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In this paper, we study the following p(x)-curl systems:

⎧⎪⎨
⎪⎩
∇× (|∇ × u|p(x)−2∇× u) + a(x)|u|p(x)−2u

= λf(x,u) + μg(x,u), ∇ · u = 0, in Ω,

|∇ × u|p(x)−2∇× u × n = 0, u · n = 0, on ∂Ω,

where Ω ⊂ R3 is a bounded simply connected domain with a C1,1-boundary, denoted 
by ∂Ω, p : Ω → (1, +∞) is a continuous function, a ∈ L∞(Ω), f, g : Ω ×R3 → R3 are 
Carathéodory functions, and λ, μ are two parameters. Using variational arguments 
based on Fountain theorem and Dual Fountain theorem, we establish some existence 
and non-existence results for solutions of this problem. Our main results generalize 
the results of Xiang et al. (2017) [41], Bahrouni and Repovš (2018) [9], and Ge and 
Lu (2019) [22].

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Since the variable exponent spaces have been thoroughly studied by Kovác̆ik-Rákosník [31], they have 
been used in previous decades to model various phenomena. In the studies of a class of non-standard 
variational problems and PDEs, variable exponent spaces play an important role, e.g. in electrorheological 
fluids [36,37,39], thermorheological fluids [4,5], and image processing [1,12,32]. For nonlinear problems with 
variable growth, there has been a great deal of interest in studying the existence, multiplicity, uniqueness 
and regularity of solutions - for the main results (as well as definitions of some these properties) see [2,3,6,
10,11,13–15,19–21,25,27,28,31,33–35,38] and the references therein.
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The p(x)-curl operator defined by ∇ × (|∇ × u|p(x)−2∇ × u) is a generalization of the p-curl operator 
in which the constant exponent p has been replaced by a variable exponent p(x). The p(x)-curl systems 
possess more complicated structure than the p-curl operators, due to the fact that they are not homogeneous. 
Therefore the study of various mathematical problems with variable exponent is very interesting and raises 
many difficult mathematical problems.

Moreover, the study of nonlinear elliptic equations involving quasilinear homogeneous type operators like 
the p-Laplace or p-curl operators is based on the theory of standard Sobolev spaces W 1,p(Ω) in order to find 
weak solutions - see [7,24,26,30]. These spaces consist of functions that have weak derivatives and satisfy 
certain integrability conditions. In the case of nonhomogeneous p(x)-Laplace operators, the natural setting 
for this approach is to use of the variable exponent Sobolev spaces. The basic idea is to replace the Lebesgue 
spaces Lp(Ω) by more general spaces Lp(·)(Ω), called the variable exponent Lebesgue spaces. However, in 
literature the only results involving the p(x)-curl systems by variational methods can be found in [1,9,22,41].

In what follows, vector functions and spaces of vector functions will be denoted by boldface symbols. We 
shall use ∂x to denote the partial derivative of a function with respect to the variable x.

To introduce our problem precisely, we first give some notations. Let u = (u1, u2, u3) be a vector function 
on Ω. The divergence of u is denoted by

∇ · u = ∂x1u1 + ∂x2u2 + ∂x3u3

and the curl of u, written curl u or ∇ × u, is defined to be the vector field

∇× u = 〈∂x2u3 − ∂x3u2, ∂x3u1 − ∂x1u3, ∂x1u2 − ∂x2u1〉 .

Throughout this paper, unless otherwise stated, we shall always assume that exponent p(x) is continuous 
on Ω with

1 < p− = min
x∈Ω

p(x) ≤ p+ = max
x∈Ω

p(x) < 3,

and satisfies the logarithmic continuity, i.e. that there exists a function ω : R+
0 → R+

0 such that

for all x, y ∈ Ω, |x− y| < 1, |p(x) − p(y)| ≤ ω(|x− y|), and lim
τ→0+

ω(τ) log 1
τ

= C < ∞. (1.1)

In 2016, Antontsev-Miranda-Santos [8] studied the qualitative properties of solutions for the following 
p(x, t)-curl systems:

⎧⎪⎪⎨
⎪⎪⎩
∂tu + ∇× (|∇ × u|p(x,t)−2∇× u) = f(u), ∇ · u = 0, in Ω × (0, T ),
|∇ × u|p(x,t)−2∇× u × n = 0, u · n = 0, on ∂Ω × (0, T ),
u(x, 0) = u0(x), in Ω,

(1.2)

where ∇ × (|∇ × u|p(x,t)−2∇ × u) is the p(x, t)-curl operator

f(u) = λu(
∫
Ω

|u|2dx)
ρ−2
2 where λ ∈ {−1, 0, 1} and ρ is a positive constant.

They introduced a suitable functional framework and a convenient basis in order to apply Galerkin’s method 
and they studied the blow-up and finite time extinction properties of solutions, depending on the values 
of λ and ρ. In the same year, Xiang-Wang-Zhang [41] used for the first time, the variational methods for 
equations involving p(x)-curl operator of the following type:
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{
∇× (|∇ × u|p(x)−2∇× u) + a(x)|u|p(x)−2u = f(x,u), ∇ · u = 0, in Ω,

|∇ × u|p(x)−2∇× u × n = 0, u · n = 0, on ∂Ω.
(1.3)

They studied the existence and multiplicity of solutions for system (1.3) with the following assumptions on 
a(x) and f(x, u):

(A): a(x) ∈ L∞(Ω) and there exist a0, a1 > 0 such that a0 ≤ a(x) ≤ a1 for all x ∈ Ω.
(H1): There exists F : Ω ×R3 → R which is differentiable with respect to u ∈ R3 and such that

f(x,u) = ∂uF (x,u) : Ω ×R3 → R3

is a Carathéodory function.
(H2): There exist C > 0, q ∈ C(Ω), and

1 < q(x) < p∗(x) = 3p(x)
3 − p(x) in Ω

such that

|f(x,u)| ≤ C(1 + |u|q(x)−1), for all (x,u) ∈ Ω ×R3.

