s-Cobordism Classification of 4-Manifolds Through the Group of Homotopy Self-equivalences

Friedrich Hegenbarth, Mehmetcik Pamuk and Dušan Repovš

Abstract

The aim of this paper is to give an s-cobordism classification of topological 4 -manifolds in terms of the standard invariants using the group of homotopy self-equivalences. Hambleton and Kreck constructed a braid to study the group of homotopy self-equivalences of 4 -manifolds. Using this braid together with the modified surgery theory of Kreck, we give an s-cobordism classification for certain 4 -manifolds with fundamental group π, such that $\mathrm{cd} \pi \leq 2$. Mathematics Subject Classification. Primary 57N13; Secondary 55P10, 57R80.

Keywords. s-Cobordism, 4-Manifold, cohomological dimension and Homotopy self-equivalence.

1. Introduction

The cohomological dimension of a group G, denoted $\operatorname{cd} G$, is the projective dimension of \mathbb{Z} over $\mathbb{Z} G$. In other words, it is the smallest non-negative integer n such that \mathbb{Z} admits a projective resolution $P=\left(P_{i}\right)_{i \leq 0}$ of \mathbb{Z} over $\mathbb{Z} G$ of length n, satisfying $P_{i}=0$ for $i>n$. If there exists no such n, then we set $\operatorname{cd} G=\infty$.

In this paper, we are going to deal with groups whose cohomological dimension is less than or equal to 2 . This class of groups contains the free groups, knot groups and one-relator groups whose relator is not a proper power. Our aim here is to give an s-cobordism classification of topological 4-manifolds with fundamental group π such that $\mathrm{cd} \pi \leq 2$, in terms of the standard invariants such as the fundamental group, characteristic classes and the equivariant intersection form using the group of homotopy selfequivalences.

Let M be a closed, connected, oriented, 4-manifold with a fixed base point $x_{0} \in M$. Throughout the paper, the fundamental group $\pi_{1}\left(M, x_{0}\right)$ will be denoted by π and the higher homotopy groups $\pi_{i}\left(M, x_{0}\right)$ by π_{i}. Let
$\Lambda=\mathbb{Z}[\pi]$ denote the integral group ring of π. The standard involution $\lambda \rightarrow \bar{\lambda}$ on Λ is induced by the formula

$$
\sum n_{g} g \rightarrow \sum n_{g} g^{-1}
$$

for $n_{g} \in \mathbb{Z}$ and $g \in \pi$. All modules considered in this paper will be right Λ-modules.

The first step in the classification of manifolds is the determination of their homotopy type. It is a well-known result of Milnor [13] and Whitehead [20] that a simply connected 4 -dimensional manifold M is classified up to homotopy equivalence by its integral intersection form. In the non-simply connected case, one has to work with the equivariant intersection form s_{M} where

$$
s_{M}: H_{2}(M ; \Lambda) \times H_{2}(M ; \Lambda) \rightarrow \Lambda ;(a, b) \rightarrow s_{M}(a, b)=a^{*}(b)
$$

This is a Hermitian pairing where $a^{*} \in H^{2}(M ; \Lambda)$ is the Poincaré dual of a, such that $s_{M}(a, b)=\overline{s_{M}(b, a)} \in \Lambda$. This form does not detect the homotopy type and the missing invariant is the first k-invariant $k_{M} \in H^{3}\left(\pi ; \pi_{2}\right)$, see $[8$, Remark 4.5] for an example.

Hambleton and Kreck [8] defined the quadratic 2-type as the quadruple [$\left.\pi, \pi_{2}, k_{M}, s_{M}\right]$ and the group of isometries of the quadratic 2-type of M, Isom $\left[\pi, \pi_{2}, k_{M}, s_{M}\right]$, consists of all pairs of isomorphisms

$$
\chi: \pi \rightarrow \pi \quad \text { and } \quad \psi: \pi_{2} \rightarrow \pi_{2}
$$

such that $\psi(g x)=\chi(g) \psi(x)$ for all $g \in \pi$ and $x \in \pi_{2}$, which preserve the k-invariant, $\psi_{*}\left(\chi^{-1}\right)^{*} k_{M}=k_{M}$, and the equivariant intersection form, $s_{M}(\psi(x), \psi(y))=\chi_{*} s_{M}(x, y)$. It was shown in [8] that the quadratic 2-type detects the homotopy type of an oriented 4 -manifold M if π is a finite group with 4-periodic cohomology.

Throughout this paper $H^{3}\left(\pi ; \pi_{2}\right)=0$, so we have $k_{M}=0$. For notational ease we will drop it from the notation and write $\operatorname{Isom}\left[\pi, \pi_{2}, s_{M}\right]$ for the group of isometries of the quadratic 2-type.

Let Aut. (M) denote the group of homotopy classes of homotopy selfequivalences of M, preserving both the given orientation on M and the basepoint $x_{0} \in M$. To study Aut. (M), Hambleton and Kreck [10] established a commutative braid of exact sequences, valid for any closed, oriented smooth or topological 4-manifold. To give an s-cobordism classification we use the above-mentioned braid together with the modified surgery theory of Kreck [12].

In Sect. 2, we briefly review some background material about the modified surgery theory and some of the terms of the braid. Throughout this paper we always refer to [10] for the details of the definitions concerning the braid. In Sect. 3, we are going to further assume that the the following three conditions are satisfied:
(A1) The assembly map $A_{4}: H_{4}\left(K(\pi, 1) ; \mathbb{L}_{0}(\mathbb{Z})\right) \rightarrow L_{4}(\mathbb{Z}[\pi])$ is injective, where $\mathbb{L}_{0}(\mathbb{Z})$ stands for the connective cover of the periodic surgery spectrum;
(A2) Whitehead group $W h(\pi)$ is trivial for π; and
(A3) The surgery obstruction map $\mathcal{T}(M \times I, \partial) \rightarrow L_{5}(\mathbb{Z}[\pi])$ is onto, where M is a closed, connected, oriented 4-manifold with $\pi_{1}(M) \cong \pi$.
Note that if the Farrell-Jones conjecture [6] is true for torsion-free groups, then π satisfies all the conditions above.

Now let $u_{M}: M \rightarrow K(\pi, 1)$ be a classifying map for the fundamental group π. Consider the homotopy fibration

$$
\widetilde{M} \xrightarrow{p} M \xrightarrow{u_{M}} K(\pi, 1)
$$

which induces a short exact sequence

$$
0 \longrightarrow H^{2}(K(\pi, 1) ; \mathbb{Z} / 2) \xrightarrow{u_{M}^{*}} H^{2}(M ; \mathbb{Z} / 2) \xrightarrow{p^{*}} H^{2}(\widetilde{M} ; \mathbb{Z} / 2)
$$

Next we recall the following definition given in [9].
Definition 1.1. We say that a manifold M has w_{2}-type (I), (II), or (III) if one of the following holds:
(I) $w_{2}(\widetilde{M}) \neq 0$;
(II) $w_{2}(M)=0$; or
(III) $w_{2}(M) \neq 0$ and $w_{2}(\widetilde{M})=0$.

