

Available online at www.sciencedirect.com

Topology and its Applications 146-147 (2005) 209-225

Topology and its Applications

www.elsevier.com/locate/topol

Connected sums of 4-manifolds

Friedrich Hegenbarth^a, Dušan Repovš^{b,*}, Fulvia Spaggiari^c

^a Dipartimento di Matematica, Università di Milano, Via Saldini 50, 20133 Milano, Italy ^b Institute for Mathematics, Physics and Mechanics, University of Ljubljana, P.O. Box 2964, Ljubljana 1001, Slovenia ^c Dipartimento di Matamatica Università di Madang a Bassia Emilia, Via Campi 212/B

^c Dipartimento di Matematica, Università di Modena e Reggio Emilia, Via Campi 213/B, 41100 Modena, Italy

Received 12 November 2002; received in revised form 15 February 2003; accepted 18 February 2003

Abstract

We study the following problem for closed connected oriented manifolds M of dimension 4. Let $\Lambda = \mathbb{Z}[\pi_1(M)]$ be the integral group ring of the fundamental group $\pi_1(M)$. Suppose $G \subset H_2(M; \Lambda)$ is a free Λ -submodule. When do there exist closed connected 4-manifolds P and M' such that M is homotopy equivalent to the connected sum P # M', where $\pi_1(P) \cong \pi_1(M), \pi_1(M') \cong 0$, and $H_2(M'; \mathbb{Z}) \otimes_{\mathbb{Z}} \Lambda \cong G$. An answer is given in terms of $\pi_1(M)$ and the intersection forms on $H_2(M; \Lambda)$ and $H_2(M; \mathbb{Z})$.

© 2004 Elsevier B.V. All rights reserved.

MSC: 57N65; 57R67; 57Q10

Keywords: Four-manifolds; Connected sum decompositions; Homotopy type; Obstruction theory; Homology with local coefficients; Intersection forms; Whitehead's quadratic functor; Whitehead's exact sequence

1. Introduction

We study the problem of splitting a closed topological manifold M into a nontrivial connected sum according to some algebraic data. In dimension 3 the Kneser conjecture gives the answer if $\pi_1(M) = G_1 * G_2$. In dimension 4 a splitting may be given according to a free product of $\pi_1(M)$ or a direct sum of $\pi_2(M)$, or of both (see, for example, [8,10, 12]). In the present paper we study splittings of closed 4-manifolds M^4 up to homotopy

Corresponding author.

E-mail addresses: hegenbarth@vmimat.mat.unimi.it (F. Hegenbarth), dusan.repovs@fmf.uni-lj.si (D. Repovš), spaggiari.fulvia@unimo.it (F. Spaggiari).

^{0166-8641/\$ –} see front matter @ 2004 Elsevier B.V. All rights reserved. doi:10.1016/j.topol.2003.02.009

equivalence according to a direct sum decomposition $\pi_2(M) = H_2(M; \Lambda) = H \oplus G$ (as A-modules), where $\Lambda = \mathbb{Z}[\pi_1(M)]$ is the integral group ring of $\pi_1(M)$. Previous results were proved in [2-4]. Our results are built on those obtained by Hambleton and Kreck in [9]. If $D \to B\pi_1(M)$ is the second Postnikov decomposition of M^4 , i.e., $\pi_q(D) = 0$ for every $q \ge 3$ and there is a map $M \to D$ which induces isomorphisms on π_1 and π_2 , Hambleton and Kreck defined $S_4^{\text{PD}}(D)$ to be the set of homotopy equivalence classes of polarized oriented 4-dimensional Poincaré complexes. We recall that an element of $\mathcal{S}_4^{\text{PD}}(D)$ is represented by a 3-equivalence $f: X \to D$, where X is a Poincaré 4-complex. Let $[X] \in H_4(X; \mathbb{Z})$ be the fundamental class of X. Then the map

$$\mathcal{S}_4^{\mathrm{PD}}(D) \to H_4(D;\mathbb{Z})$$

sending (X, f) to $f_*([X])$ is well-defined. It was shown in [9] that this map is injective if $\pi_1(M)$ is infinite and $H_2(D; \mathbb{Q}) \neq 0$. If $\pi_1(M)$ is finite of order *m*, then there is an exact sequence

$$0 \to \operatorname{Tor}(\Gamma_2(\pi_2(D)) \otimes_A \mathbb{Z}) \to \mathcal{S}_4^{\operatorname{PD}}(D) \to \mathbb{Z}_m \times H_4(D; \mathbb{Z})$$

where $\Gamma(\cdot)$ denotes the Whitehead functor (see [9, Theorem 1.1]). To state our results we introduce the \mathbb{Z} - and Λ -intersection forms

$$\lambda^{C}: H_{2}(M; C) \times H_{2}(M; C) \to C$$

where C is \mathbb{Z} or A. If $G \subset H_2(M; C)$ is a submodule, let λ_G^C be the restriction of λ^C to $G \times G$. We denote the adjoint morphism by

 $\hat{\lambda}_G^C: G \to \operatorname{Hom}_C(G, C) = G^*.$

Then we prove

Theorem A. Let M^4 be a closed connected oriented topological 4-manifold with infinite fundamental group. Let $G \subset H_2(M; \Lambda) = \pi_2(M)$ be a Λ -submodule such that

- (1) G is Λ -free and $\hat{\lambda}_G^{\Lambda}: G \to G^*$ is an isomorphism;
- (2) Either $H^2(B\pi_1(M); \Lambda) \cong 0$ or $H_2(M; \Lambda)/G$ is trivial as Λ -module (that is, the fundamental group $\pi_1(M)$ acts trivially on it); (3) λ_G^A is extended from $\lambda_{G\otimes_A\mathbb{Z}}^{\mathbb{Z}}$.

Then there exists a homotopy equivalence $\psi: M \to M_1 = P \# M'$, where P is a Poincaré 4-complex with $\pi_1(P) \cong \pi_1(M)$, M' is a simply connected closed 4-manifold, and $G = H_2(M'; \mathbb{Z}) \otimes_{\mathbb{Z}} \Lambda$.

Moreover, if $\pi_1(M)$ is "good" (see [7] or [6] for slightly different conditions) and $w_2(G \otimes_A \mathbb{Z}_2) = 0$, then P can be realized as a manifold.

Remark. The connected sum $M_1 = P \# M'$ can be performed by using the top cell of P. The hypotheses imply $G \otimes_{\Lambda} \mathbb{Z} \subset H_2(M; \mathbb{Z})$. The first part of the theorem holds for any Poincaré 4-complex M.

To prove Theorem A we have to construct P and M' and a polarization $M_1 = P \# M' \rightarrow D$ (see Sections 2 and 3). This can be done for any fundamental group π_1 . More precisely, we prove the following result:

Theorem B. Let M^4 be a Poincaré 4-complex with an arbitrary fundamental group. Let $G \subset H_2(M; \Lambda)$ be a free Λ -submodule such that $\hat{\lambda}_G^{\Lambda}: G \to G^*$ is an isomorphism. Then there is a homotopy equivalence $\psi: M^{(3)} \to (P \# M')^{(3)}$ between 3-skeleta, where P is a Poincaré 4-complex and M' is a closed simply connected topological 4-manifold.

