
Proceedings of the Edinburgh Mathematical Society (2020) 63, 579–607

doi:10.1017/S0013091520000012

ON STEENROD L-HOMOLOGY, GENERALIZED MANIFOLDS, AND
SURGERY

FRIEDRICH HEGENBARTH1 AND DUŠAN REPOVŠ2
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Abstract The aim of this paper is to show the importance of the Steenrod construction of homology
theories for the disassembly process in surgery on a generalized n-manifold Xn, in order to produce an
element of generalized homology theory, which is basic for calculations. In particular, we show how to
construct an element of the nth Steenrod homology group Hst

n (Xn, L
+), where L

+ is the connected cov-
ering spectrum of the periodic surgery spectrum L, avoiding the use of the geometric splitting procedure,

the use of which is standard in surgery on topological manifolds.
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1. Introduction

In order to study global objects it can be useful to decompose them into similar smaller
pieces. This process of disassembly also applies to surgery theory. If one does it in an
appropriate way, it produces an element of a generalized homology theory which is basic
for calculations. Here, ‘appropriate’ means ‘semisimplicially’ defined spectra (this holds
for all spectra considered in the paper).

Geometrically, one uses transversality to attain the goal. This works well for piecewise-
linear (PL) topological manifolds, but it does not work for generalized manifolds. The aim
of this paper is to show that for generalized manifolds an appropriate tool to overcome
this problem is the Steenrod construction of homology theory.

Steenrod homology is a homology theory which is highly appropriate for compact
metric spaces which have certain bad local properties. Generalized Steenrod homology
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theory has been well presented by Ferry [5] (for more, see also Milnor [17]). A rigorous
development of this theory was given earlier by Kahn et al. [13].

The underlying spectra of homology theory which we shall consider are ΩN , ΩPD,
ΩNPD, and L. They are defined simplicially, in terms of adic objects (see Nicas [18],
Quinn [20] and Ranicki [25]). Objects in ΩN (respectively, ΩPD) are adic normal spaces
(respectively, adic Poincaré duality complexes), and objects in ΩNPD are adic normal
spaces with boundaries being adic Poincaré duality complexes (see Quinn [21]).

Our main interest will be the periodic surgery spectrum L with

L0 = Z× G/TOP

and its connected covering spectrum L 〈1〉, which we shall denote by L
+. Elements of L

+

are adic surgery problems (see Nicas [18]), and there is a fibre sequence of spectra

L
+ → L→ K(Z, 0),

where K(Z, 0) is the Eilenberg–MacLane spectrum.
Steenrod homology is defined on compact metric spaces X, and we write Hst

∗ (X,S),
where S is any one of the above spectra. If X is a PL topological manifold, then Hst

∗ (X,S)
coincides with the ordinarily defined generalized homology H∗(X,S).

It is important to note that L
+ (respectively, L) can be defined algebraically and that

the following theorem holds.

Theorem 1.1 (Ranicki [24, 25]). There is a map of spectra

ΩNPD → ΣL
+,

where ΣL
+ is the suspension spectrum of L

+ (see Ranicki [24, p. 287]). Moreover, the
induced morphism

Hn(K,ΩNPD)→ Hn−1(K,L+)

is an isomorphism for n ≥ 4, where K is a finite polyhedron (see Hausmann and Vogel [8],
Jones [12], Levitt [15] and Quinn [21]).

Steenrod homology is related to locally finite homology.

Theorem 1.2 (Ferry [5], Milnor [17]). For every compact metric pair (X,X ′), the
natural homomorphism

Hst
∗ (X,X ′,S)→ H lf

∗ (X \X ′,S)

is an isomorphism.

We shall apply this property only for S = L
+. The definition of H lf

∗ (·,L+) can be found
in Ranicki [25, Appendix C].

In order to verify the axioms of Steenrod homology theory, one has to use the following
result.
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Theorem 1.3 (Ferry [5], Milnor [17]). Any compact metric pair (X,X ′) can be
embedded into a compact metric pair (T, T ′) so that

(1) T and T ′ are contractible,

(2) T \X is a CW-complex and T ′ \X ′ ⊂ T \X is a subcomplex.

Moreover, the construction of (T, T ′) is natural with respect to maps between compact
pairs (X,X ′)→ (Y, Y ′).

We shall adopt the notation from Ferry [5] and write T \X = OFC(X) for the open
fundamental complex of X, and T = CFC(X) for the closed fundamental complex of X.
Our construction of OFC(X) comes with a basepoint b0 ∈ X. We shall describe these
fundamental complexes below, because we shall construct an element in

H lf
n+2(OFC(Xn) \ {b0},ΩNPD),

associated to a degree-one normal map f : Mn → Xn, where Xn is a generalized n-
manifold, and b : νMn → ξ is an appropriate bundle map.

More precisely, we have to fix a degree-one normal map

{f0, b0} : M0 → X

and associate to {f, b} an element in

H lf
n+2(OFC(Xn) \ {b0},ΩNPD),

which we shall denote {f, b} − {f0, b0}.
By the above theorems we have the following chain of morphisms:

H lf
n+2(OFC(Xn) \ {b0},ΩNPD)

∼=−→ Hst
n+2(CFC(Xn),Xn�{b0},ΩNPD)

∼=−→ Hst
n+1(CFC(Xn),Xn�{b0},L+)

→ Hst
n (Xn�{b0},L+),

that is, {f, b} − {f0, b0} determines an element

[f, b]− [f0, b0] ∈ Hst
n (Xn�{b0},L+).

