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Abstract
We are interested in the existence of solutions for the following fractional
p(x, ·)-Kirchhoff-type problem:

{
M(

∫
�×�

|u(x)–u(y)|p(x,y)
p(x,y)|x–y|N+p(x,y)s dx dy)(–�)sp(x,·)u = f (x,u), x ∈ �,

u = 0, x ∈ ∂�,

where � ⊂ R
N , N ≥ 2 is a bounded smooth domain, s ∈ (0, 1), p :� × � → (1,∞),

(–�)sp(x,·) denotes the p(x, ·)-fractional Laplace operator,M : [0,∞) → [0,∞), and
f :� ×R →R are continuous functions. Using variational methods, especially the
symmetric mountain pass theorem due to Bartolo–Benci–Fortunato (Nonlinear Anal.
7(9):981–1012, 1983), we establish the existence of infinitely many solutions for this
problem without assuming the Ambrosetti–Rabinowitz condition. Our main result in
several directions extends previous ones which have recently appeared in the
literature.
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1 Introduction
Let � be a smooth bounded domain in R

N , N ≥ 2. Let us consider the following fractional
p(x, ·)-Kirchhoff-type problem:

⎧⎨
⎩M(

∫
�×�

|u(x)–u(y)|p(x,y)

p(x,y)|x–y|N+p(x,y)s dx dy)(–�)s
p(x,·)u = f (x, u), x ∈ �,

u = 0, x ∈ ∂�,
(1.1)
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where 0 < s < 1, p : �×� → (1,∞) is a continuous function with sp(x, y) < N for all (x, y) ∈
�×�, and M, f are continuous functions satisfying certain growth conditions to be stated
later on.

The fractional p(x, ·)-Laplacian operator (–�)s
p(x,·) is, up to normalization factors by the

Riesz potential, defined as follows: for each x ∈ �,

(–�)s
p(x,·)ϕ(x) = p.v.

∫
�

|ϕ(x) – ϕ(y)|p(x,y)–2(ϕ(x) – ϕ(y))
|x – y|N+sp(x,y) dy, (1.2)

along any ϕ ∈ C∞
0 (�), where p.v. is the commonly used abbreviation for the principal

value.
Throughout this paper, we shall assume that M : R+

0 := [0, +∞) → R
+
0 is a continuous

function satisfying the following conditions:
(M1): there exist τ0 > 0 and γ ∈ (1, (p∗

s )–/p+) such that

tM(t) ≤ γ M̂(t), for all t ≥ τ0,

where

M̂(t) =
∫ t

0
M(τ ) dτ

and p+ and p– will be defined in Sect. 2;
(M2): for every τ > 0 there exists κ = κ(τ ) > 0 such that

M(t) ≥ κ , for all t ≥ τ .

Obviously, the conditions (M1) and (M2) are fulfilled for the model case:

M(t) = a + bθ tθ–1, where a, b ≥ 0 and a + b > 0. (1.3)

It is worth pointing out that condition (M2) was originally used to establish multiplicity
of solutions for a class of higher order p(x)-Kirchhoff equations [11].

In recent years, a lot of attention has been given to problems involving fractional and
nonlocal operators. This type of operators arises in a natural way in many different appli-
cations, e.g., image processing, quantum mechanics, elastic mechanics, electrorheological
fluids (see [8, 15, 16, 34] and the references therein).

In their pioneering paper, Bahrouni and Rădulescu [6] studied qualitative properties
of the fractional Sobolev space W s,q(x),p(x,y)(�), where � is a smooth bounded domain.
Their results have been applied in the variational analysis of a class of nonlocal fractional
problems with several variable exponents.

Recently, by means of approximation and energy methods, Zhang and Zhang [38] have
established the existence and uniqueness of nonnegative renormalized solutions for such
problems. When s = 1, the operator degrades to integer order. It has been extensively
studied in the literature; see for example [9, 10, 18, 19, 21] and the references therein.
In particular, when p(x, ·) is a constant, this operator is reduced to the classical fractional
p-Laplacian operator.
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For studies concerning this operator, we refer to [31, 32, 39–41]. We emphasize that, un-
less the functions p(x, ·) and q(x) are constants, the space W s,q(x),p(x,y)(�) does not coincide
with the Sobolev space W s,p(x)(�) when s is a natural number; see [16, 23]. However, be-
cause of various applications in physics and in mathematical finance, the study of nonlocal
problems in such spaces is still very interesting.