In order to prove Theorem A we have to show that the images of [M] and [P # M'] under $S_4^{\text{PD}}(D) \to H_4(D; \mathbb{Z})$ coincide. This will be analyzed in Section 4. If $\pi_1(M)$ is finite, one can extend the homotopy equivalence $M^{(3)} \to (P \# M')^{(3)}$ to a map $M \to P \# M'$. But there is no control over the degree of the map. This defines a component in \mathbb{Z}_m . On the other hand if $\pi_1(M)$ is infinite, then the degree is shown to be one. Finally, we recall that there are many important results on connected sum decompositions of 4-manifolds: let us just mention the papers [8,13,14,17], and the book [7] (see [5] for corrections). Further results for 4-manifolds with special fundamental groups were proved in [2–4,12,15,18].

2. Preliminary constructions

Let M^4 be (as in Section 1) a closed connected topological 4-manifold with an orientation and a CW-structure with only one 4-cell. We need this special CW-structure only for homotopy constructions, hence it suffices to have a (simple) homotopy equivalence to a 4-dimensional CW-complex with only one 4-cell. By a theorem of Wall (see [19, Lemma 2.9]) this can be assumed if M is smooth or PL. Let $G \subset H_2(M; \Lambda) \cong \pi_2(M)$ be a Λ -free submodule of rank r such that $\hat{\lambda}_G^A: G \to G^*$ is a Λ -isomorphism. We choose a Λ -basis e_1, \ldots, e_r of G and form the CW-complex P obtained from M by attaching 3-cells along e_1, \ldots, e_r . We note that $H_p(P, M; \Lambda)$ (respectively $H^p(P, M; \Lambda)$) is trivial for $p \neq 3$, and isomorphic to G (respectively G^*) for p = 3. Furthermore, $H_p(P, M; \mathbb{Z})$ (respectively $H^p(P, M; \mathbb{Z})$) is trivial for $p \neq 3$, and isomorphic to F = 3. We will denote by $f: M \to P$ the canonical inclusion map. It follows that

$$0 \to H_3(P, M; C) \to H_2(M; C) \stackrel{f_*}{\longrightarrow} H_2(P; C) \to 0$$

is exact for $C = \Lambda$ or \mathbb{Z} . In particular, the inclusion induced homomorphism f_* : $H_4(M; \mathbb{Z}) \to H_4(P; \mathbb{Z})$ is bijective, and we set $[P] = f_*([M])$, where [M] is the fundamental class of M. Since $\hat{\lambda}_G^A$ is an isomorphism, we get the following diagram of short exact sequences:

$$0 \longrightarrow H^{2}(P; \Lambda) \xrightarrow{f^{*}} H^{2}(M; \Lambda) \longrightarrow H^{3}(P, M; \Lambda) = G^{*} \longrightarrow 0$$

$$\cap [P] \bigvee_{i} \cong \left| \bigcap [M] \qquad \cong \left| \hat{\lambda}_{G}^{A} \right|$$

$$0 \longleftarrow H_{2}(P; \Lambda) \xleftarrow{f_{*}} H_{2}(M; \Lambda) \xleftarrow{H_{3}(P, M; \Lambda)} = G \xleftarrow{0}$$

From this we conclude that

$$f^*: H^3(P; \Lambda) \to H^3(M; \Lambda), \qquad f_*: H_3(M; \Lambda) \to H_3(P; \Lambda),$$

and

$$\bigcap [P]: H^2(P;\Lambda) \to H_2(P;\Lambda)$$

are isomorphisms. From the diagrams

and

$$\begin{array}{c} H^{3}(P;\Lambda) \xrightarrow{f^{*}} H^{3}(M;\Lambda) \\ \bigcap [P] \\ \downarrow \\ H_{1}(P;\Lambda) \xleftarrow{f_{*}} H_{1}(M;\Lambda) \cong 0 \end{array}$$

we obtain isomorphisms

$$\bigcap[P]: H^q(P;\Lambda) \to H_{4-q}(P;\Lambda)$$

for any q = 1, 3; similarly, for q = 0, 4. Hence we have proved the first part of the following lemma:

Lemma 2.1. The CW-complex P is a Poincaré duality complex of formal dimension 4, and $f: M \to P$ is of degree 1. If the second Stiefel–Whitney class $w_2: H_2(M; \mathbb{Z}) \to \mathbb{Z}_2$ vanishes on $G \otimes_{\Lambda} \mathbb{Z}$, then the Spivak normal spherical fibration of P reduces to a TOPfibration.

Proof. Let $v_M : M \to BSTOP$ be the classifying map for the stable normal bundle of M. Since $w_2(e_i) = 0$, we obtain trivializations of $e_i^*(v_M)$ which extend over the attached 3-cells, for any i = 1, ..., r. Therefore, v_M extends over P. Then the extension must be a reduction of the Spivak normal spherical fibration of P. \Box

Lemma 2.2. The kernel of the homomorphism

 $H_2(M;\Lambda)\otimes_{\Lambda}\mathbb{Z}\to H_2(P;\Lambda)\otimes_{\Lambda}\mathbb{Z}$

is isomorphic to the kernel of $H_2(M; \mathbb{Z}) \to H_2(P; \mathbb{Z})$. This isomorphism coincides with

$$H_3(P, M; \Lambda) \otimes_{\Lambda} \mathbb{Z} \longrightarrow H_3(P, M; \mathbb{Z}).$$

Regarding $H_3(P, M; \mathbb{Z}) \subset H_2(M; \mathbb{Z})$, the restriction of $\lambda_M^{\mathbb{Z}}$ to $H_3(P, M; \mathbb{Z}) \times H_3(P, M; \mathbb{Z})$ is obtained by tensoring λ_M^{Λ} over Λ with \mathbb{Z} and restricting to $(H_3(P, M; \Lambda) \otimes_{\Lambda} \mathbb{Z}) \times (H_3(P, M; \Lambda) \otimes_{\Lambda} \mathbb{Z})$.

212

Proof. For X = M or P we have the following well-known sequence (see [1]):

$$H_3(X; C) \to H_3(B\pi_1; C) \to H_2(X; \Lambda) \otimes_{\Lambda} C \to H_2(X; C) \to H_2(B\pi_1; C) \to 0.$$

Here *C* is a Λ -module. We will apply it for $C = \mathbb{Z}$. Since

$$H_2(M; \Lambda) \cong H_2(P; \Lambda) \oplus G,$$

we have the isomorphism

$$\operatorname{Tor}_{1}^{\Lambda}(H_{2}(M;\Lambda),\mathbb{Z}) \xrightarrow{\cong} \operatorname{Tor}_{1}^{\Lambda}(H_{2}(P;\Lambda),\mathbb{Z}),$$

hence the sequence

$$0 \to H_3(P, M; \Lambda) \otimes_{\Lambda} \mathbb{Z} \to H_2(M; \Lambda) \otimes_{\Lambda} \mathbb{Z} \to H_2(P; \Lambda) \otimes_{\Lambda} \mathbb{Z} \to 0$$

is exact. Note also that $f_*: H_3(M; \mathbb{Z}) \to H_3(P; \mathbb{Z})$ is an isomorphism. This gives the following commutative diagram of exact rows and columns:

$$\begin{array}{cccc} 0 & 0 \\ \downarrow & \downarrow \\ H_3(P, M; \Lambda) \otimes_{\Lambda} \mathbb{Z} \longrightarrow H_3(P, M; \mathbb{Z}) \\ \downarrow & \downarrow \\ H_3(M; \mathbb{Z}) \longrightarrow H_3(B\pi_1; \mathbb{Z}) \longrightarrow H_2(M; \Lambda) \otimes_{\Lambda} \mathbb{Z} \longrightarrow H_2(M; \mathbb{Z}) \longrightarrow H_2(B\pi_1; \mathbb{Z}) \longrightarrow 0 \\ \cong & \downarrow & \downarrow \\ H_3(P; \mathbb{Z}) \longrightarrow H_3(B\pi_1; \mathbb{Z}) \longrightarrow H_2(P; \Lambda) \otimes_{\Lambda} \mathbb{Z} \longrightarrow H_2(P; \mathbb{Z}) \longrightarrow H_2(B\pi_1; \mathbb{Z}) \longrightarrow 0 \\ \downarrow & \downarrow \\ 0 & 0 \end{array}$$

