimension4,
andf :M → P is of degree1. If the second Stiefel–Whitney classw2 :H2(M;Z) → Z2
vanishes onG ⊗Λ Z, then the Spivak normal spherical fibration ofP reduces to aTOP-
fibration.

Proof. Let νM :M → BSTOP be the classifying map for the stable normal bundle oM.
Sincew2(ei) = 0, we obtain trivializations ofe∗

i (νM) which extend over the attache
3-cells, for anyi = 1, . . . , r. Therefore,νM extends overP . Then the extension must be
reduction of the Spivak normal spherical fibration ofP . �
Lemma 2.2. The kernel of the homomorphism

H2(M;Λ) ⊗Λ Z → H2(P ;Λ) ⊗Λ Z

is isomorphic to the kernel ofH2(M;Z) → H2(P ;Z). This isomorphism coincides with

H3(P,M;Λ) ⊗Λ Z−→∼= H3(P,M;Z).

RegardingH3(P,M;Z) ⊂ H2(M;Z), the restriction ofλZ

M toH3(P,M;Z)×H3(P,M;Z)

is obtained by tensoringλΛ
M over Λ with Z and restricting to(H3(P,M;Λ) ⊗Λ Z) ×

(H3(P,M;Λ) ⊗Λ Z).
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Proof. ForX = M or P we have the following well-known sequence (see [1]):

e

the
um

’s
H3(X;C) → H3(Bπ1;C) → H2(X;Λ) ⊗Λ C → H2(X;C) → H2(Bπ1;C) → 0.

HereC is aΛ-module. We will apply it forC = Z. Since

H2(M;Λ) ∼= H2(P ;Λ) ⊕ G,

we have the isomorphism

TorΛ1
(
H2(M;Λ),Z

)−→∼= TorΛ1
(
H2(P ;Λ),Z

)
,

hence the sequence

0 → H3(P,M;Λ) ⊗Λ Z → H2(M;Λ) ⊗Λ Z → H2(P ;Λ) ⊗Λ Z → 0

is exact. Note also thatf∗ :H3(M;Z) → H3(P ;Z) is an isomorphism. This gives th
following commutative diagram of exact rows and columns:

0 0

H3(P,M;Λ) ⊗Λ Z H3(P,M;Z)

H3(M;Z)

∼=

H3(Bπ1;Z)

∼=

H2(M;Λ) ⊗Λ Z H2(M;Z) H2(Bπ1;Z)

∼=

0

H3(P ;Z) H3(Bπ1;Z) H2(P ;Λ) ⊗Λ Z H2(P ;Z) H2(Bπ1;Z) 0

0 0

Now the claim follows from this diagram.�

Let M ′ be a closed simply-connected topological 4-manifold which realizes
nonsingular symmetric formλZ

G⊗ΛZ
. We can form in an obvious way the connected s

M1 = P #M ′. The manifoldM ′ has the homotopy type of a wedge ofr 2-spheres with
a top cell attached, i.e.,M ′ 
 (

∨r
1 S2) ∪θ D4, where [θ ] ∈ π3(

∨r
1 S2) corresponds to

λZ

G⊗ΛZ
under the identificationπ3(

∨r
1 S2) = Γ (G⊗Λ Z). HereΓ (A) denotes Whitehead

quadratic functor of the Abelian groupA (see [20]). The 3-skeleton ofM1 is, up
to homotopy,M(3)

1 = P (3)
∨

(M ′)(2) = P (3) ∨ (
∨r

1 S2). Now we will construct a map
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g :M → M ′ of degree 1. Letβ = ∨r
1 ei : (M ′)(3) = ∨r

1 S2 → M be the above given basis.

y

h

The degree 1 property off defines a splitting off ∗ as follows:

H 2((M ′)(3);Z)

0 G∗ ⊗Λ Z H 2(M;Z)

∼= ⋂[M]
H 2(P ;Z)

f ∗

∼= ⋂[P ]
0

0 G ⊗Λ Z H2(M;Z)
f∗

H2(P ;Z) 0

H2((M
′)(3);Z) H2((M

′)(3);Z)

β∗

So there are well-defined elementsu1, . . . , ur ∈ H 2(M;Z) satisfyingui ∩ ej = δij , and
(
⋂[P ])−1f∗(ui ∩ [M]) = 0 (or equivalently,f∗(ui ∩ [M]) = 0). The product

u1 × · · · × ur :M →
r∏
1

CP∞

restricts to a mapg :M(3) → ∨r
1 S2 = (

∏r
1 CP∞)(2).