Using the braid constructed in [10] together with the modified surgery theory of Kreck [12], we show that for topological 4-manifolds which have w_{2}-type (I) or (II), with cd $\pi \leq 2$ and satisfying (A1), (A2) and (A3), KirbySiebenmann ($k s$) invariant and the quadratic 2-type give the s-cobordism classification. Our main result is the following:

Theorem 1.2. Let M_{1} and M_{2} be closed, connected, oriented, topological 4manifolds with fundamental group π such that $\mathrm{cd} \pi \leq 2$ and satisfying properties (A1), (A2) and (A3). Suppose also that they have the same KirbySiebenmann invariant and w_{2}-type (I) or (II). Then M_{1} and M_{2} are s cobordant if and only if they have isometric quadratic 2-types.

Let us finish this introductory section by pointing out the differences of methods used in this paper and the paper by Hambleton et al. [11] which classifies closed orientable 4-manifolds with fundamental groups of geometric dimension 2 subject to the same hypotheses of this paper.

The geometric dimension of a group G, denoted by $\operatorname{gd} G$, is the minimal dimension of a CW model for the classifying space $B G$. Eilenberg and Ganea [5] showed that for any group G we have $\operatorname{gd} G=\operatorname{cd} G$ for $\operatorname{cd} G>2$ and if $\operatorname{cd} G=2$ then $\operatorname{gd} G \leq 3$. Later Stallings [16] and Swan [17] showed that $\operatorname{cd} G=1$ if and only if $\operatorname{gd} G=1$. It follows that $\operatorname{gd} G=\operatorname{cd} G$, except possibly that there may exist a group G for which $\operatorname{cd} G=2$ and $\operatorname{gd} G=3$. The statement that $\operatorname{cd} G$ and $\operatorname{gd} G$ are always equal has become known as the Eilenberg-Ganea conjecture (see [4] for more details and potential counterexamples to Eilenberg-Ganea conjecture).

Although the Eilenberg-Ganea conjecture is still open, Bestvina and Brady [2] showed that at least one of the Eilenberg-Ganea and Whitehead conjectures has a negative answer, i.e., either there exists a group of cohomological dimension and geometric dimension a counterexample to the

Eilenberg-Ganea Conjecture or there exists a nonaspherical subcomplex of an aspherical complex a counterexample to the Whitehead Conjecture [19].

Therefore, our main result might be a slight generalization of Theorem C of [11]. Also our line of argument is different: we first work with the bordism group over the normal 1-type and then to use the braid constructed in [10], we work with the normal 2-type and the w_{2}-type, whereas in [11], the authors work with the reduced normal 2 -type and a refinement of the w_{2}-type.

2. Background

The classical surgery theory, developed by Browder, Novikov, Sullivan and Wall in the 1960s, is a technique for classifying of high-dimensional manifolds. The theory starts with a normal cobordism $\left(F, f_{1}, f_{2}\right):\left(W, N_{1}, N_{2}\right) \rightarrow X$ where f_{1} and f_{2} are homotopy equivalences, and then asks whether this cobordism is cobordant rel ∂ to an s-cobordism. There is an obstruction in a group $L_{n+1}\left(\mathbb{Z}\left[\pi_{1}(X)\right]\right)$ which vanishes if and only if this is possible. Later in the 1980s Matthias Kreck [12] generalized this approach:
Definition 2.1. ([12]) Let $\xi: E \rightarrow \mathrm{BSO}$ be a fibration.
(i) A normal (E, ξ) structure $\bar{\nu}: N \rightarrow E$ of an oriented manifold N in E is a normal k-smoothing, if it is a $(k+1)$-equivalence.
(ii) We say that E is k-universal if the fibre of the map $E \rightarrow \mathrm{BSO}$ is connected and its homotopy groups vanish in dimension $\geq k+1$.
For each oriented manifold N, up to fibre homotopy equivalence, there is a unique k-universal fibration E over BSO admitting a normal k-smoothing of N. Thus, the fibre homotopy type of the fibration E over BSO is an invariant of the manifold N and we call it the normal k-type of N.

Instead of homotopy equivalences, Kreck started with cobordisms of normal smoothings $\left(F, f_{1}, f_{2}\right):\left(W, N_{1}, N_{2}\right) \rightarrow X$ where f_{1} and f_{2} are only $\left[\frac{n+1}{2}\right]$ equivalences. There is an obstruction in a monoid $l_{n+1}\left(\mathbb{Z}\left[\pi_{1}(X)\right]\right)$ which is elementary if and only if that cobordism is cobordant rel ∂ to an s-cobordism.

Let M be a closed oriented 4-manifold. We work with the normal 2-type of 4-manifolds. That is we need to construct a fibration $E \rightarrow \mathrm{BSO}$ whose finer has vanishing homotopy in dimensions $\geq k$ and there exists a 3 -equivalence $M \rightarrow E$. Let B denote the 2-type of M (second stage of the Postnikov tower for M), i.e., there is a commutative diagram

Here, u_{M} is unique up to homotopy and a classifying map for the universal covering \widetilde{M} of M. We can attach cells of dimension ≥ 4 to obtain a CWcomplex structure for B with the following properties:
(i) The inclusion map $c: M \rightarrow B$ induces isomorphisms $\pi_{k}(M) \rightarrow \pi_{k}(B)$ for $k \leq 2$, and
(ii) $\pi_{k}(B)=0$ for $k \geq 3$.

Note that the universal covering space \widetilde{B} of B is the Eilenberg-MacLane space $K\left(\pi_{2}, 2\right)$, and the inclusion $\widetilde{M} \rightarrow \widetilde{B}$ induces isomorphism on π_{2}.

The class $w_{2}:=w_{2}(M) \in H^{2}(M ; \mathbb{Z}) \cong H^{2}(B ; \mathbb{Z})$ gives a fibration and we can form the pullback

where w pulls back the second Stiefel-Whitney class for the universal oriented vector bundle over BSO. Note that the fibration $B\left\langle w_{2}\right\rangle$ over BSO is the normal 2-type of M and if $w_{2}=0$, then $B\left\langle w_{2}\right\rangle=B \times \mathrm{BSpin}$.

We have a similar pullback diagram for M. Hambleton and Kreck [10] defined a thickening $\operatorname{Aut}\left(M, w_{2}\right)$ of $\operatorname{Aut}(M)$ and then established a commutative braid of exact sequences, valid for any closed, oriented smooth or topological 4-manifold.

Definition 2.2. ([10]) Let Aut. $\left(M, w_{2}\right)$ denote the set of equivalence classes of maps $\widehat{f}: M \rightarrow M\left\langle w_{2}\right\rangle$ such that (i) $f:=j \circ \widehat{f}$ is a base-point and orientation preserving homotopy equivalence, and (ii) $\xi \circ \widehat{f}=\nu_{M}$.

Given two maps $\widehat{f}, \widehat{g}: M \rightarrow M\left\langle w_{2}\right\rangle$ as above, we define

$$
\widehat{f} \bullet \widehat{g}: M \rightarrow M\left\langle w_{2}\right\rangle
$$

as the unique map from M into the pull-back $M\left\langle w_{2}\right\rangle$ defined by the pair $f \circ g: M \rightarrow M$ and $\nu_{M}: M \rightarrow$ BSO. It was proved in [10] that Aut. $\left(M, w_{2}\right)$ is a group under this operation and there is a short exact sequence of groups

$$
0 \longrightarrow H^{1}(M ; \mathbb{Z} / 2) \longrightarrow \operatorname{Aut}\left(M, w_{2}\right) \longrightarrow \text { Aut. }(M) \longrightarrow 1
$$

To define an analogous group Aut. $\left(B, w_{2}\right)$ of self-equivalences, we must first state the following lemma.