Now the claim follows from this diagram. \Box

Let M' be a closed simply-connected topological 4-manifold which realizes the nonsingular symmetric form $\lambda_{G\otimes_A\mathbb{Z}}^{\mathbb{Z}}$. We can form in an obvious way the connected sum $M_1 = P \# M'$. The manifold M' has the homotopy type of a wedge of r 2-spheres with a top cell attached, i.e., $M' \simeq (\bigvee_1^r \mathbb{S}^2) \cup_{\theta} D^4$, where $[\theta] \in \pi_3(\bigvee_1^r \mathbb{S}^2)$ corresponds to $\lambda_{G\otimes_A\mathbb{Z}}^{\mathbb{Z}}$ under the identification $\pi_3(\bigvee_1^r \mathbb{S}^2) = \Gamma(G \otimes_A \mathbb{Z})$. Here $\Gamma(A)$ denotes Whitehead's quadratic functor of the Abelian group A (see [20]). The 3-skeleton of M_1 is, up to homotopy, $M_1^{(3)} = P^{(3)} \bigvee (M')^{(2)} = P^{(3)} \lor (\bigvee_1^r \mathbb{S}^2)$. Now we will construct a map

 $g: M \to M'$ of degree 1. Let $\beta = \bigvee_{i=1}^{r} e_i : (M')^{(3)} = \bigvee_{i=1}^{r} \mathbb{S}^2 \to M$ be the above given basis. The degree 1 property of f defines a splitting of f^* as follows:

So there are well-defined elements $u_1, \ldots, u_r \in H^2(M; \mathbb{Z})$ satisfying $u_i \cap e_j = \delta_{ij}$, and $(\bigcap [P])^{-1} f_*(u_i \cap [M]) = 0$ (or equivalently, $f_*(u_i \cap [M]) = 0$). The product

$$u_1 \times \cdots \times u_r : M \to \prod_{1}^r \mathbb{C}P^\infty$$

restricts to a map $g: M^{(3)} \to \bigvee_1^r \mathbb{S}^2 = (\prod_1^r \mathbb{C}P^\infty)^{(2)}$. Let $M^* = (\bigvee_1^r \mathbb{S}^2) \cup_{\alpha^*} D^4$, where $\alpha^* : \mathbb{S}^3 \to \bigvee_1^r \mathbb{S}^2$ is the restriction of g to the boundary sphere of $M^{(3)}$. Then g extends to a map $M \to M^*$, also denoted by g. It is obvious that $H_4(M^*; \mathbb{Z}) \cong \mathbb{Z}$, hence we put $[M^*] = g_*([M])$. We identify $(M')^{(3)} = (M^*)^{(3)}$. Furthermore, we denote by $e_1^*, \ldots, e_r^* \in H_2(M^*; \mathbb{Z})$ the canonically given basis and by u_1^*, \ldots, u_r^* its dual in $H^2(M^*; \mathbb{Z})$. By construction, $g^*(u_i^*) = u_i$, and $\beta_*(e_i^*) = e_j$, for any i, j = 1, ..., r. So we have

$$(u_i^* \cup u_j^*) \cap [M^*] = (g^*u_i^* \cup g^*u_j^*) \cap [M] = (u_i \cup u_j) \cap [M]$$

by identifying $H_0(M^*; \mathbb{Z}) = H_0(M; \mathbb{Z}) = \mathbb{Z}$. Therefore, M^* is a Poincaré complex with the same intersection matrix as M', i.e., M^* is homotopy equivalent to M'.

Lemma 2.3. There is a degree 1 map $g: M \to M'$ such that

$$\bigvee_{1}^{\prime} \mathbb{S}^{2} = (M^{\prime})^{(2)} = (M^{\prime})^{(3)} \xrightarrow{\beta} M \xrightarrow{g} M^{\prime}$$

is homotopic to the inclusion, and

$$(M')^{(3)} \xrightarrow{\beta} M \xrightarrow{f} P$$

is homotopic to the constant map.

Proof. Using the above notation we have

 $u_i^* \cap g_* \beta_*(e_i^*) = g^*(u_i^*) \cap e_j = u_i \cap e_j = \delta_{ij},$

hence $\{u_i^*: i = 1, ..., r\}$ is the Hom-dual basis of $\{g_*\beta_*(e_i^*): j = 1, ..., r\}$. So we have $g_*\beta_*(e_i^*) = e_i^*$, for any j = 1, ..., r. Therefore, the composition map $g \circ \beta : (M')^{(3)} \to g_*\beta_*(e_i^*) = e_i^*$.

 $(M')^{(3)}$ is a homotopy equivalence. Since $f_*\beta_*(e_i^*) = f_*(e_i) = 0$, the composition map $f \circ \beta$ is homotopic to the constant map. \Box

3. The homotopy type of $M^{(3)}$

Let $G \subset H_2(M; \Lambda)$ be, as before, a Λ -free submodule such that $\hat{\lambda}_G^{\Lambda}: G \to G^*$ is an isomorphism. Thus we have a Poincaré complex P of dimension 4, and a degree 1 map $f: M \to P$ with $f_*: \pi_1(M) \xrightarrow{\simeq} \pi_1(P)$ and $\operatorname{Ker}(f_*: \pi_2(M) \to \pi_2(P)) \cong G$.

Remark. Instead of the above hypothesis one could start with a degree 1 map $f: M \to P$ such that $f_*: \pi_1(M) \xrightarrow{\cong} \pi_1(P)$. The difference with the above assumption is that $\text{Ker}(f_*: \pi_2(M) \to \pi_2(P))$ is only stably Λ -free. The proofs go through under this weaker assumption.

For the following it is convenient to recall the natural exact sequence of Whitehead for a CW-complex X (see [20]):

$$H_4(X; \Lambda) \to \Gamma(\Pi_2(X)) \xrightarrow{\rho} \Pi_3(X) \to H_3(X; \Lambda) \to 0.$$

Recall that $\Gamma(A)$ is the quadratic functor defined on Abelian groups *A*. If *A* is a Λ -module, then $\Gamma(A)$ inherits from *A* a Λ -module structure. So $\Gamma(\pi_2(X))$ is a Λ -module. It is well known that there is a natural identification

$$\Gamma\left(\pi_2(X)\right) = \operatorname{Im}\left(\pi_3\left(X^{(2)}\right) \to \pi_3\left(X^{(3)}\right)\right).$$

The homomorphism ρ is induced from $\pi_3(X^{(3)}) \to \pi_3(X)$, and $\pi_3(X) \to H_3(X; \Lambda)$ is the Hurewicz homomorphism.