On the other hand, a lot of interest has in recent years been devoted to the study of
Kirchhoff-type problems. More precisely, in 1883 Kirchhoff [24] established a model given
by the following equation:

ρ
∂2u
∂t2 –

(
p0

λ
+

E
2L

∫ L

0

∣∣∣∣∂u
∂x

∣∣∣∣
2

dx
)

∂2u
∂x2 = 0, (1.4)

a generalization of the well-known D’Alembert wave equation for free vibrations of elas-
tic strings, where ρ , p0, λ, E, L are constants which represent some physical meanings,
respectively.

In the study of problem (1.1), the following Ambrosetti–Rabinowitz condition given in
[3] has been widely used:

(AR): There exists a constant μ > p+ such that

tf (x, t) ≥ μF(x, t) > 0, where F(x, t) =
∫ t

0
f (x, s) ds.

Clearly, if the (AR) condition holds, then

F(x, t) ≥ c1|t|μ – c2, for all (x, t) ∈ � ×R, (1.5)

where c1, c2 are two positive constants.
It is well known that (AR) condition is very important for ensuring the boundedness of

the Palais–Smale sequence. When the nonlinear term f satisfies the (AR) condition, many
results have been obtained by using the critical point theory and variational methods; see
for example [1, 2, 4, 5, 12–14, 17, 20, 28, 29, 36, 37]. In particular, Ali et al. [1] and Azroul et
al. [5] have established the existence of nontrivial weak solutions for a class of fractional
p(x, ·)-Kirchhoff-type problems by using the mountain pass theorem of Ambrosetti and
Rabinowitz, direct variational approach, and Ekeland’s variational principle.

Since the (AR) condition implies condition (1.5), one cannot deal with problem (1.1) by
using the mountain pass theorem directly if f (x, t) is p+-asymptotically linear at ∞, i.e.

lim|t|→∞
f (x, t)
|t|p+–1 = l, uniformly in x ∈ �, (1.6)

where l is a constant. For this reason, in recent years some authors have studied problem
(1.1) by trying to omit the condition (AR); see for example [18, 22, 27].

Not having the (AR) condition brings great difficulties, so it is natural to consider if
this kind of fractional problems have corresponding results even if the nonlinearity does
not satisfy the (AR) condition. In fact, in the absence of Kirchhoff’s interference, Lee et
al. [26] have obtained infinitely many solutions to a fractional p(x)-Laplacian equation
without assuming the (AR) condition, by using the fountain theorem and the dual fountain
theorem.
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Inspired by the above work, we consider in this paper the fractional p(x, ·)-Kirchhoff-
type problem without the (AR) condition. Our situation is different from [1, 5] since our
Kirchhoff function M belongs to a larger class of functions, whereas the nonlinear term f
is p+-asymptotically linear at ∞.

More precisely, let us assume that f satisfies the following global conditions:
(F1): f : � ×R →R is continuous with F(x, t) ≥ 0, for all (x, t) ∈ � ×R, where

F(x, t) =
∫ t

0
f (x, s) ds;

(F2): there exist a function α ∈ C(�), p+ < α– ≤ α(x) < p∗
s (x), for all x ∈ �, and a number

0 > 0 such that, for each λ ∈ (0,0), ε > 0, there exists Cε > 0 such that

f (x, t) ≤ (λ + ε)|t|p(x)–1 + Cε |t|α(x)–1, for all (x, t) ∈ � ×R;

(F3): the following is uniformly satisfied on �:

lim|t|→∞
F(x, t)
|t|p+γ

= ∞;

(F4): there exist constants μ > p+γ and �0 > 0 such that

F(x, t) ≤ 1
μ

f (x, t)t + �0|t|p–
, for all (x, t) ∈ � ×R;

where γ is given by (M1);
(F5): the following holds:

f (x, –t) = –f (x, t), for all (x, t) ∈ � ×R.