Lemma 2.3. ([10]) Given a base-point preserving map $f: M \rightarrow B$, there is a unique extension (up to base-point preserving homotopy) $\phi_{f}: B \rightarrow B$ such that $\phi_{f} \circ c=f$. If f is a 3-equivalence then ϕ_{f} is a homotopy equivalence. Moreover, if $w_{2} \circ f=w_{2}$, then $w_{2} \circ \phi_{f}=w_{2}$.

Definition 2.4. ([10]) Let $\operatorname{Aut}_{\bullet}\left(B, w_{2}\right)$ denote the set of equivalence classes of maps $\widehat{f}: M \rightarrow B\left\langle w_{2}\right\rangle$ such that (i) $f:=j \circ \widehat{f}$ is a base-point preserving 3 -equivalence, and (ii) $\xi \circ \widehat{f}=\nu_{M}$.

Theorem 2.5 ([10]). Let M be a closed, oriented 4-manifold. Then there is a sign-commutative diagram of exact sequences

such that the two composites ending in Aut. $\left(M, w_{2}\right)$ agree up to inversion, and the other sub-diagrams are strictly commutative.

During the calculation of the terms on the above braid, we will be interested in certain subgroups of Aut. $_{\bullet}(B)$ and Aut. $_{\bullet}\left(B, w_{2}\right)$. Before we introduce these subgroups let us define a homomorphism

$$
\widehat{j}: \operatorname{Aut}_{\bullet}\left(B, w_{2}\right) \rightarrow \operatorname{Aut}_{\bullet}(B) \quad \text { by } \quad \widehat{j}(\widehat{f})=\phi_{f}
$$

where $\phi_{f}: B \rightarrow B$ is the unique homotopy equivalence with $\phi_{f} \circ c \simeq f$, and the following subgroup of Aut• $\left(B, w_{2}\right)$

$$
\operatorname{Isom}^{\left\langle w_{2}\right\rangle}\left[\pi, \pi_{2}, c_{*}[M]\right]:=\left\{\widehat{f} \in \operatorname{Aut} \bullet\left(B, w_{2}\right) \mid \phi_{f} \in \operatorname{Isom}\left[\pi, \pi_{2}, c_{*}[M]\right]\right\}
$$

where $\operatorname{Isom}\left[\pi, \pi_{2}, c_{*}[M]\right]:=\left\{\phi \in \operatorname{Aut}(B) \mid \phi_{*}\left(c_{*}[M]\right)=c_{*}[M]\right\}$.
Lemma 2.6. There is a short exact sequence of groups

$$
0 \longrightarrow H^{1}(M ; \mathbb{Z} / 2) \longrightarrow \operatorname{Isom}{ }^{\left\langle w_{2}\right\rangle}\left[\pi, \pi_{2}, c_{*}[M]\right] \xrightarrow{\hat{j}} \operatorname{Isom}\left[\pi, \pi_{2}, c_{*}[M]\right] \longrightarrow 1
$$

Proof. For any $\phi \in \operatorname{Isom}\left[\pi, \pi_{2}, c_{*}[M]\right]$, we have an $f \in \operatorname{Aut.}(M)$ such that $c \circ f \simeq \phi \circ c$ (this is basically by [8, Lemma 1.3]). We may assume that the pair $\left(f, \nu_{M}\right)$ is an element of $\operatorname{Aut}\left(M, w_{2}\right)([10$, Lemma 3.1]). The pair $\left(c \circ f, \nu_{M}\right)$ determines an element \widehat{f} of $\operatorname{Aut}_{\bullet}\left(B, w_{2}\right)$ for which $\widehat{j}(\widehat{f})=\phi_{f}=\phi$.

Suppose now that $\widehat{f}, \widehat{g} \in \operatorname{Isom}^{\left\langle w_{2}\right\rangle}\left[\pi, \pi_{2}, c_{*}[M]\right]$ such that $h: \phi_{f} \simeq \phi_{g}$. We have the following diagram

The obstructions to lifting ($h \circ c \times \mathrm{id}, \nu_{M} \circ p_{1}$) lie in the groups

$$
H^{i+1}\left(M \times I, \partial(M \times I) ; \pi_{i}(K(\mathbb{Z} / 2,1))\right) \cong H^{i}\left(M ; \pi_{i}(K(\mathbb{Z} / 2,1))\right)
$$

hence the only non-zero obstructions are in $H^{1}(M ; \mathbb{Z} / 2)$.

Let $\widehat{f} \in \operatorname{Aut} .\left(M, w_{2}\right)$, for any $\alpha \in H^{1}(M ; \mathbb{Z} / 2)$, we will construct a $\widehat{g} \in \operatorname{Aut} .\left(M, w_{2}\right)$ with the property that $f \simeq g$ and the obstruction to \widehat{f} and \widehat{g} being equivalent is α. Note that different maps $M \times I \rightarrow K(\mathbb{Z} / 2,2)$ relative to the given maps on the boundary are also classified by $H^{1}(M ; \mathbb{Z} / 2)$. So we may think $\alpha: M \times I \rightarrow K(\mathbb{Z} / 2,2)$ such that $\left.\alpha\right|_{M \times\{0\}}$ and $\left.\alpha\right|_{M \times\{1\}}$ are the constant maps to the base point $\{*\}$ of $K(\mathbb{Z} / 2,2)$. Consider the following diagram

The fibration $\rho: M \times \mathrm{BSO} \rightarrow K(\mathbb{Z} / 2,2)=\Omega K(\mathbb{Z} / 2,3)$ is given by $(x, y) \rightarrow w_{2}(x)-w(y)$, for which the fiber over the base point is by definition $M\left\langle w_{2}\right\rangle$. By the homotopy lifting property we have $\widehat{\alpha}: M \times I \rightarrow M \times \mathrm{BSO}$ making the diagram commutative.

Let $\widehat{g}:=\left.\widehat{\alpha}\right|_{M \times\{1\}}$, then since $w_{2}\left(p_{1} \circ \widehat{g}(x)\right)=w\left(p_{2} \circ \widehat{g}(x)\right)$, where p_{1} and p_{2} are projections to the first and second components, respectively, \widehat{g} actually gives us a map $M \rightarrow M\left\langle w_{2}\right\rangle$. Observe that $p_{1} \circ \widehat{\alpha}: M \times I \rightarrow M$ is a homotopy between f and g. To lift this homotopy to $M\left\langle w_{2}\right\rangle$, we should have $w_{2}\left(\left(p_{1} \circ \widehat{\alpha}\right)(x, t)\right)=w\left(\left(p_{2} \circ \widehat{\alpha}\right)(x, t)\right)$ for all $x \in M$ and $t \in I$, which is possible if and only if α represents the trivial map. Hence α is the obstruction to \widehat{f} and \widehat{g} being equivalent.

Lemma 2.7. The kernel of β, $\operatorname{ker}(\beta):=\beta^{-1}(0)$, is equal to Isom ${ }^{\left\langle w_{2}\right\rangle}\left[\pi, \pi_{2}, c_{*}[M]\right]$.