LetM∗ = (
∨r

1 S2)∪α∗ D4, whereα∗ :S3 → ∨r
1 S2 is the restriction ofg to the boundary

sphere ofM(3). Theng extends to a mapM → M∗, also denoted byg. It is obvious
that H4(M

∗;Z) ∼= Z, hence we put[M∗] = g∗([M]). We identify (M ′)(3) = (M∗)(3).
Furthermore, we denote bye∗

1, . . . , e∗
r ∈ H2(M

∗;Z) the canonically given basis and b
u∗

1, . . . , u
∗
r its dual inH 2(M∗;Z). By construction,g∗(u∗

i ) = ui , andβ∗(e∗
j ) = ej , for any

i, j = 1, . . . , r. So we have(
u∗

i ∪ u∗
j

) ∩ [
M∗] = (

g∗u∗
i ∪ g∗u∗

j

) ∩ [M] = (ui ∪ uj ) ∩ [M]
by identifyingH0(M

∗;Z) = H0(M;Z) = Z. Therefore,M∗ is a Poincaré complex wit
the same intersection matrix asM ′, i.e.,M∗ is homotopy equivalent toM ′.

Lemma 2.3. There is a degree1 mapg :M → M ′ such that
r∨
1

S2 = (
M ′)(2) = (

M ′)(3) β−→ M
g−→ M ′

is homotopic to the inclusion, and

(
M ′)(3) β−→ M

f−→ P

is homotopic to the constant map.

Proof. Using the above notation we have

u∗
i ∩ g∗β∗

(
e∗
j

) = g∗(u∗
i

) ∩ ej = ui ∩ ej = δij ,

hence{u∗
i : i = 1, . . . , r} is the Hom-dual basis of{g∗β∗(e∗

j ): j = 1, . . . , r}. So we have

g∗β∗(e∗
j ) = e∗

j , for any j = 1, . . . , r. Therefore, the composition mapg ◦ β : (M ′)(3) →
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(M ′)(3) is a homotopy equivalence. Sincef∗β∗(e∗) = f∗(ei) = 0, the composition map

ap

hat

ker

for

t

i

f ◦ β is homotopic to the constant map.�

3. The homotopy type of M(3)

Let G ⊂ H2(M;Λ) be, as before, aΛ-free submodule such thatλ̂Λ
G :G → G∗ is an

isomorphism. Thus we have a Poincaré complexP of dimension 4, and a degree 1 m
f :M → P with f∗ :π1(M)−→∼= π1(P ) and Ker(f∗ :π2(M) → π2(P )) ∼= G.

Remark. Instead of the above hypothesis one could start with a degree 1 mapf :M →
P such thatf∗ :π1(M)−→∼= π1(P ). The difference with the above assumption is t

Ker(f∗ :π2(M) → π2(P )) is only stablyΛ-free. The proofs go through under this wea
assumption.

For the following it is convenient to recall the natural exact sequence of Whitehead
a CW-complexX (see [20]):

H4(X;Λ) → Γ (Π2(X))
ρ−→ Π3(X) → H3(X;Λ) → 0.

Recall thatΓ (A) is the quadratic functor defined on Abelian groupsA. If A is aΛ-module,
thenΓ (A) inherits fromA a Λ-module structure. SoΓ (π2(X)) is aΛ-module. It is well
known that there is a natural identification

Γ
(
π2(X)

) = Im
(
π3

(
X(2)

) → π3
(
X(3)

))
.

The homomorphismρ is induced fromπ3(X
(3)) → π3(X), andπ3(X) → H3(X;Λ) is the

Hurewicz homomorphism.

Lemma 3.1. The induced homomorphisms of the mapf :M → P satisfy the following
properties:

(a) f∗ :π2(M
(3)) → π2(P

(3)) is split surjective; and
(b) f∗ :π3(M

(3)) → π3(P
(3)) is surjective.

