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Abstract. The aim of this paper is to give an s-cobordism classification
of topological 4-manifolds in terms of the standard invariants using the
group of homotopy self-equivalences. Hambleton and Kreck constructed
a braid to study the group of homotopy self-equivalences of 4-manifolds.
Using this braid together with the modified surgery theory of Kreck, we
give an s-cobordism classification for certain 4-manifolds with funda-
mental group π, such that cd π ≤ 2.
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1. Introduction

The cohomological dimension of a group G, denoted cdG, is the projective
dimension of Z over ZG. In other words, it is the smallest non-negative integer
n such that Z admits a projective resolution P = (Pi)i≤0 of Z over ZG of
length n, satisfying Pi = 0 for i > n. If there exists no such n, then we set
cd G = ∞.

In this paper, we are going to deal with groups whose cohomological
dimension is less than or equal to 2. This class of groups contains the free
groups, knot groups and one-relator groups whose relator is not a proper
power. Our aim here is to give an s-cobordism classification of topological
4-manifolds with fundamental group π such that cd π ≤ 2, in terms of the
standard invariants such as the fundamental group, characteristic classes
and the equivariant intersection form using the group of homotopy self-
equivalences.

Let M be a closed, connected, oriented, 4-manifold with a fixed base
point x0 ∈ M . Throughout the paper, the fundamental group π1(M,x0)
will be denoted by π and the higher homotopy groups πi(M,x0) by πi. Let
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Λ = Z [π] denote the integral group ring of π. The standard involution λ → λ
on Λ is induced by the formula

∑
ngg →

∑
ngg

−1

for ng ∈ Z and g ∈ π. All modules considered in this paper will be right
Λ-modules.

The first step in the classification of manifolds is the determination of
their homotopy type. It is a well-known result of Milnor [13] and Whitehead
[20] that a simply connected 4-dimensional manifold M is classified up to
homotopy equivalence by its integral intersection form. In the non-simply
connected case, one has to work with the equivariant intersection form sM

where

sM : H2(M ; Λ) × H2(M ; Λ) → Λ; (a, b) → sM (a, b) = a∗(b).

This is a Hermitian pairing where a∗ ∈ H2(M ; Λ) is the Poincaré dual of a,
such that sM (a, b) = sM (b, a) ∈ Λ. This form does not detect the homotopy
type and the missing invariant is the first k-invariant kM ∈ H3(π;π2), see [8,
Remark 4.5] for an example.

Hambleton and Kreck [8] defined the quadratic 2-type as the quadruple
[π, π2, kM , sM ] and the group of isometries of the quadratic 2-type of M ,
Isom[π, π2, kM , sM ], consists of all pairs of isomorphisms

χ : π → π and ψ : π2 → π2,

such that ψ(gx) = χ(g)ψ(x) for all g ∈ π and x ∈ π2, which preserve
the k-invariant, ψ∗(χ−1)∗kM = kM , and the equivariant intersection form,
sM (ψ(x), ψ(y)) = χ∗sM (x, y). It was shown in [8] that the quadratic 2-type
detects the homotopy type of an oriented 4-manifold M if π is a finite group
with 4-periodic cohomology.

Throughout this paper H3(π;π2) = 0, so we have kM = 0. For nota-
tional ease we will drop it from the notation and write Isom[π, π2, sM ] for the
group of isometries of the quadratic 2-type.

Let Aut•(M) denote the group of homotopy classes of homotopy self-
equivalences of M , preserving both the given orientation on M and the base-
point x0 ∈ M . To study Aut•(M), Hambleton and Kreck [10] established a
commutative braid of exact sequences, valid for any closed, oriented smooth
or topological 4-manifold. To give an s-cobordism classification we use the
above-mentioned braid together with the modified surgery theory of Kreck
[12].

In Sect. 2, we briefly review some background material about the mod-
ified surgery theory and some of the terms of the braid. Throughout this
paper we always refer to [10] for the details of the definitions concerning the
braid. In Sect. 3, we are going to further assume that the the following three
conditions are satisfied:
(A1) The assembly map A4 : H4(K(π, 1);L0(Z)) → L4(Z[π]) is injective,

where L0(Z) stands for the connective cover of the periodic surgery
spectrum;

(A2) Whitehead group Wh(π) is trivial for π; and
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(A3) The surgery obstruction map T (M × I, ∂) → L5(Z[π]) is onto, where
M is a closed, connected, oriented 4-manifold with π1(M) ∼= π.

Note that if the Farrell–Jones conjecture [6] is true for torsion-free groups,
then π satisfies all the conditions above.

Now let uM : M → K(π, 1) be a classifying map for the fundamental
group π. Consider the homotopy fibration

M̃
p �� M

uM �� K(π, 1)

which induces a short exact sequence

0 �� H2(K(π, 1);Z/2)
u∗

M �� H2(M ;Z/2)
p∗

�� H2(M̃ ;Z/2) .