Proof. The map β : $\operatorname{Aut}_{\bullet}\left(B, w_{2}\right) \rightarrow \Omega_{4}\left(B\left\langle w_{2}\right\rangle\right)$ is defined by $\beta(\widehat{f})=[M, \widehat{f}]-$ $[M, \widehat{c}]$. For the bordism group $\Omega_{4}\left(B\left\langle w_{2}\right\rangle\right)$, we use the Atiyah-Hirzebruch spectral sequence, whose E^{2}-term is $H_{p}\left(M ; \Omega_{q}^{S p i n}(*)\right)$.

The non-zero terms on the E^{2}-page are $H_{0}\left(B ; \Omega_{4}^{S p i n}(*)\right) \cong \mathbb{Z}$ in the $(0,4)$ position, $H_{2}(B ; \mathbb{Z} / 2)$ in the $(2,2)$ position, $H_{3}(B ; \mathbb{Z} / 2)$ in the $(3,1)$ position and $H_{4}(B)$ in the $(4,0)$ position. To understand the kernel, we use the projection to $H_{4}(B)$.

Let $\widehat{f} \in \operatorname{Aut}_{\bullet}\left(B, w_{2}\right)$ and suppose first that $\widehat{f} \in \operatorname{ker} \beta$, then $(j \circ \widehat{f})_{*}[M]=$ $c_{*}[M]$. But since $(j \circ \widehat{f})$ is a 3-equivalence, there exists $\phi \in \operatorname{Aut}_{\bullet}(B)$ with $\phi \circ c=j \circ \widehat{f}$ (recall Lemma 2.3). So, $\phi_{*}\left(c_{*}[M]\right)=c_{*}[M]$ which means $\widehat{j}(\widehat{f})=$ $\phi \in \operatorname{Isom}\left[\pi, \pi_{2}, c_{*}[M]\right]$. Therefore, $\operatorname{ker}(\beta) \subseteq \operatorname{Isom}{ }^{\left\langle w_{2}\right\rangle}\left[\pi, \pi_{2}, c_{*}[M]\right]$. To see the other inclusion note that

$$
\operatorname{coker}\left(d_{2}: H_{4}(B ; \mathbb{Z} / 2) \rightarrow H_{2}(B ; \mathbb{Z} / 2)\right) \cong\left\langle w_{2}\right\rangle
$$

and the class w_{2} is preserved by a self-homotopy equivalence.

Definition 2.8. ([10]) Let $\widetilde{\mathcal{H}}\left(M, w_{2}\right)$ denote the bordism groups of pairs (W, \widehat{F}), where W is a compact, oriented 5 -manifold with $\partial_{1} W=-M, \partial_{2} W=$ M and the map $\widehat{F}: W \rightarrow M\left\langle w_{2}\right\rangle$ restricts to $\widehat{i d}_{M}$ on $\partial_{1} W$, and on $\partial_{2} W$ to a map $\hat{f}: M \rightarrow M\left\langle w_{2}\right\rangle$ satisfying properties (i) and (ii) of Definition 2.2.

Corollary 2.9. The images of $\operatorname{Aut}_{\bullet}\left(M, w_{2}\right)$ or $\widetilde{\mathcal{H}}\left(M, w_{2}\right)$ in $\operatorname{Aut}_{\bullet}\left(B, w_{2}\right)$ are precisely equal to $\operatorname{Isom}^{\left\langle w_{2}\right\rangle}\left[\pi, \pi_{2}, c_{*}[M]\right]$.

Proof. Let $\widehat{f} \in \operatorname{Aut}_{\bullet}\left(M, w_{2}\right)$ and $\phi_{\hat{f}}$ denote the image of \widehat{f} in $\operatorname{Aut}_{\bullet}\left(B, w_{2}\right)$. Then $\widehat{j}\left(\phi_{\widehat{f}}\right)=\phi_{f}$ satisfies $\phi_{f} \circ c=c \circ f$ and ϕ_{f} preserves $c_{*}[M]$. Hence $\phi_{f} \in \operatorname{Isom}\left[\pi, \pi_{2}, c_{*}[M]\right]$. Now suppose that $\phi \in \operatorname{Isom}\left[\pi, \pi_{2}, c_{*}[M]\right]$, then by $[8$, Lemma 1.3] there exists $f \in \operatorname{Aut} \bullet(M)$ such that $\phi \circ f \simeq c \circ f$. We may assume that $\widehat{f}=\left(f, \nu_{M}\right) \in \operatorname{Aut}_{\bullet}\left(M, w_{2}\right)[10, \operatorname{Lemma} 3.1]$. Let $\phi_{\widehat{f}} \in \operatorname{Aut}\left(B, w_{2}\right)$ denote the image of \widehat{f}, we have $\widehat{j}\left(\phi_{\hat{f}}\right)=\phi$.

The result about the image of $\widetilde{\mathcal{H}}\left(M, w_{2}\right)$ follows from the exactness of the braid $\left[10\right.$, Lemma 2.7] and the fact that $\operatorname{ker}(\beta)=\operatorname{Isom}^{\left\langle w_{2}\right\rangle}\left[\pi, \pi_{2}, c_{*}[M]\right]$.

Remark 2.10. By universal coefficient spectral sequence, we have an exact sequence

$$
0 \longrightarrow H^{2}(\pi ; \Lambda) \longrightarrow H^{2}(M ; \Lambda) \xrightarrow{\text { ev }} \operatorname{Hom}_{\Lambda}\left(\pi_{2}, \Lambda\right) \longrightarrow 0
$$

and the cohomology intersection pairing is defined by $s_{M}(u, v)=e v(v)$ $(P D(u))$ for all $u, v \in H^{2}(M ; \Lambda)$ where $P D$ is the Poincaré duality isomorphism. Since $s_{M}(u, v)=0$ for all $u \in H^{2}(M ; \Lambda)$ and $v \in H^{2}(\pi ; \Lambda)$, the pairing s_{M} induces a nonsingular pairing

$$
s_{M}^{\prime}: H^{2}(M ; \Lambda) / H^{2}(\pi ; \Lambda) \times H^{2}(M ; \Lambda) / H^{2}(\pi ; \Lambda) \rightarrow \Lambda .
$$

Before we finish this section, let us point out that for our purposes we need to look for a relation between the image of the fundamental class $c_{*}[M] \in$ $H_{4}(B)$ and the equivariant intersection pairing s_{M}. Let $\operatorname{Her}\left(H^{2}(B ; \Lambda)\right)$ be the group of Hermitian pairings on $H^{2}(B ; \Lambda)$. We can define a natural map $F: H_{4}(B) \rightarrow \operatorname{Her}\left(H^{2}(B ; \Lambda)\right)$ by

$$
F(x)(u, v)=u(x \cap v)=(u \cup v)(x) .
$$

The construction of F applied to M yields s_{M} and by naturality $F\left(c_{*}[M]\right)=$ s_{M}. In other words, we have the following commutative diagram

Therefore, any automorphism of B which preserves $c_{*}[M]$ also preserves the intersection form s_{M}. The converse of this statement is not necessarily true, i.e., $c_{*}[M]$ and s_{M} do not always uniquely determine each other.

3. s-Cobordism

In this section we are going to prove Theorem 1.2. Let M be a closed, connected, oriented, topological 4-manifold with fundamental group π such that $\operatorname{cd} \pi \leq 2$. We study bordism classes of such manifolds over the normal 1-type.