If Xn is a topological n-manifold which carries a simplicial structure, then the
construction of the element

[f, b]− [f0, b0] ∈ Hst
n (Xn,L+) ∼= Hn(Xn,L+)

follows from the splitting procedure: the surgery problem

(f, b) =
(
Mn f−→ Xn, νMn

b−→ ξ
)

can be split into adic surgery problems which define [f, b] (see Hegenbarth and Repovš [9]
and Ranicki [25]). This is due to transversality with respect to a dual cell structure onXn.
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It is the purpose of this paper to present a construction, based on Theorems 1.1–1.3,
to obtain an element of Hst

n (Xn,L+) which avoids this geometric splitting. We point
out that algebraic splitting is also possible (see Pedersen et al. [19]) and leads to an
identification of L-homology groups with controlled Wall groups.

We conclude this introduction by describing the structure of our paper. In § 2 we shall
recall preliminary material about nerves N(U) and canonical maps

ϕ : Xn → N(U)

between the underlying space Xn and the nerve N(U).
Section 3 will be devoted to the construction of appropriate fundamental complexes of

Xn. Section 4 is the core of the paper: for any Euclidean neighbourhood retract Poincaré
duality space Xn we shall apply Theorems 1.1–1.3 to construct the L-homology class

[f, b] ∈ Hst
n (Xn,L+)

for an arbitrary surgery problem

(f, b) =
(
Mn f−→ Xn, νMn

b−→ ξ
)
.

However, we shall see that this class depends on the canonical surgery problem (see
Lemma 4.4).

In § 5 we shall present some improvements and give an outlook. Finally, in § 6 we shall
discuss selected remaining related problems.

For more background information on Poincaré complexes, surgery theory and general-
ized manifolds we refer the reader to, for example, [1,2,6,8,23,26–29].

2. Coverings, nerves, and canonical maps

Throughout the paper we shall consider compact metric spaces X. Our main interest will
be in closed generalized n-manifolds Xn, that is, Xn is a Euclidean neighbourhood retract
(ENR) and a Z-homology n-manifold :

H∗(Xn,Xn \ {x}) ∼= H∗(Rn,Rn \ {0}), for every x ∈ Xn

(see, for example, Cavicchioli et al. [2]).
Open coverings U = {U}j∈J will always be assumed to be locally finite. We shall denote

the simplicial complex of U by N(U). The vertex corresponding to Uj ∈ U will be denoted
by 〈Uj〉, and if ⋂

0≤i≤k
Uji 
= ∅

then the k-simplex determined by Uj0 , . . . , Ujk ∈ U will be denoted by

σ = 〈Uj0 , . . . , Ujk〉 ∈ N(U).

We shall abbreviate and write ⋂
0≤i≤k

Uji =
⋂
σ.
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We shall also write N(U) for its topological realization. The space N(U) can be given
the Whitehead or the metric topology. However, since we shall only consider locally finite
coverings, these two topologies are identical (see, for example, Dugundji [3, p. 99]).

2.1. The map ϕ : X → N(U)

Let

mesh(U) = sup{diam(U)|U ∈ U},

where diam(U) denotes the diameter of U ⊂ X. We shall now describe the first of our
canonical maps.

A partition of unity {ϕj}j∈J subordinate to U gives rise to the map ϕ : X → N(U)
defined by

ϕ(x) =
∑
j

ϕj(x) 〈Uj〉 .

If {ϕj}j∈J is another partition subordinate to U , it defines the map ϕ : X → N(U). The
homotopies

{tϕj + (1− t)ϕj | 0 ≤ t ≤ 1}j∈J
then define a homotopy between ϕ and ϕ; that is, up to homotopy, the map ϕ is unique.

2.2. Maps induced by refinements

Next, we shall consider refinements of coverings and induced maps. Let

U ′ = {U ′
j′}j′∈J ′

be a refinement of U , that is, there is a map s : J ′ → J such that

U ′
j′ ⊂ Us(j′), for every j′ ∈ J ′.

Let ϕ′ : X → N(U ′) be a map as defined in § 2.1 by the partition of unity {ϕ′
j′}j′∈J ′ .

We want to complete the diagram

X

N(U ′)

N(U)

ϕ′

ϕ

by a map indicated by the dashed line, so that it is homotopy commutative even in the
controlled way.
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We can get such maps from, for example, Hu [11, Theorem 8.1, p. 146]. There exists
a refinement V of U , such that for every refinement U ′ of V there is a simplicial map
N(U ′)→ N(U) such that

X

N(U ′)

N(U)

ϕ′

ϕ

commutes up to a homotopy ht with

{ht(x)|0 ≤ t ≤ 1} ⊂ ◦
st 〈U〉 , for some U ∈ U .

Such maps are called bridge maps in Hu [11] and projections in Milnor [17].

2.3. Maps from nerves to the space (dominations)

We now describe the construction of mapsN(U)→ X, using the construction presented
by Ferry [4, Theorems 29.7 and 29.9]. Given

σ = 〈Uj0 . . . Ujk〉 ∈ N(U),

we pick a point xσ ∈
⋂
σ and define a non-continuous map

ρ : N(U) −→ X by ρ(σ) = xσ.

Let W ⊂ R
m be an appropriate regular neighbourhood of some embedding X ⊂ R

m.
Then the map

N(U)
ρ−→ X ⊂W

can be approximated by a continuous map

ψ′ : N(U)→W.

The composition with the retraction

π : W → X

then gives the map
ψ = π ◦ ψ′ : N(U)→ X.

By sufficiently subdividing N(U), one can achieve that

dist(ψ, ρ) < δ, for arbitrary small δ > 0.

For a given ε > 0, one then finds coverings U with mesh(U) sufficiently small, so that

dist(IdX , ρ ◦ ϕ) < ε,



On Steenrod L-homology 585

and therefore
dist(IdX , ψ ◦ ϕ) < ε+ δ.

By invoking Ferry [4, Corollary 29.9], we can then conclude that

IdX and ψ ◦ ϕ are ε′-homotopic.

Beginning with an ε′ > 0, one then finds coverings U of X such that

ψ ◦ ϕ is ε′-homotopic to IdX .

This is well known (see, for example, Hu [11, Theorem 6.1, p. 138]), but we shall need
some of the details from above in the sequel.