Next we recall the following definition given in [9].

Definition 1.1. We say that a manifold M has w2-type (I), (II), or (III) if one
of the following holds:
(I) w2(M̃) �= 0;

(II) w2(M) = 0; or
(III) w2(M) �= 0 and w2(M̃) = 0.

Using the braid constructed in [10] together with the modified surgery
theory of Kreck [12], we show that for topological 4-manifolds which have
w2-type (I) or (II), with cdπ ≤ 2 and satisfying (A1), (A2) and (A3), Kirby–
Siebenmann (ks) invariant and the quadratic 2-type give the s-cobordism
classification. Our main result is the following:

Theorem 1.2. Let M1 and M2 be closed, connected, oriented, topological 4-
manifolds with fundamental group π such that cd π ≤ 2 and satisfying prop-
erties (A1), (A2) and (A3). Suppose also that they have the same Kirby–
Siebenmann invariant and w2-type (I) or (II). Then M1 and M2 are s-
cobordant if and only if they have isometric quadratic 2-types.

Let us finish this introductory section by pointing out the differences
of methods used in this paper and the paper by Hambleton et al. [11] which
classifies closed orientable 4-manifolds with fundamental groups of geometric
dimension 2 subject to the same hypotheses of this paper.

The geometric dimension of a group G, denoted by gdG, is the mini-
mal dimension of a CW model for the classifying space BG. Eilenberg and
Ganea [5] showed that for any group G we have gd G = cdG for cdG > 2
and if cdG = 2 then gdG ≤ 3. Later Stallings [16] and Swan [17] showed
that cd G = 1 if and only if gdG = 1. It follows that gdG = cdG, except
possibly that there may exist a group G for which cdG = 2 and gdG = 3.
The statement that cd G and gdG are always equal has become known as
the Eilenberg–Ganea conjecture (see [4] for more details and potential coun-
terexamples to Eilenberg–Ganea conjecture).

Although the Eilenberg–Ganea conjecture is still open, Bestvina and
Brady [2] showed that at least one of the Eilenberg–Ganea and Whitehead
conjectures has a negative answer, i.e., either there exists a group of co-
homological dimension and geometric dimension a counterexample to the



1110 F. Hegenbarth et al. MJOM

Eilenberg–Ganea Conjecture or there exists a nonaspherical subcomplex of
an aspherical complex a counterexample to the Whitehead Conjecture [19].

Therefore, our main result might be a slight generalization of Theorem
C of [11]. Also our line of argument is different: we first work with the bordism
group over the normal 1-type and then to use the braid constructed in [10],
we work with the normal 2-type and the w2-type, whereas in [11], the authors
work with the reduced normal 2-type and a refinement of the w2-type.

2. Background

The classical surgery theory, developed by Browder, Novikov, Sullivan and
Wall in the 1960s, is a technique for classifying of high-dimensional manifolds.
The theory starts with a normal cobordism (F, f1, f2) : (W,N1, N2) → X
where f1 and f2 are homotopy equivalences, and then asks whether this
cobordism is cobordant rel ∂ to an s-cobordism. There is an obstruction in a
group Ln+1(Z[π1(X)]) which vanishes if and only if this is possible. Later in
the 1980s Matthias Kreck [12] generalized this approach:

Definition 2.1. ([12]) Let ξ : E → BSO be a fibration.
(i) A normal (E, ξ) structure ν̄ : N → E of an oriented manifold N in E is

a normal k-smoothing, if it is a (k + 1)-equivalence.
(ii) We say that E is k-universal if the fibre of the map E → BSO is con-

nected and its homotopy groups vanish in dimension ≥ k + 1.
For each oriented manifold N , up to fibre homotopy equivalence, there is a
unique k-universal fibration E over BSO admitting a normal k-smoothing of
N . Thus, the fibre homotopy type of the fibration E over BSO is an invariant
of the manifold N and we call it the normal k-type of N .

Instead of homotopy equivalences, Kreck started with cobordisms of nor-
mal smoothings (F, f1, f2) : (W,N1, N2) → X where f1 and f2 are only [n+1

2 ]-
equivalences. There is an obstruction in a monoid ln+1(Z[π1(X)]) which is
elementary if and only if that cobordism is cobordant rel ∂ to an s-cobordism.