(H3): There exists a constant μ > p+ such that

0 < μF (x,u) ≤ f(x,u) · u for all x ∈ Ω and u ∈ R3 \ {0}.

(H4): lim sup
u→0

|f(x,u)|
|u|p(x)−1 = 0 uniformly in x ∈ Ω.

(H5): inf
x∈Ω,u∈R3,|u|=1

F (x, u) > 0.

(H6): F (x, −u) = F (x, u) for all (x, u) ∈ Ω ×R3.

The proofs in [41] are based on Mountain Pass theorem and Symmetric Mountain Pass theorem. Under the 
conditions (A) and (H1)–(H6), the following was proved in [41].

Theorem A (see [41, Theorems 1.1 and 1.2]). Suppose that

p(x) < q(x) < 3p(x)
3 − p(x) for all x ∈ Ω.

Then the following holds:

1. If a(x) satisfies (A) and f(x, u) satisfies (H1)–(H5), then system (1.3) has one nontrivial mountain 
pass solution.

2. If a(x) satisfies (A) and f(x, u) satisfies (H1)–(H4) and (H6), then system (1.3) has infinitely many 
nontrivial mountain pass solutions.

In 2019, with the same method as in [41], Ge-Lu [22] gave some weaker conditions than in [41] and they 
proved the existence and the multiplicity of solutions for (1.3). In 2017, Bahrouni-Repovš [9] studied the 
following p(x)-curl system:
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{
∇× (|∇ × u|p(x)−2∇× u) = λf(x,u) − μg(x,u), ∇ · u = 0, in Ω,

|∇ × u|p(x)−2∇× u × n = 0, u · n = 0, on ∂Ω.
(1.4)

Clearly, this problem is a special case of our main system when a ≡ 0. Bahrouni-Repovš studied the existence 
of solutions for system (1.4) when f satisfies (H1), plus the following conditions:

(F2): There exist α, β > 0 and q ∈ C(Ω) such that

p+ < q(x) < p∗(x) = 3p(x)
3 − p(x) in Ω

and

|F (x,u)| ≥ α|u|q(x) and |f(x,u)| ≤ β(1 + |u|q(x)−1), for all (x,u) ∈ Ω ×R3,

whereas for g they made the following assumptions:

(G1): There exist a nonnegative function g ∈ L∞(Ω) and r ∈ C(Ω) such that

p+ < r− ≤ r(x) < q− and G(x,u) = g(x)|u|r(x), for all (x,u) ∈ Ω ×R3.

(G2): G : Ω × R3 → R is differentiable with respect to u ∈ R3 and g = ∂uG(x, u) : Ω × R3 → R3 is a 
Carathéodory function.

(G3): There exist γ, μ > 0, L > 1 and k, r ∈ C(Ω) such that 1 < k < p− and 1 < r(x) < p∗(x),

|g(x,u)| ≤ μ(1 + |u|r(x)−1), for all (x,u) ∈ Ω ×R3,

lim sup
u→0

G(x,u)
|u|p+ = 0 uniformly in x ∈ Ω,

and

sup
u∈Wp(x)(Ω)

∫
Ω

G(x,u)dx > 0, |G(x,u)| ≤ γ|u|k(x), for all x ∈ Ω and |u| > L.

Under the conditions (H1), (F2), (G1)–(G3), the following was proved in [9].

Theorem B (see [9, Theorems 1.1 and 1.2]).

1. Assume that hypotheses (H1), (F2), (G1)–(G2) hold. Then there exist λ1, μ1 > 0 such that, if 0 < λ < λ1
and μ > μ1, then system (1.4) does not have any nontrivial weak solutions.

2. Assume that hypotheses (H1), (F2), (G1)–(G2) hold. Then for each μ > 0, there exists λμ > 0 such that 
if λ > λμ, then system (1.4) has at least one nontrivial weak solution.

3. Assume that hypotheses (H1), (F2), (G2)–(G3) hold. Then there exist λ2, λ3, r > 0 such that, if λ ∈
[λ2, λ3], then there exists μ2 > 0 with the following property: for each μ ∈ [0, μ2], system (1.4) has at 
least three solutions whose norms are less than r.

Motivated by these results, we study in this paper the existence of solutions for the following p(x)-curl 
systems by means of Fountain theorem and Dual Fountain theorem:
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{
∇× (|∇ × u|p(x)−2∇× u) + a(x)|u|p(x)−2u = λf(x,u) + μg(x,u), ∇ · u = 0, in Ω,

|∇ × u|p(x)−2∇× u × n = 0, u · n = 0, on ∂Ω,
(1.5)

where Ω ⊂ R3 is a bounded simply connected domain with a C1,1 boundary denoted by ∂Ω, λ and μ are 
parameters, p : Ω → (1, +∞) is a continuous function, a ∈ L∞(Ω), and f, g : Ω ×R3 → R3 are Carathéodory 
functions.

Remark 1.1. To the best of our knowledge, there are no results concerning curl systems with variable 
exponent based on Fountain theorem and Dual Fountain theorem. In this context, the results of our paper 
can be seen as a generalization of the results above, to the p(x)-curl systems arising in electromagnetism.

We shall impose the following condition on a(x):

(A)1: a(x) ∈ L∞(Ω) such that inf
x∈Ω

a(x) = a− > 0.