Lemma 3.1. The induced homomorphisms of the map $f: M \to P$ satisfy the following properties:

(a) f_{*}:π₂(M⁽³⁾) → π₂(P⁽³⁾) is split surjective; and
 (b) f_{*}:π₃(M⁽³⁾) → π₃(P⁽³⁾) is surjective.

Proof. (a) follows from the degree 1 property of the map f. Recall from Section 2 that $f_*: H_3(M; \Lambda) \to H_3(P; \Lambda)$ is an isomorphism. From the diagram

we get that $f_*: H_3(M^{(3)}; \Lambda) \to H_3(P^{(3)}; \Lambda)$ is an isomorphism. Then property (b) follows from the following diagram of Whitehead's sequences

$$0 \longrightarrow \Gamma(\pi_{2}(M^{(3)})) \longrightarrow \pi_{3}(M^{(3)}) \longrightarrow H_{3}(M^{(3)}; \Lambda) \longrightarrow 0$$

$$\downarrow f_{**} \qquad \qquad \downarrow f_{*} \qquad \qquad \downarrow f_{*} \qquad \qquad \downarrow f_{*}$$

$$0 \longrightarrow \Gamma(\pi_{2}(P^{(3)})) \longrightarrow \pi_{3}(P^{(3)}) \longrightarrow H_{3}(P^{(3)}; \Lambda) \longrightarrow 0$$

since f_{**} is induced from the split-surjective homomorphism

$$f_*: \pi_2(M^{(3)}) \to \pi_2(P^{(3)}).$$

Note that Γ satisfies $\Gamma(A \oplus B) \cong \Gamma(A) \oplus \Gamma(B) \oplus (A \otimes B)$. \Box

Corollary 3.2.

(a) $f_*: \pi_2(M) \to \pi_2(P)$ is split surjective; and

(b) $f_*: \pi_3(M) \to \pi_3(P)$ is surjective.

Since $f_*: \pi_1(M) \to \pi_1(P)$ is an isomorphism, there is a map $\alpha: P^{(2)} \to M^{(2)}$ such that

$$(f \circ \alpha)_* = i_* : \pi_1(P^{(2)}) \xrightarrow{\simeq} \pi_1(P),$$

where $i: P^{(2)} \to P$ is the inclusion.

Lemma 3.3. The map $\alpha : P^{(2)} \to M^{(2)}$ extends to a map over the 3-skeleton (still denoted by α) such that

$$f_* \circ \alpha_* = i_* : \pi_2(P^{(3)}) \to \pi_2(P),$$

where $i: P^{(3)} \rightarrow P$ is the inclusion.

Proof. The difference cochain construction defines a bijection of the set of homotopy classes of extensions of $\alpha|_{P^{(1)}}$ with $C^2(\tilde{P}, \pi_2(M)) = \text{Hom}_A(C_2(\tilde{P}), \pi_2(M))$. Here \tilde{X} denotes the universal covering space of X as usual. Let $d = d(f \circ \alpha, \text{inclusion}) \in C^2(\tilde{P}, \pi_2(P))$ be the difference cochain between the composition $f \circ \alpha$ and the inclusion map $i: P^{(2)} \to P$. Since $f_*: \pi_2(M) \to \pi_2(P)$ is surjective and $C_2(\tilde{P})$ is Λ -free, the induced homomorphism $C^2(\tilde{P}, \pi_2(M)) \to C^2(\tilde{P}, \pi_2(P))$ is surjective. Therefore, we can lift d to an element $\tilde{d} \in C^2(\tilde{P}, \pi_2(M))$. Changing α by \tilde{d} defines a map $\alpha': P^{(2)} \to M$ such that $f \circ \alpha': P^{(2)} \to P$ is homotopic to the inclusion. We are going to denote α' by α . Now, let $\omega \in H^3(P; \pi_2(M))$ be the obstruction to extending α over the 3-skeleta. The natural homomorphism

$$H^3(P;\pi_2(M)) \to H^3(P;\pi_2(P))$$

maps ω to the obstruction to extending $f \circ \alpha \simeq i : P^{(2)} \to P$ over $P^{(3)}$, so it is zero. But we have isomorphisms $\pi_2(M) \cong \pi_2(P) \oplus G$ and $G \cong \bigoplus_{i=1}^r A$, hence $H^3(P; \pi_2(M)) \xrightarrow{\simeq} H^3(P; \pi_2(P))$ because $H^3(P; G) \cong H_1(P; G) \cong 0$. Therefore, $\omega = 0$ and α extends over $P^{(3)}$. Now again, since $f_*: \pi_3(M) \to \pi_3(P)$ is surjective, the difference cochain construction applies to give the desired map

 $\alpha: P^{(3)} \to M. \qquad \Box$

Addendum to Lemma 3.3. The map $f \circ \alpha : P^{(3)} \to P$ is homotopic to the inclusion *i*, hence it extends to a map $\Theta : P \to P$ of degree 1, i.e., $\Theta|_{P^{(3)}} = f \circ \alpha$. So we have the following diagrams:

and

The maps $f: M \to P$ and $g: M \to M'$ give rise to a map

$$\psi = (f \times g)|_{M^{(2)}} \colon M^{(2)} \to (P \times M')^{(2)} = P^{(2)} \vee (M')^{(2)} = M_1^{(2)}$$

We will extend ψ over the 3-skeleton to a map, also denoted by ψ , and show that

$$\alpha \lor \beta : P^{(3)} \lor (M')^{(3)} = M_1^{(3)} \to M^{(3)}$$

is a homotopy inverse.

First we note that the compositions

$$M^{(2)} \xrightarrow{\psi} M_1^{(2)} \xrightarrow{c} P^{(2)} \xrightarrow{i} P,$$

$$M^{(2)} \xrightarrow{\psi} M_1^{(2)} \xrightarrow{c'} (M')^{(2)} \xrightarrow{i'} M',$$

and

$$\left(M'\right)^{(2)} \stackrel{\beta}{\longrightarrow} M^{(2)} \stackrel{\psi}{\longrightarrow} M^{(2)}_1 \stackrel{c'}{\longrightarrow} (M')^{(2)}$$

are equal to $f|_{M^{(2)}}$, $g|_{M^{(2)}}$, and $\mathrm{Id}_{(M')^{(2)}}$, respectively.

Here $c: M_1^{(2)} = P^{(2)} \vee (M')^{(2)} \to P^{(2)}$ and $c': M_1^{(2)} \to (M')^{(2)}$ are the projections, and i and i' are the canonical inclusions.

Lemma 3.4. The map $\psi: M^{(2)} \to M_1^{(2)}$ extends to a map (still denoted by ψ) $\psi: M^{(3)} \to M_1^{(3)}$ such that the composition

$$c \circ \psi : M^{(3)} \xrightarrow{\psi} M_1^{(3)} \xrightarrow{c} P^{(3)}$$

is homotopic to $f|_{M^{(3)}}: M^{(3)} \to P^{(3)}$.

