Decompositions of $\mathbb{R}^{n}, n \geq 4$, into Convex Sets Generate Codimension 1 Manifold Factors

Denise M. Halverson and Dušan Repovš*

Abstract

We show that if G is an upper semicontinuous decomposition of $\mathbb{R}^{n}, n \geq 4$, into convex sets, then the quotient space \mathbb{R}^{n} / G is a codimension 1 manifold factor. In particular, we show that \mathbb{R}^{n} / G has the disjoint arc-disk property. Mathematics Subject Classification (2010). Primary 57N15, 57N75; Secondary 57P99, 53C70. Keywords. Upper semicontinuous decomposition, convex set, generalized manifold, cell-like resolution, general position property, codimension 1 manifold factor, Generalized Moore Problem.

1. Introduction

A space X is said to be a codimension 1 manifold factor provided that $X \times \mathbb{R}$ is a manifold. It is a long standing unsolved problem as to whether all resolvable generalized manifolds are codimension 1 manifold factors [9]. This is the socalled Product With a Line Problem and it is the essence of the famous Generalized R. L. Moore Problem [21, 25, 26].

The Product With a Line Problem speaks directly to one of the most fundamental questions in geometric topology, which is how to recognize manifolds $[6,15,27,28,29]$. Because manifolds have a rich structure which is useful to exploit in many areas of mathematics and its applications, it is important to recognize when one is dealing with a space that is a manifold. One notable example is the relevance of the Product With a Line Problem to the famous Busemann Conjecture in metric geometry [3, 4, 5, 19].

One might wonder even if a decomposition of \mathbb{R}^{n} into convex sets could give rise to a decomposition space topologically distinct from \mathbb{R}^{n}. This problem was investigated for several years beginning with Bing in the 1950's

[^0][1, 2, 8, 14, 23]. In 1970, Armentrout [1] produced the first example of a decomposition of \mathbb{R}^{3} into convex sets that yields a non-manifold. Then in 1975, Eaton [14] demonstrated that a certain decomposition of \mathbb{R}^{3} into points and straight line segments, originally proposed by Bing [2], is indeed topologically distinct from \mathbb{R}^{3}. Hence, this type of complexity is significant. It should also be noted that there are no known examples of a non-manifold resulting from a decomposition of $\mathbb{R}^{n \geq 4}$ into convex sets.

In this paper we shall investigate how the type of complexity represented by decompositions of \mathbb{R}^{n} into convex sets can affect the classification of a decomposition space as a codimension 1 manifold factor. We shall demonstrate that decompositions of $\mathbb{R}^{n}, n \geq 4$, into convex sets are always codimension 1 manifold factors. In particular, we shall show that such spaces have a particularly strong general position property, the disjoint arc-disk property.

2. Preliminaries

We briefly review some basic definitions and notations. Recall that a map $f: X \rightarrow Y$ is said to be proper if whenever C is a compact subset of Y, then $f^{-1}(C)$ is compact.

There are various equivalent definitions of upper semicontinuous decompositions [11], but the following will be the most useful for our purposes:

Definition 2.1. A decomposition G of M into compact sets is said to be upper semicontinuous (usc) if and only if the associated decomposition map $\pi: M \rightarrow M / G$ is a proper map.

A compact subset C of a space X is said to be cell-like if for each neighborhood U of C in X, C can be contracted to a point inside U [24]. A usc decomposition G of M is said to be cell-like if each element $g \in G$ is cell-like. A map $f: Y \rightarrow X$ is said to be cell-like if for each $x \in X, f^{-1}(x)$ is cell-like. A resolvable generalized n-manifold is an n-dimensional space X that is the image of a cell-like map $f: M \rightarrow X$ where M is an n-manifold.

Convex sets are contractible, and hence they are cell-like. Thus, a usc decomposition G of \mathbb{R}^{n} into convex sets is a cell-like decomposition and the associated decomposition map $\pi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} / G$ is a cell-like map. The fact that \mathbb{R}^{n} / G is finite-dimensional follows from a result of Zemke (see [30, Theorem 5.2]). Therefore, in this setting, \mathbb{R}^{n} / G is a resolvable generalized n-manifold.