We shall also assume that f(x, u) and g(x, u) satisfy the following global conditions:

(f1): Condition (H1) stated above.
(f2): There exist c1 > 0 and q(x) ∈ C(Ω) such that

1 < p+ < q− ≤ q(x) < p∗(x) = 3p(x)
3 − p(x) in Ω

and

|f(x,u)| ≤ c1|u|q(x)−1, for all (x,u) ∈ Ω ×R3.

(f3): There are constants l > 0 and θ > p+ such that

0 < θF (x,u) ≤ f(x,u) · u for all |u| ≥ l and x ∈ Ω.

(f4): Condition (H6) stated above.

(f5): lim sup
u→∞

F (x,u)
|u|p− = 0 uniformly in x ∈ Ω.

(f6): f(x, u) · u > 0 for all (x, u) ∈ Ω ×R3.

(g1): Condition (G2) stated above.
(g2): There exist c2 > 0 and γ(x) ∈ C(Ω) such that

1 < γ(x) < γ+ < p− < p∗(x) = 3p(x)
3 − p(x) in Ω

and

|g(x,u)| ≤ c2|u|γ(x)−1 for all (x,u) ∈ Ω ×R3.

(g3): G(x, −u) = G(x, u) for all (x, u) ∈ Ω ×R3.

(g4): lim inf
u→0

G(x,u)
|u|α ≥ 0 uniformly in x ∈ Ω with 0 < α < p−.

(g5): g(x, u) · u > 0 for all (x, u) ∈ Ω ×R3.
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The variational structure of this problem leads us to introduce the following space

Wp(x)(Ω) = {v ∈ Lp(x)(Ω) : ∇× v ∈ Lp(x)(Ω),∇ · v = 0,v · n |∂Ω= 0},

see Section 2.1 for more details. Let us proceed with setting system (1.5) in the variational structure. A 
function u ∈ Wp(x)(Ω) is said to be a weak solution of (1.5) if

∫
Ω

|∇ × u|p(x)−2∇× u · ∇ × vdx +
∫
Ω

a(x)|u|p(x)−2u · vdx = λ

∫
Ω

f(x,u) · vdx + μ

∫
Ω

g(x,u) · vdx,

for all v ∈ Wp(x)(Ω). The Euler-Lagrange functional associated to system (1.5) is defined by

Iλ,μ = Φ − λJ − μΨ, λ, μ ∈ R,

where

Φ(u) =
∫
Ω

1
p(x)

(
|∇ × u(x)|p(x) + a(x)|u(x)|p(x)

)
dx,

J(u) =
∫
Ω

F (x,u)dx, Ψ(u) =
∫
Ω

G(x,u)dx,

and

F (x,u) =
u∫

0

f(x, s)ds, G(x,u) =
u∫

0

g(x, s)ds.

Now, we can state our main results as follows.

Theorem 1.1. Assume that a(x) satisfies (A)1, that conditions (f1)-(f4), (g1)-(g3) hold, and that p+ < q− ≤
q(x) ≤ p∗2(x), γ+ < p−. Then system (1.5) has a sequence of weak solutions (±uk) in Wp(x)(Ω) for every 
λ > 0, μ > 0, such that Iλ,μ(±uk) → +∞, as k → +∞.

Theorem 1.2. Assume that a(x) satisfies (A)1, that conditions (f1)-(f2), (f4), (g1)-(g4) hold, and that p+ <

q− ≤ q(x) ≤ p∗2(x), γ+ < p−. Then system (1.5) has a sequence of weak solutions (±uk) in Wp(x)(Ω) for 
every λ > 0, μ > 0, such that Iλ,μ(±uk) < 0 and Iλ,μ(±uk) → 0, as k → +∞.

Theorem 1.3. Assume that a(x) satisfies (A)1, that conditions (f1)-(f2), (f5), (g1)-(g2), (g4) hold, and that 
p+ < q− ≤ q(x) ≤ p∗2(x), γ+ < p−. Then system (1.5) has at least one nontrivial weak solution in Wp(x)(Ω)
for every λ < 0, μ > 0.

Theorem 1.4. Assume that a(x) satisfies (A)1. If (f1)-(f2), (f6), (g1)-(g2), (g5) hold and p+ < q− ≤ q(x) ≤
p∗2(x), γ+ < p−. Then system (1.5) has no nontrivial weak solution in Wp(x)(Ω) for every λ < 0, μ < 0.

We conclude with an outline of the structure of the paper. In Section 2, we introduce some preliminary 
results and in Section 3, we give the proofs of the main results.

2. Preliminaries

In this section we shall give some preliminary results which will be used in the sequel.
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2.1. Variable exponent Lebesgue and Sobolev spaces

To study our problems, we shall need to introduce certain function spaces. Denote

C+(Ω) =
{
p ∈ C(Ω) : min

x∈Ω
p(x) > 1

}
.

Definition 2.1. The variable exponent Lebesgue space Lp(x)(Ω) is defined by

Lp(x)(Ω) =
{
u; u is a measurable real-valued function such that

∫
Ω

|u|p(x)dx < +∞
}
,

and is endowed with the so-called Luxemburg norm

|u|p(x) = inf
{
λ > 0 :

∫
Ω

∣∣∣u
λ

∣∣∣p(x)
dx ≤ 1

}
.

If p(x) = p ≡ constant for every x ∈ Ω, then the Lp(x)(Ω) space is reduced to the classical Lebesgue 
space Lp(Ω) and the Luxemburg norm becomes the standard norm on Lp(Ω),

‖u‖Lp(Ω) =

⎛
⎝∫

Ω

|u(x)|p dx

⎞
⎠

1/p

.