Let M be a closed oriented 4-manifold. We work with the normal 2-type
of 4-manifolds. That is we need to construct a fibration E → BSO whose finer
has vanishing homotopy in dimensions ≥ k and there exists a 3-equivalence
M → E. Let B denote the 2-type of M (second stage of the Postnikov tower
for M), i.e., there is a commutative diagram

M
c ��

uM

��

B

uB

��
Bπ Bπ

Here, uM is unique up to homotopy and a classifying map for the universal
covering M̃ of M . We can attach cells of dimension ≥ 4 to obtain a CW-
complex structure for B with the following properties:

(i) The inclusion map c : M → B induces isomorphisms πk(M) → πk(B)
for k ≤ 2, and

(ii) πk(B) = 0 for k ≥ 3.
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Note that the universal covering space B̃ of B is the Eilenberg–MacLane
space K(π2, 2), and the inclusion M̃ → B̃ induces isomorphism on π2.

The class w2 := w2(M) ∈ H2(M ;Z) ∼= H2(B;Z) gives a fibration and
we can form the pullback

BSpin �� B〈w2〉
j ��

ξ

��

B

w2

��
BSpin �� BSO

w �� K(Z/2, 2)

where w pulls back the second Stiefel–Whitney class for the universal oriented
vector bundle over BSO. Note that the fibration B〈w2〉 over BSO is the
normal 2-type of M and if w2 = 0, then B〈w2〉 = B × BSpin.

We have a similar pullback diagram for M . Hambleton and Kreck [10]
defined a thickening Aut•(M,w2) of Aut•(M) and then established a com-
mutative braid of exact sequences, valid for any closed, oriented smooth or
topological 4-manifold.

Definition 2.2. ([10]) Let Aut•(M,w2) denote the set of equivalence classes of
maps f̂ : M → M〈w2〉 such that (i) f := j ◦ f̂ is a base-point and orientation
preserving homotopy equivalence, and (ii) ξ ◦ f̂ = νM .

Given two maps f̂ , ĝ : M → M〈w2〉 as above, we define

f̂ • ĝ : M → M〈w2〉

as the unique map from M into the pull-back M〈w2〉 defined by the pair
f ◦ g : M → M and νM : M → BSO. It was proved in [10] that Aut•(M,w2)
is a group under this operation and there is a short exact sequence of groups

0 �� H1(M ;Z/2) �� Aut•(M,w2) �� Aut•(M) �� 1.

To define an analogous group Aut•(B,w2) of self-equivalences, we must
first state the following lemma.

Lemma 2.3. ([10]) Given a base-point preserving map f : M → B, there is
a unique extension (up to base-point preserving homotopy) φf : B → B such
that φf ◦ c = f . If f is a 3-equivalence then φf is a homotopy equivalence.
Moreover, if w2 ◦ f = w2, then w2 ◦ φf = w2.

Definition 2.4. ([10]) Let Aut•(B,w2) denote the set of equivalence classes
of maps f̂ : M → B〈w2〉 such that (i) f := j ◦ f̂ is a base-point preserving
3-equivalence, and (ii) ξ ◦ f̂ = νM .

Theorem 2.5 ([10]). Let M be a closed, oriented 4-manifold. Then there is a
sign-commutative diagram of exact sequences
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Ω5(M〈w2〉)

����������

��
H̃(M, w2)

������������

��
Aut•(B, w2)

β

����
��

��
��

Ω5(B〈w2〉)

�����������

�����������
Aut•(M, w2)

α

		��������



���������
Ω4(B〈w2〉)

π1(E•(B, w2))

����������

��Ω̂5(B〈w2〉, M〈w2〉)

γ

������������

��Ω̂4(M〈w2〉)

								

such that the two composites ending in Aut•(M,w2) agree up to inver-
sion, and the other sub-diagrams are strictly commutative.

During the calculation of the terms on the above braid, we will be inter-
ested in certain subgroups of Aut•(B) and Aut•(B,w2). Before we introduce
these subgroups let us define a homomorphism

ĵ : Aut•(B,w2) → Aut•(B) by ĵ(f̂) = φf

where φf : B → B is the unique homotopy equivalence with φf ◦ c � f ,
and the following subgroup of Aut•(B,w2)

Isom〈w2〉[π, π2, c∗[M ]] := {f̂ ∈ Aut•(B,w2) | φf ∈ Isom[π, π2, c∗[M ]]}
where Isom[π, π2, c∗[M ]] := {φ ∈ Aut•(B) |φ∗(c∗[M ]) = c∗[M ]}.

Lemma 2.6. There is a short exact sequence of groups

0 �� H1(M ;Z/2) �� Isom〈w2〉[π, π2, c∗[M ]]
ĵ �� Isom[π, π2, c∗[M ]] �� 1

Proof. For any φ ∈ Isom[π, π2, c∗[M ]], we have an f ∈ Aut•(M) such that
c ◦ f � φ ◦ c (this is basically by [8, Lemma 1.3] ). We may assume that
the pair (f, νM ) is an element of Aut•(M,w2) ( [10, Lemma 3.1] ). The pair
(c ◦ f, νM ) determines an element f̂ of Aut•(B,w2) for which ĵ(f̂) = φf = φ.