Proof. (a) follows from the degree 1 property of the mapf . Recall from Section 2 tha
f∗ :H3(M;Λ) → H3(P ;Λ) is an isomorphism. From the diagram

0 H4(M;Λ)

∼= f∗

H4(M,M(3);Λ)

∼=

H3(M
(3);Λ)

f∗

H3(M;Λ)

f∗

0

0 H4(P ;Λ) H4(P,P (3);Λ) H3(P
(3);Λ) H3(P ;Λ) 0
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we get thatf∗ :H3(M
(3);Λ) → H3(P

(3);Λ) is an isomorphism. Then property (b) follows

y

n

al
from the following diagram of Whitehead’s sequences

0 Γ (π2(M
(3)))

f∗∗

π3(M
(3))

f∗

H3(M
(3);Λ)

f∗

0

0 Γ (π2(P
(3))) π3(P

(3)) H3(P
(3);Λ) 0

sincef∗∗ is induced from the split-surjective homomorphism

f∗ :π2
(
M(3)

) → π2
(
P (3)

)
.

Note thatΓ satisfiesΓ (A ⊕ B) ∼= Γ (A) ⊕ Γ (B) ⊕ (A ⊗ B). �
Corollary 3.2.

(a) f∗ :π2(M) → π2(P ) is split surjective; and
(b) f∗ :π3(M) → π3(P ) is surjective.

Sincef∗ :π1(M) → π1(P ) is an isomorphism, there is a mapα :P (2) → M(2) such that

(f ◦ α)∗ = i∗ :π1
(
P (2)

)−→∼= π1(P ),

wherei :P (2) → P is the inclusion.

Lemma 3.3. The mapα :P (2) → M(2) extends to a map over the3-skeleton(still denoted
byα) such that

f∗ ◦ α∗ = i∗ :π2
(
P (3)

) → π2(P ),

wherei :P (3) → P is the inclusion.

Proof. The difference cochain construction defines a bijection of the set of homotop
classes of extensions ofα|P (1) with C2(P̃ ,π2(M)) = HomΛ(C2(P̃ ),π2(M)). Here X̃

denotes the universal covering space ofX as usual. Letd = d(f ◦ α, inclusion) ∈
C2(P̃ ,π2(P )) be the difference cochain between the compositionf ◦ α and the inclusion
map i :P (2) → P . Sincef∗ :π2(M) → π2(P ) is surjective andC2(P̃ ) is Λ-free, the
induced homomorphismC2(P̃ ,π2(M)) → C2(P̃ ,π2(P )) is surjective. Therefore, we ca
lift d to an element̃d ∈ C2(P̃ ,π2(M)). Changingα by d̃ defines a mapα′ :P (2) → M such
thatf ◦α′ :P (2) → P is homotopic to the inclusion. We are going to denoteα′ by α. Now,
let ω ∈ H 3(P ;π2(M)) be the obstruction to extendingα over the 3-skeleta. The natur
homomorphism

H 3(P ;π2(M)
) → H 3(P ;π2(P )

)

maps ω to the obstruction to extendingf ◦ α 
 i :P (2) → P over P (3), so it
is zero. But we have isomorphismsπ2(M) ∼= π2(P ) ⊕ G and G ∼= ⊕r

1 Λ, hence
H 3(P ;π2(M))−→∼= H 3(P ;π2(P )) becauseH 3(P ;G) ∼= H1(P ;G) ∼= 0. Therefore,ω = 0
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andα extends overP (3). Now again, sincef∗ :π3(M) → π3(P ) is surjective, the differ-

d

ence cochain construction applies to give the desired map

α :P (3) → M. �
Addendum to Lemma 3.3.The mapf ◦ α :P (3) → P is homotopic to the inclusioni,
hence it extends to a mapΘ :P → P of degree 1, i.e.,Θ|P (3) = f ◦ α. So we have the
following diagrams:

H4(P,P (3);Λ)
Θ∗=id

∂∗

H4(P,P (3);Λ)

∂∗

H3(P
(3);Λ)

f∗◦α∗ H3(P
(3);Λ)

and

π4(P,P (3))
θ∗=id

∂∗

π4(P,P (3))

∂∗

π3(P
(3))

f∗◦α∗ π3(P
(3))

The mapsf :M → P andg :M → M ′ give rise to a map

ψ = (f × g)|M(2) :M(2) → (
P × M ′)(2) = P (2) ∨ (

M ′)(2) = M
(2)
1 .