Theorem 2.1 (Hu [11]). Let X be an absolute neighbourhood retract (ANR). Then
the following properties hold.

(i) Given an open covering U of X, there exist maps

ϕ : X → N(U) and ψ : N(U)→ X.

(ii) Given ε > 0, there exists an open covering Uε of X such that the composite map

X
ϕ−→ N(Uε) ψ−→ X

is ε-homotopic to IdX .

(iii) Given Uε as in (ii), there exist a refinement U ′
ε and a map N(U ′

ε)→ N(Uε) such
that the diagram

X

N(U ′
ε)

N(Uε)

X

ϕ′

ϕ

ψ′

ψ

and its subdiagrams are commutative up to ε-homotopy.

3. Fundamental complexes

Let X be a compact metric space. As explained in § 2, we can choose a covering U of X
such that the composite map

X
ϕ−→ N(U)

ψ−→ X

is an ε-equivalence for a given ε > 0. Then we can choose a refinement U ′ of U such that
the composite map

X
ϕ′
−→ N(U ′)

ψ′
−→ X

is an ε′-equivalence for a given ε′ < ε, etc.
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In this way we can get a sequence of coverings {U1,U2, . . .} such that Uj+1 refines Uj
for every j ∈ N, and the composite map

X
ϕj−→ N(Uj) ψj−→ X

is an εj-equivalence with εj → 0 for j →∞. Moreover, we have simplicial maps

sj : N(Uj+1)→ N(Uj)

so that the diagram

X

N(Uj+1)

N(Uj)

X

ϕj+1

ϕj

sj

ψj+1

ψj

and its subdiagrams commute up to homotopy.
We add to this sequence the trivial covering U0 = {X} with

s0 : N(U1)→ N(U0) = 〈X〉

the constant map. The union of the mapping cylinders of the simplicial maps
{sj}j∈{0,1,...}, denoted by

F =
⋃
j≥0

N(Uj+1)× I ∪
sj

N(Uj),

is an open fundamental complex of X.
Let

Fl =
⋃

l≥j≥0

N(Uj+1)× I ∪
sj

N(Uj),

that is to say, Fl ⊂ Fl+1 is a deformation retract and

rl : Fl+1 → Fl

is the obvious retraction. Then

CF = lim←−
l

Fl

is a closed fundamental complex.
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Both complexes are contractible, F ⊂ CF , and

CF \ F = lim←−
sj

N(Uj+1).

Identifying N(Uj) with the mapping cylinder

N(Uj+1)× I ∪
sj

N(Uj),

we can form
⋂
j

N(Uj) and complete F by it, that is,

⋂
j

N(Uj) = lim←−
sj

N(Uj+1).

Theorem 3.1. The maps

ψj : N(Uj)→ X

fit together to form the map

ψ : lim←−
j

N(Uj)→ X.

Proof. Let
h : N(Uj+1)× I → X

be a homotopy between ψj+1 and ψj ◦ sj . It induces a map

Λj : N(Uj+1)× I ∪
sj

N(Uj)→ X

which restricts to

ψj+1 on N(Uj+1)× {0} and ψj on N(Uj),
hence it can be glued to give maps

F ◦
l =

⋃
l≥j≥1

N(Uj+1)× I → X.

Since the diagram

N(Uj+1)× I ∪
sj

N(Uj) N(Uj) = N(Uj)× {0}

X

rj

commutes, it induces a map
lim←−
l≥1

F ◦
l → X

whose restriction to lim←−
l≥1

N(Ul) then gives the map ψ. �
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4. Construction of L-homology classes

In this section Xn will denote an oriented generalized n-manifold, n ≥ 5, with a
fundamental class

[X] ∈ Hn(Xn,Z).

Then Xn has a Spivak normal fibration νXn (see Quinn [22, Example 2.3]). Moreover,
νXn has topological reductions (see Ferry and Pedersen [7, Theorem 16.6]). We shall
consider a sequence of coverings {Uj}j∈{0,1,...} as described in § 3.

Theorem 4.1. There is a map

Γj : Xn × I → N(Uj+1)× I ∪
sj

N(Uj)

such that Γj restricts to

ϕj+1 : Xn × {0} → N(Uj+1)× {0}
and

ϕj : Xn × {1} → N(Uj).
Proof. We consider the composite map

ϕj+1 : Xn × I ϕj+1×Id−−−−−−→ N(Uj+1)× I → N(Uj+1)× I ∪
sj

N(Uj).

It restricts to
ϕj+1 : Xn × {0} → N(Uj+1)× I ∪

sj

N(Uj)
and

sj ◦ ϕj+1 : Xn × {1} → N(Uj+1)× I ∪
sj

N(Uj).
However,

sj ◦ ϕj+1 � ϕj via the homotopy g : Xn × I → N(Uj).
Composing ϕj+1 and g in the obvious way,

Xn × I ∪Xn × [1, 2]
ϕj+1∪g−−−−−→ N(Uj+1)× I ∪

sj

N(Uj),

one gets the required map

Γj : Xn × I � Xn × I ∪Xn × [1, 2]→ N(Uj+1)× I ∪
sj

N(Uj). �

Let us denote
F0 =

⋃
j≥1

N(Uj+1)× I ∪
sj

N(Uj),

that is, F0 ∼ F \ {b0}, where

b0 ∈ N(U1)× I ∪
s0
N(U0)

is the basepoint of N(U0). Then we get the following corollary.
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Corollary 4.2. The maps Λj and Γj in Theorems 3.1 and 4.1 fit together to give maps

Xn × R+
Γ−→ F0

Λ−→ Xn

such that Λ ◦ Γ restricts to

ψ1 ◦ ϕ1 : Xn × {0} → Xn.

We can now construct a normal space with underlying space F0 as follows. Let ξ be a
topological reduction of νXn and set η = Λ∗(ξ). Since

Λ ◦ Γ ∼ ψ1 ◦ ϕ1 ∼ Id,

we get

Γ∗(η) ∼= ξ × R+.