If p(x) 
≡ constant in Ω, then an important role in manipulating the generalized Lebesgue-Sobolev spaces 
is played by the modular ρp(·) of the space Lp(·)(Ω), which is the mapping ρp(x) : Lp(x)(Ω) → R defined by

ρp(x)(u) :=
∫
Ω

|u|p(x) dx,

and the following properties hold:

|u|p(x) < 1 ⇒ |u|p
+

p(x) ≤ ρp(x)(u) ≤ |u|p
−

p(x),

|u|p(x) > 1 ⇒ |u|p
−

p(x) ≤ ρp(x)(u) ≤ |u|p
+

p(x),

|u|p(x) = 1 ⇒ ρp(x)(u) = 1,

|un − u|p(x) → 0 ⇔ ρp(x)(un − u) → 0.

For more details about these variable exponent Lebesgue spaces see [16,27,35].

Remark 2.1. Variable exponent Lebesgue spaces resemble the classical Lebesgue spaces in many respects, 
they are separable Banach spaces and the Hölder inequality holds. The inclusions between Lebesgue spaces 
also naturally generalize, that is, if 0 < meas(Ω) < ∞ and p(x), q(x) are variable exponents such that 
p(x) < q(x) a.e. in Ω, then there exists a continuous embedding Lq(x)(Ω) ↪→ Lp(x)(Ω).

Definition 2.2. The variable exponent Sobolev space W 1,p(x) is defined by

W 1,p(x)(Ω) =
{
u ∈ Lp(x)(Ω) : |∇u| ∈ Lp(x)(Ω)

}
,

with the norm
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‖u‖1,p(x) = inf
{
λ > 0 :

∫
Ω

( ∣∣∣∣∇u
λ

∣∣∣∣
p(x)

+
∣∣∣u
λ

∣∣∣p(x) )
dx ≤ 1

}
,

‖u‖1,p(x) = ‖∇u‖p(x) + |u|p(x),

where

|∇u| =

√√√√ N∑
i=1

( ∂u
∂xi

)2
.

Definition 2.3. For p(x) ∈ C+(Ω), let us define the so-called critical Sobolev exponent p∗(x) of p(x) by

p∗(x) =

⎧⎨
⎩

3p(x)
3 − p(x) if p(x) < 3,

+∞ if p(x) ≥ 3,

for every x ∈ Ω.

We define W 1,p(x)
0 (Ω) as the closure of C∞

0 (Ω) with respect to the norm ‖ · ‖p(x),

W
1,p(x)
0 (Ω) =

{
u : u|∂Ω = 0,u ∈ Lp(x)(Ω), |∇u| ∈ Lp(x)(Ω)

}
.

The dual space of W 1,p(x)
0 (Ω) is denoted by W−1,p′(x)(Ω), where

1
p(x) + 1

p′(x) = 1, for every x ∈ Ω.

Next, we recall some embedding results regarding variable exponent Lebesgue and Sobolev spaces.

Theorem 2.1 (see [18, Theorem 1.3]). The following statements hold:

(i) (W 1,p(x)
0 (Ω), ‖· ‖) is a separable and reflexive Banach space.

(ii) If p, q ∈ C+(Ω) and q(x) < p∗(x) for every x ∈ Ω, then there is a compact and continuous embedding

W 1,p(x)(Ω) ↪→ Lq(x)(Ω).

(iii) There is a constant C > 0 such that

|u|p(x) ≤ C||∇u||p(x), for all u ∈ W
1,p(x)
0 (Ω).

Let

Lp(x)(Ω) = Lp(x)(Ω) × Lp(x)(Ω) × Lp(x)(Ω)

and define

Wp(x)(Ω) = {v ∈ Lp(x)(Ω) : ∇× v ∈ Lp(x)(Ω),∇ · v = 0,v · n |∂Ω= 0},

where n denotes the outward unit normal vector to ∂Ω. Equip Wp(x)(Ω) with the norm
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‖v‖Wp(x)(Ω) = ‖v‖Lp(x)(Ω) + ‖∇ × v‖Lp(x)(Ω).

If p− > 1, then by Theorem 2.1 of [8], Wp(x)(Ω) is a closed subspace of W1,p(x)
n (Ω), where

W1,p(x)
n (Ω) = {v ∈ W 1,p(x)(Ω) : v · n |∂Ω= 0}

and

W1,p(x)(Ω) = W 1,p(x)(Ω) ×W 1,p(x)(Ω) ×W 1,p(x)(Ω).

Thus, we have the following theorem.

Theorem 2.2 (see [41, Theorem 2.1]). Assume that 1 < p− ≤ p+ < ∞ and p satisfies condition (1.1). 
Then Wp(x)(Ω) is a closed subspace of W1,p(x)

n (Ω). Moreover, if p− >
6
5 , then ‖∇ × ·‖p(x)(Ω) is a norm on 

Wp(x)(Ω) and there exists C = C(N, p−, p+) > 0 such that

‖v‖W 1,p(x)(Ω) ≤ C‖∇ × v‖Lp(x)(Ω).

Remark 2.2. By Theorems 2.1 and 2.2, the embedding Wp(x)(Ω) ↪→ Lq(x)(Ω) is compact, with 1 < p− ≤
p+ < 3, q ∈ C(Ω), and 1 ≤ q(x) < 3p(x)

3 − p(x) in Ω. Moreover, (Wp(x)(Ω), ‖ ·‖) is a uniformly convex, reflexive 

and separable Banach space.