We will extendψ over the 3-skeleton to a map, also denoted byψ , and show that

α ∨ β :P (3) ∨ (
M ′)(3) = M

(3)
1 → M(3)

is a homotopy inverse.
First we note that the compositions

M(2) ψ−→ M
(2)
1

c−→ P (2) i−→ P,

M(2) ψ−→ M
(2)
1

c′−→ (M ′)(2) i′−→ M ′,
and

(
M ′)(2) β−→ M(2) ψ−→ M

(2)
1

c′−→ (M ′)(2)

are equal tof |M(2) , g|M(2) , and Id(M ′)(2) , respectively.

Herec :M(2)
1 = P (2) ∨ (M ′)(2) → P (2) andc′ :M(2)

1 → (M ′)(2) are the projections, an
i andi ′ are the canonical inclusions.

Lemma 3.4. The mapψ :M(2) → M
(2)
1 extends to a map(still denoted byψ) ψ :M(3) →

M
(3)
1 such that the composition

c ◦ ψ :M(3) ψ−→ M
(3)
1

c−→ P (3)

is homotopic tof |M(3) :M(3) → P (3).
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Proof. Since π2(M) ∼= π2(P ) ⊕ G and G ∼= ⊕r
1 Λ, the induced homomorphism

is
s

H 3(M;π2(M1)) → H 3(M;π2(P )) is an isomorphism. The obstruction for extendingψ

maps to the obstruction for extendingi ◦ c ◦ ψ 
 f |M(2) , under this isomorphism. So it
zero, andψ extends overM(3). The extensions are classified by equivariant chain map

C3
(
M̃(3)

) → π3
(
M

(3)
1

)
,

i.e., by elements of HomΛ(C3(M̃
(3)),π3(M

(3)
1 )). Let d ∈ HomΛ(C3(M̃

(3)),π3(P
(3)))

be the difference cochain off |M(3) and c ◦ ψ . Since c∗ :π3(M
(3)
1 ) → π3(P

(3)) is
surjective (same proof as for Lemma 3.1(b)), we can liftd to an elementd̃ ∈
HomΛ(C3(M̃

(3)),π3(M
(3)
1 )). Changingψ by d̃ gives the desired extension.�

We note that the composition
(
M ′)(2) = (

M ′)(3) β−→ M(3) ψ−→ M
(3)
1

c′−→ (
M ′)(3) = (

M ′)(2) (∗)

is still homotopic to Id|(M ′)(3) .

Lemma 3.5. The induced homomorphismψ∗ :π2(M
(3)) → π2(M

(3)
1 ) is surjective.

Proof. The composition

π2
(
M

(3)
1

) (α
∨

β)∗−→ π2
(
M(3)

) ψ∗−→ π2
(
M

(3)
1

)
defines a homomorphism

π2
(
P (3)

) ⊕ (
π2

((
M ′)(2)) ⊗Z Λ

) → π2
(
P (3)

) ⊕ (
π2

((
M ′)(2)) ⊗Z Λ

)
.

Note that all maps areΛ-homomorphisms. Since
(
M ′)(2) β−→ M(3) f−→ P (3)

is homotopic to zero (see Lemma 2.3), it follows from(∗) that an element(0, b) ∈
π2(P

(3)) ⊕ (π2((M
′)(2)) ⊗Z Λ) maps to(0, b). An element

(a,0) ∈ π2
(
P (3)

) ⊕ (
π2

((
M ′)(2)) ⊗Z Λ

)
goes to the element(a,χ(a)) by Lemmas 3.3 and 3.4, whereχ is the composite
homomorphism

π2
(
P (3)

) α∗−→ π2
(
M(3)

) ψ∗−→ π2
(
M

(3)
1

) proj−→ π2
((

M ′)(2)) ⊗Z Λ.

Therefore,(α ∨ β)∗ ◦ ψ∗ is surjective; in fact, it is an isomorphism. Hence

ψ∗ :π2
(
M(3)

) → π2
(
M

(3)
1

)
is surjective. �
Lemma 3.6. The induced homomorphism

ψ∗ :π2
(
M(3)

) → π2
(
M

(3)
1

)
is an isomorphism.
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Proof. Lemma 3.4 gives the following diagram

y

k

ws
e
d

0 K2(f,Λ) H2(M
(3);Λ) = π2(M

(3))
f∗

ψ∗

H2(P
(3);Λ) = H2(P ;Λ) 0

0 K2(c,Λ) H2(M
(3)
1 ;Λ) = π2(M

(3)
1 ) c∗ H2(P

(3);Λ) = H2(P ;Λ) 0

whereK2(f,Λ) andK2(c,Λ) denote the kernels off∗ andc∗, respectively. Note that the
areΛ-free. Therefore, the surjective homomorphism

ψ∗ :H2
(
M(3);Λ

) → H2
(
M

(3)
1 ;Λ

)

induces a surjective homomorphism

ψ∗|K2(f,Λ) :K2(f,Λ) → K2(c,Λ)

and

K2(f,Λ) ∼= K2(c,Λ) ⊕ Ker(ψ∗|K2(f,Λ)).

