Mediterr. J. Math. 10 (2013), 1101–1106 DOI 10.1007/s00009-012-0197-1 1660-5446/13/021101-6, *published online* June 23, 2012 © 2012 Springer Basel AG

Mediterranean Journal of Mathematics

Decompositions of \mathbb{R}^n , $n \ge 4$, into Convex Sets Generate Codimension 1 Manifold Factors

Denise M. Halverson and Dušan Repovš^{*}

Abstract. We show that if G is an upper semicontinuous decomposition of \mathbb{R}^n , $n \geq 4$, into convex sets, then the quotient space \mathbb{R}^n/G is a codimension 1 manifold factor. In particular, we show that \mathbb{R}^n/G has the disjoint arc-disk property.

Mathematics Subject Classification (2010). Primary 57N15, 57N75; Secondary 57P99, 53C70.

Keywords. Upper semicontinuous decomposition, convex set, generalized manifold, cell-like resolution, general position property, codimension 1 manifold factor, Generalized Moore Problem.

1. Introduction

A space X is said to be a *codimension* 1 manifold factor provided that $X \times \mathbb{R}$ is a manifold. It is a long standing unsolved problem as to whether all resolvable generalized manifolds are codimension 1 manifold factors [9]. This is the socalled Product With a Line Problem and it is the essence of the famous Generalized R. L. Moore Problem [21, 25, 26].

The Product With a Line Problem speaks directly to one of the most fundamental questions in geometric topology, which is how to recognize manifolds [6, 15, 27, 28, 29]. Because manifolds have a rich structure which is useful to exploit in many areas of mathematics and its applications, it is important to recognize when one is dealing with a space that is a manifold. One notable example is the relevance of the Product With a Line Problem to the famous Busemann Conjecture in metric geometry [3, 4, 5, 19].

One might wonder even if a decomposition of \mathbb{R}^n into convex sets could give rise to a decomposition space topologically distinct from \mathbb{R}^n . This problem was investigated for several years beginning with Bing in the 1950's

^{*}Corresponding author.

[1, 2, 8, 14, 23]. In 1970, Armentrout [1] produced the first example of a decomposition of \mathbb{R}^3 into convex sets that yields a non-manifold. Then in 1975, Eaton [14] demonstrated that a certain decomposition of \mathbb{R}^3 into points and straight line segments, originally proposed by Bing [2], is indeed topologically distinct from \mathbb{R}^3 . Hence, this type of complexity is significant. It should also be noted that there are no known examples of a non-manifold resulting from a decomposition of $\mathbb{R}^{n\geq 4}$ into convex sets.

In this paper we shall investigate how the type of complexity represented by decompositions of \mathbb{R}^n into convex sets can affect the classification of a decomposition space as a codimension 1 manifold factor. We shall demonstrate that decompositions of \mathbb{R}^n , $n \geq 4$, into convex sets are always codimension 1 manifold factors. In particular, we shall show that such spaces have a particularly strong general position property, the disjoint arc-disk property.

2. Preliminaries

We briefly review some basic definitions and notations. Recall that a map $f: X \to Y$ is said to be *proper* if whenever C is a compact subset of Y, then $f^{-1}(C)$ is compact.

There are various equivalent definitions of upper semicontinuous decompositions [11], but the following will be the most useful for our purposes:

Definition 2.1. A decomposition G of M into compact sets is said to be *upper semicontinuous* (usc) if and only if the associated decomposition map $\pi: M \to M/G$ is a proper map.

A compact subset C of a space X is said to be *cell-like* if for each neighborhood U of C in X, C can be contracted to a point inside U [24]. A use decomposition G of M is said to be *cell-like* if each element $g \in G$ is cell-like. A map $f: Y \to X$ is said to be *cell-like* if for each $x \in X$, $f^{-1}(x)$ is cell-like. A *resolvable generalized n-manifold* is an *n*-dimensional space Xthat is the image of a cell-like map $f: M \to X$ where M is an *n*-manifold.