Proof. Since $\pi_2(M) \cong \pi_2(P) \oplus G$ and $G \cong \bigoplus_{i=1}^r A$, the induced homomorphism $H^3(M; \pi_2(M_1)) \to H^3(M; \pi_2(P))$ is an isomorphism. The obstruction for extending ψ maps to the obstruction for extending $i \circ c \circ \psi \simeq f|_{M^{(2)}}$, under this isomorphism. So it is zero, and ψ extends over $M^{(3)}$. The extensions are classified by equivariant chain maps

$$C_3(\widetilde{M}^{(3)}) \rightarrow \pi_3(M_1^{(3)}),$$

i.e., by elements of $\operatorname{Hom}_{\Lambda}(C_3(\widetilde{M}^{(3)}), \pi_3(M_1^{(3)}))$. Let $d \in \operatorname{Hom}_{\Lambda}(C_3(\widetilde{M}^{(3)}), \pi_3(P^{(3)}))$ be the difference cochain of $f|_{M^{(3)}}$ and $c \circ \psi$. Since $c_*:\pi_3(M_1^{(3)}) \to \pi_3(P^{(3)})$ is surjective (same proof as for Lemma 3.1(b)), we can lift d to an element $\tilde{d} \in \operatorname{Hom}_{\Lambda}(C_3(\widetilde{M}^{(3)}), \pi_3(M_1^{(3)}))$. Changing ψ by \tilde{d} gives the desired extension. \Box

We note that the composition

$$(M')^{(2)} = (M')^{(3)} \xrightarrow{\beta} M^{(3)} \xrightarrow{\psi} M_1^{(3)} \xrightarrow{c'} (M')^{(3)} = (M')^{(2)}$$
(*)

is still homotopic to $\mathrm{Id}|_{(M')^{(3)}}$.

Lemma 3.5. The induced homomorphism $\psi_*: \pi_2(M^{(3)}) \to \pi_2(M_1^{(3)})$ is surjective.

Proof. The composition

$$\pi_2(M_1^{(3)}) \xrightarrow{(\alpha \bigvee \beta)_*} \pi_2(M^{(3)}) \xrightarrow{\psi_*} \pi_2(M_1^{(3)})$$

defines a homomorphism

$$\pi_2(P^{(3)}) \oplus (\pi_2((M')^{(2)}) \otimes_{\mathbb{Z}} \Lambda) \to \pi_2(P^{(3)}) \oplus (\pi_2((M')^{(2)}) \otimes_{\mathbb{Z}} \Lambda).$$

Note that all maps are Λ -homomorphisms. Since

$$(M')^{(2)} \xrightarrow{\beta} M^{(3)} \xrightarrow{f} P^{(3)}$$

is homotopic to zero (see Lemma 2.3), it follows from (*) that an element $(0, b) \in \pi_2(P^{(3)}) \oplus (\pi_2((M')^{(2)}) \otimes_{\mathbb{Z}} \Lambda)$ maps to (0, b). An element

$$(a,0) \in \pi_2(P^{(3)}) \oplus (\pi_2((M')^{(2)}) \otimes_{\mathbb{Z}} \Lambda)$$

goes to the element $(a, \chi(a))$ by Lemmas 3.3 and 3.4, where χ is the composite homomorphism

$$\pi_2(P^{(3)}) \xrightarrow{\alpha_*} \pi_2(M^{(3)}) \xrightarrow{\psi_*} \pi_2(M_1^{(3)}) \xrightarrow{\operatorname{proj}} \pi_2((M')^{(2)}) \otimes_{\mathbb{Z}} \Lambda.$$

Therefore, $(\alpha \vee \beta)_* \circ \psi_*$ is surjective; in fact, it is an isomorphism. Hence

$$\psi_*: \pi_2(M^{(3)}) \to \pi_2(M_1^{(3)})$$

is surjective. □

Lemma 3.6. The induced homomorphism

$$\psi_*: \pi_2(M^{(3)}) \to \pi_2(M_1^{(3)})$$

is an isomorphism.

Proof. Lemma 3.4 gives the following diagram

where $K_2(f, \Lambda)$ and $K_2(c, \Lambda)$ denote the kernels of f_* and c_* , respectively. Note that they are Λ -free. Therefore, the surjective homomorphism

$$\psi_*: H_2(M^{(3)}; \Lambda) \to H_2(M_1^{(3)}; \Lambda)$$

induces a surjective homomorphism

$$\psi_*|_{K_2(f,\Lambda)}: K_2(f,\Lambda) \to K_2(c,\Lambda)$$

and

$$K_2(f, \Lambda) \cong K_2(c, \Lambda) \oplus \operatorname{Ker}(\psi_*|_{K_2(f, \Lambda)}).$$

But we have isomorphisms

$$K_2(f,\Lambda)\otimes_{\Lambda}\mathbb{Z}\cong\bigoplus_1^r\mathbb{Z}\cong K_2(c,\Lambda)\otimes_{\Lambda}\mathbb{Z},$$

hence

$$\operatorname{Ker}(\psi_*|_{K_2(f,\Lambda)}) \cong 0.$$

Now the claim follows from the above diagram. \Box

We can now state the main result of this section.

Theorem 3.7. Let M be a closed connected topological 4-manifold with a CW-structure so that $M = M^{(3)} \cup_{\varphi} D^4$. Suppose that $G \subset H_2(M; \Lambda)$ is a Λ -free submodule of rank r such that $\hat{\lambda}_G^A: G \to G^*$ is an isomorphism. Then there are a Poincaré complex P, a degree 1 map $f: M \to P$ with $f_*: \pi_1(M) \xrightarrow{\cong} \pi_1(P)$ and $K_2(f, \Lambda) = G$, a closed simply-connected topological 4-manifold M' with $H_2(M'; \mathbb{Z}) = G \otimes_{\Lambda} \mathbb{Z}$, and a homotopy equivalence $\psi: M^{(3)} \to P^{(3)} \vee (M')^{(3)}$.

Proof. It remains to prove that ψ is a homotopy equivalence. By Lemma 3.6 this follows once we have proved that $\psi_*: H_3(M^{(3)}; \Lambda) \to H_3(M_1^{(3)}; \Lambda)$ is an isomorphism. Since $f: M \to P$ and $c: M_1 = P \# M' \to P$ (the "projection" onto P) are of degree 1 and $c_*: \pi_1(M_1) \to \pi_1(P)$ is an isomorphism, we obtain isomorphisms $f_*: H_3(M; \Lambda) \to$ $H_3(P; \Lambda)$ and $c_*: H_3(M_1; \Lambda) \to H_3(P; \Lambda)$ (see Section 2). Now the claim follows from the diagram

$$\begin{array}{c} H_4(M;\Lambda) \longrightarrow H_4(M,M^{(3)};\Lambda) \longrightarrow H_3(M^{(3)};\Lambda) \longrightarrow H_3(M;\Lambda) \longrightarrow 0 \\ \cong \left| f_* & \cong \left| f_* & \downarrow f_* & \downarrow f_* \\ H_4(P;\Lambda) \longrightarrow H_4(P,P^{(3)};\Lambda) \longrightarrow H_3(P^{(3)};\Lambda) \longrightarrow H_3(P;\Lambda) \longrightarrow 0 \\ \cong \left| c_* & \cong \left| c_* & \uparrow c_* & \cong \right| c_* \\ H_4(M_1;\Lambda) \longrightarrow H_4(M_1,M_1^{(3)};\Lambda) \longrightarrow H_3(M_1^{(3)};\Lambda) \longrightarrow H_3(M_1;\Lambda) \longrightarrow 0 \end{array} \right.$$

and $c_* \circ \psi_* = f_* : H_3(M^{(3)}; \Lambda) \to H_3(P^{(3)}; \Lambda)$ (by Lemma 3.4). Therefore *M* and P # M' have the same 3-type (see [16]). \Box