Then

β : Sm × R+
α×Id−−−→ T (ξ)× R+

∼= T (Γ∗(η))→ T (η)

defines the structure map of the bundle η over F0. Here, T (·) denotes the Thom space
and

α : Sm → T (ξ) ∼ T (νXn)

is the structure map of (Xn, νXn), where we assume that Xn ⊂ Sm. Therefore ξ is an
R
m−n-bundle over Xn.
Let

(f, b) = (f : Mn → Xn, b : νMn → ξ)

be a surgery problem. It defines a normal map

(F,B) =
(
Mn × R+

f×Id−−−→ Xn × R+
Γ−→ F0, νMn × R+

b×Id−−−→ ξ × R+
Γ̃−→ η

)
,

where Γ̃ is the obvious bundle map covering Γ.
The mapping cylinder M(F,B) is well known to be a normal space with boundary

equal to

∂M(F,B) = Mn × R+ � F0.

We shall only consider the restriction of (F,B) to

Mn × (0,∞)→ F \N(U1)× I ∪
s0
N(U0),

and also denote it by (F,B). Since

F \N(U1)× I ∪
s0
N(U0)

is a locally finite complex, normal transversality is used to decompose M(F,B) into adic
normal complexes.
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If ξ′ is another topological reduction of νXn then the same construction givesM(F ′, B′).
One now glues

M(F,B) ∪ −M(F ′, B′) along F0

to obtain an element

{f ′, b′} − {f, b} ∈ H lf
n+2(F0,Ω

NPD).

Here, −M(F,B) indicates that the orientation on Mn is reversed.
By Theorem 1.1, this is isomorphic to

H lf
n+1(F0,L

+)

which in turn, by Theorem 1.2, is isomorphic to

Hst
n+1(CF, lim←−

j

N(Uj)�N(U1)× I ∪
s0
N(U0),L+).

Under the homology boundary morphism it maps to an element in

Hst
n (lim←−

j

N(Uj),L+).

Finally,

ψ∗ : Hst
n (lim←−

j

N(Uj),L+)→ Hst
n (X,L+)

gives the desired element [f ′, b′]− [f, b].

Remark 4.3. We thank the referee for pointing out an error here in our previous
version (we have claimed that M(F,B) defines an element already in H lf

n+2(F0,ΩNPD)).

The element {f ′, b′} − {f, b} is represented by a compatible family of adic objects

({f ′, b′} − {f, b})σ
belonging to the semisimplicially defined spectrum ΩNPD, where σ is a simplex in F0.
Since σ belongs to some

N(Ul+1)× I ∪
sl

N(Ul),

one can break {f ′, b′} − {f, b} into pieces

{f ′, b′}l − {f, b}l ∈ H lf
n+2

(
N(Ul+1)× I ∪

sl

N(Ul),ΩNPD
)

= Hn+2

(
N(Ul+1)× I ∪

sl

N(Ul),ΩNPD
)
.

We shall return to this splitting later on. A detailed construction of the adic elements

({f ′, b′} − {f, b})σ
which works also in our case is given in Kúhl et al. [14, Construction 11.3, p. 236].



On Steenrod L-homology 591

Before stating the main result of this section, recall the following well-known fact (see
Ferry and Pedersen [7, Theorem 16.6]).

Lemma 4.4. The canonical topological reduction ξ0 of the generalized manifold X
defines, up to a normal cobordism, a unique surgery problem

(f0, b0) : M0 → X,

called the canonical surgery problem.

Proof. SinceX is a compact metric space, it is homotopy equivalent to a finite complex
K, hence K is a PDn-complex (see West [30]). There is a fibre homotopy equivalence
νK ∼ νX covering the homotopy equivalence K ∼ X. The latter induces a reduction ξ0
on K and a structure map

Sm → T (ξ0).

Transversality applies here to define a surgery problem (the Pontryagin–Thom
construction):

(f0, b0) : M0 → K ∼ X.
If K ′ is another finite complex homotopy equivalent to X, it can be easily proved that
the resulting surgery problem is normally cobordant to (f0, b0). �

In summary, we have obtained the following result.

Theorem 4.5. Let X be an oriented generalized n-manifold, n ≥ 5, with the canonical
reduction ξ0 of νX whose associated canonical surgery problem is

(f0, b0) : M0 → X.

Then the procedure explained after Corollary 4.2 yields, for any degree-one normal map

(f, b) : M → X,

a well-defined element

[f, b]− [f0, b0] ∈ Hst
n (X,L+).

5. Improvements and outlook

As in the previous chapter, let X be a generalized manifold and N (X) the set of all
normal bordism classes of degree-one normal maps (f, b) : M → X. Theorem 4.5 can be
improved to give the following result.

Theorem 5.1. The association

(f, b)� [f, b]− [f0, b0]

in Theorem 4.5 defines a map

t : N (X)→ Hst
n (X,L+).



592 F. Hegenbarth and D. Repovš

Proof. We have to show, first, that the construction does not depend on the choice of
the normal bordism class of (f, b) and, second, that it does not depend on the choice of
the sequence {Uj} described in § 3 either.

Lemma 5.2. Fix the sequence of coverings {Uj} of X described in § 3. Suppose that

(f, b) : M → X

is normally bordant to

(f ′, b′) : M ′ → X.

Then

{f ′, b′} − {f0, b0} = {f, b} − {f0, b0} ∈ H lf
n+2(F0,Ω

NPD).