A simple computation proves that the function

f (x, t) = |t|p+γ –2t lnα(x)(1 + |t|), where α(x) > 1, (1.7)

does not satisfy the (AR) condition. However, it is easy to see that f (x, t) in (1.7) satisfies
conditions (F1)–(F5).

We can now state the definition of (weak) solutions for problem (1.1) (see Sect. 2 for
details):

Definition 1.1 A function u ∈ E0 = W s,q(x),p(x,y)
0 (�) is called a (weak) solution of problem

(1.1), if for every w ∈ E0 it satisfies the following:

M
(
σp(x,y)(u)

)∫
�×�

|u(x) – u(y)|p(x,y)–2(u(x) – u(y))(w(x) – w(y))
|x – y|N+p(x,y)s dx dy

–
∫

�

f (x, u)w dx = 0,

where

σp(x,y)(u) =
∫

�×�

1
p(x, y)

|u(x) – u(y)|p(x,y)

|x – y|N+sp(x,y) dx dy.
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The main result of our paper is the following theorem.

Theorem 1.1 Let q(x), p(x, y) be continuous variable functions such that sp(x, y) < N ,
p(x, y) = p(y, x) for all (x, y) ∈ � × � and q(x) ≥ p(x, x) for all x ∈ �. Assume that f :
� ×R → R satisfies conditions (F1)–(F5) and that M : R+

0 → R
+
0 is a continuous function

satisfying conditions (M1) and (M2). Then there exists  > 0 such that, for each λ ∈ (0,),
problem (1.1) has a sequence {un}n of nontrivial solutions.

The paper is organized as follows. In Sect. 2, we shall introduce the necessary properties
of variable exponent Lebesgue spaces and fractional Sobolev spaces with variable expo-
nent. In Sect. 3, we shall verify the Cerami compactness condition. Finally, in Sect. 4, we
shall prove Theorem 1.1 by means of a version of the mountain pass theorem.

2 Fractional Sobolev spaces with variable exponent
For a smooth bounded domain � in R

N , we consider a continuous function p : � × � →
(1,∞). We assume that p is symmetric, that is,

p(x, y) = p(y, x), for all (x, y) ∈ � × �

and

1 < p– := min
(x,y)∈�×�

p(x, y) ≤ p(x, y) ≤ p+ = max
(x,y)∈�×�

p(x, y) < ∞.

We also introduce a continuous function q : � →R such that

1 < q– := min
x∈�

q(x) ≤ q(x) ≤ q+ := max
x∈�

q(x) < ∞.

We first give some basic properties of variable exponent Lebesgue spaces. Set

C+(�) =
{

r ∈ C(�) : 1 < r(x) for all x ∈ �
}

.

Given r ∈ C+(�), we define the variable exponent Lebesgue space as

Lr(x)(�) =
{

u : � →R is measurable:
∫

�

∣∣u(x)
∣∣r(x) dx < ∞

}
,

and this space is endowed with the Luxemburg norm,

|u|r(x) = inf

{
μ > 0 :

∫
�

∣∣∣∣u(x)
μ

∣∣∣∣
r(x)

dx ≤ 1
}

.

Then (Lr(x)(�), | · |r(x)) is a separable reflexive Banach space; see [25, Theorem 2.5 and
Corollaries 2.7 and 2.12].

Let r̃ ∈ C+(�) be the conjugate exponent of q, that is,

1
r(x)

+
1

r̃(x)
= 1 for all x ∈ �.
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We shall need the following Hölder inequality, whose proof can be found in [25, Theo-
rem 2.1]. Assume that v ∈ Lr(x)(�) and u ∈ L̃r(x)(�). Then

∣∣∣∣
∫

�

uv dx
∣∣∣∣ ≤

(
1
r– +

1
r̃–

)
|u|r(x)|v|̃r(·) ≤ 2|u|r(x)|v|̃r(x).