For type (I) manifolds, $w_{2}(\widetilde{M}) \neq 0$, oriented topological bordism group over the normal 1-type is

$$
\Omega_{4}^{\mathrm{STOP}}(K(\pi, 1)) \cong \Omega_{4}^{\mathrm{STOP}}(*) \cong \mathbb{Z} \oplus \mathbb{Z} / 2
$$

via the signature, $\sigma(M)$, and the $k s$-invariant. Recall that $\sigma(M)$ is determined via the integer valued intersection form $s_{M}^{\mathbb{Z}}$ on $H_{2}(M)$. Since the image

$$
H^{2}(\pi ; \mathbb{Z}) \xrightarrow{u_{M}} H^{2}(M ; \mathbb{Z})
$$

is the radical of $s_{M}^{\mathbb{Z}} \sigma(M)$ that is equal to the signature of the form $s_{M} \otimes_{\Lambda} \mathbb{Z}$ [11, Remark 4.2]. Therefore, when $\operatorname{cd} \pi \leq 2$, the signature of M is determined by the formula

$$
\sigma(M)=\sigma\left(s_{M}^{\mathbb{Z}}\right)=\sigma\left(s_{M} \otimes_{\Lambda} \mathbb{Z}\right)
$$

On the other hand, in the type (II) case, $w_{2}(\widetilde{M})=0$, we have

$$
\Omega_{4}^{\mathrm{TOPSPIN}}(K(\pi, 1)) \cong \mathbb{Z} \oplus H_{2}(\pi ; \mathbb{Z} / 2)
$$

In this case, the invariants are signature and an invariant in $H_{2}(\pi ; \mathbb{Z} / 2)$.
Now, let M_{1} and M_{2} be closed, connected, oriented, topological 4manifolds with isomorphic fundamental groups. By fixing an isomorphism, we identify $\pi=\pi_{1}\left(M_{1}\right)=\pi_{1}\left(M_{2}\right)$. Suppose also that $\operatorname{cd} \pi \leq 2$. Suppose further that M_{1} and M_{2} have isometric quadratic 2-types. First we are going to show that M_{1} and M_{2} are homotopy equivalent using [1, Corollary 3.2]. Then, we are going to show that they are indeed bordant over the normal 1-type, if we further assume that π satisfies (A1).

Since M_{1} and M_{2} have isometric quadratic 2-types, we have

$$
\chi: \pi_{1}\left(M_{1}\right) \rightarrow \pi_{1}\left(M_{2}\right) \quad \text { and } \quad \psi: \pi_{2}\left(M_{1}\right) \rightarrow \pi_{2}\left(M_{2}\right)
$$

a pair of isomorphisms such that $\psi(g x)=\chi(g) \psi(x)$ for all $g \in \pi, x \in \pi_{2}\left(M_{1}\right)$ and preserving the intersection form i.e.,

$$
s_{M_{2}}(\psi(x), \psi(y))=\chi_{*}\left(s_{M_{1}}(x, y)\right) .
$$

Let $B\left(M_{i}\right)$ denote the 2-type of M_{i} and $c_{i}: M_{i} \rightarrow B\left(M_{i}\right)$ corresponding 3 -equivalences for $i=1,2$. We are going to construct a homotopy equivalence between $B\left(M_{1}\right)$ and $B\left(M_{2}\right)$. Note that we have isomorphisms $\pi_{2}\left(c_{i}\right): \pi_{2}\left(M_{i}\right) \xrightarrow{\cong} \pi_{2}\left(B\left(M_{i}\right)\right)$ for $i=1,2$. Start with the composition

$$
\pi_{2}\left(c_{2}\right) \circ \psi \circ \pi_{2}\left(c_{1}\right)^{-1}: \pi_{2}\left(B\left(M_{1}\right)\right) \stackrel{\cong}{\cong} \pi_{2}\left(B\left(M_{2}\right)\right) .
$$

We can think of any Abelian group G as a topological group with discrete topology. Then we can define $K(G, 1)=B G$, which is also an Abelian topological group, and $K(G, 2)=B K(G, 1)=B^{2} G$. This construction is functorial. Hence we have a homotopy equivalence

$$
B^{2}\left(\pi_{2}\left(c_{2}\right) \circ \psi \circ \pi_{2}\left(c_{1}\right)^{-1}\right): K\left(\pi_{2}\left(B\left(M_{2}\right)\right), 2\right) \rightarrow K\left(\pi_{2}\left(B\left(M_{2}\right)\right), 2\right)
$$

which is π_{1}-equivariant, since ψ is π_{1}-equivariant. We also have another $\pi_{1^{-}}$ equivariant homotopy equivalence, namely $E \chi: E \pi_{1}\left(M_{1}\right) \rightarrow E \pi_{1}\left(M_{2}\right)$, where the contractible space $E \pi_{1}\left(M_{i}\right)$ is the total space of the universal bundle over $B \pi_{1}\left(M_{i}\right)$ for $i=1,2$. Let

$$
\tau:=E(\chi) \times B^{2}\left(\pi_{2}\left(c_{2}\right) \circ \psi \circ \pi_{2}\left(c_{1}\right)^{-1}\right)
$$

and recall that $B\left(M_{i}\right) \simeq E \pi_{1}\left(M_{i}\right) \times_{\pi_{1}\left(M_{i}\right)} K\left(\pi_{2}\left(B\left(M_{i}\right)\right), 2\right)$. Then we have

$$
\tau: B\left(M_{1}\right) \rightarrow B\left(M_{2}\right) .
$$

Also, since $B\left(M_{i}\right)$ is a fibration over $B \pi_{1}\left(M_{i}\right)$ with fiber $K\left(\pi_{2}\left(B\left(M_{i}\right)\right), 2\right)$ by five lemmas, we can see that τ is a homotopy equivalence. Summarizing, we have a homotopy equivalence τ with the following commutative diagram:

Note that we have $\tau_{\sharp}\left(s_{M_{2}}\right)=s_{M_{1}}$. Since M_{1} and M_{2} have isometric quadratic 2-types, they have isomorphic intersection forms, which implies that $\tau_{*}\left(\left(c_{1}\right)_{*}\left[M_{1}\right]\right)=\left(c_{2}\right)_{*}\left[M_{2}\right]$ (we may need to use the image of $\left(c_{2}\right)_{*}\left[M_{2}\right]$ under a self-equivalence of $B\left(M_{2}\right)$ if necessary, see [7, Lemma 3] and the proof of [7, Theorem 14]). Also see the discussion at the end of Section 2 for the relation between the image of the fundamental class and the equivariant intersection form. Therefore, M_{1} and M_{2} have isomorphic fundamental triples in the sense of [1] and hence they must be homotopy equivalent by [1, Corollary 3.2].

If we further assume that the assembly map
(A1) $A_{4}: H_{4}\left(K(\pi, 1) ; \mathbb{L}_{0}(\mathbb{Z})\right) \rightarrow L_{4}(\mathbb{Z} \pi)$ is injective,
then by [3, Corollary 3.11] M_{1} and M_{2} are bordant over the normal 1-type.
Therefore, if the fundamental group π satisfies (A1), then we have a cobordism W between M_{1} and M_{2} over the normal 1-type, which is a spin cobordism in the type (II) case.