But we have isomorphisms

K2(f,Λ) ⊗Λ Z ∼=
r⊕
1

Z ∼= K2(c,Λ) ⊗Λ Z,

hence

Ker(ψ∗|K2(f,Λ)) ∼= 0.

Now the claim follows from the above diagram.�
We can now state the main result of this section.

Theorem 3.7. Let M be a closed connected topological4-manifold with aCW-structure
so thatM = M(3) ∪ϕ D4. Suppose thatG ⊂ H2(M;Λ) is a Λ-free submodule of ran
r such thatλ̂Λ

G :G → G∗ is an isomorphism. Then there are a Poincaré complexP ,
a degree1 map f :M → P with f∗ :π1(M)−→∼= π1(P ) and K2(f,Λ) = G, a closed

simply-connected topological4-manifoldM ′ with H2(M
′;Z) = G ⊗Λ Z, and a homotopy

equivalenceψ :M(3) → P (3) ∨ (M ′)(3).

Proof. It remains to prove thatψ is a homotopy equivalence. By Lemma 3.6 this follo
once we have proved thatψ∗ :H3(M

(3);Λ) → H3(M
(3)
1 ;Λ) is an isomorphism. Sinc

f :M → P and c :M1 = P #M ′ → P (the “projection” ontoP ) are of degree 1 an
c∗ :π1(M1) → π1(P ) is an isomorphism, we obtain isomorphismsf∗ :H3(M;Λ) →
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H3(P ;Λ) andc∗ :H3(M1;Λ) → H3(P ;Λ) (see Section 2). Now the claim follows from

m
é

ti-

.
ave
ct,

t,

el
the diagram

H4(M;Λ)

∼= f∗

H4(M,M(3);Λ)

∼= f∗

H3(M
(3);Λ)

f∗

H3(M;Λ)

∼= f∗

0

H4(P ;Λ) H4(P,P (3);Λ) H3(P
(3);Λ) H3(P ;Λ) 0

H4(M1;Λ)

∼= c∗

H4(M1,M
(3)
1 ;Λ)

∼= c∗

H3(M
(3)
1 ;Λ)

c∗

H3(M1;Λ)

∼= c∗

0

andc∗ ◦ψ∗ = f∗ :H3(M
(3);Λ) → H3(P

(3);Λ) (by Lemma 3.4). ThereforeM andP #M ′
have the same 3-type (see [16]).�

4. Extending ψ : M(3) → M
(3)
1

In this section we will show that the obstruction to extendingψ to a homotopy
equivalence (still denoted byψ), ψ :M → M1, is detected by the intersection for
λΛ

M :H2(M;Λ) × H2(M;Λ) → Λ. Let us first recall it. IfX is a 4-dimensional Poincar
complex, then the cup product defines a map

H 2(X;Λ) ⊗ H 2(X;Λ) → H 4(X;Λ ⊗Z Λ)

⋂[X]−→ H0(X;Λ ⊗Z Λ) ∼= Λ.

Choosing theΛ-module structures as in [19], it isΛ-linear in the first component and an
Λ-linear in the second one (by using the canonical anti-involution ofΛ). The intersection
form λΛ

X is obtained from this by passing toH2(X;Λ) ⊗ H2(X;Λ) via Poincaré duality
We will identify λΛ

X with the cup product. By our main result of Section 3 we h
that the firstk-invariantskM andkM1 of M andM1, respectively, are the same. In fa

ψ :M(3) → M
(3)
1 defines an isomorphism of the algebraic 2-types[π1(M),π2(M), kM]

and[π1(M1),π2(M1), kM1]. In other words, we have a 2-stage Postnikov systemp :D →
Bπ1, and mapsϕ :M → D andϕ1 :M1 → D inducing isomorphisms onπ1 andπ2. Note
thatD̃ = K(π2,2) andΓ (π2) = H4(D;Λ). There is a natural map