A modular of the Lr(x)(�) space is defined by

�r(x) : Lr(x)(�) → R, u 	→ �r(x)(u) =
∫

�

∣∣u(x)
∣∣r(x) dx.

Assume that u ∈ Lr(x)(�) and {un} ⊂ Lr(x)(�). Then the following assertions hold (see [16]):

(1) |u|r(x) < 1 (resp., = 1, > 1) ⇔ �r(x)(u) < 1 (resp., = 1, > 1),

(2) |u|r(x) < 1 ⇒ |u|r+
r(x) ≤ �r(x)(u) ≤ |u|r–

r(x),

(3) |u|r(x) > 1 ⇒ |u|r–
r(x) ≤ �r(x)(u) ≤ |u|r+

r(x),

(4) lim
n→∞|un|r(x) = 0 (resp., = ∞) ⇔ lim

n→∞�r(x)(un) = 0 (resp., = ∞),

(5) lim
n→∞|un – u|r(x) = 0 ⇔ lim

n→∞�r(x)(un – u) = 0.

Given s ∈ (0, 1) and the functions p(x, y), q(x) as we mentioned above, the fractional
Sobolev space with variable exponents via the Gagliardo approach E = W s,q(x),p(x,y)(�) is
defined as follows:

E =
{

u ∈ Lq(x)(�) :
∫

�×�

|u(x) – u(y)|p(x,y)

μp(x,y)|x – y|N+sp(x,y) dx dy < ∞, for some μ > 0
}

.

Let

[u]s,p(x,y) = inf

{
μ > 0 :

∫
�×�

|u(x) – u(y)|p(x,y)

μp(x,y)|x – y|N+sp(x,y) dx dy < 1
}

,

be the variable exponent Gagliardo seminorm and define

‖u‖E = [u]s,p(x,y) + |u|q(x).

Then E equipped with the norm ‖ · ‖E becomes a Banach space.

Proposition 2.1 The following properties hold:
(1) If 1 ≤ [u]s,p(x,y) < ∞, then

(
[u]s,p(x,y)

)p– ≤
∫

�×�

|u(x) – u(y)|p(x,y)

|x – y|N+sp(x,y) dx dy ≤ (
[u]s,p(x,y)

)p+
.

(2) If [u]s,p(x,y) ≤ 1, then

(
[u]s,p(x,y)

)p+ ≤
∫

�×�

|u(x) – u(y)|p(x,y)

|x – y|N+sp(x,y) dx dy ≤ (
[u]s,p(x,y)

)p– .
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Given u ∈ W s,q(x),p(x,y)(�), we set

ρ(u) =
∫

�×�

|u(x) – u(y)|p(x,y)

|x – y|N+sp(x,y) dx dy +
∫

�

|u|q(x) dx

and

‖u‖ρ = inf

{
μ > 0 : ρ

(
u
μ

)
≤ 1

}
.

It is well known that ‖ · ‖ρ is a norm which is equivalent to the norm ‖ · ‖W s,q(x),p(x,y)(�).
By Lemma 2.2 in [38], (W s,q(x),p(x,y)(�),‖ · ‖ρ) is uniformly convex and W s,q(x),p(x,y)(�) is a
reflexive Banach space.

We denote our workspace E0 = W s,q(x),p(x,y)
0 (�), the closure of C∞

0 (�) in E. Then E0 is a
reflexive Banach space with the norm

‖ · ‖E0 = [u]s,p(x,y).

A thorough variational analysis of the problems with variable exponents has been de-
veloped in the monograph by Rădulescu and Repovš [33]. The following result provides a
compact embedding into variable exponent Lebesgue spaces.

Theorem 2.1 (see [38]) Let � ⊂ R
n be a smooth bounded domain and s ∈ (0, 1). Let q(x),

p(x, y) be continuous variable exponents such that

sp(x, y) < N , for (x, y) ∈ � × � and q(x) ≥ p(x, x), for all x ∈ �.

Assume that τ : � −→ (1,∞) is a continuous function such that

p∗(x) =
Np(x, x)

N – sp(x, x)
> τ (x) ≥ τ– > 1, for all x ∈ �.