Choose a handle decomposition of W. Since W is connected, we can cancel all 0 - and 5 -handles. Further, we may assume by low-dimensional surgery that the inclusion map $M_{1} \hookrightarrow W$ is a 2 equivalence. So we can trade all 1handles for 3-handles, and upside-down, all 4-handles for 2-handles. We end up with a handle decomposition of W that only contains 2- and 3-handles, and view W as

$$
W=M_{1} \times[0,1] \cup\{2-\text { handles }\} \cup\{3-\text { handles }\} \cup M_{2} \times[-1,0] .
$$

Let $W_{3 / 2}$ be the ascending cobordism that contains just M_{1} and all 2-handles and let $M_{3 / 2}$ be its 4-dimensional upper boundary. The inclusion map $M_{1} \hookrightarrow$ W is a 2 equivalence, so attaching map $S^{1} \times D^{3} \rightarrow M_{1}$ of a 2 -handle must be null-homotopic. Hence attaching a 2 -handle is the same as connect summing with $S^{2} \times S^{2}$ or the same as connect summing with $S^{2} \widetilde{\times} S^{2}$. Since M_{1} and
$\widetilde{M_{1}}$ are spin at the same time, we can assume that there are no $S^{2} \widetilde{\times} S^{2}$-terms present in $M_{3 / 2}$ (see for example [15, p. 80]).

From the lower half of W, we have $M_{3 / 2} \approx M_{1} \sharp m_{1}\left(S^{2} \times S^{2}\right)$, while from the upper half, we have $M_{3 / 2} \approx M_{2} \sharp m_{2}\left(S^{2} \times S^{2}\right)$. Since $\operatorname{rank}\left(H_{2}\left(M_{1}\right)\right)=$ $\operatorname{rank}\left(H_{2}\left(M_{2}\right)\right)$), it follows that $m=m_{1}=m_{2}$. We have a homeomorphism

$$
\zeta: M_{2} \sharp m\left(S^{2} \times S^{2}\right) \xrightarrow{\approx} M_{1} \sharp m\left(S^{2} \times S^{2}\right) .
$$

Next assume that:
(A2) Whitehead group $W h(\pi)$ is trivial for π.
Hence being s-cobordant is equivalent to being h-cobordant. The strategy for the remainder of the proof is the following: we will cut W into two halves, then glue them back after sticking in an h-cobordism of $M_{3 / 2}$. This cut and reglue procedure will create a new cobordism from M_{1} to M_{2}. If we choose the correct h-cobordism, then the 3 -handles from the upper half will cancel the 2-handles from the lower half. This means that the newly created cobordism between M_{1} and M_{2} will have no homology relative to its boundaries, and so it will indeed be an h-cobordism from M_{1} to M_{2}.

Note that we have $\tau_{\sharp}\left(s_{M_{2}}\right)=s_{M_{1}}$ and $s_{M_{1}} \cong s_{M_{2}}$ if and only if $s_{M_{1}}^{\prime} \cong$ $s_{M_{2}}^{\prime}$. Hence we can immediately deduce that $\tau_{\sharp} s_{M_{1}}^{\prime}=s_{M_{2}}^{\prime}$. Now let $M:=$ $M_{1} \sharp m\left(S^{2} \times S^{2}\right)$ and $M^{\prime}:=M_{2} \sharp m\left(S^{2} \times S^{2}\right)$ with the following quadratic 2-types,

$$
\left[\pi, \pi_{2}, s_{M}\right]:=\left[\pi_{1}\left(M_{1}\right), \pi_{2}\left(M_{1}\right) \oplus \Lambda^{2 m}, s_{M_{1}} \oplus H\left(\Lambda^{m}\right)\right]
$$

and

$$
\left[\pi_{1}\left(M_{2}\right), \pi_{2}\left(M_{2}\right) \oplus \Lambda^{2 m}, s_{M_{2}} \oplus H\left(\Lambda^{m}\right)\right]
$$

where $H\left(\Lambda^{m}\right)$ is the hyperbolic form on $\Lambda^{m} \oplus\left(\Lambda^{m}\right)^{*}$.
Since W is a cobordism over the normal 1-type,

$$
\left(\pi_{1}(\zeta) \circ \chi, \pi_{2}(\zeta) \circ(\psi \oplus \mathrm{id})\right)=\left(\mathrm{id}, \pi_{2}(\zeta) \circ(\psi \oplus \mathrm{id})\right)
$$

is an element in $\operatorname{Isom}\left[\pi, \pi_{2}, s_{M}\right]$. Let $B=B(M)$ denote the 2-type of M. We have an exact sequence of the form [14]

$$
\begin{equation*}
0 \longrightarrow H^{2}\left(\pi ; \pi_{2}\right) \longrightarrow \operatorname{Aut} \cdot(B) \xrightarrow{\left(\pi_{1}, \pi_{2}\right)} \operatorname{Isom}\left[\pi, \pi_{2}\right] \longrightarrow 1 \tag{1}
\end{equation*}
$$

Therefore we can find a $\phi^{\prime \prime} \in$ Aut. $_{\bullet}(B)$ such that

$$
\pi_{1}\left(\phi^{\prime \prime}\right)=\mathrm{id} \quad \text { and } \quad \pi_{2}\left(\phi^{\prime \prime}\right)=\pi_{2}(\zeta) \circ(\psi \oplus \mathrm{id}) .
$$

The homotopy self-equivalence $\phi^{\prime \prime}$ preserves the intersection form s_{M} but on the braid we see $\operatorname{Isom}{ }^{\left\langle w_{2}\right\rangle}\left[\pi, \pi_{2}, c_{*}[M]\right]$. So to use the braid, we need to construct a self-homotopy equivalence of B which preserves $c_{*}[M]$.

Hillman [7] showed that for cd $\pi \leq 2$, we have $\pi_{2}(M) \cong P \oplus H^{2}(\pi ; \Lambda)$ where P is a projective Λ-module. He also showed that there exists a 2 connected degree-1 map $g_{M}: M \rightarrow Z$ where Z is a $P D_{4}$ complex with $\pi_{2}(Z) \cong H^{2}(\pi ; \Lambda)$ and $\operatorname{ker}\left(\pi_{2}\left(g_{M}\right)\right)=P$. He called Z as the strongly minimal model for M.