Convex sets are contractible, and hence they are cell-like. Thus, a usc decomposition G of \mathbb{R}^n into convex sets is a cell-like decomposition and the associated decomposition map $\pi : \mathbb{R}^n \to \mathbb{R}^n/G$ is a cell-like map. The fact that \mathbb{R}^n/G is finite-dimensional follows from a result of Zemke (see [30, Theorem 5.2]). Therefore, in this setting, \mathbb{R}^n/G is a resolvable generalized *n*-manifold.

For resolvable generalized manifolds, we have the following very useful approximate lifting theorem, which follows from [11, Theorem 17.1 and Corollary 16.12B]:

Theorem 2.2. Suppose that G is a cell-like decomposition of a manifold M, with decomposition map $\pi : M \to M/G$, and that the quotient space M/G is finite-dimensional. Then for any map $f : Z \to M/G$ of a finite-dimensional compact polyhedron Z, and any $\epsilon > 0$, there exists a map $F : Z \to M$ such that πF is an ϵ -approximation of f.

Vol. 10 (2013) Decompositions Generating Codimension One Manifold Factors 1103

General position properties are very useful in detecting codimension 1 manifold factors [12, 16, 17, 18, 20]. For our results, we shall only need to employ the following:

Definition 2.3. A space X is said to have the *disjoint arc-disk property* (DADP) provided that any two maps $\alpha : I \to X$ and $f : D^2 \to X$ can be approximated by maps with disjoint images, where I denotes the unit interval and D^2 denotes a disk.

The following theorem was demonstrated in [10, Proposition 2.10]:

Theorem 2.4. A resolvable generalized manifold having DADP is a codimension 1 manifold factor.

Useful in discussions of the DADP is the local 0-co-connectedness property. A set $Z \subset X$ is said to have the *local* 0-co-connectedness property (0-LCC) in X if for every $z \in Z \cap \operatorname{Cl}(X-Z)$, each neighborhood U of z contains another neighborhood V of z so that any two points in V are path connected in U. Note that if Z is nowhere dense in X, then $Z = Z \cap \operatorname{Cl}(X - Z)$.

The following theorem can be found in [11, Corollary 26.2A]:

Theorem 2.5. Each k-dimensional closed subset of a generalized n-manifold, where $k \leq n-2$, is 0-LCC.

Since a k-dimensional closed subset of a generalized n-manifold X, where $k \leq n-1$, is nowhere dense in X, we have the following corollary:

Corollary 2.6. If Z is a k-dimensional closed subset of a generalized nmanifold X, where $k \leq n-2$, then any path $\alpha : I \to X$ can be approximated by a path $\alpha' : I \to X - Z$.

3. Main Results

The main result of this paper is the following theorem:

Theorem 3.1. Let G be an upper semicontinuous decomposition of \mathbb{R}^n into convex sets, where $n \geq 4$. Then \mathbb{R}^n/G is a codimension 1 manifold factor.

This theorem will follow immediately as a corollary of Theorem 2.4 and the following theorem:

Theorem 3.2. Let G be an upper semicontinuous decomposition of \mathbb{R}^n into convex sets, where $n \geq 4$. Then \mathbb{R}^n/G has the DADP.

Proof. Let $f: D^2 \to \mathbb{R}^n/G$ and $\varepsilon > 0$. It follows from Corollary 2.6 that it suffices to show that there is an ϵ -approximation $f': D^2 \to \mathbb{R}^n/G$ of f such that $f'(D^2)$ is 2-dimensional.

Let $F: D^2 \to \mathbb{R}^n$ be a piecewise linear map, that is an ε -approximate lift of f. We shall show that $f' = \pi F$ is then the desired map.

Let T denote a triangulation of $F(D^2)$. We claim that if σ is a 2-simplex of T, then $f'(\sigma)$ is 2-dimensional. To see this, let G_{σ} be the decomposition induced over $\pi(\sigma)$, i.e. G_{σ} is the decomposition of \mathbb{R}^n having as the only nontrivial elements, the nontrivial elements of G that meet σ . Let $\omega : \mathbb{R}^n \to \mathbb{R}^n/G_{\sigma}$ be the associated decomposition map. Note that ω is necessarily a proper map, being a decomposition induced over a closed set in the decomposition space of a usc decomposition.