Let

‖u‖a = inf

⎧⎨
⎩η > 0 :

∫
Ω

(∣∣∣∇× u(x)
η

∣∣∣p(x)
+ a(x)

∣∣∣u(x)
η

∣∣∣p(x)
)
dx ≤ 1

⎫⎬
⎭

for all u ∈ Wp(x). In view of a− > 0 (see condition (A)1), it is easy to see that ‖ · ‖a is equivalent to the 
norms ‖ · ‖Wp(x)(Ω) and ‖ · ‖Lp(x)(Ω) on Wp(x)(Ω). In this paper, we shall use for convenience the norm ‖ · ‖a
on the space Wp(x)(Ω).

Proposition 2.1 (see [41]). Let

Λp(x),a(u) =
∫
Ω

(
|∇ × u(x)|p(x) + a(x)|u(x)|p(x)

)
dx for all u ∈ Wp(x)(Ω).

Then

1. |u|a < 1 ⇒ |u|p+

a ≤ Λp(x),a(u) ≤ |u|p−
a ;

2. |u|a > 1 ⇒ |u|p−
a ≤ Λp(x),a(u) ≤ |u|p+

a .

Proposition 2.2. The following functional

Φ(u) =
∫
Ω

1
p(x)

(
|∇ × u(x)|p(x) + a(x)|u(x)|p(x)

)
dx,

is well defined, even, convex, and sequentially weakly lower semi-continuous. Also, the functional Φ is of 
class C1 and
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(Φ′(u),v) =
∫
Ω

(
|∇ × u|p(x)−2∇× u · ∇ × v + a(x)|u|p(x)−2u · v

)
dx, for all u,v ∈ Wp(x)(Ω),

where 〈·, ·〉 is the dual pairing between Wp(x)(Ω) and its dual (Wp(x)(Ω))∗. Similar to [41], we can deduce 
that

(i) Φ′ : Wp(x)(Ω) → (Wp(x)(Ω))∗ is a continuous, bounded and strictly monotone operator;
(ii) Φ′ is a mapping of type (S+), namely: un ⇀ u and lim sup

n→∞
〈A′(un), un − u〉 ≤ 0, hence un → u in 

Wp(x)(Ω).
(iii) Φ′ : Wp(x)(Ω) → (Wp(x)(Ω))∗ is a homeomorphism.

Remark 2.3 (see [17, Remark 2.1]). We note that the sum of a mapping of type (S+) and a weakly-strongly 
continuous mapping is still a mapping of type (S+). Therefore I ′λ,μ = Φ′ − λJ ′ − μΨ′ is a mapping of type 
(S+). Hence any bounded (P.S) sequence of Iλ,μ has a convergent subsequence.

2.2. Preliminary lemmas

From the statement above we know that Wp(x)(Ω) is a reflexive and separable Banach space (see [8]). 
Therefore there exist {ej} ⊂ Wp(x)(Ω) and {e∗j} ⊂ (Wp(x)(Ω))∗ such that

Wp(x)(Ω) = span{ej : j = 1, 2, ...}, (Wp(x)(Ω))∗ = span{e∗j : j = 1, 2, ...},

with

〈ej , e∗j 〉 =
{

1, if i = j

0, if i 
= j.

Define

Xj = span{ej}, Yk =
k⊕

j=1
Xj , Zk =

∞⊕
j=k

Xj . (2.1)

We need the following lemmas which will be used in the proof of our main results.

Lemma 2.1. If q(x), γ(x) ∈ C+(Ω), q(x), γ(x) < p∗2(x) for x ∈ Ω, let

βk = sup{|u|q(x) : ‖u‖a = 1, u ∈ Zk},
θk = sup{|u|γ(x) : ‖u‖a = 1, u ∈ Zk}.

Then limk→∞βk = 0 and limk→∞θk = 0.

Proof. Obviously, 0 < βk+1 ≤ βk, so βk → β ≥ 0. Let uk ∈ Zk satisfy

‖uk‖a = 1, 0 ≤ βk − |uk|q(x) <
1
k
.

Then there exists a subsequence of {uk} (which we still denote by uk) such that uk ⇀ u, and

〈e∗j , u〉 = lim 〈e∗j ,uk〉 = 0, for all e∗j ,

k→∞
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which implies that u = 0, and so uk ⇀ 0. Since the embedding from Wp(x)(Ω) to Lq(x)(Ω) is compact, it 
follows that uk → 0 in Lq(x)(Ω). Hence, we get βk → 0 as k → ∞. The proof for θk can be obtained by the 
same procedure. �
Lemma 2.2. Iλ,μ is weakly lower semi-continuous on Wp(x)(Ω).

Proof. By Proposition 2.2, we know that Φ is weakly lower semi-continuous. Assuming un ⇀ u in Wp(x)(Ω), 
the compact embedding by Remark 2.2 gives us

un ⇀ u in Lp(x)(Ω) and un ⇀ u in L1(Ω). (2.2)

By the mean value theorem, there exists z which takes on values strictly between u and un such that
∫
Ω

|F (x,un) − F (x,u)|dx ≤
∫
Ω

|un − u| sup
x∈Ω

|f(x, z)|dx,

hence by assumptions (f2), (g2) and (2.2), the functional J(u) =
∫
Ω

F (x, u)dx is weakly continuous, and so 

is Ψ(u) =
∫
Ω

G(x, u)dx. Consequently, the functional Iλ,μ is weakly lower semi-continuous. �

3. Proofs of the main results

Recall the definitions of (PS)c and (PS)∗c conditions.1

3.1. The Palais-Smale compactness condition

Definition 3.1. The C1-functional Iλ,μ satisfies the Palais-Smale condition at the level c (in short (PS)c
condition) for c ∈ R if any sequence (un)n∈N ⊆ Wp(x)(Ω) for which Iλ,μ(un) → c and I ′λ,μ(un) → 0 as 
n → ∞, has a convergent subsequence.