Then there exists a constant C = C(N , s, p, q, r,�) such that, for every u ∈ W s,q(x),p(x,y),

|u|τ (x) ≤ C‖u‖E . (2.1)

That is, the space W s,q(x),p(x,y)(�) is continuously embeddable in Lτ (x)(�). Moreover, this
embedding is compact. In addition, if u ∈ W s,q(x),p(x,y)

0 , the following inequality holds:

|u|τ (x) ≤ C‖u‖E0 .

Theorem 2.2 (see [6]) For all u, v ∈ E0, we consider the operator I : E0 → E∗
0 such that

〈
I(u), v

〉
=

∫
�×�

|u(x) – u(y)|p(x,y)–2(u(x) – u(y))(v(x) – v(y))
|x – y|N+sp(x,y) dx dy.

Then the following properties hold:
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(1) I is a bounded and strictly monotone operator.
(2) I is a mapping of type (S+), that is,

if un ⇀ u ∈ E0 and lim sup
n→∞

I(un)(un – u) ≤ 0, then un → u ∈ E0.

(3) I : E0 → E∗
0 is a homeomorphism.

3 The cerami compactness condition
Let us consider the Euler–Lagrange functional associated to problem (1.1), defined by
Jλ : E0 →R

Jλ(u) = M̂
(
σp(x,y)(u)

)
–

∫
�

F(x, u) dx. (3.1)

Note that Jλ is a C1(E0,R) functional and

〈
J ′
λ(u), w

〉
= M

(
σp(x,y)(u)

)∫
�×�

|u(x) – u(y)|p(x,y)–2(u(x) – u(y))(w(x) – w(y))
|x – y|N+p(x,y)s dx dy

–
∫

�

f (x, u)w dx (3.2)

for all w ∈ E0. Therefore critical points of Jλ are weak solutions of problem (1.1).
In order to prove our main result (Theorem 1.1), we recall the definition of the Cerami

compactness condition [30].

Definition 3.1 We say that Jλ satisfies the Cerami compactness condition at the level c ∈R

((Ce)c condition for short), if every sequence {un}n ⊂ E0, i.e., Jλ(un) → c and

∥∥J ′
λ(un)

∥∥
E0∗

(
1 + ‖un‖E0

) → 0, as n → ∞,

admits a strongly convergent subsequence in E0. If Jλ satisfies the (Ce)c condition for any
c ∈ R then we say that Jλ satisfies the Cerami compactness condition.

Claim 3.1 Under assumptions of Theorem 1.1, every (Ce)c sequence {un}n ⊂ E0 of Jλ is
bounded in E0.

Proof Let {un}n be a (Ce)c-sequence of Jλ. Then

Jλ(un) → c and
∥∥J ′

λ(un)
∥∥

E0∗
(
1 + ‖un‖E0

) → 0. (3.3)

First, we prove that the sequence {un}n is bounded in E0. To this end, we argue by contra-
diction. So suppose that ‖un‖E0 → ∞, as n → ∞. We define the sequence {vn}n by

vn =
un

‖un‖E0
, n ∈N.
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It is clear that {vn}n ⊂ E0 and ‖vn‖E0 = 1 for all n ∈ N. Passing, if necessary, to a subse-
quence, we may assume that

vn ⇀ v in E0,

vn → v in Lτ (x)(�), 1 ≤ τ (x) < p∗(x), (3.4)

vn(x) → v(x) a.e. on �.

Let �� := {x ∈ � : v(x) �= 0}. If x ∈ ��, then it follows from (3.4) that

lim
n→∞ vn(x) = lim

n→∞
un

‖un‖E0
= v(x) �= 0.

This means that

∣∣un(x)
∣∣ =

∣∣vn(x)
∣∣‖un‖E0 → +∞ a.e. on ��, as n → ∞.