F :H4(D;Z) → HomΛ−Λ

(
H 2(D;Λ) ⊗ H 2(D;Λ),Λ

)
defined byF(z)(x ⊗ y) := (x ∪ y) ∩ z. As above, it isΛ-linear in the first componen
and anti-Λ-linear (i.e.,Λ-linear) in the second one. We can identifyλΛ

M and λΛ
M1

with
F(ϕ∗[M]) andF((ϕ1)∗[M1]), respectively. The mapF can be defined on the chain lev
by using an equivariant chain approximation to the diagonal

δ :C∗
(
D̃

) → C∗
(
D̃

) ⊗Z C∗
(
D̃

)
.

If w ∈ C4(D̃) representsz, anda andb representx andy, respectively, thenF is induced
from

F(w)(a, b) :=
∑

a(w′)b(w′′),
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whereδ(w) = ∑
w′ ⊗ w′′. Therefore, the mapF factorizes over the canonical map

r

we

d’s
H2(D;Λ) ⊗Λ H2(D;Λ)
ε−→ HomΛ−Λ

(
H 2(D;Λ) ⊗ H 2(D;Λ),Λ

)

defined byε(z1 ⊗ z2)(x ⊗ y) := 〈x, z1〉〈y, z2〉. We will prove that the obstruction fo
extendingψ belongs toH2(D;Λ) ⊗Λ H2(D;Λ). We first note that, as a space,D can
be obtained fromM by attaching cells of dimensionq � 4. So we can identify

H2(D;Λ) = H2
(
D(3);Λ

) = H2
(
M(3);Λ

) ψ∗−→∼= H2
(
M

(3)
1 ;Λ

)
.

The Poincaré complexM1 = P #M ′ is obtained fromM
(3)
1 
 P (3) ∨ (M ′)(3) by attaching

one 4-cellD4
1 along[∂D4

1] ∈ π3(M
(3)
1 ). Similarly,M is obtained fromM(3) by attaching a

4-cellD4 along[∂D4] ∈ π3(M
(3)). The obstruction to extendingψ :M(3) → M

(3)
1 belongs

to

H 4(M;π3(M1)
) ∼= H0

(
M;π3(M1)

) ∼= π3(M1) ⊗Λ Z.

Obviously, it is equal to

i∗ψ∗
[
∂D4] ⊗Λ 1,

wherei :M(3)
1 → M1 is the inclusion map. We prefer to analyze the element

ψ∗
[
∂D4] ⊗Λ 1− [

∂D4
1

] ⊗Λ 1 = ξ ∈ π3
(
M

(3)
1

) ⊗Λ Z,

or even more

ξ̃ = ψ∗
[
∂D4] − [

∂D4
1

] ∈ π3
(
M

(3)
1

)
.

Obviously, ξ̃ = 0 implies the vanishing of the obstruction. To state the next lemma
recall that

Γ
(
π2

(
M

(3)
1

)) = Γ
(
π2

(
P (3)

)) ⊕ π2
(
P (3)

) ⊗ G ⊕ Γ (G) ⊂ π3
(
M

(3)
1

)
.

Lemma 4.1. The element̃ξ belongs toπ2(P
(3)) ⊗ G ⊕ Γ (G).

Proof. The claim follows immediately from the following diagrams of Whitehea
sequences:

0 Γ (π2(M
(3)))

ψ∗∗

π3(M
(3))

ψ∗

H3(M
(3);Λ)

ψ∗

0

0 Γ (π2(M
(3)
1 )) π3(M

(3)
1 ) H3(M

(3)
1 ;Λ) 0
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and

e

e

g

0 Γ (π2(M
(3))) π3(M

(3)) H3(M
(3);Λ)

∼=

0

0 Γ (π2(P
(3))) π3(P

(3)) H3(P
(3);Λ) 0

0 Γ (π2(M
(3)
1 )) π3(M

(3)
1 ) H3(M

(3)
1 ;Λ)

∼=

0

The vertical maps are induced by the mapf :M → P and the collapsing mapc :P #M ′ →
P . The morphisms from the last to the first rows are derived from the mapψ :M(3) →
M

(3)
1 , constructed in Section 3. The isomorphismsH3(M

(3);Λ) → H3(P
(3);Λ) and

H3(M
(3)
1 ;Λ) → H3(P

(3);Λ) are induced by the isomorphismsH3(M;Λ) → H3(P ;Λ)

andH3(M1;Λ) → H3(P ;Λ), respectively, as explained in Section 3.�
It follows from Lemma 2.2 of [9] thatΓ (G) ⊗Λ Z ⊂ G ⊗Λ G. Hence we have th

following corollary.