Definition 3.2. The C1-functional Iλ,μ satisfies the (PS)∗c condition for c ∈ R if any sequence (unj
)j∈N∗ ⊆

Wp(x)(Ω) such that unj
∈ Ynj

, Iλ,μ(unj
) → c, and (Iλ,μ|Ynj

)′(unj
) → 0 as nj → +∞, contains a subse-

quence converging to a critical point of Iλ,μ.

Theorem 3.1. Under the hypotheses of Theorem 1.1, the functional Iλ,μ satisfies (PS)c condition.

Proof. By Lemma 2.2 and Remark 2.3, it suffices to verify the boundedness of (PS)c sequences. Suppose 
that (un)n ⊂ Wp(x)(Ω) is a (PS) sequence at the level c ∈ R, i.e., Iλ,μ(un) ≤ c and I ′λ,μ(un) → 0 as n → ∞. 
Arguing by contradiction, we assume that ‖un‖a → +∞. For n large enough, by the conditions (f1), (f3), 
(g1), (g2) and Proposition 2.1 we have

c + ‖un‖a ≥ Iλ,μ(un) − 1
μ
〈I ′λ,μ(un),un〉

≥
(

1
p+ − 1

μ

)
Λp(x),a(u) − μ

∫
Ω

(
1
μ
G(x,un) − g(x,un) · un

)
dx

1 We refer the readers to [23,24,29] for further information on the Palais-Smale condition with assumption weaker than (f3).
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+ λ

∫
Ω

(
1
μ
f(x,un) · un − F (x,un)

)
dx

≥
(

1
p+ − 1

μ

)
‖un‖p

−

a − μ

∫
Ω

(
1
μ
G(x,un) − g(x,un) · un

)
dx

+ λ

∫
Ω∩{|un|>l}

(
1
μ
f(x,un) · un − F (x,un)

)
dx− C|Ω|

≥
(

1
p+ − 1

μ

)
‖un‖p

−

a − Cμ‖un‖γ
+

a − C|Ω|.

Dividing the above inequality by ‖un‖p
−

a , taking into account that p− > γ+ and passing to the limit as 
n → ∞, we obtain a contradiction. It follows that (un)n is bounded in Wp(x)(Ω). �
Theorem 3.2. Under the hypotheses of Theorem 1.2, functional Iλ,μ satisfies (PS)∗c condition.

Proof. Suppose that (unj
)j ⊂ Wp(x)(Ω) is such that

unj
∈ Ynj

, Iλ,μ(unj
) → c, (Iλ,μ|Ynj

)′(unj
) → 0 as nj → +∞.

In a similar way as in the proof of Theorem 3.1, we obtain the boundedness of the sequence (unj
)j∈N∗ ⊆

Wp(x)(Ω). Hence, there exists u ∈ Wp(x)(Ω) such that unj
⇀ u weakly in Wp(x)(Ω) = ∪nj

Ynj
. Then we 

can obtain vnj
∈ Ynj

such that vnj
⇀ u. We have

〈I ′λ,μ(unj
),unj

− u〉 = 〈I ′λ,μ(unj
),unj

− vnj
〉 + 〈I ′λ,μ(unj

),vnj
− u〉.

Since unj
− vnj

∈ Ynj
, then

〈I ′λ,μ(unj
),unj

− u〉 = 〈(Iλ,μ|Ynj
)′(unj

),unj
− vnj

〉 + 〈I ′λ,μ(unj
),vnj

− u〉 → 0 as n → ∞.

Since I ′λ,μ is of S+ type, we can deduce that unj
→ u in Wp(x)(Ω). Furthermore, I ′λ,μ(unj

) → I ′λ,μ(u). Now 
we claim that u is a critical point of Iλ,μ. Taking wk ∈ Yk, when nj ≥ k, we have

〈I ′λ,μ(u),wk〉 = 〈I ′λ,μ(u) − I ′λ,μ(unj
),wk〉 + 〈I ′λ,μ(unj

),wk〉

= 〈I ′λ,μ(u) − I ′λ,μ(unj
),wk〉 + 〈(Iλ,μ|Ynj

)′(unj
),wk〉.

Taking nj → ∞, we obtain 〈I ′λ,μ(u), wk〉 = 0, for all wk ∈ Yk. So I ′λ,μ(u) = 0, which verifies that Iλ,μ
satisfies (PS)∗c condition. �
3.2. Proof of Theorem 1.1

The following Fountain theorem will be used to get our first result. For the reader convenience, we state 
it as follows.

Theorem C (Fountain theorem [40]). Let X be a reflexive and separable Banach space, I ∈ C1(X, R) an 
even functional and let the subspaces Xk, Yk, Zk be as defined in (2.1). Suppose that for each k ∈ R, there 
exist ρk > rk > 0 such that
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(A1) inf{I(u) : u ∈ Zk, ||u|| = r} → +∞ as k → +∞;
(A2) max{I(u) : u ∈ Yk, ||u|| = ρk} ≤ 0;
(A3) I satisfies (PS) condition for every c > 0.

Then I has an unbounded sequence of critical points.

Proof of Theorem 1.1. By (g3), (f4) and Theorem 3.1, Iλ,μ is an even functional and satisfies (PS)c con-
dition. Therefore, by Theorem C it suffices to show that if k is large enough, then there exist ρk > rk > 0
such that (A1) and (A2) hold.