Let P be the 2-dimensional plane in \mathbb{R}^n that contains σ . Let ϖ denote the restriction of ω to P. Then ϖ is also a proper map. Thus ϖ determines a usc decomposition of the plane into convex sets, elements that do not separate the plane. It now follows from a classical result of Moore [25, 26], that ϖ is a near-homeomorphism onto its image. Thus $\varpi(\sigma)$ is at most 2-dimensional.

But $\varpi(\sigma)$ is homeomorphic to $\omega(\sigma)$, which in turn is homeomorphic to $\pi(\sigma)$. Thus $\pi(\sigma)$ is at most 2-dimensional subset of \mathbb{R}^n/G . Hence

$$f'(D^2) = \bigcup_{\sigma \in T^{(2)}} \pi(\sigma)$$

is a 2-dimensional subset of the generalized *n*-manifold \mathbb{R}^n/G [22].

4. Conclusions

As we have seen, the complexity represented by decompositions into convex sets does not inhibit a decomposition space from being a codimension 1 manifold factor. The fact that such spaces satisfy the DADP is a pleasant result.

It is well known that not all codimension 1 manifold factors satisfy the DADP, and hence the DADP is not a general position property that provides a characterization of codimension 1 manifold factors. In fact, the DADP condition is a relatively weak tool for detecting codimension 1 manifold factors, compared to other general position properties such as:

- the disjoint homotopies property [16];
- the plentiful 2-manifolds property [16];
- the 0-stitched disks property [18];
- the method of δ -fractured maps [17]; and
- the disjoint topographies (or disjoint concordance) property [12, 20].

It is these stronger properties that must be utilized to demonstrate that spaces such as the Totally Wild Flow [7] and the Ghastly Spaces [13] are codimension 1 manifold factors.

In conclusion, we have demonstrated that we must look to other types of complexities to realize a counterexample to the Generalized R. L. Moore Problem, if such an example does indeed exist.

Acknowledgment

Supported by the Slovenian Research Agency grants BI-US/11-12/023, P1-0292-0101, J1-2057-0101 and J1-4144-0101. We thank the referee for several comments and suggestions.

References

- S. Armentrout, A decomposition of E³ into straight arcs and singletons, Dissertationes Math. Rozprawy Mat. 68 (1970), 46 pp.
- [2] R. H. Bing, Point-like decompositions of E³, Fund. Math. 50 (1961/1962), 431–453.
- [3] H. Busemann, Metric Methods in Finsler Spaces and in the Foundations of Geometry, Ann. Math. Studies 8, Princeton University Press, Princeton, 1942.
- [4] H. Busemann, On spaces in which two points determine a geodesic, Trans. Amer. Math. Soc. 54 (1943), 171–184.
- [5] H. Busemann, The Geometry of Geodesics, Academic Press, New York, 1955.
- [6] J. W. Cannon, The recognition problem: What is a topological manifold?, Bull. Amer. Math. Soc. 84 (1978), 832–866.
- [7] J. W. Cannon and R. J. Daverman, A totally wild flow, Indiana Univ. Math. J. 30 (1981), 371–387.
- [8] L. O. Cannon, On a point-segment decomposition of E³ defined by McAuley, Proc. Amer. Math. Soc. 19 (1968), 624–630.
- [9] R. J. Daverman, Products of cell-like decomposition, Topology Appl. 11 (1980), 121–139.
- [10] R. J. Daverman, Detecting the disjoint disks property, Pacific J. Math. 93 (1981), 277–298.
- [11] R. J. Daverman, *Decompositions of Manifolds*, Pure and Applied Mathematics 124, Academic Press Inc., Orlando, FL, 1986.
- [12] R. J. Daverman and D. M. Halverson, *Path concordances as detectors of codimension-one manifold factors*, In: "Exotic Homology Manifolds" (Oberwolfach, 2003), Geom. Topol. Monogr. 9, Geom. Topol. Publ., Coventry, 2006, pp. 7–15.
- [13] R. J. Daverman and J. J. Walsh, A ghastly generalized n-manifold, Illinois J. Math. 25 (1981), 555–576.
- [14] W. T. Eaton, Applications of a mismatch theorem to decomposition spaces, Fund. Math. 89 (1975), 199–224.
- [15] R. D. Edwards, The topology of manifolds and cell-like maps, In: "Proc. Int. Congr. of Math." (Helsinki, 1978), Acad. Sci. Fennica, Helsinki, 1980, pp. 111– 127.
- [16] D. M. Halverson, Detecting codimension one manifold factors with the disjoint homotopies property, Topology Appl. 117 (2002), 231–258.
- [17] D. M. Halverson, 2-ghastly spaces with the disjoint homotopies property: the method of fractured maps, Topology Appl. 138 (2004), 277–286.
- [18] D. M. Halverson, Detecting codimension one manifold factors with 0-stitched disks, Topology Appl. 154 (2007), 1993–1998.