Proof. Let
(g, c) : W → X × I

be a normal cobordism between (f, b) and (f ′, b′). Consider also the product normal
cobordism

(g0, c0) : M0 × I → X × I.
The mapping cylinders of the obvious normal maps

(G,C) : W × R+ → X × I × R+ → F0 × I
and

(G0, C0) : M0 × I × R+ → X × I × R+ → F0 × I
can be glued along F0 × I to give a normal cobordism between

M(F,B) ∪ −M(F0, B0)

and
M(F ′, B′) ∪ −M(F0, B0),

implying the claim. For definitions of M(F,B),−M(F0, B0), and M(F ′, B′) see the
previous section. �

For the second step of the proof of Theorem 5.1, we let {Uj}, {U ′
j} be two sequences

defining

F0 =
⋃
j≥1

N(Uj+1)× I ∪
sj

N(Uj)

and
F ′

0 =
⋃
j≥1

N(U ′
j+1)× I ∪

s′j
N(U ′

j).

Let
U ′′
j = {U ∩ U ′ | U ∈ Uj , U ′ ∈ U ′

j}.
Observe that

mesh(U ′′
j ) ≤ min{mesh(Uj), mesh(U ′

j)},
where {U ′′

j } is a sequence as described in § 3, defining F ′′
0 and the open (respectively,

closed) fundamental complex F ′′ (respectively, CF ′′).
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Let (f, b) : M → X be given. Our strategy will be to compare the elements

{f, b} − {f0, b0} ∈ H lf
n+2(F0,Ω

NPD)

and
{f, b}′ − {f0, b0}′ ∈ H lf

n+2(F
′
0,Ω

NPD),

with
{f, b}′′ − {f0, b0}′′ ∈ H lf

n+2(F
′′
0 ,Ω

NPD).

Since U ′′
j refines Uj , there are maps

pj : N(U ′′
j )→ N(Uj)

such that the diagram

N(U ′′
j+1) N(U ′′

j )

N(Uj+1) N(Uj)

s′′j

pj+1 pj

sj

commutes up to homotopy.
The mapping cylinder construction now applies to obtain maps

qj : N(U ′′
j+1)× I ∪

s′′j
N(U ′′

j )→ N(Uj+1)× I ∪
sj

N(Uj)

which restrict to pj+1 (respectively, pj) on the boundary. Therefore they can be pieced
together to yield a map

q = ∪qj : F ′′
0 → F0.

The completion of this process then gives the map which we shall also denote by q,

q :
(
CF ′′, F ′′

0 , lim←−
j

N(U ′′
j )

)→ (
CF,F0, lim←−

j

N(Uj)
)
.

We shall also need the following lemma.

Lemma 5.3. Under the map

q∗ : H lf
n+2(F

′′
0 ,Ω

NPD)→ H lf
n+2(F0,Ω

NPD),

the element

{f, b}′′ − {f0, b0}′′
maps to the element

{f, b} − {f0, b0}.
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Proof. To prove the lemma, we ‘break up’

{f, b}′′ − {f0, b0}′′ (respectively, {f, b} − {f0, b0})

into pieces

{f, b}′′j − {f0, b0}′′j (respectively, {f, b}j − {f0, b0}j)
and we show that they correspond under q∗.

To this end, consider the normal map

(Fj , Bj) : M × [j, j + 1]
(f,b)×Id−−−−−→ X × [j, j + 1]

Γj−→ N(Uj+1)× I ∪
sj

N(Uj),

where Bj is the obvious bundle map with the target in Λ∗
j (ξ). As above, here b : νM → ξ

is the bundle map of (f, b) : M → X. Observe that

Λ∗(ξ)|N(Uj+1)×I ∪
sj
N(Uj)

∼= Λ∗
j (ξ).

The mapping cylinder M(Fj , Bj) is then a normal complex with boundary. We do the
same for

(f0, b0) : M0 → X

and obtain (F ◦
j , B

◦
j ).

Then

M(Fj , Bj) ∪ −M(F ◦
j , B

◦
j )

defines an element

{f, b}j − {f0, b0}j ∈ Hn+2

(
N(Uj+1)× I ∪

sj

N(Uj),ΩNPD
)
.

The inclusions

N(Uj+1)× I ∪
sj

N(Uj)→ F0

represent {f, b} − {f0, b0} as an infinite (locally finite) sum

Σ
j
({f, b}j − {f0, b0}j).

The same process yields a representation for {f, b}′′ − {f0, b0}′′ as an infinite (locally
finite) sum

Σ
j
({f, b}′′j − {f0, b0}′′j ).
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We now consider the following (homotopy) commutative diagram:

M × I X × I N(U ′′
j+1)× I ∪

s′′j
N(U ′′

j )
X

M × I X × I N(Uj+1)× I ∪
sj

N(Uj) X

f × Id Γ′′
j Λ′′

j

= = qj =

f × Id Γj Λj

First, we deduce from this diagram that

q∗jΛ
∗
j (ξ) ∼= Λ′′

j
∗(ξ),

hence qj can be covered by a bundle map

qj : Λ′′
j
∗(ξ)→ Λ∗

j (ξ).

Next, we have

Γ′′
j
∗(Λ′′

j
∗(ξ)) ∼= ξ × I and Γ∗

j (Λ
∗
j (ξ)) ∼= ξ × I.

From this we obtain the bundle maps

b′′ : νM × I b×Id−−−→ ξ × I ∼= Γ′′
j
∗(Λ′′

j
∗(ξ))

and

b : νM × I b×Id−−−→ ξ × I ∼= Γ∗
j (Λ

∗
j (ξ))

together with the (homotopy) commutative diagram
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T (Γ′′
j
∗(Λ′′

j
∗(ξ)))

Sm × I T (νM )× I

T (Γ∗
j (Λ

∗
j (ξ)))

β′′

α× Id

β

T (qj)

Now

(N(U ′′
j+1)× I ∪

s′′j
N(U ′′

j ),Γ′′
j
∗(Λ′′

j
∗(ξ)), β′′)

and

(N(Uj+1)× I ∪
sj

N(Uj),Γ∗
j (Λ

∗
j (ξ)), β)

determine M(F ′′
j , B

′′
j ) and M(Fj , Bj), respectively. Therefore we can conclude that

(∗) qj∗ : ΩNPDn+2 (N(U ′′
j+1)× I ∪

s′′j
N(U ′′

j ))→ ΩNPDn+2 (N(Uj+1)× I ∪
sj

N(Uj))

maps M(F ′′
j , B

′′
j ) to M(Fj , Bj).