Corollary 4.2. There is a well-defined elementξ ∈ π2(P
(3)) ⊗Λ G ⊕ G ⊗Λ G which

vanishing implies the extension ofψ .

As always, tensor products of right (left-)Λ-modules overΛ are formed by using th
canonical anti-involution ofΛ.

Let us writeξ = ξ1 + ξ2, whereξ1 ∈ π2(P
(3)) ⊗Λ G andξ2 ∈ G ⊗Λ G.

Lemma 4.3. If λΛ
G :G ⊗ G → Λ is extended fromλZ

G⊗ΛZ
, thenξ2 = 0.

Proof. Under the homomorphism

ε :H2(D;Λ) ⊗Λ H2(D;Λ) → HomΛ−Λ

(
H 2(D;Λ) ⊗ H 2(D;Λ),Λ

)
the elementξ2 maps to the difference ofλΛ

G and the restriction of the pairin
λΛ

M1
:H2(M1;Λ) × H2(M1;Λ) → Λ to G. But λΛ

M1
restricted toG is theΛ-extension

of λZ

G⊗ΛZ
(see Lemma 2.2). It is now obvious thatG ⊗Λ G ⊂ H2(D;Λ) ⊗Λ H2(D;Λ)

andε|G⊗ΛG is injective. The claim now follows. �
Lemma 4.4. Suppose thatH 2(Bπ1;Λ) ∼= 0. Then we haveξ1 = 0.

Proof. Recall the exact sequence (see [1])

0 → H 2(Bπ1;Λ) → H 2(X;Λ) → HomΛ

(
H2(X;Λ),Λ

)
→ H 3(Bπ1;Λ) → H 3(X;Λ),

whereX can beP , D, M, or M1. Applied toP , we obtain

0 → H 2(P ;Λ) → HomΛ

(
H2(P ;Λ),Λ

)
.
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By Poincaré duality we get that the canonical mapH2(P ;Λ) → HomΛ(H 2(P ;Λ),Λ) is

a

up
l

injective. SinceG ∼= ⊕r
1 Λ, we obtain an injection

H2(P ;Λ) ⊗Λ G → HomΛ

(
H 2(P ;Λ),G

) T−→∼= HomΛ−Λ

(
H 2(P ;Λ) ⊗ G∗,Λ

)
.

Here the isomorphism

T : HomΛ

(
H 2(P ;Λ),G

) → HomΛ−Λ

(
H 2(P ;Λ) ⊗ G∗,Λ

)

is defined by

T (η)(x ⊗ y) := y
(
η(x)

)
.

The composition

H2(P ;Λ) ⊗Λ G → HomΛ−Λ

(
H 2(P ;Λ) ⊗ G∗,Λ

)

is the restriction ofε, henceε|H2(P ;Λ)⊗ΛG is injective. On the other hand,ε(ξ1) is the
difference of the intersectionΛ-forms (cup products) onH 2(P ;Λ) ⊗ G∗. But for both
intersectionΛ-forms,H2(P ;Λ) andG are orthogonal submodules. Therefore,ε(ξ1) = 0,
henceξ1 = 0. �

So far we have used the intersectionΛ-form to detect the obstruction. The next lemm
gives an example where the integral intersection form detectsξ1.