Moreover, it follows by condition (F3) and Fatou’s lemma that, for each x ∈ ��,

+∞ = lim
n→∞

∫
�

|F(x, un(x))|
|un(x)|p+γ

|un(x)|p+γ

‖un(x)‖p+γ

E0

dx = lim
n→∞

∫
�

|F(x, un(x))||vn(x)|p+γ

|un(x)|p+γ
dx. (3.5)

Condition (M1) gives

M̂(t) ≤ M̂(1)tγ , for all t ≥ 1. (3.6)

Now, since ‖un‖E0 > 1, it follows by (3.1), (3.3) and (3.6) that

∫
�

F(x, un) dx ≤ M̂(σp(x,y)un ) + C

≤ M̂(1)
(p–)γ

(
σp(x,y)(un)

)γ + C

≤ M̂(1)
(p–)γ

‖un‖γ p+

E0
+ C,

for all n ∈N. We can now conclude that

lim
n→∞

∫
�

F(x, un)
‖un‖p+γ

E0

dx ≤ lim
n→∞

(
M̂(1)
(p–)γ

+
C

‖un‖γ p+

E0

)
. (3.7)

From (3.5) and (3.7) we obtain

+∞ ≤ M̂(1)
(p–)γ

,

which is a contradiction. Therefore

|��| = 0 and v(x) = 0 a.e. on �.
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It follows from (M1), (M2), (F4) and vn → v = 0 in Lp– (�) that

1
‖un‖p–

E0

(
Jλ(un) –

1
μ

J ′
λ(un)un

)

≥ 1
‖un‖p–

E0

[
M̂

(
σp(x,y)(un)

)
–

∫
�

F(x, un) dx

–
1
μ

M
(
σp(x,y)(un)

)∫
�×�

|un(x) – un(y)|p(x,y)

|x – y|N+p(x,y)s dx dy +
1
μ

∫
�

f (x, un)un dx
]

≥ 1
‖un‖p–

E0

[
1
γ

M
(
σp(x,y)(un)

)
σp(x,y)(un)

–
1
μ

M
(
σp(x,y)(un)

)∫
�×�

|un(x) – un(y)|p(x,y)

|x – y|N+p(x,y)s dx dy – �0

∫
�

|un|p–
dx

]

≥ 1
‖un‖p–

E0

[(
1

γ p+ –
1
μ

)
M

(
σp(x,y)(un)

)∫
�×�

|un(x) – un(y)|p(x,y)

|x – y|N+p(x,y)s dx dy

– �0

∫
�

|un|p–
dx

]

≥
(

1
γ p+ –

1
μ

)
κ – λ�0

∫
�

|vn|p–
dx,

which means that

0 ≥
(

1
γ p+ –

1
μ

)
κ , as n → ∞.

This is a contradiction. As a consequence, we can conclude that Cerami sequence {un}n is
indeed bounded. This completes the proof of Claim 3.1. �

We now complete the verification of the Cerami compactness condition (Ce)c for Jλ.

Claim 3.2 The functional Jλ satisfies condition (Ce)c in E0.

Proof Let {un}n be a (Ce)c sequence for Jλ in E0. Claim 3.1 asserts that {un}n is bounded
in E0. By Theorem 2.1, the embedding E0 ↪→ Lτ (x)(�) is compact, where 1 ≤ τ (x) < p∗(x).
Since E0 is a reflexive Banach space, passing, if necessary, to a subsequence, still denoted
by {un}n, there exists u ∈ E0 such that

un ⇀ u in E0, un → u in Lτ (x)(�), un(x) → u(x), a.e. on �. (3.8)

By virtue of (3.3), we get

〈
J ′
λ(un), un – u

〉
= M

(
σp(x,y)(un)

)
×

∫
�×�

|un(x) – un(y)|p(x,y)–2(un(x) – un(y))((un(x) – u(x)) – (un(y) – u(y)))
|x – y|N+p(x,y)s dx dy

–
∫

�

f (x, un)(un – u) dx → 0. (3.9)
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Now, by condition (F2),

∣∣f (x, un)
∣∣ ≤ (λ + ε)|un|p(x)–1 + Cε |un|α(x)–1. (3.10)