Suppose now that f̂ , ĝ ∈ Isom〈w2〉[π, π2, c∗[M ]] such that h : φf � φg.
We have the following diagram

K(Z/2, 1)

��
∂(M × I)� �

��

f̂�ĝ �� B〈w2〉
(j,ξ)

��
M × I

��









(h◦c×id,νM ◦p1)
�� B × BSO

The obstructions to lifting (h ◦ c × id, νM ◦ p1) lie in the groups

Hi+1(M × I, ∂(M × I);πi(K(Z/2, 1))) ∼= Hi(M ;πi(K(Z/2, 1))),

hence the only non-zero obstructions are in H1(M ;Z/2).
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Let f̂ ∈ Aut•(M,w2), for any α ∈ H1(M ;Z/2), we will construct a
ĝ ∈ Aut•(M,w2) with the property that f � g and the obstruction to f̂ and
ĝ being equivalent is α. Note that different maps M ×I → K(Z/2, 2) relative
to the given maps on the boundary are also classified by H1(M ;Z/2). So we
may think α : M × I → K(Z/2, 2) such that α|M×{0} and α|M×{1} are the
constant maps to the base point {∗} of K(Z/2, 2). Consider the following
diagram

M〈w2〉

(j,ξ)

��
M × {0}� �

��

(f,νM ) �� M × BSO

ρ

��
M × I

α̂

����������
α �� K(Z/2, 2)

The fibration ρ : M × BSO → K(Z/2, 2) = ΩK(Z/2, 3) is given by
(x, y) → w2(x)−w(y), for which the fiber over the base point is by definition
M〈w2〉. By the homotopy lifting property we have α̂ : M × I → M × BSO
making the diagram commutative.

Let ĝ := α̂|M×{1}, then since w2(p1 ◦ ĝ(x)) = w(p2 ◦ ĝ(x)), where p1

and p2 are projections to the first and second components, respectively, ĝ
actually gives us a map M → M〈w2〉. Observe that p1 ◦ α̂ : M × I → M is a
homotopy between f and g. To lift this homotopy to M〈w2〉, we should have
w2((p1 ◦ α̂)(x, t)) = w((p2 ◦ α̂)(x, t)) for all x ∈ M and t ∈ I, which is possible
if and only if α represents the trivial map. Hence α is the obstruction to f̂
and ĝ being equivalent. �

Lemma 2.7. The kernel of β, ker(β) := β−1(0), is equal to
Isom〈w2〉[π, π2, c∗[M ]].

Proof. The map β : Aut•(B,w2) → Ω4(B〈w2〉) is defined by β(f̂) = [M, f̂ ]−
[M, ĉ ]. For the bordism group Ω4(B〈w2〉), we use the Atiyah–Hirzebruch
spectral sequence, whose E2-term is Hp(M ; ΩSpin

q (∗)).
The non-zero terms on the E2-page are H0(B; ΩSpin

4 (∗)) ∼= Z in the
(0, 4) position, H2(B;Z/2) in the (2, 2) position, H3(B;Z/2) in the (3, 1)
position and H4(B) in the (4, 0) position. To understand the kernel, we use
the projection to H4(B).

Let f̂ ∈ Aut•(B,w2) and suppose first that f̂ ∈ ker β, then (j◦f̂)∗[M ] =
c∗[M ]. But since (j ◦ f̂) is a 3-equivalence, there exists φ ∈ Aut•(B) with
φ ◦ c = j ◦ f̂ (recall Lemma 2.3). So, φ∗(c∗[M ]) = c∗[M ] which means ĵ(f̂) =
φ ∈ Isom[π, π2, c∗[M ]]. Therefore, ker(β) ⊆ Isom〈w2〉[π, π2, c∗[M ]]. To see the
other inclusion note that

coker(d2 : H4(B;Z/2) → H2(B;Z/2)) ∼= 〈w2〉

and the class w2 is preserved by a self-homotopy equivalence. �
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Definition 2.8. ([10]) Let H̃(M,w2) denote the bordism groups of pairs
(W, F̂ ), where W is a compact, oriented 5-manifold with ∂1W = −M , ∂2W =
M and the map F̂ : W → M〈w2〉 restricts to îdM on ∂1W , and on ∂2W to a
map f̂ : M → M〈w2〉 satisfying properties (i) and (ii) of Definition 2.2 .

Corollary 2.9. The images of Aut•(M,w2) or H̃(M,w2) in Aut•(B,w2) are
precisely equal to Isom〈w2〉[π, π2, c∗[M ]].

Proof. Let f̂ ∈ Aut•(M,w2) and φf̂ denote the image of f̂ in Aut•(B,w2).