4. Extending $\psi: M^{(3)} \to M_1^{(3)}$

In this section we will show that the obstruction to extending ψ to a homotopy equivalence (still denoted by ψ), $\psi: M \to M_1$, is detected by the intersection form $\lambda_M^{\Lambda}: H_2(M; \Lambda) \times H_2(M; \Lambda) \to \Lambda$. Let us first recall it. If X is a 4-dimensional Poincaré complex, then the cup product defines a map

$$H^2(X; \Lambda) \otimes H^2(X; \Lambda) \to H^4(X; \Lambda \otimes_{\mathbb{Z}} \Lambda) \xrightarrow{\bigcap [X]} H_0(X; \Lambda \otimes_{\mathbb{Z}} \Lambda) \cong \Lambda.$$

Choosing the Λ -module structures as in [19], it is Λ -linear in the first component and anti- Λ -linear in the second one (by using the canonical anti-involution of Λ). The intersection form λ_X^A is obtained from this by passing to $H_2(X; \Lambda) \otimes H_2(X; \Lambda)$ via Poincaré duality. We will identify λ_X^A with the cup product. By our main result of Section 3 we have that the first *k*-invariants k_M and k_{M_1} of M and M_1 , respectively, are the same. In fact, $\psi: M^{(3)} \to M_1^{(3)}$ defines an isomorphism of the algebraic 2-types $[\pi_1(M), \pi_2(M), k_M]$ and $[\pi_1(M_1), \pi_2(M_1), k_{M_1}]$. In other words, we have a 2-stage Postnikov system $p: D \to B\pi_1$, and maps $\varphi: M \to D$ and $\varphi_1: M_1 \to D$ inducing isomorphisms on π_1 and π_2 . Note that $\widetilde{D} = K(\pi_2, 2)$ and $\Gamma(\pi_2) = H_4(D; \Lambda)$. There is a natural map

$$F: H_4(D; \mathbb{Z}) \to \operatorname{Hom}_{\Lambda - \overline{\Lambda}} (H^2(D; \Lambda) \otimes H^2(D; \Lambda), \Lambda)$$

defined by $F(z)(x \otimes y) := (x \cup y) \cap z$. As above, it is Λ -linear in the first component, and anti- Λ -linear (i.e., $\overline{\Lambda}$ -linear) in the second one. We can identify λ_M^A and $\lambda_{M_1}^A$ with $F(\varphi_*[M])$ and $F((\varphi_1)_*[M_1])$, respectively. The map F can be defined on the chain level by using an equivariant chain approximation to the diagonal

$$\delta: C_*(\widetilde{D}) \to C_*(\widetilde{D}) \otimes_{\mathbb{Z}} C_*(\widetilde{D})$$

If $w \in C_4(\widetilde{D})$ represents z, and a and b represent x and y, respectively, then F is induced from

$$\overline{F}(w)(a,b) := \sum a(w')\overline{b(w'')},$$

where $\delta(w) = \sum w' \otimes w''$. Therefore, the map *F* factorizes over the canonical map

$$H_2(D;\Lambda) \otimes_{\Lambda} H_2(D;\Lambda) \xrightarrow{\varepsilon} \operatorname{Hom}_{\Lambda - \overline{\Lambda}} \left(H^2(D;\Lambda) \otimes H^2(D;\Lambda), \Lambda \right)$$

defined by $\varepsilon(z_1 \otimes z_2)(x \otimes y) := \langle x, z_1 \rangle \overline{\langle y, z_2 \rangle}$. We will prove that the obstruction for extending ψ belongs to $H_2(D; \Lambda) \otimes_{\Lambda} H_2(D; \Lambda)$. We first note that, as a space, *D* can be obtained from *M* by attaching cells of dimension $q \ge 4$. So we can identify

$$H_2(D;\Lambda) = H_2(D^{(3)};\Lambda) = H_2(M^{(3)};\Lambda) \xrightarrow{\psi_*} H_2(M_1^{(3)};\Lambda).$$

The Poincaré complex $M_1 = P \# M'$ is obtained from $M_1^{(3)} \simeq P^{(3)} \vee (M')^{(3)}$ by attaching one 4-cell D_1^4 along $[\partial D_1^4] \in \pi_3(M_1^{(3)})$. Similarly, M is obtained from $M^{(3)}$ by attaching a 4-cell D^4 along $[\partial D^4] \in \pi_3(M^{(3)})$. The obstruction to extending $\psi : M^{(3)} \to M_1^{(3)}$ belongs to

$$H^4(M; \pi_3(M_1)) \cong H_0(M; \pi_3(M_1)) \cong \pi_3(M_1) \otimes_\Lambda \mathbb{Z}.$$

Obviously, it is equal to

$$i_*\psi_*[\partial D^4]\otimes_\Lambda 1,$$

where $i: M_1^{(3)} \to M_1$ is the inclusion map. We prefer to analyze the element

$$\psi_*\big[\partial D^4\big] \otimes_{\Lambda} 1 - \big[\partial D_1^4\big] \otimes_{\Lambda} 1 = \xi \in \pi_3\big(M_1^{(3)}\big) \otimes_{\Lambda} \mathbb{Z},$$

or even more

$$\tilde{\xi} = \psi_* \big[\partial D^4 \big] - \big[\partial D_1^4 \big] \in \pi_3 \big(M_1^{(3)} \big).$$

Obviously, $\tilde{\xi}=0$ implies the vanishing of the obstruction. To state the next lemma we recall that

$$\Gamma\left(\pi_2(M_1^{(3)})\right) = \Gamma\left(\pi_2(P^{(3)})\right) \oplus \pi_2(P^{(3)}) \otimes G \oplus \Gamma(G) \subset \pi_3(M_1^{(3)}).$$

Lemma 4.1. The element $\tilde{\xi}$ belongs to $\pi_2(P^{(3)}) \otimes G \oplus \Gamma(G)$.

Proof. The claim follows immediately from the following diagrams of Whitehead's sequences:

$$0 \longrightarrow \Gamma(\pi_{2}(M^{(3)})) \longrightarrow \pi_{3}(M^{(3)}) \longrightarrow H_{3}(M^{(3)}; \Lambda) \longrightarrow 0$$

$$\left| \begin{array}{c} \psi_{**} & \psi_{*} \\ \psi_{*} & \psi_{*} \\ 0 \longrightarrow \Gamma(\pi_{2}(M^{(3)}_{1})) \longrightarrow \pi_{3}(M^{(3)}_{1}) \longrightarrow H_{3}(M^{(3)}_{1}; \Lambda) \longrightarrow 0 \end{array} \right|$$

and

The vertical maps are induced by the map $f: M \to P$ and the collapsing map $c: P \# M' \to P$. The morphisms from the last to the first rows are derived from the map $\psi: M^{(3)} \to M_1^{(3)}$, constructed in Section 3. The isomorphisms $H_3(M^{(3)}; \Lambda) \to H_3(P^{(3)}; \Lambda)$ and $H_3(M_1^{(3)}; \Lambda) \to H_3(P^{(3)}; \Lambda)$ are induced by the isomorphisms $H_3(M; \Lambda) \to H_3(P; \Lambda)$ and $H_3(M_1; \Lambda) \to H_3(P; \Lambda)$, respectively, as explained in Section 3. \Box

It follows from Lemma 2.2 of [9] that $\Gamma(G) \otimes_{\Lambda} \mathbb{Z} \subset G \otimes_{\Lambda} G$. Hence we have the following corollary.