It follows from (3.8), (3.10) and Proposition 2.1 that

∣∣∣∣
∫

�

f (x, un)(un – u) dx
∣∣∣∣

≤
∫

�

(λ + ε)|un|p(x)–1|un – u|dx +
∫

�

Cε |un|α(x)–1|un – u|dx

≤ (λ + ε)
∣∣|un|p(x)–1∣∣ p(x)

p(x)–1
|un – u|p(x) + Cε

∣∣|un|α(x)–1∣∣
α(x)

α(x)–1
|un – u|α(x)

≤ (λ + ε) max
{‖un‖p+–1

E0
,‖un‖p––1

E0

}|un – u|p(x)

+ Cε max
{‖un‖α+–1

E0
,‖un‖α––1

E0

}
α(x)

α(x)–1
|un – u|α(x)

→ 0, as n → ∞,

which implies that

lim
n→∞

∫
�

f (x, un)(un – u) dx = 0. (3.11)

Therefore we can infer from (3.9) and (3.11) that

M
(
σp(x,y)(un)

)
×

∫
�×�

|un(x) – un(y)|p(x,y)–2(un(x) – un(y))((un(x) – u(x)) – (un(y) – u(y)))
|x – y|N+p(x,y)s dx dy

→ 0.

Since {un}n is bounded in E0, using (M2), we can conclude that the sequence of positive
real numbers {M(σp(x,y)(un))} is bounded from below by some positive number for n large
enough. Invoking Theorem 2.2, we can deduce that un → u strongly in E0. This completes
the proof of Claim 3.2. �

4 Proof of Theorem 1.1
To prove Theorem 1.1, we shall use the following symmetric mountain pass theorem.

Theorem 4.1 (see [7, 35]) Let X = Y ⊕ Z be an infinite-dimensional Banach space, where
Y is finite-dimensional, and let I ∈ C1(X,R). Suppose that:

(1) I satisfies (Ce)c-condition, for all c > 0;
(2) I(0) = 0, I(–u) = I(u), for all u ∈ X ;
(3) there exist constants ρ , a > 0 such that I|∂Bρ∩Z ≥ a;
(4) for every finite-dimensional subspace X̃ ⊂ X , there is R = R(X̃) > 0 such that I(u) ≤ 0

on X̃\BR.
Then I possesses an unbounded sequence of critical values.

Let us first verify that functional Jλ satisfies the mountain pass geometry.
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Claim 4.1 Under the hypotheses of Theorem 1.1, there exists  > 0 such that, for each
λ ∈ (0,), we can choose ρ > 0 and a > 0 such that

Jλ(u) ≥ a > 0, for all u ∈ E0 with ‖u‖ = ρ.

Proof Let ρ ∈ (0, 1) and u ∈ E0 be such that ‖u‖E0 = ρ . By assumption (F2), for every ε > 0,
there exists Cε > 0 such that

∣∣F(x, t)
∣∣ ≤ (λ + ε)

p(x)
|t|p(x) +

Cε

α(x)
|t|α(x), for all x ∈ �, t ∈ R. (4.1)

Moreover, (M2) gives

M̂(t) ≥ M̂(1)tγ , for all t ∈ [0, 1], (4.2)

whereas (M1) implies that M̂(1) > 0. Thus, using (4.1), (4.2) and (2.1), we obtain, for all
u ∈ E0, with ‖u‖E0 = ρ ,

Jλ(u) = M̂
(
σp(x,y)(u)

)
–

∫
�

F(x, u) dx

≥ M̂(1)
(p+)γ

(
σp(x,y)(u)

)γ –
∫

�

λ + ε

p(x)
|u|p(x) dx –

∫
�

Cε

α(x)
|u|α(x) dx

≥ M̂(1)
(p+)γ

min
{‖u‖γ p+

E0
,‖u‖γ p–

E0

}
–

ε + λ

p– max
{|u|p+

p(x), |u|p–

p(x)
}

–
Cε

α– max
{|u|α+

α(x), |u|α–
α(x)

}

≥ M̂(1)
(p+)γ

‖u‖γ p+

E0
– c1(ε + λ)‖u‖p–

E – c2‖u‖α–
E0

≥ ργ p+
(

M̂(1)
(p+)γ

– c1(ε + λ)ρp––γ p+
– c2ρ

α––γ p+
)