For resolvable generalized manifolds, we have the following very useful approximate lifting theorem, which follows from [11, Theorem 17.1 and Corollary 16.12B]:

Theorem 2.2. Suppose that G is a cell-like decomposition of a manifold M, with decomposition map $\pi: M \rightarrow M / G$, and that the quotient space M / G is finite-dimensional. Then for any map $f: Z \rightarrow M / G$ of a finite-dimensional compact polyhedron Z, and any $\epsilon>0$, there exists a map $F: Z \rightarrow M$ such that πF is an ϵ-approximation of f.

General position properties are very useful in detecting codimension 1 manifold factors $[12,16,17,18,20]$. For our results, we shall only need to employ the following:

Definition 2.3. A space X is said to have the disjoint arc-disk property (DADP) provided that any two maps $\alpha: I \rightarrow X$ and $f: D^{2} \rightarrow X$ can be approximated by maps with disjoint images, where I denotes the unit interval and D^{2} denotes a disk.

The following theorem was demonstrated in [10, Proposition 2.10]:
Theorem 2.4. A resolvable generalized manifold having DADP is a codimension 1 manifold factor.

Useful in discussions of the DADP is the local 0-co-connectedness property. A set $Z \subset X$ is said to have the local 0 -co-connectedness property (0LCC) in X if for every $z \in Z \cap \mathrm{Cl}(X-Z)$, each neighborhood U of z contains another neighborhood V of z so that any two points in V are path connected in U. Note that if Z is nowhere dense in X, then $Z=Z \cap \mathrm{Cl}(X-Z)$.

The following theorem can be found in [11, Corollary 26.2A]:
Theorem 2.5. Each k-dimensional closed subset of a generalized n-manifold, where $k \leq n-2$, is $0-L C C$.

Since a k-dimensional closed subset of a generalized n-manifold X, where $k \leq n-1$, is nowhere dense in X, we have the following corollary:

Corollary 2.6. If Z is a k-dimensional closed subset of a generalized n manifold X, where $k \leq n-2$, then any path $\alpha: I \rightarrow X$ can be approximated by a path $\alpha^{\prime}: I \rightarrow X-Z$.

3. Main Results

The main result of this paper is the following theorem:
Theorem 3.1. Let G be an upper semicontinuous decomposition of \mathbb{R}^{n} into convex sets, where $n \geq 4$. Then \mathbb{R}^{n} / G is a codimension 1 manifold factor.

This theorem will follow immediately as a corollary of Theorem 2.4 and the following theorem:

Theorem 3.2. Let G be an upper semicontinuous decomposition of \mathbb{R}^{n} into convex sets, where $n \geq 4$. Then \mathbb{R}^{n} / G has the $D A D P$.

Proof. Let $f: D^{2} \rightarrow \mathbb{R}^{n} / G$ and $\varepsilon>0$. It follows from Corollary 2.6 that it suffices to show that there is an ϵ-approximation $f^{\prime}: D^{2} \rightarrow \mathbb{R}^{n} / G$ of f such that $f^{\prime}\left(D^{2}\right)$ is 2-dimensional.

Let $F: D^{2} \rightarrow \mathbb{R}^{n}$ be a piecewise linear map, that is an ε-approximate lift of f. We shall show that $f^{\prime}=\pi F$ is then the desired map.

Let T denote a triangulation of $F\left(D^{2}\right)$. We claim that if σ is a 2 -simplex of T, then $f^{\prime}(\sigma)$ is 2-dimensional. To see this, let G_{σ} be the decomposition induced over $\pi(\sigma)$, i.e. G_{σ} is the decomposition of \mathbb{R}^{n} having as the only nontrivial elements, the nontrivial elements of G that meet σ. Let $\omega: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} / G_{\sigma}$ be the associated decomposition map. Note that ω is necessarily a proper map, being a decomposition induced over a closed set in the decomposition space of a usc decomposition.