We may assume that $\pi_{2}\left(g_{M}\right)$ is projection to the second factor and $c_{Z} \circ g_{M}=g \circ c$ for some 2-connected map $g: B \rightarrow B(Z)$, where $B(Z)$ denotes
the 2-type of Z. The map g is a fibration with fibre $K(P, 2)$, and the inclusion of $H^{2}(\pi ; \Lambda)$ into $\pi_{2}\left(M_{2}\right)$ determines a section s for g. Summarizing we have the diagram below with a commutative square

Note that since $\phi^{\prime \prime}$ preserves the intersection form and identity on π,

$$
\pi_{2}\left(\phi^{\prime \prime}\right): P \oplus H^{2}(\pi ; \Lambda) \rightarrow P \oplus H^{2}(\pi ; \Lambda)
$$

has a matrix representation of the form

$$
\pi_{2}\left(\phi^{\prime \prime}\right)=\left[\begin{array}{cc}
* & * \\
0 & \mathrm{id}
\end{array}\right]
$$

where the first * represents an π-module isomorphism $P \rightarrow P$ and the second * represents an Λ-module homomorphism $P \rightarrow H^{2}(\pi ; \Lambda)$. We modify $\phi^{\prime \prime}$, first to $\phi^{\prime} \in \operatorname{Aut}(B)$ so that $\pi_{2}\left(\phi^{\prime}\right)$ has a matrix representation of the form

$$
\pi_{2}\left(\phi^{\prime}\right)=\left[\begin{array}{cc}
* & 0 \\
0 & \mathrm{id}
\end{array}\right]
$$

i.e., it induces the zero homomorphism from P to $H^{2}(\pi ; \Lambda)$. To achieve this first define

$$
\theta: P \rightarrow H^{2}(\pi ; \Lambda) \quad \text { by } \quad \theta(p)=\operatorname{pr}_{2}\left(\pi_{2}\left(\phi^{\prime \prime}\right)(p, 0)\right)
$$

Then define

$$
\alpha_{\theta}: P \oplus H^{2}(\pi ; \Lambda) \rightarrow P \oplus H^{2}(\pi ; \Lambda) \quad \text { by } \quad \alpha_{\theta}(p, e)=(p, e-\theta(p)) .
$$

This newly defined map α_{θ} is a Λ-module isomorphism of π_{2} by [7, Lemma 3]. Now the pair (id, α_{θ}) gives us an isomorphism $\phi_{\theta}^{\prime \prime}$ of B by the sequence (1) on the previous page. Define $\phi^{\prime}:=\phi_{\theta}^{\prime \prime} \circ \phi^{\prime \prime}$, and observe that $g \circ \phi^{\prime}=g$.

Let $L:=L_{\pi}(P, 2)$ be the space with algebraic 2-type $[\pi, P, 0]$ and universal covering space $\widetilde{L} \simeq K(P, 2)$. We may construct L by adjoining 3 -cells to M to kill the kernel of the projection from π_{2} to P and then adjoining higher dimensional cells to kill the higher homotopy groups. The splitting $\pi_{2} \cong P \oplus H^{2}(\pi ; \Lambda)$ also determines a projection $q: B \rightarrow L$.

To begin with we have the following isomorphisms where Γ denotes the Whitehead quadratic functor [21].

$$
\begin{aligned}
H_{4}(B) & \cong \Gamma\left(\pi_{2}\right) \otimes_{\Lambda} \mathbb{Z} \oplus H_{2}\left(\pi ; \pi_{2}\right) \\
& \cong \Gamma\left(H^{2}(\pi ; \Lambda) \oplus P\right) \otimes_{\Lambda} \mathbb{Z} \oplus H_{2}\left(\pi ; H^{2}(\pi, \Lambda)\right) \\
& \cong\left(\Gamma\left(H^{2}(\pi, \Lambda)\right) \oplus \Gamma(P) \oplus H^{2}(\pi, \Lambda) \otimes P\right) \otimes_{\Lambda} \mathbb{Z} \oplus H_{2}\left(\pi ; H^{2}(\pi, \Lambda)\right) \\
& \cong \Gamma(P) \otimes_{\Lambda} \mathbb{Z} \oplus \Gamma\left(H^{2}(\pi, \Lambda)\right) \otimes_{\Lambda} \mathbb{Z} \oplus H_{2}\left(\pi ; H^{2}(\pi, \Lambda)\right) \oplus\left(H^{2}(\pi, \Lambda) \otimes P\right) \otimes_{\Lambda} \mathbb{Z} \\
& \cong H_{4}(L) \oplus H_{4}(B(Z)) \oplus\left(H^{2}(\pi, \Lambda) \otimes P\right) \otimes_{\Lambda} \mathbb{Z} .
\end{aligned}
$$

We are going to consider the difference $\phi_{*}^{\prime}\left(c_{*}[M]\right)-c_{*}[M] \in H_{4}(B)$. We start by projecting $\phi_{*}^{\prime}\left(c_{*}[M]\right)$ and $c_{*}[M]$ to $H_{4}(L) \cong \Gamma(P) \otimes_{\Lambda} \mathbb{Z}$. Recall that we have a nonsingular pairing

$$
s_{M}^{\prime}: H^{2}(M ; \Lambda) / H^{2}(\pi ; \Lambda) \times H^{2}(M ; \Lambda) / H^{2}(\pi ; \Lambda) \rightarrow \Lambda .
$$

If we further restrict s_{M}^{\prime} to $\operatorname{Hom}_{\Lambda}(P, \Lambda) \cong H^{2}(L ; \Lambda) / H^{2}(\pi ; \Lambda)$, we get a Hermitian pairing $s_{M}^{\prime \prime} \in \operatorname{Her}(P)$. Therefore, we have the following commutative diagram

The bottom row is an isomorphism [7, Theorem 2]. Both $q_{*}\left(c_{*}[M]\right)$ and $q_{*}\left(\phi_{*}^{\prime}\left(c_{*}[M]\right)\right)$ map to $s_{M}^{\prime \prime}$, hence $q_{*}\left(c_{*}[M]\right)=q_{*}\left(\phi_{*}^{\prime}\left(c_{*}[M]\right)\right)$. Since $g \circ \phi^{\prime}=g$, we have

$$
\phi_{*}^{\prime}\left(c_{*}[M]\right)-c_{*}[M] \in\left(H^{2}(\pi ; \Lambda) \otimes P\right) \otimes_{\Lambda} \mathbb{Z} .
$$

As a final modification, as in [7, Lemma 3], we can choose a self-equivalence ϕ_{θ}^{\prime} of B so that $\left(\phi_{\theta}^{\prime} \circ \phi^{\prime}\right)_{*}\left(c_{*}[M]\right)=c_{*}[M] \bmod \Gamma\left(H^{2}(\pi, \Lambda)\right) \otimes_{\Lambda} \mathbb{Z}$. Hence $\left(\phi_{\theta}^{\prime} \circ \phi^{\prime}\right)_{*}\left(c_{*}[M]\right)=c_{*}[M]$ in $H_{4}(B)$, see also the proof of [7, Theorem 14]. Let $\phi:=\phi_{\theta}^{\prime} \circ \phi^{\prime}$.

We have $\phi \in \operatorname{Isom}\left[\pi, \pi_{2}, c_{*}[M]\right]$. Recall that we have the following short exact sequence by Lemma 2.6

$$
0 \longrightarrow H^{1}(M ; \mathbb{Z} / 2) \longrightarrow \operatorname{Isom}^{\left\langle w_{2}\right\rangle}\left[\pi, \pi_{2}, c_{*}[M]\right] \xrightarrow{\hat{j}} \operatorname{Isom}\left[\pi, \pi_{2}, c_{*}[M]\right] \longrightarrow 1 .
$$

Choose $\widehat{f} \in \operatorname{Isom}^{\left\langle w_{2}\right\rangle}\left[\pi, \pi_{2}, c_{*}[M]\right]$ such that $\widehat{j}(\widehat{f})=\phi$. There exists $(W, \widehat{F}) \in \widetilde{\mathcal{H}}\left(M, w_{2}\right)$ which maps to \widehat{f}, i.e., $\widehat{F}: W \rightarrow B\left\langle w_{2}\right\rangle$ and $\left.F\right|_{\partial_{2} W}=\widehat{f}$.