Lemma 4.5. Suppose thatH2(P ;Λ) is Λ-trivial (in the sense of Theorem A, part(2)) and
without torsion, that is,H2(P ;Λ) ∼= ⊕s

1 Z. Then we haveξ1 = 0.

Proof. By hypothesis, there is an isomorphism

H2(P ;Λ) ⊗Λ G ∼= H2(P ;Λ) ⊗Z (G ⊗Λ Z),

and the map

ε :H2(P ;Λ) ⊗Z (G ⊗Λ Z) → HomZ

(
H 2(P ;Λ) ⊗ (

G∗ ⊗Λ Z
)
,Z

)

is injective. As above,ε(ξ1) is the difference of the integral intersection forms (c
products) restricted toH2(P ;Λ)⊗Z (G⊗Λ Z). But H2(P ;Λ) andG⊗Λ Z are orthogona
with respect to both intersection forms. Hence we haveε(ξ1) = 0, which implies that
ξ1 = 0. See also [11] for other results.�
Example. LetF be a closed connected aspherical surface. IfP = F ×S2, thenH2(P ;Λ) ∼=
Z. Supposeπ1(M) ∼= π1(F ). It was shown in [4] that there exists a degree 1 mapf :M →
P such thatf∗ :π1(M) → π1(P ) is an isomorphism. LetG = Ker(f∗ :H2(M;Λ) →
H2(P ;Λ)). ThenM is homotopy equivalent toP #M ′ if and only if λΛ

G is extended from
λZ

G⊗ΛZ
.

Summarizing we have proved the following result.
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Theorem 4.6. Let M4 be a closed connected oriented topological4-manifold with a

ed

y

and

he

with

is

t

f of
CW-decomposition andπ1(M) infinite. SupposeM = M(3) ∪ϕ D4, and letG ⊂ H2(M;Λ)

be aΛ-free submodule so thatλΛ
G :G×G → Λ is extended fromλZ

G⊗ΛZ
. If H 2(Bπ1;Λ) ∼=

0 or H2(M;Λ)/G is a Λ-trivial module, thenM is homotopy equivalent to a connect
sumP #M ′, whereP is a Poincaré4-complex withπ1(P ) ∼= π1(M) andM ′ is a closed
simply-connected topological4-manifold withH2(M

′;Z) ∼= G ⊗Λ Z.

Proof. If λΛ
G is extended fromλZ

G⊗ΛZ
, then λ̂Λ

G :G → G∗ is an isomorphism. So b
previous lemmata there is an extensionψ :M → M1 = P #M ′. Sinceπ1(M) is infinite,
the mapψ is of degree 1. This implies thatψ is a homotopy equivalence.�

5. Application of surgery theory and proof of Theorem A

We assume thatπ1(M) is a good fundamental group (see, for example, [7])
w2(G ⊗Λ Z) = 0. Hence, for aΛ-basise1, . . . , er of G, we have trivializations

ti : e∗
i (νM) → S2 × DN−4,

whereνM is the normal bundle ofM ⊂ RN . By using theti ’s we obtain the bundleνP over
P and a canonical bundle mapb : νM → νP overf :M → P .

Remark. SinceM is orientable, the second Stiefel–Whitney class ofνM coincides with
that ofM.

The degree 1 normal map(f, b) has a surgery obstructionσ(f, b) ∈ L4(π1(M)). It
is represented by(G,λΛ

G,µΛ
G), whereµΛ

G is the self-intersection number defined by t
ti ’s (see [19, Chapter 5], for more details). The trivializationst1, . . . , tr are also used
in [19] to define the intersection numbers geometrically. However, they coincide
the algebraic definition via cup product and Poincaré duality. Let us assume thatλΛ

G is
extended fromλZ

G⊗ΛZ
and let the signature ofλZ

G⊗ΛZ
be zero. Then we find a bas

of G of type {u1, v1, u2, v2, . . . , us, vs}, 2s = r, with λΛ
G(ui, vi) = 1, andλΛ

G(x, y) = 0
otherwise. It follows from the relations betweenλΛ

G andµΛ
G (see [19, Theorem 5.2]) tha

µΛ
G(ui) = µΛ

G(vi) = 0. Sinceπ1(M) is good, surgeries on{u1, v1, u2, v2, . . . , us, vs} can
be performed to get a homotopy equivalencef ′ :P ′ → P . If the signature ofλZ

G⊗ΛZ
is

not zero, then we can form the connected sum of the normal mapf :M → P with an
appropriate degree 1 normal mapf ′′ :M ′′ → S4 to get the above situation.

In summary, we have proved the following result which completes the proo
Theorem A.

Theorem 5.1. If w2(G⊗Λ Z) = 0 andλΛ
G is extended fromλZ

G⊗ΛZ
, then there is a degree1

normal mapf̄ :M → P with trivial surgery obstruction. Ifπ1(P ) ∼= π1(M) is good, then
there is a closed connected topological4-manifold homotopy equivalent toP .
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