- [19] D. M. Halverson and D. Repovš, The Bing-Borsuk and the Busemann Conjectures, Math. Comm. 13 (2008), 163–184.
- [20] D. M. Halverson and D. Repovš, Detecting codimension one manifold factors with topographical techniques, Topology Appl. 156 (2009), 2870–2880.
- [21] D. M. Halverson and D. Repovš, Survey on the R. L. Moore problem, In: "Proc. Conf. Comp. and Geom. Topol." (Bertinoro, 2010), Atti Semin. Mat. Fis. Univ. Modena Reggio Emilia 58 (2011), to appear.
- [22] W. Hurewicz and H. Wallman, *Dimension Theory*, Princeton Math. Series 4, Princeton Univ. Press, Princeton N.J., 1941.
- [23] L. F. McAuley, Another decomposition of E³ into points and intervals, In: "Topology Seminar" (Wisconsin, 1965), Ann. of Math. Studies 60, Princeton Univ. Press, Princeton, N.J. 1966, pp. 33–51.
- [24] W. J. R. Mitchell and D. Repovš, *Topology of cell-like mappings*, In: "Proc. Conf. Diff. Geom. and Topol." (Cala Gonone, 1988), Suppl. Rend. Fac. Sci. Nat. Univ. Cagliari 58 (1988), 265–300.
- [25] R. L. Moore, Concerning upper semicontinuous collections of continua which do not separate a given set, Proc. Nat. Acad. Sci. 10 (1924), 356–360.
- [26] R. L. Moore, Concerning upper semicontinuous collections of continua, Trans. Amer. Math. Soc. 27 (1925), 416–428.
- [27] D. Repovš, The recognition problem for topological manifolds, In: "Geometric and Algebraic Topology" (J. Krasinkiewicz, S. Spież and H. Toruńczyk, Eds.), PWN, Warsaw 1986, pp. 77–108.
- [28] D. Repovš, Detection of higher dimensional topological manifolds among topological spaces, In: "Giornate di Topologia e Geometria Delle Varietà" (Bologna, 1990), (M. Ferri, Ed.), Univ. degli Studi di Bologna 1992, pp. 113–143.
- [29] D. Repovš, The recognition problem for topological manifolds: A survey, Kodai Math. J. 17 (1994), 538–548.
- [30] C. F. Zemke, Dimension and decompositions, Fund. Math. 95 (1977), 157–165.

Denise M. Halverson Department of Mathematics Brigham Young University Provo, UT 84602 U.S.A. e-mail: halverson@math.byu.edu Dušan Repovš Faculty of Education and Faculty of Mathematics and Physics University of Ljubljana

P.O. Box 2964 Ljubljana 1001 Slovenia e-mail: dusan.repovs@guest.arnes.si

Received: November 14, 2011. Revised: January 24, 2012. Accepted: March 6, 2012.