Verification of (A1): Let u ∈ Zk with ‖u‖a > 1. Then it follows from (f2) and (g2) that

Iλ,μ(u) =
∫
Ω

1
p(x)

(
|∇ × u(x)|p(x) + a(x)|u(x)|p(x)

)
dx− λ

∫
Ω

F (x,u)dx− μ

∫
Ω

G(x,u)dx

≥ 1
p+ ||u||p−

a − λ

∫
Ω

F (x,u)dx− μ

∫
Ω

G(x,u)dx

≥ 1
p+ ||u||p−

a − λC

∫
Ω

|u|q(x)dx− μC

∫
Ω

|u|γ(x)dx

≥ 1
p+ ‖u‖p−

a − λCρq(x)(u) − μC‖u‖γ+

a

≥

⎧⎪⎨
⎪⎩

1
p+ ‖u‖p−

a − C − μC‖u‖γ+

a , if |u|γ(x) ≤ 1

1
p+ ‖u‖p−

a − λ

q−
Cβq+

k ||u||q+

a − μC‖u‖γ+

a , if |u|γ(x) > 1.

≥ 1
p+ ‖u‖p−

a − λ

q−
Cβq+

k ||u||q+

a − μC‖u‖γ+

a − C,

where

βk = sup{|u|q(x) : ‖u‖a = 1, u ∈ Zk}.

Choose ‖u‖a = rk =
( λ

q−
q+Cβq+

k

) 1
p−−q+ and notice that p− < p+ < q+. By Lemma 2.1 we can deduce 

that rk → +∞ as k → ∞, hence

Iλ,μ(u) ≥ 1
p+

( λ

q−
q+Cβq+

k

) p−
p−−q+ − 1

q+

( λ

q−
q+Cβq+

k

)( λ

q−
q+Cβq+

k

) q+

p−−q+ − μC
( λ

q−
q+Cβq+

k

) γ+

p−−q+ − C.

=
( 1
p+ − 1

q+

)( λ

q−
q+Cβq+

k

) p−
p−−q+ − μC

( λ

q−
q+Cβq+

k

) γ+

p−−q+ − C → ∞ as k → ∞.

Verification of (A2): Clearly, condition (f3) implies the existence of two positive constants c1 and c2 such 
that

F (x, u) ≥ c1|u|θ − c2, for all (x,u) ∈ Ω ×R3. (3.1)

Assume now that (3.1) and (g2) hold. Let u ∈ Yk be such that ||u||a = ρk > rk > 1. Then
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Iλ,μ(u) =
∫
Ω

1
p(x)

(
|∇ × u(x)|p(x) + a(x)|u(x)|p(x)

)
dx− λ

∫
Ω

F (x,u)dx− μ

∫
Ω

G(x,u)dx

≤ 1
p−

‖u‖p+

a − λ

∫
Ω

F (x,u)dx− μ

∫
Ω

G(x,u)dx

≤ 1
p−

‖u‖p+

a − λc1

∫
Ω

|u|θdx + μC

∫
Ω

|u|γ(x)dx + c2|Ω|.

Since dimYk < ∞, all norms are equivalent in Yk, there are C1
W , C2

W > 0 such that

∫
Ω

|u|θdx ≥ C1
W ‖u‖θa and

∫
Ω

|u|γ(x)dx ≤ C2
W ‖u‖γ+

a .

Hence, we get

Iλ,μ(u) ≤ 1
p−

‖u‖p+

a − λc1C
1
Wλ‖u‖θa + μCC2

W ‖u‖γ+

a + c2|Ω|,

so we see that Iλ,μ(u) → −∞ as ‖u‖a → +∞ because γ+ < p+ < θ. Conclusion of Theorem 1.1 is now 
reached by invoking Theorem C. �
3.3. Proof of Theorem 1.2

We shall apply the following Dual Fountain theorem to prove our second main result.

Theorem D (Dual Fountain theorem [40]). Let X be a reflexive and separable Banach space, I ∈ C1(X, R)
an even functional, and Xk, Yk, Zk the subspaces defined in (2.1). Assume that there is k0 > 0 such that for 
each k > k0, there exist ρk > rk > 0 such that

(B1) inf{I(‖u‖) : u ∈ Zk, ||u|| = rk} < 0;
(B2) max{I(u) : u ∈ Yk, ||u|| = ρk} ≥ 0;
(B3) inf{I(u) : u ∈ Zk, ||u|| = ρk} → 0 as k → +∞;
(B4) I satisfies (PS)∗c condition for every c ∈ [dk0 , 0).

Then I has a sequence of negative critical values converging to 0.

Proof of Theorem 1.2. According to (g3), (f4) and Theorem 3.2, Iλ,μ is an even functional and satisfies 
(PS)∗c condition. Thus it suffices to verify (B1), (B2) and (B3) of Theorem D.

Verification of (B1): Assume that (f2) and (g2) hold. For any u ∈ Zk, we have

Iλ,μ(u) =
∫
Ω

1
p(x)

(
|∇ × u(x)|p(x) + a(x)|u(x)|p(x)

)
dx− λ

∫
Ω

F (x,u)dx− μ

∫
Ω

G(x,u)dx

≥ 1
p+ ||u||p+

a − λ

∫
Ω

F (x,u)dx− μ

∫
Ω

G(x,u)dx

≥ 1
p+ ||u||p+

a − λC||u||q−a − Cμ

∫
|u|γ(x)dx. (3.2)
Ω
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Notice that q− > p+, so there exists small enough ρ0 > 0 such that λC||u||q−a ≤ 1
2p+ ||u||p+

a as 0 < ρ =

‖u‖a ≤ ρ0.
Then by the proof above, we have

Iλ,μ(u) ≥

⎧⎪⎪⎨
⎪⎪⎩

1
2p+ ||u||p+

a − μCθγ
−

k ‖u‖γ−

a , if |u|γ(x) ≤ 1

1
2p+ ||u||p+

a − μCθγ
−

k ‖u‖γ+

a , if |u|γ(x) > 1.
(3.3)

Choose

ρk = max{(2p+Cμθγ
−

k )
1

p+−γ− , (2p+Cμθγ
+

k )
1

p+−γ+ },

and notice that p+ > γ+, so by Lemma 2.1 we can deduce that ρk → 0 as k → ∞. Hence Iλ,μ(u) ≥ 0, i.e., 
(B1) is satisfied.