Corollary 4.2. There is a well-defined element $\xi \in \pi_2(P^{(3)}) \otimes_{\Lambda} G \oplus G \otimes_{\Lambda} G$ which vanishing implies the extension of ψ .

As always, tensor products of right (left-) Λ -modules over Λ are formed by using the canonical anti-involution of Λ .

Let us write $\xi = \xi_1 + \xi_2$, where $\xi_1 \in \pi_2(P^{(3)}) \otimes_A G$ and $\xi_2 \in G \otimes_A G$.

Lemma 4.3. If $\lambda_G^{\Lambda} : G \otimes G \to \Lambda$ is extended from $\lambda_{G \otimes \Lambda \mathbb{Z}}^{\mathbb{Z}}$, then $\xi_2 = 0$.

Proof. Under the homomorphism

 $\varepsilon: H_2(D; \Lambda) \otimes_{\Lambda} H_2(D; \Lambda) \to \operatorname{Hom}_{\Lambda - \overline{\Lambda}} (H^2(D; \Lambda) \otimes H^2(D; \Lambda), \Lambda)$

the element ξ_2 maps to the difference of λ_G^{Λ} and the restriction of the pairing $\lambda_{M_1}^{\Lambda}: H_2(M_1; \Lambda) \times H_2(M_1; \Lambda) \to \Lambda$ to G. But $\lambda_{M_1}^{\Lambda}$ restricted to G is the Λ -extension of $\lambda_{G\otimes_{\Lambda}\mathbb{Z}}^{\mathbb{Z}}$ (see Lemma 2.2). It is now obvious that $G \otimes_{\Lambda} G \subset H_2(D; \Lambda) \otimes_{\Lambda} H_2(D; \Lambda)$ and $\varepsilon|_{G\otimes_{\Lambda}G}$ is injective. The claim now follows. \Box

Lemma 4.4. Suppose that $H^2(B\pi_1; \Lambda) \cong 0$. Then we have $\xi_1 = 0$.

Proof. Recall the exact sequence (see [1])

$$0 \to H^{2}(B\pi_{1}; \Lambda) \to H^{2}(X; \Lambda) \to \operatorname{Hom}_{\Lambda}(H_{2}(X; \Lambda), \Lambda)$$
$$\to H^{3}(B\pi_{1}; \Lambda) \to H^{3}(X; \Lambda),$$

where X can be P, D, M, or M_1 . Applied to P, we obtain

$$0 \to H^2(P; \Lambda) \to \operatorname{Hom}_{\Lambda}(H_2(P; \Lambda), \Lambda).$$

222

By Poincaré duality we get that the canonical map $H_2(P; \Lambda) \to \text{Hom}_{\Lambda}(H^2(P; \Lambda), \Lambda)$ is injective. Since $G \cong \bigoplus_{i=1}^{r} \Lambda$, we obtain an injection

$$H_2(P;\Lambda)\otimes_{\Lambda} G \to \operatorname{Hom}_{\Lambda} \big(H^2(P;\Lambda), G \big) \xrightarrow{T} \operatorname{Hom}_{\Lambda - \overline{\Lambda}} \big(H^2(P;\Lambda) \otimes G^*, \Lambda \big).$$

Here the isomorphism

$$T: \operatorname{Hom}_{\Lambda}(H^{2}(P; \Lambda), G) \to \operatorname{Hom}_{\Lambda - \overline{\Lambda}}(H^{2}(P; \Lambda) \otimes G^{*}, \Lambda)$$

is defined by

$$T(\eta)(x \otimes y) := \overline{y(\eta(x))}.$$

The composition

$$H_2(P; \Lambda) \otimes_{\Lambda} G \to \operatorname{Hom}_{\Lambda - \overline{\Lambda}} (H^2(P; \Lambda) \otimes G^*, \Lambda)$$

is the restriction of ε , hence $\varepsilon|_{H_2(P;\Lambda)\otimes_A G}$ is injective. On the other hand, $\varepsilon(\xi_1)$ is the difference of the intersection Λ -forms (cup products) on $H^2(P;\Lambda)\otimes G^*$. But for both intersection Λ -forms, $H_2(P;\Lambda)$ and G are orthogonal submodules. Therefore, $\varepsilon(\xi_1) = 0$, hence $\xi_1 = 0$. \Box

So far we have used the intersection Λ -form to detect the obstruction. The next lemma gives an example where the integral intersection form detects ξ_1 .

Lemma 4.5. Suppose that $H_2(P; \Lambda)$ is Λ -trivial (in the sense of Theorem A, part (2)) and without torsion, that is, $H_2(P; \Lambda) \cong \bigoplus_{j=1}^{s} \mathbb{Z}$. Then we have $\xi_1 = 0$.

Proof. By hypothesis, there is an isomorphism

$$H_2(P;\Lambda)\otimes_{\Lambda} G \cong H_2(P;\Lambda)\otimes_{\mathbb{Z}} (G\otimes_{\Lambda} \mathbb{Z}),$$

and the map

$$\varepsilon: H_2(P; \Lambda) \otimes_{\mathbb{Z}} (G \otimes_{\Lambda} \mathbb{Z}) \to \operatorname{Hom}_{\mathbb{Z}} (H^2(P; \Lambda) \otimes (G^* \otimes_{\Lambda} \mathbb{Z}), \mathbb{Z})$$

is injective. As above, $\varepsilon(\xi_1)$ is the difference of the integral intersection forms (cup products) restricted to $H_2(P; \Lambda) \otimes_{\mathbb{Z}} (G \otimes_{\Lambda} \mathbb{Z})$. But $H_2(P; \Lambda)$ and $G \otimes_{\Lambda} \mathbb{Z}$ are orthogonal with respect to both intersection forms. Hence we have $\varepsilon(\xi_1) = 0$, which implies that $\xi_1 = 0$. See also [11] for other results. \Box

Example. Let *F* be a closed connected aspherical surface. If $P = F \times \mathbb{S}^2$, then $H_2(P; \Lambda) \cong \mathbb{Z}$. Suppose $\pi_1(M) \cong \pi_1(F)$. It was shown in [4] that there exists a degree 1 map $f: M \to P$ such that $f_*: \pi_1(M) \to \pi_1(P)$ is an isomorphism. Let $G = \text{Ker}(f_*: H_2(M; \Lambda) \to H_2(P; \Lambda))$. Then *M* is homotopy equivalent to P # M' if and only if λ_G^A is extended from $\lambda_{G \otimes \Lambda}^{\mathbb{Z}}$.

Summarizing we have proved the following result.

Theorem 4.6. Let M^4 be a closed connected oriented topological 4-manifold with a CW-decomposition and $\pi_1(M)$ infinite. Suppose $M = M^{(3)} \cup_{\varphi} D^4$, and let $G \subset H_2(M; \Lambda)$ be a Λ -free submodule so that $\lambda_G^{\Lambda}: G \times G \to \Lambda$ is extended from $\lambda_{G\otimes_{\Lambda}\mathbb{Z}}^{\mathbb{Z}}$. If $H^2(B\pi_1; \Lambda) \cong 0$ or $H_2(M; \Lambda)/G$ is a Λ -trivial module, then M is homotopy equivalent to a connected sum P # M', where P is a Poincaré 4-complex with $\pi_1(P) \cong \pi_1(M)$ and M' is a closed simply-connected topological 4-manifold with $H_2(M'; \mathbb{Z}) \cong G \otimes_{\Lambda} \mathbb{Z}$.