Let P be the 2-dimensional plane in \mathbb{R}^{n} that contains σ. Let ϖ denote the restriction of ω to P. Then ϖ is also a proper map. Thus ϖ determines a usc decomposition of the plane into convex sets, elements that do not separate the plane. It now follows from a classical result of Moore [25, 26], that ϖ is a near-homeomorphism onto its image. Thus $\varpi(\sigma)$ is at most 2-dimensional.

But $\varpi(\sigma)$ is homeomorphic to $\omega(\sigma)$, which in turn is homeomorphic to $\pi(\sigma)$. Thus $\pi(\sigma)$ is at most 2 -dimensional subset of \mathbb{R}^{n} / G. Hence

$$
f^{\prime}\left(D^{2}\right)=\bigcup_{\sigma \in T^{(2)}} \pi(\sigma)
$$

is a 2-dimensional subset of the generalized n-manifold $\mathbb{R}^{n} / G[22]$.

4. Conclusions

As we have seen, the complexity represented by decompositions into convex sets does not inhibit a decomposition space from being a codimension 1 manifold factor. The fact that such spaces satisfy the DADP is a pleasant result.

It is well known that not all codimension 1 manifold factors satisfy the DADP, and hence the DADP is not a general position property that provides a characterization of codimension 1 manifold factors. In fact, the DADP condition is a relatively weak tool for detecting codimension 1 manifold factors, compared to other general position properties such as:

- the disjoint homotopies property [16];
- the plentiful 2-manifolds property [16];
- the 0 -stitched disks property [18];
- the method of δ-fractured maps [17]; and
- the disjoint topographies (or disjoint concordance) property [12, 20].

It is these stronger properties that must be utilized to demonstrate that spaces such as the Totally Wild Flow [7] and the Ghastly Spaces [13] are codimension 1 manifold factors.

In conclusion, we have demonstrated that we must look to other types of complexities to realize a counterexample to the Generalized R. L. Moore Problem, if such an example does indeed exist.

Acknowledgment

Supported by the Slovenian Research Agency grants BI-US/11-12/023, P1-0292-0101, J1-2057-0101 and J1-4144-0101. We thank the referee for several comments and suggestions.