Then ĵ(φf̂ ) = φf satisfies φf ◦ c = c ◦ f and φf preserves c∗[M ]. Hence
φf ∈ Isom[π, π2, c∗[M ]]. Now suppose that φ ∈ Isom[π, π2, c∗[M ]], then by [8,
Lemma 1.3] there exists f ∈ Aut•(M) such that φ◦f � c◦f . We may assume
that f̂ = (f, νM ) ∈ Aut•(M,w2) [10, Lemma 3.1]. Let φf̂ ∈ Aut•(B,w2)

denote the image of f̂ , we have ĵ(φf̂ ) = φ.

The result about the image of H̃(M,w2) follows from the exactness of
the braid [10, Lemma 2.7] and the fact that ker(β) = Isom〈w2〉[π, π2, c∗[M ]].

�

Remark 2.10. By universal coefficient spectral sequence, we have an exact
sequence

0 �� H2(π; Λ) �� H2(M ; Λ) ev �� HomΛ(π2,Λ) �� 0

and the cohomology intersection pairing is defined by sM (u, v) = ev(v)
(PD(u)) for all u, v ∈ H2(M ; Λ) where PD is the Poincaré duality iso-
morphism. Since sM (u, v) = 0 for all u ∈ H2(M ; Λ) and v ∈ H2(π; Λ), the
pairing sM induces a nonsingular pairing

s′
M : H2(M ; Λ)/H2(π; Λ) × H2(M ; Λ)/H2(π; Λ) → Λ.

Before we finish this section, let us point out that for our purposes we
need to look for a relation between the image of the fundamental class c∗[M ] ∈
H4(B) and the equivariant intersection pairing sM . Let Her(H2(B; Λ)) be
the group of Hermitian pairings on H2(B; Λ). We can define a natural map
F : H4(B) → Her(H2(B; Λ)) by

F (x)(u, v) = u(x ∩ v) = (u ∪ v)(x).

The construction of F applied to M yields sM and by naturality F (c∗[M ]) =
sM . In other words, we have the following commutative diagram

H2(B; Λ) × H2(B; Λ)
F (c∗[M ]) ��

∼=c∗×c∗

��

Λ

H2(M ; Λ) × H2(M ; Λ) H2(M ; Λ) × H2(M ; Λ)

sM

��

Therefore, any automorphism of B which preserves c∗[M ] also preserves
the intersection form sM . The converse of this statement is not necessarily
true, i.e., c∗[M ] and sM do not always uniquely determine each other.
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3. s-Cobordism

In this section we are going to prove Theorem 1.2. Let M be a closed, con-
nected, oriented, topological 4-manifold with fundamental group π such that
cd π ≤ 2. We study bordism classes of such manifolds over the normal 1-type.

For type (I) manifolds, w2(M̃) �= 0, oriented topological bordism group
over the normal 1-type is

ΩSTOP
4 (K(π, 1)) ∼= ΩSTOP

4 (∗) ∼= Z ⊕ Z/2

via the signature, σ(M), and the ks-invariant. Recall that σ(M) is determined
via the integer valued intersection form sZM on H2(M). Since the image

H2(π;Z)
uM �� H2(M ;Z)

is the radical of sZM σ(M) that is equal to the signature of the form sM ⊗Λ Z

[11, Remark 4.2]. Therefore, when cdπ ≤ 2, the signature of M is determined
by the formula

σ(M) = σ(sZM ) = σ(sM ⊗Λ Z).

On the other hand, in the type (II) case, w2(M̃) = 0, we have

ΩTOPSPIN
4 (K(π, 1)) ∼= Z ⊕ H2(π;Z/2).

In this case, the invariants are signature and an invariant in H2(π;Z/2).
Now, let M1 and M2 be closed, connected, oriented, topological 4-

manifolds with isomorphic fundamental groups. By fixing an isomorphism,
we identify π = π1(M1) = π1(M2). Suppose also that cdπ ≤ 2. Suppose
further that M1 and M2 have isometric quadratic 2-types. First we are going
to show that M1 and M2 are homotopy equivalent using [1, Corollary 3.2].
Then, we are going to show that they are indeed bordant over the normal
1-type, if we further assume that π satisfies (A1).

Since M1 and M2 have isometric quadratic 2-types, we have

χ : π1(M1) → π1(M2) and ψ : π2(M1) → π2(M2)

a pair of isomorphisms such that ψ(gx) = χ(g)ψ(x) for all g ∈ π, x ∈ π2(M1)
and preserving the intersection form i.e.,

sM2(ψ(x), ψ(y)) = χ∗(sM1(x, y)).

Let B(Mi) denote the 2-type of Mi and ci : Mi → B(Mi) corresponding
3-equivalences for i = 1, 2. We are going to construct a homotopy equivalence
between B(M1) and B(M2). Note that we have isomorphisms

π2(ci) : π2(Mi)
∼= �� π2(B(Mi)) for i = 1, 2. Start with the composition

π2(c2) ◦ ψ ◦ π2(c1)−1 : π2(B(M1))
∼=−→ π2(B(M2)).