, (4.3)

where ρ = ‖u‖E0 . Since ε > 0 is arbitrary, let us choose

ε =
M̂(1)

2c1(p+)γ
ργ p+–p–

> 0. (4.4)

Then, by (4.3) and (4.4), we obtain

Jλ(u) ≥ ργ p+
(

M̂(1)
2(p+)γ

– λc1ρ
p––γ p+

– c2ρ
α––γ p+

)
. (4.5)

Now, for each λ > 0, we define a continuous function, gλ : (0,∞) →R,

gλ(s) = λc1sp––γ p+
+ c2sα––γ p+

.

Since 1 < p– < γ p+ < α–, it follows that

lim
s→0+

gλ(s) = lim
s→+∞ gλ(s) = +∞.
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Thus we can find the infimum of gλ. Note that equating

g ′
λ(s) = λc1

(
p– – γ p+)

sp––γ p+–1 + c2
(
α– – γ p+)

sα––γ p+–1 = 0,

we get

s0 = s = C̃λ
1

α––p– ,

where

C̃ :=
(

c1(γ p+ – p–)
c1(α– – γ p+)

) 1
α––p–

> 0.

Clearly, s0 > 0. It can also be checked that g ′′
λ (s0) > 0 and hence the infimum of gλ(s) is

achieved at s0.
Now, observing that

gλ(s0) =
(
c1C̃p––γ p+

+ c2C̃α––γ p+)
λ

α––γ p+
α––p– → 0, as λ → 0+,

we can infer from (4.5) that there exists 0 <  < 0 (see (F2)) such that all for all λ ∈ (0,)
we can choose ρ small enough and α > 0 such that

Jλ(u) ≥ a > 0, for all u ∈ E0 with ‖u‖E0 = ρ.

This completes the proof of Claim 4.1. �

Claim 4.2 Under the hypotheses of Theorem 1.1, for every finite-dimensional subspace
W ⊂ E0 there exists R = R(W ) > 0 such that

Jλ(u) ≤ 0, for all u ∈ W , with ‖u‖E0 ≥ R.

Proof In view of (F3), we know that, for all A > 0, there exists CA > 0 such that

F(x, t) ≥ A|t|γ p+
– CA, for all (x, u) ∈ � ×R. (4.6)

Again, (M2) gives

M̂(t) ≤ M̂(1)tγ , for all t ≥ 1, (4.7)

with M̂(1) > 0 by (M1). By (4.6) and (4.7) we have

Jλ(u) = M̂
(
σp(x,y)(u)

)
–

∫
�

F(x, u) dx

≤ M̂(1)
(p–)γ

(
σp(x,y)(u)

)γ – A
∫

�

|u|γ p+
dx + CA|�|

≤ M̂(1)
(p–)γ

‖u‖γ p+

E0
– A

∫
�

|u|γ p+
dx + CA|�|.
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Consequently, since ‖u‖E0 > 1, all norms on the finite-dimensional space W are equivalent,
so there is CW > 0 such that

∫
�

|u|γ p+
dx ≥ CW ‖u‖γ p+

E0
.

Let R = R(W ) > 0. Then for all u ∈ W with ‖u‖E0 ≥ R we obtain

Jλ(u) ≤ ‖u‖p+γ

E0

(
M̂(1)
(p–)γ

– ACW

)
+ CA|�|. (4.8)

So choosing in inequality 4.8,

A =
2M̂(1)

CW (p–)γ
,

we can conclude that

Jλ(u) ≤ 0, for all u ∈ W with ‖u‖E0 ≥ R.

This completes the proof of Claim 4.2. �

Proof of Theorem 1.1 Obviously, Jλ(0) = 0 and by condition (F5), Jλ is an even functional.
Invoking Claims 3.1, 3.2, 4.1, and 4.2, and Theorem 4.1, we can now conclude that there
indeed exists an unbounded sequence of solutions of problem (1.1). This completes the
proof of Theorem 1.1. �
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