The same holds for M(F ′′◦
j , B′′◦

j ) and M(F ◦
j , B

◦
j ), if we take (f0, b0) : M0 → X instead

of (f, b) : M → X.
Since the differences have manifold boundaries, we get

M(F ′′
j , B

′′
j )−M(F ′′◦

j , B′′◦
j ) ∈ ΩNTOPn+2

(
N(U ′′

j+1)× I ∪
s′′j
N(U ′′

j )
)

∼= Hn+2

(
N(U ′′

j+1)× I ∪
s′′j
N(U ′′

j ),ΩNTOP
)
,
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and similarly,

M(Fj , Bj)−M(F ◦
j , B

◦
j ) ∈ ΩNTOPn+2

(
N(Uj+1)× I ∪

sj

N(Uj)
)

∼= Hn+2

(
N(Uj+1)× I ∪

sj

N(Uj),ΩNTOP
)

(see Remark 5.4 below).
The canonical map of spectra ΩNTOP → ΩNPD maps these elements to

{f, b}′′j − {f0, b0}′′j and {f, b}j − {f0, b0}j ,

respectively.
The property (∗) above now implies that

qj∗ : Hn+2

(
N(U ′′

j+1)× I ∪
s′′j
N(U ′′

j ),ΩNPD
)

→ Hn+2

(
N(Uj+1)× I ∪

sj

N(Uj),ΩNPD
)

maps {f, b}′′j − {f0, b0}′′j to {f, b}j − {f0, b0}j .
This completes the proof of the lemma. �

Remark 5.4. Transversality implies that the assembly construction defines an iso-
morphism between ΩNTOP homology groups and ΩNTOP bordism groups. This is not
true for ΩNPD.

We now continue with the proof of Theorem 5.1. Denote by

〈f, b〉 − 〈f0, b0〉 ∈ Hst
n

(
lim←−
j

N(Uj),L+
)

the image of {f, b} − {f0, b0} under the composition

H lf
n+2

(
F0,Ω

NPD
) ∼= Hst

n+1

(
CF, lim←−

j

N(Uj) ∪ {∗},L+
) ∂′

∗−→ Hst
n

(
lim←−
j

N(Uj),L+
)
,

where ∂′∗ is the composition of the boundary homomorphism with the projection

Hst
n

(
lim←−
j

N(Uj),L+
)⊕Hst

n ({∗},L+)→ Hst
n

(
lim←−
j

N(Uj),L+
)
.

Lemma 5.3 now implies that
(
q|lim←−

j

N(Uj)

)
∗
(〈f, b〉′′ − 〈f0, b0〉′′) = 〈f, b〉 − 〈f0, b0〉,

where 〈f, b〉′′ and 〈f0, b0〉′′ denote the corresponding images of {f, b}′′ and {f0, b0}′′,
respectively.
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In order to complete the proof of Theorem 5.1, we have to pass to

Hst
n (X,L+)

via the homomorphism

ψ∗ : Hst
n

(
lim←−
j

N(Uj),L+
)→ Hst

n (X,L+),

induced by the map
ψ : lim←−

j

N(Uj)→ X

which was defined in Theorem 3.1. Similarly for the map

ψ′′ : lim←−
j

N(U ′′
j )→ X.

Now observe that
q|N(U ′′

j ) = pj

and that ψ′′
j is homotopic to ψj ◦ pj . Hence the following diagram commutes:

Hst
∗ (N(U ′′

j ),L+)

Hst
∗ (N(Uj),L+)

Hst
∗ (X,L+)(q|N(U ′′

j ))∗

(ψ′′
j )∗

(ψj)∗

It follows that the diagram

Hst
∗

(
lim←−
j

N(U ′′
j ),L+

)

Hst
∗

(
lim←−
j

N(Uj),L+
)

Hst
∗ (X,L+)(q|N(U ′′

j ))∗

(ψ′′
j )∗

(ψj)∗
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also commutes, thus we can see that

ψ′′
∗ (〈f, b〉′ − 〈f0, b0〉′′) = ψ∗(〈f, b〉 − 〈f0, b0〉).

Analogously, one obtains

q′ :
(
CF ′′, F ′′

0 , lim←−
j

N(U ′′
j )

)→ (
CF ′, F ′

0, lim←−
j

N(U ′
j)

)

such that
ψ′′
∗ (〈f, b〉′′ − 〈f0, b0〉′′) = ψ′

∗ (〈f, b〉′ − 〈f0, b0〉′) .
This proves

[f, b]′ − [f0, b0]′ = [f, b]− [f0, b0],
and hence finally, completes the proof of Theorem 5.1. �

We shall now apply our construction to the case where X is a manifold with simplicial
structure. The given degree-one normal map (f, b) : M → X then decomposes into adic
pieces to define an element

σc∗(f, b) ∈ Hn(X,L+).
This element is the controlled surgery obstruction of (f, b) over Id : X → X (see Pedersen
et al. [19]). We take (f0, b0) = Id : X → X.

Supplement. In § 4 we associated to given normal degree-one maps

(f0, b0) : M0 → X and (f, b) : M → X,

where X is a generalized manifold, the element

[f, b]− [f0, b0] ∈ Hst
n (X,L+).

The normal maps (f0, b0) and (f, b) give rise to a normal space with boundary

M0 × (0,∞) and M × (0,∞).

At this point, transversality for normal spaces (with TOP-manifold boundaries) is
used to split (disassemble) the normal space, in order to obtain an element in the ΩNPD-
homology group.

Actually, it belongs to the ΩNTOP -homology, but we pass to ΩNPD via

ΩNTOP → ΩNPD.

A detailed splitting construction can be found in Kúhl et al. [14, Construction 11.3,
p. 236].