We can think of any Abelian group G as a topological group with discrete
topology. Then we can define K(G, 1) = BG, which is also an Abelian topo-
logical group, and K(G, 2) = BK(G, 1) = B2G. This construction is functo-
rial. Hence we have a homotopy equivalence

B2(π2(c2) ◦ ψ ◦ π2(c1)−1) : K(π2(B(M2)), 2) → K(π2(B(M2)), 2)
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which is π1-equivariant, since ψ is π1-equivariant. We also have another π1-
equivariant homotopy equivalence, namely Eχ : Eπ1(M1) → Eπ1(M2), where
the contractible space Eπ1(Mi) is the total space of the universal bundle over
Bπ1(Mi) for i = 1, 2. Let

τ := E(χ) × B2(π2(c2) ◦ ψ ◦ π2(c1)−1)

and recall that B(Mi) � Eπ1(Mi) ×π1(Mi) K(π2(B(Mi)), 2). Then we have

τ : B(M1) → B(M2).

Also, since B(Mi) is a fibration over Bπ1(Mi) with fiber K(π2(B(Mi)), 2) by
five lemmas, we can see that τ is a homotopy equivalence. Summarizing, we
have a homotopy equivalence τ with the following commutative diagram:

π2(M1)
π2(c1) ��

ψ

��

π2(B(M1))

π2(τ)

��
π2(M2)

π2(c2)
�� π2(B(M2))

Note that we have τ	(sM2) = sM1 . Since M1 and M2 have isometric qua-
dratic 2-types, they have isomorphic intersection forms, which implies that
τ∗((c1)∗[M1]) = (c2)∗[M2] (we may need to use the image of (c2)∗[M2] under
a self-equivalence of B(M2) if necessary, see [7, Lemma 3] and the proof of [7,
Theorem 14]). Also see the discussion at the end of Section 2 for the relation
between the image of the fundamental class and the equivariant intersection
form. Therefore, M1 and M2 have isomorphic fundamental triples in the sense
of [1] and hence they must be homotopy equivalent by [1, Corollary 3.2].

If we further assume that the assembly map

(A1) A4 : H4(K(π, 1);L0(Z)) → L4(Zπ) is injective,

then by [3, Corollary 3.11] M1 and M2 are bordant over the normal 1-type.
Therefore, if the fundamental group π satisfies (A1), then we have a

cobordism W between M1 and M2 over the normal 1-type, which is a spin
cobordism in the type (II) case.

Choose a handle decomposition of W . Since W is connected, we can can-
cel all 0- and 5-handles. Further, we may assume by low-dimensional surgery
that the inclusion map M1 ↪→ W is a 2 equivalence. So we can trade all 1-
handles for 3-handles, and upside-down, all 4-handles for 2-handles. We end
up with a handle decomposition of W that only contains 2- and 3-handles,
and view W as

W = M1 × [0, 1] ∪ {2 − handles} ∪ {3 − handles} ∪ M2 × [−1, 0].

Let W3/2 be the ascending cobordism that contains just M1 and all 2-handles
and let M3/2 be its 4-dimensional upper boundary. The inclusion map M1 ↪→
W is a 2 equivalence, so attaching map S1 ×D3 → M1 of a 2-handle must be
null-homotopic. Hence attaching a 2-handle is the same as connect summing
with S2 × S2 or the same as connect summing with S2×̃S2. Since M1 and



Vol. 12 (2015) s-Cobordism 1117

M̃1 are spin at the same time, we can assume that there are no S2×̃S2-terms
present in M3/2 (see for example [15, p. 80]).

From the lower half of W , we have M3/2 ≈ M1�m1(S2 ×S2), while from
the upper half, we have M3/2 ≈ M2�m2(S2 × S2). Since rank(H2(M1)) =
rank(H2(M2))), it follows that m = m1 = m2. We have a homeomorphism

ζ : M2�m(S2 × S2) ≈ �� M1�m(S2 × S2) .

Next assume that:
(A2) Whitehead group Wh(π) is trivial for π.
Hence being s-cobordant is equivalent to being h-cobordant. The strategy for
the remainder of the proof is the following: we will cut W into two halves,
then glue them back after sticking in an h-cobordism of M3/2. This cut and
reglue procedure will create a new cobordism from M1 to M2. If we choose the
correct h-cobordism, then the 3-handles from the upper half will cancel the
2-handles from the lower half. This means that the newly created cobordism
between M1 and M2 will have no homology relative to its boundaries, and so
it will indeed be an h-cobordism from M1 to M2.