Proof. If λ_G^A is extended from $\lambda_{G\otimes_A\mathbb{Z}}^{\mathbb{Z}}$, then $\hat{\lambda}_G^A: G \to G^*$ is an isomorphism. So by previous lemmata there is an extension $\psi: M \to M_1 = P \# M'$. Since $\pi_1(M)$ is infinite, the map ψ is of degree 1. This implies that ψ is a homotopy equivalence. \Box

5. Application of surgery theory and proof of Theorem A

We assume that $\pi_1(M)$ is a good fundamental group (see, for example, [7]) and $w_2(G \otimes_{\Lambda} \mathbb{Z}) = 0$. Hence, for a Λ -basis e_1, \ldots, e_r of G, we have trivializations

 $t_i: e_i^*(\nu_M) \to \mathbb{S}^2 \times D^{N-4},$

where v_M is the normal bundle of $M \subset \mathbb{R}^N$. By using the t_i 's we obtain the bundle v_P over P and a canonical bundle map $b: v_M \to v_P$ over $f: M \to P$.

Remark. Since *M* is orientable, the second Stiefel–Whitney class of v_M coincides with that of *M*.

The degree 1 normal map (f, b) has a surgery obstruction $\sigma(f, b) \in L_4(\pi_1(M))$. It is represented by $(G, \lambda_G^A, \mu_G^A)$, where μ_G^A is the self-intersection number defined by the t_i 's (see [19, Chapter 5], for more details). The trivializations t_1, \ldots, t_r are also used in [19] to define the intersection numbers geometrically. However, they coincide with the algebraic definition via cup product and Poincaré duality. Let us assume that λ_G^A is extended from $\lambda_{G\otimes_A\mathbb{Z}}^{\mathbb{Z}}$ and let the signature of $\lambda_{G\otimes_A\mathbb{Z}}^{\mathbb{Z}}$ be zero. Then we find a basis of G of type $\{u_1, v_1, u_2, v_2, \ldots, u_s, v_s\}$, 2s = r, with $\lambda_G^A(u_i, v_i) = 1$, and $\lambda_G^A(x, y) = 0$ otherwise. It follows from the relations between λ_G^A and μ_G^A (see [19, Theorem 5.2]) that $\mu_G^A(u_i) = \mu_G^A(v_i) = 0$. Since $\pi_1(M)$ is good, surgeries on $\{u_1, v_1, u_2, v_2, \ldots, u_s, v_s\}$ can be performed to get a homotopy equivalence $f': P' \to P$. If the signature of $\lambda_{G\otimes_A\mathbb{Z}}^{\mathbb{Z}}$ is not zero, then we can form the connected sum of the normal map $f: M \to P$ with an appropriate degree 1 normal map $f'': M'' \to \mathbb{S}^4$ to get the above situation.

In summary, we have proved the following result which completes the proof of Theorem A.

Theorem 5.1. If $w_2(G \otimes_A \mathbb{Z}) = 0$ and λ_G^A is extended from $\lambda_{G \otimes_A \mathbb{Z}}^{\mathbb{Z}}$, then there is a degree 1 normal map $\overline{f} : \overline{M} \to P$ with trivial surgery obstruction. If $\pi_1(P) \cong \pi_1(M)$ is good, then there is a closed connected topological 4-manifold homotopy equivalent to P.

Acknowledgements

Work performed under the auspices of the GNSAGA of the CNR (National Research Council) of Italy and partially supported by Fondi per la Ricerca Scientifica dell' Università di Modena e Reggio Emilia, by the Ministero per la Ricerca Scientifica e Tecnologica of Italy within the project "Proprietà Geometriche delle Varietà Reali e Complesse" and by the Ministry for Education, Science and Sport of the Republic of Slovenia research program No. 0101-509.

We thank the referee for his (her) useful comments and suggestions.

References

- [1] H. Cartan, S.E. Eilenberg, Homological Algebra, Princeton University Press, Princeton, NJ, 1956.
- [2] A. Cavicchioli, F. Hegenbarth, On 4-manifolds with free fundamental groups, Forum Math. 6 (1994) 415– 429.
- [3] A. Cavicchioli, F. Hegenbarth, The homotopy classification of 4-manifolds having the fundamental group of an aspherical 4-manifold, Osaka J. Math. 37 (2000) 859–871.
- [4] A. Cavicchioli, F. Hegenbarth, D. Repovš, Four-manifolds with surface fundamental groups, Trans. Amer. Math. Soc. 349 (1997) 4007–4019.
- [5] T. Cochran, N. Habegger, On the homotopy theory of simply connected four-manifolds, Topology 29 (1990) 419–440.
- [6] M.H. Freedman, Poincaré transversality and four-dimensional surgery, Topology 27 (1988) 171–175.
- [7] M.H. Freedman, F.S. Quinn, Topology of 4-Manifolds, Princeton University Press, Princeton, NJ, 1990.
- [8] M.H. Freedman, L. Taylor, A-splitting 4-manifolds, Topology 16 (1977) 181-184.
- [9] I. Hambleton, M. Kreck, On the classification of topological 4-manifolds with finite fundamental group, Math. Ann. 280 (1988) 85–104.
- [10] I. Hambleton, M. Kreck, Cancellation results for 2-complexes and 4-manifolds and some applications, in: C. Hog-Angeloni, W. Metzler, A.J. Sieradski (Eds.), Two-Dimensional Homotopy and Combinatorial Group Theory, in: London Math. Soc. Lecture Note Ser., vol. 197, Cambridge University Press, Cambridge, 1993, pp. 281–308.
- [11] J.A. Hillman, On 4-manifolds homotopy equivalent to surface bundles over surfaces, Topology Appl. 40 (1991) 275–286.
- [12] J.A. Hillman, Free products and 4-dimensional connected sums, Bull. London Math. Soc. 27 (1995) 387– 391.
- [13] M. Kreck, W. Lück, P. Teichner, Stable prime decompositions of four-manifolds, in: Prospects in Topology, Proceedings of a Conference in Honor of William Browder, Princeton, March 1994, in: Ann. of Math. Stud., vol. 138, Princeton University Press, Princeton, NJ, 1995, pp. 251–269.
- [14] M. Kreck, W. Lück, P. Teichner, Counterexamples to the Kneser conjecture in dimension four, Comment. Math. Helv. 70 (1995) 423–433.
- [15] V.S. Krushkal, R. Lee, Surgery on closed 4-manifolds with free fundamental group, Math. Proc. Cambridge Phil. Soc. 133 (2002) 305–310.
- [16] S. MacLane, J.H.C. Whitehead, On the 3-type of a complex, Proc. Nat. Acad. Sci. USA 36 (1950) 41-48.
- [17] R. Stong, Uniqueness of connected sum decompositions in dimension 4, Topology Appl. 56 (1994) 277–291.
- [18] R. Stong, A structure theorem and a splitting theorem for simply connected smooth 4-manifolds, Math. Res. Lett. 2 (1995) 497–503.
- [19] C.T.C. Wall, Surgery on Compact Manifolds, Academic Press, London, 1970.
- [20] J.H.C. Whitehead, On a certain exact sequence, Ann. of Math. (2) 52 (1950) 51-110.