If X is a manifold with simplicial structure, transversality directly applies to split (f, b)
and (f0, b0) into pieces in order to obtain an element in Hn(X,L). It is now natural to
take

(f0, b0) = Id : X → X.

Since Id : X → X does not contribute to L-homology, one gets an element depending
on (f, b) which we shall denote by

σ(f, b) ∈ Hn(X,L)
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(this corresponds to sigL

X(f, b) in Kúhl et al. [14, Definition 8.14]). Moreover,

σ(f, b) ∈ Hn(X,L+).

Since Hn(X,L) is the controlled surgery obstruction group, the element

σ(f, b) ∈ Hn(X,L+) ⊂ Hn(X,L)

is sometimes denoted by σc(f, b).
The reason is that the zero-dimensional components come from

f−1(D(σ,X))→ D(σ,X),

where σ ≺ X runs through the n-simplices of X and D(σ,X) is its dual with respect to
a subdivision X ′ of X. Hence D(σ,X) is a point x ∈ X and, by transversality,

f−1(D(σ,X)) = {±y1, . . . ,±yk} ⊂M.

Since f has degree one, it is equivalent to y → x, which is the trivial object. (We have
also addressed such questions in Hegenbarth and Repovš [10, Lemma 2.1].)

If X is only a generalized manifold, this leads to the so-called zero-dimensional sig-
nature of f . This is misleading, since it is the signature obstruction of a 4k-dimensional
surgery problem, which is ‘moved’ to π0(L) = L0 by periodicity of L (see Hegenbarth and
Repovš [10, p. 79]).

The aim of the next theorem is to show that for a given degree-one normal map
(f, b) : M → X, where X is a manifold with simplicial structure, the construction via
normal spaces from § 4 gives an element which coincides with the element σ(f, b).

Theorem 5.5. The controlled surgery obstruction of (f, b) : M → X coincides with
[f, b]− [f0, b0].

Proof. Choose a sequence {Uj} of coverings of X as above. Since X is a manifold with
simplicial structure, we can define

{f, b} − {f0, b0} ∈ H lf
n+2(X × (0,∞),ΩNPD).

Here, {f, b} denotes the normal space, defined by the mapping cylinder of the map

(f × Id, b× Id) : M × (0,∞)→ X × (0,∞),

and similarly for {f0, b0}.
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Now, {f, b} − {f0, b0} maps under the induced map

Γ : X × (0,∞)→ F0

to

{f, b} − {f0, b0} ∈ H lf
n+2(F0,Ω

NPD).

Under the composition

H lf
n+2(X × (0,∞),ΩNPD) ∼= H lf

n+1(X × (0,∞),L+)

∼= Hst
n+1(X × [0,∞]/(X × {∞}),X ∪ {∗},L+)

∂′
∗−→ Hst

n (X,L+),

{f, b} − {f0, b0} maps to σc∗(f, b). This is because {f, b} − {f0, b0} is represented by the
mapping cylinders of

(f × Id, b× Id) and (f0 × Id, b0 × Id).

The latter does not contribute to L-homology because we have chosen (f0, b0) =
(Id, Id). Under the composition it therefore goes to the element defined by splitting
(f, b) : M → X, that is, to σ(f, b).

Here,

X × [0,∞]/(X × {∞})
is the completion of X × (0,∞) obtained as the inverse limit, similarly to

CF = lim←−
l

Fl

(see § 3). However, under

Γ∗ : H lf
n+2(X × (0,∞),ΩNPD)→ H lf

n+2(F0,Ω
NPD)

the difference {f, b} − {f0, b0} maps to {f, b} − {f0, b0}.
Consider now (using previous notation)

X × I Γj−→ N(Uj+1)× I ∪
sj

N(Uj) Λj−−→ X × I,

where

Λj(u, t) = (Λj(u), t)

so

Λj ◦ Γj(x, 0) = ((ψj+1 ◦ ϕj+1)(x), 0)

and

Λj ◦ Γj(x, 1) = ((ψj ◦ ϕj)(x), 1).
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Since ψk ◦ ϕk ∼ IdX we can use these homotopies to glue the maps and obtain

X × R+
Γ−→ F0

Λ−→ X × R+,

restricting to

X × {0} ϕ−→ lim←−
j

N(Uj) ψ−→ X × {0},

that is, we get maps

X × [0,∞]/(X × {∞})→ CF → X × [0,∞]/(X × {∞}).

Therefore Γ induces a morphism between the sequences

H lf
n+2(X × [0,∞),ΩNPD) ∼= H lf

n+1(X × [0,∞),L+)

∼= Hst
n+1(X × [0,∞]/(X × {∞}),X ∪ {∗},L+)

∂′
∗−→ Hst

n (X,L+)

and

H lf
n+2(F0,Ω

NPD) ∼= H lf
n+1(F0,L

+)

∼= Hst
n+1

(
CF, lim←−

j

N(Uj) ∪ {∗},L+
) ∂′

∗−→ Hst
n

(
lim←−
j

N(Uj),L+
)
.

It follows that

ϕ∗(σc∗(f, b)) = 〈f, b〉 − 〈f0, b0〉 ∈ Hst
n (lim←−

j

N(Uj),L+).

Since ψ ◦ ϕ ∼ Id, we can conclude that

[f, b]− [f0, b0] = ψ∗(〈f, b〉 − 〈f0, b0〉) = ψ∗(ϕ∗(σc∗(f, b))) = σc∗(f, b). �

We conclude this section with some remarks on the map t. In the PL manifold case
there is an L

•-orientation

UL• ∈ Hm−n
(T (νX),L•),

where L
• is the symmetric L-spectrum. Furthermore, L

• is a ring spectrum and L
+ is an

L
•-module spectrum, and the cup product

.
⋃
UL• : [X,G/TOP ] = H◦(X,L+)→ H

m−n
(T (νX),L+)

is an isomorphism. Here we are assuming that X ⊂ R
m.
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The difference between (f, b) : M → X and (f0, b0) : X → X defines a map

N (X)→ [X,G/TOP ].