Verification of (B2): Assume that u ∈ Yk with ||u||a ≤ 1. Assumption (g4) is equivalent to the following

there exists δ > 0, G(x, t) ≥ C|t|α, α < p−, for all |t| ∈ (0, δ). (3.4)

Then by (3.4) and (f2) we have

Iλ,μ(u) =
∫
Ω

1
p(x)

(
|∇ × u(x)|p(x) + a(x)|u(x)|p(x)

)
dx− λ

∫
Ω

F (x,u)dx− μ

∫
Ω

G(x,u)dx

≤ 1
p−

||u||p−

a + λC

∫
Ω

|u|q(x)dx− μC

∫
Ω

|u|αdx

≤ 1
p−

||u||p−

a + C||u||q−a − μC||u||αa .

Since α < p− < q−, there exists rk ∈ (0, ρk) such that Iλ,μ(u) < 0 when ‖u‖a = rk.

Verification of (B3): Notice that Yk ∩ Zk 
= ∅ and rk < ρk, so we have

dk = infu∈Zk,||u||a≤ρk
Iλ,μ(u) ≤ bk = maxu∈Yk,||u||a=rkIλ,μ(u) < 0.

For u ∈ Zk, ‖u‖a ≤ ρk is small enough. From (3.3), we can now obtain

Iλ,μ(u) ≥ 1
2p+ ||u||p+

a − μCθγ
+

k ||u||γ+

a .

Since θk → 0 and k → ∞, it now follows that (B3) is also satisfied. Invoking Theorem D, we thus complete 
the proof of Theorem 1.2. �
3.4. Proof of Theorem 1.3

In order to prove Theorem 1.3, we shall need the following two lemmas.

Lemma 3.1. For any λ < 0, μ > 0, the following holds:

(1) Iλ,μ is weakly lower semi-continuous on Wp(x)(Ω).
(2) Iλ,μ is bounded from below and coercive on Wp(x)(Ω).
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Proof. (1) The proof is similar to that of Lemma 2.2, so we shall omit it.
(2) From the hypothesis (f5), for any small enough ε > 0, there exists M > 0 such that

|F (x, t)| ≤ C ′|t|p−
for |t| > M.

Therefore, when λ < 0, μ > 0, we can deduce that for any u ∈ Wp(x)(Ω) with ‖u‖a > 1, the following holds

Iλ,μ(u) ≥ 1
p+ ||u||p−

a −
∫
Ω

F (x,u)dx− μ

∫
Ω

G(x,u)dx

≥ 1
p+ ||u||p−

a + λC ′||u||p−

a − μC||u||γ+

a . (3.5)

Since γ+ < p−, Iλ,μ is bounded from below and coercive, so (2) is also proved. �
Lemma 3.2. Assume that (f2) and (g4) hold. Then for any λ < 0, μ > 0 we have

inf
u∈Wp(x)(Ω)

Iλ,μ(u) < 0.

Proof. Using again assumption (g4), there exists δ > 0 such that

G(x, e) ≥ Ceα, α < p−, for all |e| ∈ (0, δ). (3.6)

Choose v0 ∈ C∞
0 (Ω) such that 0 < v0 ≤ δ, and let u0 = sv0. Then by (f2) and (3.6), for λ < 0, μ > 0, we 

have

Iλ,μ(sv0) ≤ sp
− ||v0||p

−

a − λ

∫
Ω

F (x, sv0)dx− μ

∫
Ω

G(x, sv0)dx

≤ sp
−‖v0‖p

−

a + |λ|C
∫
Ω

sp(x)|v0|p(x)dx− μC

∫
Ω

sα|v0|αdx

≤ sp
− ||v0||p

−

a + |λ|Csp
−
∫
Ω

|v0|p(x)dx− μCsα
∫
Ω

|v0|αdx.

Since α < p− and s is small enough, it follows that inf
u∈Wp(x)(Ω)

Iλ,μ(u) < 0, which completes the proof. �
Proof of Theorem 1.3. By Lemma 3.1, it follows that for any λ < 0, μ > 0, Iλ,μ has a global minimizer u0
to Iλ,μ(u) in Wp(x)(Ω) such that I ′λ,μ(u0) = 0 (see [40]). Therefore u0 is a weak solution of system (1.5). 
Moreover, since Iλ,μ(0) = 0 and Iλ,μ(u0) < 0 (see Lemma 3.2), u 
= 0, i.e. u0 is a nontrivial solution. This 
completes the proof of Theorem 1.3. �
3.5. Proof of Theorem 1.4

When λ < 0, μ < 0, we argue by contradiction that u ∈ Wp(x)(Ω) \ {0} is a weak solution of system 
(1.5). Multiplying the first equation of system (1.5) by u, we get

∫
∇× (|∇ × u|p(x)−2∇× u) · udx +

∫
a(x)|u|p(x)−2u · udx = λ

∫
f(x,u) · udx + μ

∫
g(x,u) · udx.
Ω Ω Ω Ω
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Using the boundary conditions in (1.5) and integrating by parts, we get

∫
Ω

|∇ × u|p(x)dx +
∫
Ω

a(x)|u|p(x)dx = λ

∫
Ω

f(x,u) · udx + μ

∫
Ω

g(x,u) · udx,

which contradicts (f6) and (g5). This completes the proof of Theorem 1.4. �
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