Note that we have τ	(sM2) = sM1 and sM1
∼= sM2 if and only if s′

M1
∼=

s′
M2

. Hence we can immediately deduce that τ	s
′
M1

= s′
M2

. Now let M :=
M1�m(S2 × S2) and M ′ := M2�m(S2 × S2) with the following quadratic
2-types,

[π, π2, sM ] := [π1(M1), π2(M1) ⊕ Λ2m, sM1 ⊕ H(Λm)]

and

[π1(M2), π2(M2) ⊕ Λ2m, sM2 ⊕ H(Λm)],

where H(Λm) is the hyperbolic form on Λm ⊕ (Λm)∗.
Since W is a cobordism over the normal 1-type,

(π1(ζ) ◦ χ, π2(ζ) ◦ (ψ ⊕ id)) = (id, π2(ζ) ◦ (ψ ⊕ id))

is an element in Isom[π, π2, sM ]. Let B = B(M) denote the 2-type of M . We
have an exact sequence of the form [14]

0 �� H2(π;π2) �� Aut•(B)
(π1,π2) �� Isom[π, π2] �� 1 . (1)

Therefore we can find a φ′′ ∈ Aut•(B) such that

π1(φ′′) = id and π2(φ′′) = π2(ζ) ◦ (ψ ⊕ id).

The homotopy self-equivalence φ′′ preserves the intersection form sM but
on the braid we see Isom〈w2〉[π, π2, c∗[M ]]. So to use the braid, we need to
construct a self-homotopy equivalence of B which preserves c∗[M ].

Hillman [7] showed that for cdπ ≤ 2, we have π2(M) ∼= P ⊕ H2(π; Λ)
where P is a projective Λ-module. He also showed that there exists a 2-
connected degree-1 map gM : M → Z where Z is a PD4 complex with
π2(Z) ∼= H2(π; Λ) and ker(π2(gM )) = P . He called Z as the strongly minimal
model for M .

We may assume that π2(gM ) is projection to the second factor and
cZ ◦gM = g ◦c for some 2-connected map g : B → B(Z), where B(Z) denotes
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the 2-type of Z . The map g is a fibration with fibre K(P, 2), and the inclusion
of H2(π; Λ) into π2(M2) determines a section s for g. Summarizing we have
the diagram below with a commutative square

M
gM ��

c

��

Z

cZ

��
K(P, 2) �� B

g �� B(Z)
s

��

Note that since φ′′ preserves the intersection form and identity on π,

π2(φ′′) : P ⊕ H2(π; Λ) → P ⊕ H2(π; Λ)

has a matrix representation of the form

π2(φ′′) =
[

∗ ∗
0 id

]

where the first ∗ represents an π-module isomorphism P → P and the second
∗ represents an Λ-module homomorphism P → H2(π; Λ). We modify φ′′, first
to φ′ ∈ Aut•(B) so that π2(φ′) has a matrix representation of the form

π2(φ′) =
[

∗ 0
0 id

]

i.e., it induces the zero homomorphism from P to H2(π; Λ). To achieve this
first define

θ : P → H2(π; Λ) by θ(p) = pr2(π2(φ′′)(p, 0)).

Then define

αθ : P ⊕ H2(π; Λ) → P ⊕ H2(π; Λ) by αθ(p, e) = (p, e − θ(p)).

This newly defined map αθ is a Λ-module isomorphism of π2 by [7, Lemma
3]. Now the pair (id, αθ) gives us an isomorphism φ′′

θ of B by the sequence (1)
on the previous page. Define φ′ := φ′′

θ ◦ φ′′, and observe that g ◦ φ′ = g.
Let L := Lπ(P, 2) be the space with algebraic 2-type [π, P, 0] and uni-

versal covering space L̃ � K(P, 2). We may construct L by adjoining 3-cells
to M to kill the kernel of the projection from π2 to P and then adjoining
higher dimensional cells to kill the higher homotopy groups. The splitting
π2

∼= P ⊕ H2(π; Λ) also determines a projection q : B → L.
To begin with we have the following isomorphisms where Γ denotes the

Whitehead quadratic functor [21].

H4(B) ∼= Γ(π2) ⊗Λ Z ⊕ H2(π; π2)

∼= Γ(H2(π; Λ) ⊕ P ) ⊗Λ Z ⊕ H2(π; H2(π, Λ))

∼= (Γ(H2(π, Λ)) ⊕ Γ(P ) ⊕ H2(π, Λ) ⊗ P ) ⊗Λ Z ⊕ H2(π; H2(π, Λ))

∼= Γ(P ) ⊗Λ Z ⊕ Γ(H2(π, Λ)) ⊗Λ Z ⊕ H2(π; H2(π, Λ)) ⊕ (H2(π, Λ) ⊗ P ) ⊗Λ Z

∼= H4(L) ⊕ H4(B(Z)) ⊕ (H2(π, Λ) ⊗ P ) ⊗Λ Z.
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We are going to consider the difference φ′
∗(c∗[M ])−c∗[M ] ∈ H4(B). We

start by projecting φ′
∗(c∗[M ]) and c∗[M ] to H4(L) ∼= Γ(P ) ⊗Λ Z. Recall that

we have a nonsingular pairing

s′
M : H2(M ; Λ)/H2(π; Λ) × H2(M ; Λ)/H2(π; Λ) → Λ.