Combining with the Alexander–Spanier duality

H
m−n

(T (νX),L+) ∼= Hn(X,L+),

we obtain a bijective map
N (X)→ Hn(X,L+).

This is the map t (see Ranicki [25, Chapter 17, pp. 191–193]).
In the case of a generalized manifold we can embed X into R

m with a cylindrical
neighbourhood, also obtaining an isomorphism

H
m−n

(T (νX),L+) ∼= Hst
n (X,L+).

Let
N = ∂N × I ∪

p
X

be a mapping cylinder neighbourhood of X ⊂ Sm+1. It can be used to prove the following
fact.

Theorem 5.6. There exist an L
•-orientation

U ∈ Hm+1−n(N, ∂N,L•)

and an isomorphism

.
⋃
U : H0(X,L+)

∼=−→ Hm+1−n(N, ∂N,L+).

With this theorem one obtains the following isomorphisms:

H0(X,L+) ∼= Hm+1−n(N, ∂N,L+)

∼= Hm+1−n(Sm+1, Sm+1 \N,L+)

∼= Hm+1−n(Sm+1, Sm+1 \X,L+)

∼= H
m−n

(Sm+1 \X,L+)

∼= Hst
n (X,L+).

The last isomorphism is the Steenrod duality (see Kahn et al. [13, Theorem B], where
one must take the reduced L

+-homology).
We shall omit the proof of Theorem 5.6 because it is not obvious that the composition

N (X)→ H0(X,L+)→ Hst
n (X,L+)

coincides with the association

(f, b)→ [f, b]− [f0, b0].

This will be included in a future paper.
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6. Discussion

(I). The homotopy groups of the spectrum L
+ are the Wall groups of the trivial group,

that is,
πn(L+) ∼= Ln(1) ∼= Ln for every n ≥ 1.

Since the simplicial complex
N(U1)× I ∪

s0
N(U0)

is contractible, we have

Hst
n (N(U1)× I ∪

s
N(U0),L+) ∼= Hn(N(U1)× I ∪

s0
N(U0),L+)

∼= Hn({b0},L+) ∼= Ln.

Therefore the above mentioned homology boundary homomorphism is

Hst
n+1

(
CF, lim←−

j

N(Uj)�{b0},L+
)→ Hst

n

(
lim←−
j

N(Uj),L+
)⊕ Ln.

The component in Ln is the surgery obstruction of

(f, b) = (Mn → Xn, νMn → ξ)

mapped to Ln under
Ln(π1(Xn))→ Ln(1) ∼= Ln,

where the morphism is induced by Xn → {∗}.
(II). We have used the map

ψ∗ : Hst
n

(
lim←−
j

N(Uj),L+
)→ Hst

n (Xn,L+)

to obtain our element
[f, b] ∈ Hst

n (Xn,L+).

We did not need the fact that it is an isomorphism.
In fact, the relation between lim←−

j

N(Uj) and Xn seems to be insufficiently documented.

It was claimed in Milnor [17, Lemma 2] that they are identical. It was also asserted in
Ferry [5, Footnote, p. 156] that they are strongly shape equivalent.

To this end, we state the following theorem. First, recall that, given ε > 0, a map f :
X → Y of metric spaces X and Y is called an ε-map if for every y ∈ Y , diam(f−1(y)) < ε.

Theorem 6.1. The maps

ϕj : Xn → N(Uj+1)× I ∪
sj

N(Uj)

fit together to produce the map

ϕ : Xn → lim←−
j

N(Uj),

which is an ε-map onto the image of ϕ for all ε > 0.
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Proof. The maps Γj can be glued to get maps

Xn
l = Xn × [0, l + 1]→ F ◦

l ,

such that the diagram

Xn
l F ◦

l

Xn
l−1 F ◦

l−1

pr rl

commutes.
Hence we get a map

Xn × [0,∞]→ lim←−
l

F ◦
l

which restricts to

ϕ : Xn × {∞} → lim←−
j

N(Uj).

If now

pl : lim←−
j

N(Uj)→ N(Ul)

is the projection, then pl ◦ ϕ = ϕl.
Let x ∈ Imϕ. Then

xl = pl(x) ∈ N(Ul)
belongs to some st(〈U〉), for some vertex 〈U〉 ∈ N(Ul), where U ∈ Ul.

Therefore

ϕ−1(x) ⊂ ϕ−1
l (xl) ⊂ U

(see Dugundji [3, Theorem 5.4, Chapter VIII]). Hence

diam(ϕ−1(x)) ≤ mesh(Ul)

and since mesh(Uj)→ 0 for j →∞, the assertion follows. �

Remark 6.2. It would be interesting to know if the Bing shrinking criterion (see
Marin and Visetti [16]) can be applied to improve Theorem 6.1.
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27. C. T. C. Wall, Poincaré complexes, I., Ann. Math. 86(2) (1967), 213–245.

28. C. T. C. Wall, Surgery on compact manifolds, 2nd edn, edited and with a fore-
word by A.A. Ranicki, Mathematical Surveys and Monographs, Volume 69 (American
Mathematical Society, Providence, RI, 1999).

29. S. Weinberger, Homology manifolds, in Handbook of geometric topology, pp. 1085–1102
(North-Holland, Amsterdam, 2002).

30. J. E. West, Mapping Hilbert cube manifolds to ANR’s: a solution of a conjecture of
Borsuk, Ann. Math. (2) 106 (1977), 1–18.


	1 Introduction
	2 Coverings, nerves, and canonical maps
	2.1 The map : X N(U)
	2.2 Maps induced by refinements
	2.3 Maps from nerves to the space (dominations)

	3 Fundamental complexes
	4 Construction of L-homology classes
	5 Improvements and outlook
	6 Discussion
	References



