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Abstract. We show that if G is an upper semicontinuous decomposition
of R

n, n ≥ 4, into convex sets, then the quotient space R
n/G is a

codimension 1 manifold factor. In particular, we show that R
n/G has

the disjoint arc-disk property.
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1. Introduction

A spaceX is said to be a codimension 1 manifold factor provided thatX×R is
a manifold. It is a long standing unsolved problem as to whether all resolvable
generalized manifolds are codimension 1 manifold factors [9]. This is the so-
called Product With a Line Problem and it is the essence of the famous
Generalized R. L. Moore Problem [21, 25, 26].

The Product With a Line Problem speaks directly to one of the most
fundamental questions in geometric topology, which is how to recognize mani-
folds [6, 15, 27, 28, 29]. Because manifolds have a rich structure which is useful
to exploit in many areas of mathematics and its applications, it is important
to recognize when one is dealing with a space that is a manifold. One notable
example is the relevance of the Product With a Line Problem to the famous
Busemann Conjecture in metric geometry [3, 4, 5, 19].

One might wonder even if a decomposition of Rn into convex sets could
give rise to a decomposition space topologically distinct from R

n. This prob-
lem was investigated for several years beginning with Bing in the 1950’s
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[1, 2, 8, 14, 23]. In 1970, Armentrout [1] produced the first example of a de-
composition of R3 into convex sets that yields a non-manifold. Then in 1975,
Eaton [14] demonstrated that a certain decomposition of R3 into points and
straight line segments, originally proposed by Bing [2], is indeed topologically
distinct from R

3. Hence, this type of complexity is significant. It should also
be noted that there are no known examples of a non-manifold resulting from
a decomposition of Rn≥4 into convex sets.

In this paper we shall investigate how the type of complexity represented
by decompositions of Rn into convex sets can affect the classification of a de-
composition space as a codimension 1 manifold factor. We shall demonstrate
that decompositions of Rn, n ≥ 4, into convex sets are always codimension
1 manifold factors. In particular, we shall show that such spaces have a par-
ticularly strong general position property, the disjoint arc-disk property.

2. Preliminaries

We briefly review some basic definitions and notations. Recall that a map
f : X → Y is said to be proper if whenever C is a compact subset of Y , then
f−1(C) is compact.

There are various equivalent definitions of upper semicontinuous decom-
positions [11], but the following will be the most useful for our purposes:

Definition 2.1. A decomposition G of M into compact sets is said to be
upper semicontinuous (usc) if and only if the associated decomposition map
π : M → M/G is a proper map.

A compact subset C of a space X is said to be cell-like if for each
neighborhood U of C in X, C can be contracted to a point inside U [24].
A usc decomposition G of M is said to be cell-like if each element g ∈ G is
cell-like. A map f : Y → X is said to be cell-like if for each x ∈ X, f−1(x)
is cell-like. A resolvable generalized n-manifold is an n-dimensional space X
that is the image of a cell-like map f : M → X where M is an n-manifold.

Convex sets are contractible, and hence they are cell-like. Thus, a usc
decompositionG of Rn into convex sets is a cell-like decomposition and the as-
sociated decomposition map π : Rn → R

n/G is a cell-like map. The fact that
R

n/G is finite-dimensional follows from a result of Zemke (see [30, Theorem
5.2]). Therefore, in this setting, Rn/G is a resolvable generalized n-manifold.

For resolvable generalized manifolds, we have the following very use-
ful approximate lifting theorem, which follows from [11, Theorem 17.1 and
Corollary 16.12B]:

Theorem 2.2. Suppose that G is a cell-like decomposition of a manifold M ,
with decomposition map π : M → M/G, and that the quotient space M/G is
finite-dimensional. Then for any map f : Z → M/G of a finite-dimensional
compact polyhedron Z, and any ε > 0, there exists a map F : Z → M such
that πF is an ε-approximation of f .
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General position properties are very useful in detecting codimension 1
manifold factors [12, 16, 17, 18, 20]. For our results, we shall only need to
employ the following:

Definition 2.3. A space X is said to have the disjoint arc-disk property
(DADP) provided that any two maps α : I → X and f : D2 → X can
be approximated by maps with disjoint images, where I denotes the unit
interval and D2 denotes a disk.