Comparison of Wall's[18] surgery program with Kreck's modified surgery program gives a commutative diagram of exact sequences (see [10], Lemma 4. 1)

The group $\mathcal{H}(M)$ consists of oriented h-cobordisms W^{5} from M to M, under the equivalence relation induced by h-cobordism relative to the boundary.

The tangential structures $\mathcal{T}(M \times I, \partial)$, is the set of degree 1 normal maps $F:(W, \partial W) \rightarrow(M \times I, \partial)$, inducing the identity on the boundary. The group structure on $\mathcal{T}(M \times I, \partial)$ is defined as for $\widetilde{\mathcal{H}}\left(M, w_{2}\right)$. The map $\mathcal{T}(M \times I, \partial) \rightarrow$ $\widetilde{\mathcal{H}}\left(M, w_{2}\right)$ takes $F:(W, \partial W) \rightarrow(M \times I, \partial)$ to $(W, \widehat{F}) \in \widetilde{\mathcal{H}}\left(M, w_{2}\right)$, where $\widehat{F}=\widehat{p_{1}} \circ F$ (see [18] for further details). Let $\sigma_{5} \in L_{5}(\mathbb{Z}[\pi])$ be the image of (W, \widehat{F}). We further assume that
(A3) The map $\mathcal{T}(M \times I, \partial) \rightarrow L_{5}(\mathbb{Z}[\pi])$ is onto.
Let $\left(W^{\prime}, F^{\prime}\right) \in \mathcal{T}(M \times I, \partial)$ map to σ_{5} and let $\left(W^{\prime}, \widehat{F^{\prime}}\right) \in \widetilde{\mathcal{H}}\left(M, w_{2}\right)$ be the image of $\left(W^{\prime}, F^{\prime}\right)$. Consider the difference of these elements in $\widetilde{\mathcal{H}}\left(M, w_{2}\right)$,

$$
\left(W^{\prime \prime}, \widehat{F^{\prime \prime}}\right):=\left(W^{\prime}, \widehat{F^{\prime}}\right) \bullet\left(-W, \hat{f}^{-1} \bullet \widehat{F}\right) \in \widetilde{\mathcal{H}}\left(M, w_{2}\right)
$$

Note that $\hat{f}^{-1}=\widehat{i d}_{M}: M \rightarrow M\left\langle w_{2}\right\rangle$ denotes the map defined by the pair $\left(i d_{M}: M \rightarrow M, \nu_{M}: M \rightarrow \mathrm{BSO}\right)$. The element $\left(W^{\prime \prime}, \widehat{F^{\prime \prime}}\right) \in \widetilde{\mathcal{H}}\left(M, w_{2}\right)$ maps to $0 \in L_{5}\left(\mathbb{Z}\left[\pi_{1}\right]\right)$. By the exactness of the right-hand vertical sequence there exists an h-cobordism T of M which maps to ($W^{\prime \prime}, \widehat{F^{\prime \prime}}$). Let f denote the induced homotopy self equivalence of M. By construction we have $c \circ f \simeq \phi \circ c$ where $c \circ f=j \circ \widehat{f}$. Note that $\pi_{2}\left(\zeta^{-1} \circ f\right)=\psi \oplus$ id and also $\zeta^{-1} \circ f$ gives us a self-equivalence of $M_{3 / 2}$. Now, if we put the s-cobordism T in between the two halves of W, then the 3-handles from the upper half cancel the 2-handles from the lower half. This finishes the proof of Theorem 1.2.

Acknowledgements

This research was supported by the Slovenian-Turkish grant BI-TR/12-15001 and 111T667. The second author would like to thank Jonathan Hillman for very useful conversations.

References

[1] Baues, H.J., Bleile, B.: Poincaré duality complexes in dimension four. Algebr. Geom. Topol. 8, 2355-2389 (2008)
[2] Bestvina, M., Brady, N.: Morse theory and finiteness properties of groups. Invent. Math. 129, 445-470 (1997)
[3] Davis, J.F.: The Borel-Novikov conjectures and stable diffeomorphisms of 4-manifolds. Fields Inst. Commun. 47, 63-76 (2005)
[4] Davis, M.W.: (2008) The Geometry and Topology of Coxeter Groups. London Mathematical Society Monographs Series, vol. 32. Princeton University Press, Princeton (2008)
[5] Eilenberg, S., Ganea, T.: On the Lusternik-Schnirelmann category of abstract groups. Ann. Math. 65, 517-518 (1957)
[6] Farrell, F.T., Jones, L.E.: Isomorphism conjectures in algebraic K-theory. J. Am. Math. Soc. 6, 249-297 (1993)
[7] Hillman, J.A.: $P D_{4}$-complexes and 2-dimensional duality groups (preprint)
[8] Hambleton, I., Kreck, M.: On the classification of topological 4-manifolds with finite fundamental group. Math. Ann. 280(1), 85-104 (1988)
[9] Hambleton, I., Kreck, M.: Smooth structures on algebraic surfaces with cyclic fundamental group. Invent. Math. 91, 53-59 (1988)
[10] Hambleton, I., Kreck, M.: Homotopy Self-equivalences of 4-manifolds. Mathematische Zeitschrift 248, 147-172 (2004)
[11] Hambleton, I., Kreck, M., Teichner, P.: Topological 4-manifolds with geometrically 2 -dimensional fundamental groups. Topol. Anal. 1(2), 123151 (2009)
[12] Kreck, M.: Surgery and duality. Ann. Math. 2nd Ser. 149(3), 707-754 (1999)
[13] Milnor, J.W.: On Simply-connected Four-manifolds, Symposium Internacional de Topologia Alg., Mexico, 1958, 122-128.
[14] Møller, J.M.: Self-homotopy equivalences of group cohomology spaces. J. Pure Appl. Algebra 73, 23-37 (1991)
[15] Pamuk, M.: Homotopy Self-equivalences of 4-manifolds, Ph.D. Thesis, McMaster University (2008)
[16] Stallings, J.R.: On torsion-free groups with infinitely many ends. Ann. Math. 88, 312-334 (1968)
[17] Swan, R.G.: Groups of cohomological dimension one. J. Algebra 12, 588610 (1969)
[18] Wall, C.T.C.: Surgery on Compact Manifolds, 2nd ed., American Mathematical Society, Providence (1999). Edited and with a foreword by A.A. Ranicki
[19] Whitehead, J.H.C.: On adding relations to homotopy groups. Ann. Math. 2nd Ser. 42(2), 409-428 (1941)
[20] Whitehead, J.H.C.: On simply connected 4-dimensional polyhedra. Comment. Math. Helv. 22, 48-92 (1949)
[21] Whitehead, J.H.C.: A certain exact sequence. Ann. Math. 52, 51-110 (1950)

F. Hegenbarth
Department of Mathematics
University of Milano
Milano, Italy
e-mail: friedrich.hegenbarth@unimi.it
M. Pamuk
Department of Mathematics
Middle East Technical University
Ankara 06531, Turkey
e-mail: mpamuk@metu.edu.tr
D. Repovš
Department of Mathematics and Physics
University of Ljubljana
Ljubljana 1000, Slovenia
e-mail: dusan.repovs@guest.arnes.si

Received: May 27, 2014.
Accepted: July 25, 2014.