References

[1] S. Armentrout, A decomposition of E^{3} into straight arcs and singletons, Dissertationes Math. Rozprawy Mat. 68 (1970), 46 pp.
[2] R. H. Bing, Point-like decompositions of E^{3}, Fund. Math. 50 (1961/1962), 431-453.
[3] H. Busemann, Metric Methods in Finsler Spaces and in the Foundations of Geometry, Ann. Math. Studies 8, Princeton University Press, Princeton, 1942.
[4] H. Busemann, On spaces in which two points determine a geodesic, Trans. Amer. Math. Soc. 54 (1943), 171-184.
[5] H. Busemann, The Geometry of Geodesics, Academic Press, New York, 1955.
[6] J. W. Cannon, The recognition problem: What is a topological manifold?, Bull. Amer. Math. Soc. 84 (1978), 832-866.
[7] J. W. Cannon and R. J. Daverman, A totally wild flow, Indiana Univ. Math. J. 30 (1981), 371-387.
[8] L. O. Cannon, On a point-segment decomposition of E^{3} defined by McAuley, Proc. Amer. Math. Soc. 19 (1968), 624-630.
[9] R. J. Daverman, Products of cell-like decomposition, Topology Appl. 11 (1980), 121-139.
[10] R. J. Daverman, Detecting the disjoint disks property, Pacific J. Math. 93 (1981), 277-298.
[11] R. J. Daverman, Decompositions of Manifolds, Pure and Applied Mathematics 124, Academic Press Inc., Orlando, FL, 1986.
[12] R. J. Daverman and D. M. Halverson, Path concordances as detectors of codimension-one manifold factors, In: "Exotic Homology Manifolds" (Oberwolfach, 2003), Geom. Topol. Monogr. 9, Geom. Topol. Publ., Coventry, 2006, pp. 7-15.
[13] R. J. Daverman and J. J. Walsh, A ghastly generalized n-manifold, Illinois J. Math. 25 (1981), 555-576.
[14] W. T. Eaton, Applications of a mismatch theorem to decomposition spaces, Fund. Math. 89 (1975), 199-224.
[15] R. D. Edwards, The topology of manifolds and cell-like maps, In: "Proc. Int. Congr. of Math." (Helsinki, 1978), Acad. Sci. Fennica, Helsinki, 1980, pp. 111127.
[16] D. M. Halverson, Detecting codimension one manifold factors with the disjoint homotopies property, Topology Appl. 117 (2002), 231-258.
[17] D. M. Halverson, 2-ghastly spaces with the disjoint homotopies property: the method of fractured maps, Topology Appl. 138 (2004), 277-286.
[18] D. M. Halverson, Detecting codimension one manifold factors with 0-stitched disks, Topology Appl. 154 (2007), 1993-1998.
[19] D. M. Halverson and D. Repovš, The Bing-Borsuk and the Busemann Conjectures, Math. Comm. 13 (2008), 163-184.
[20] D. M. Halverson and D. Repovš, Detecting codimension one manifold factors with topographical techniques, Topology Appl. 156 (2009), 2870-2880.
[21] D. M. Halverson and D. Repovš, Survey on the R. L. Moore problem, In: "Proc. Conf. Comp. and Geom. Topol." (Bertinoro, 2010), Atti Semin. Mat. Fis. Univ. Modena Reggio Emilia 58 (2011), to appear.
[22] W. Hurewicz and H. Wallman, Dimension Theory, Princeton Math. Series 4, Princeton Univ. Press, Princeton N.J., 1941.
[23] L. F. McAuley, Another decomposition of E^{3} into points and intervals, In: "Topology Seminar" (Wisconsin, 1965), Ann. of Math. Studies 60, Princeton Univ. Press, Princeton, N.J. 1966, pp. 33-51.
[24] W. J. R. Mitchell and D. Repovš, Topology of cell-like mappings, In: "Proc. Conf. Diff. Geom. and Topol." (Cala Gonone, 1988), Suppl. Rend. Fac. Sci. Nat. Univ. Cagliari 58 (1988), 265-300.
[25] R. L. Moore, Concerning upper semicontinuous collections of continua which do not separate a given set, Proc. Nat. Acad. Sci. 10 (1924), 356-360.
[26] R. L. Moore, Concerning upper semicontinuous collections of continua, Trans. Amer. Math. Soc. 27 (1925), 416-428.
[27] D. Repovš, The recognition problem for topological manifolds, In: "Geometric and Algebraic Topology" (J. Krasinkiewicz, S. Spież and H. Toruńczyk, Eds.), PWN, Warsaw 1986, pp. 77-108.
[28] D. Repovš, Detection of higher dimensional topological manifolds among topological spaces, In: "Giornate di Topologia e Geometria Delle Varietà" (Bologna, 1990), (M. Ferri, Ed.), Univ. degli Studi di Bologna 1992, pp. 113-143.
[29] D. Repovš, The recognition problem for topological manifolds: A survey, Kodai Math. J. 17 (1994), 538-548.
[30] C. F. Zemke, Dimension and decompositions, Fund. Math. 95 (1977), 157-165.

Denise M. Halverson
Department of Mathematics
Brigham Young University
Provo, UT 84602
U.S.A.
e-mail: halverson@math.byu.edu
Dušan Repovš
Faculty of Education and
Faculty of Mathematics and Physics
University of Ljubljana
P.O. Box 2964

Ljubljana 1001
Slovenia
e-mail: dusan.repovs@guest.arnes.si
Received: November 14, 2011.
Revised: January 24, 2012.
Accepted: March 6, 2012.

[^0]: * Corresponding author.