If we further restrict s′
M to HomΛ(P,Λ) ∼= H2(L; Λ)/H2(π; Λ), we get a Her-

mitian pairing s′′
M ∈ Her(P ). Therefore, we have the following commutative

diagram

H4(B)

q∗
��

F �� Her(H2(B; Λ))

q�

��
Γ(P ) ⊗Λ Z

∼= �� Her(P )

The bottom row is an isomorphism [7, Theorem 2]. Both q∗(c∗[M ]) and
q∗(φ′

∗(c∗[M ])) map to s′′
M , hence q∗(c∗[M ]) = q∗(φ′

∗(c∗[M ])). Since g ◦φ′ = g,
we have

φ′
∗(c∗[M ]) − c∗[M ] ∈ (H2(π; Λ) ⊗ P ) ⊗Λ Z .

As a final modification, as in [7, Lemma 3], we can choose a self-equivalence
φ′

θ of B so that (φ′
θ ◦ φ′)∗(c∗[M ]) = c∗[M ] mod Γ(H2(π,Λ)) ⊗Λ Z. Hence

(φ′
θ ◦ φ′)∗(c∗[M ]) = c∗[M ] in H4(B), see also the proof of [7, Theorem 14].

Let φ := φ′
θ ◦ φ′.

We have φ ∈ Isom[π, π2, c∗[M ]]. Recall that we have the following short
exact sequence by Lemma 2.6

0 �� H1(M ;Z/2) �� Isom〈w2〉[π, π2, c∗[M ]]
ĵ �� Isom[π, π2, c∗[M ]] �� 1.

Choose f̂ ∈ Isom〈w2〉[π, π2, c∗[M ]] such that ĵ(f̂) = φ. There exists
(W, F̂ ) ∈ H̃(M,w2) which maps to f̂ , i.e., F̂ : W → B〈w2〉 and F |∂2W = f̂ .

Comparison of Wall’s[18] surgery program with Kreck’s modified surgery
program gives a commutative diagram of exact sequences (see [10], Lemma
4. 1)

L̃6(Z[π])

��

L̃6(Z[π])

��
S(M × I, ∂) ��

��

H(M) ��

��

Aut•(M)

T (M × I, ∂) ��

��

H̃(M,w2) �� ��

��

Isom[π, π2, c∗[M ], w2]

L5(Z[π]) L5(Z[π])

The group H(M) consists of oriented h-cobordisms W 5 from M to M , under
the equivalence relation induced by h-cobordism relative to the boundary.
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The tangential structures T (M × I, ∂), is the set of degree 1 normal maps
F : (W,∂W ) → (M ×I, ∂), inducing the identity on the boundary. The group
structure on T (M ×I, ∂) is defined as for H̃(M,w2). The map T (M ×I, ∂) →
H̃(M,w2) takes F : (W,∂W ) → (M × I, ∂) to (W, F̂ ) ∈ H̃(M,w2), where
F̂ = p̂1 ◦ F (see [18] for further details). Let σ5 ∈ L5(Z[π]) be the image of
(W, F̂ ). We further assume that

(A3) The map T (M × I, ∂) → L5(Z[π]) is onto.

Let (W ′, F ′) ∈ T (M × I, ∂) map to σ5 and let (W ′, F̂ ′) ∈ H̃(M,w2) be the
image of (W ′, F ′). Consider the difference of these elements in H̃(M,w2),

(W ′′, F̂ ′′) := (W ′, F̂ ′) • (−W, f̂−1 • F̂ ) ∈ H̃(M,w2).

Note that f̂−1 = îdM : M → M〈w2〉 denotes the map defined by the pair
(idM : M → M,νM : M → BSO). The element (W ′′, F̂ ′′) ∈ H̃(M,w2) maps
to 0 ∈ L5(Z[π1]). By the exactness of the right-hand vertical sequence there
exists an h-cobordism T of M which maps to (W ′′, F̂ ′′). Let f denote the
induced homotopy self equivalence of M . By construction we have c◦f � φ◦c

where c ◦ f = j ◦ f̂ . Note that π2(ζ−1 ◦ f) = ψ ⊕ id and also ζ−1 ◦ f gives us
a self-equivalence of M3/2. Now, if we put the s-cobordism T in between the
two halves of W , then the 3-handles from the upper half cancel the 2-handles
from the lower half. This finishes the proof of Theorem 1.2.
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