The following theorem was demonstrated in [10, Proposition 2.10]:

Theorem 2.4. A resolvable generalized manifold having DADP is a codimen-
sion 1 manifold factor.

Useful in discussions of the DADP is the local 0-co-connectedness prop-
erty. A set Z ⊂ X is said to have the local 0-co-connectedness property (0-
LCC) in X if for every z ∈ Z∩Cl(X−Z), each neighborhood U of z contains
another neighborhood V of z so that any two points in V are path connected
in U . Note that if Z is nowhere dense in X, then Z = Z ∩ Cl(X − Z).

The following theorem can be found in [11, Corollary 26.2A]:

Theorem 2.5. Each k-dimensional closed subset of a generalized n-manifold,
where k ≤ n− 2, is 0-LCC.

Since a k-dimensional closed subset of a generalized n-manifold X, where
k ≤ n− 1, is nowhere dense in X, we have the following corollary:

Corollary 2.6. If Z is a k-dimensional closed subset of a generalized n-
manifold X, where k ≤ n− 2, then any path α : I → X can be approximated
by a path α′ : I → X − Z.

3. Main Results

The main result of this paper is the following theorem:

Theorem 3.1. Let G be an upper semicontinuous decomposition of Rn into
convex sets, where n ≥ 4. Then R

n/G is a codimension 1 manifold factor.

This theorem will follow immediately as a corollary of Theorem 2.4 and the
following theorem:

Theorem 3.2. Let G be an upper semicontinuous decomposition of Rn into
convex sets, where n ≥ 4. Then R

n/G has the DADP.

Proof. Let f : D2 → R
n/G and ε > 0. It follows from Corollary 2.6 that it

suffices to show that there is an ε-approximation f ′ : D2 → R
n/G of f such

that f ′(D2) is 2-dimensional.

Let F : D2 → R
n be a piecewise linear map, that is an ε-approximate

lift of f . We shall show that f ′ = πF is then the desired map.
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Let T denote a triangulation of F (D2). We claim that if σ is a 2-simplex
of T , then f ′(σ) is 2-dimensional. To see this, let Gσ be the decomposition in-
duced over π(σ), i.e.Gσ is the decomposition of Rn having as the only nontriv-
ial elements, the nontrivial elements of G that meet σ. Let ω : Rn → R

n/Gσ

be the associated decomposition map. Note that ω is necessarily a proper
map, being a decomposition induced over a closed set in the decomposition
space of a usc decomposition.

Let P be the 2-dimensional plane in R
n that contains σ. Let � denote

the restriction of ω to P . Then � is also a proper map. Thus � determines a
usc decomposition of the plane into convex sets, elements that do not separate
the plane. It now follows from a classical result of Moore [25, 26], that � is
a near-homeomorphism onto its image. Thus �(σ) is at most 2-dimensional.

But �(σ) is homeomorphic to ω(σ), which in turn is homeomorphic to
π(σ). Thus π(σ) is at most 2-dimensional subset of Rn/G. Hence

f ′(D2) =
⋃

σ∈T (2)

π(σ)

is a 2-dimensional subset of the generalized n-manifold R
n/G [22]. �

4. Conclusions

As we have seen, the complexity represented by decompositions into con-
vex sets does not inhibit a decomposition space from being a codimension 1
manifold factor. The fact that such spaces satisfy the DADP is a pleasant
result.

It is well known that not all codimension 1 manifold factors satisfy the
DADP, and hence the DADP is not a general position property that provides
a characterization of codimension 1 manifold factors. In fact, the DADP con-
dition is a relatively weak tool for detecting codimension 1 manifold factors,
compared to other general position properties such as:

• the disjoint homotopies property [16];
• the plentiful 2-manifolds property [16];
• the 0-stitched disks property [18];
• the method of δ-fractured maps [17]; and
• the disjoint topographies (or disjoint concordance) property [12, 20].

It is these stronger properties that must be utilized to demonstrate that
spaces such as the Totally Wild Flow [7] and the Ghastly Spaces [13] are
codimension 1 manifold factors.

In conclusion, we have demonstrated that we must look to other types
of complexities to realize a counterexample to the Generalized R. L. Moore
Problem, if such an example does indeed exist.
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