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ABSTRACT. We study the semigroup Jg\f of injective partial cofinite selfmaps
of an infinite cardinal A. We show that Jif is a bisimple inverse semigroup and
each chain of idempotents in Jif is contained in a bicyclic subsemigroup of Jg\f, we
describe the Green relations on Jg\f and we prove that every non-trivial congruence
on Jg\f is a group congruence. Also, we describe the structure of the quotient
semigroup Jif /o, where o is the least group congruence on Jif.
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1. Introduction and preliminaries

In this paper we shall denote the first infinite ordinal by w and the cardinality
of the set A by |A|. We shall identify all cardinals with their corresponding
initial ordinals. We shall denote the set of integers by Z and the additive group
of integers by Z(+).

A semigroup S is called inverse if for every element x € S there exists a
unique z~! € S such that zz~! I = 27!, The element !
is called the inverse of x € S. If S is an inverse semigroup, then the function
inv: S — S which assigns to every element x of S its inverse element z~! is

x = and x tzx~

called the inversion.
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A congruence € on a semigroup S is called non-trivial if € is distinct from
the universal and the identity congruences on S, and a group congruence if the
quotient semigroup S/€ is a group.

If S is a semigroup, then we shall denote the subset of all idempotents in .S
by E(S). If S is an inverse semigroup, then E(S) is closed under multiplication
and we shall refer to E(S) as a band (or the band of S). Then the semigroup
operation on S determines the following partial order < on E(S): e < f if and
only if ef = fe = e. This order is called the natural partial order on E(S).
A semilattice is a commutative semigroup of idempotents. A semilattice E is
called linearly ordered or a chain if its natural order is a linear order. A maximal
chain of a semilattice E' is a chain which is not properly contained in any other
chain of FE.

The Axiom of Choice implies the existence of maximal chains in every par-
tially ordered set. According to [I3: Definition I1.5.12], a chain L is called an
w-chain if L is isomorphic to {0, —1, —2, —3, ...} with the usual order < or equiv-
alently, if L is isomorphic to (w, max). Let E be a semilattice and e € E. We
put le = {f € E| f <e}and te = {f € E|e < f}. By (Pcu(}),U) we
shall denote the free semilattice with identity over a set of cardinality A > w,
ie., (Pcw(N),V) is the set of all finite subsets (with the empty set) of A with the
semilattice operation “union”.

If S is a semigroup, then we shall denote the Green relations on S by R, £, J,
D and H (see [5]). A semigroup S is called simple if S does not contain proper
two-sided ideals and bisimple if S has only one D-class.

The bicyclic semigroup C(p, q) is the semigroup with the identity 1 generated
by elements p and ¢ subject only to the condition pg = 1. The bicyclic semi-
group is bisimple and every one of its congruences is either trivial or a group
congruence. Moreover, every homomorphism h of the bicyclic semigroup is ei-
ther an isomorphism or the image of C(p,q) under h is a cyclic group (see [5k
Corollary 1.32]). The bicyclic semigroup plays an important role in algebraic
theory of semigroups and in the theory of topological semigroups. For example a
well-known Andersen’s result [I] states that a (0-)simple semigroup is completely
(0-)simple if and only if it does not contain the bicyclic semigroup. The bicyclic
semigroup admits only the discrete topology [7]. The problem of embeddability
of the bicycle semigroup into compact-like semigroups was studied in [2H4LSTT].

Remark 1. We observe that the bicyclic semigroup is isomorphic to the semi-
group Cy(a, B) which is generated by partial transformations o and S of the set
of positive integers N, defined as follows: (n)a =n+1ifn >1and (n)f=n—1
if n > 1 (see [13: Exercise IV.1.11(ii)]).
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If T is a semigroup, then we say that a subsemigroup S of T is a bicyclic
subsemigroup of T if S is isomorphic to the bicyclic semigroup C(p, q).

Hereafter we shall assume that A is an infinite cardinal. If a: X — Y is a
partial map, then we shall denote the domain and the range of a by dom a and
ran «, respectively.

Let J) denote the set of all partial one-to-one transformations of an infinite
set X of cardinality A together with the following semigroup operation:

z(af) = (za)B if zedom(af)={ycdoma |yacdompB}, fora,BeTy.

The semigroup Jy is called the symmetric inverse semigroup over the set X
(see [Bt Section 1.9]). The symmetric inverse semigroup was introduced by
Vagner [21] and it plays a major role in the theory of semigroups.

Furthermore, we shall identify the cardinal A = |X| with the set X. By I§f
we shall denote a subsemigroup of injective partial selfmaps of A with cofinite
domains and ranges in Jy, i.e.,

I ={aedy||\\domal <oo and |\\ranal < oo}.

Obviously, J§ is an inverse submonoid of the semigroup J,. We shall call the
semigroup J‘j\f the monoid of injective partial cofinite selfmaps of .

Next, by I we shall denote the identity and by H(I) the group of units of the
semigroup J‘j\f.

It well known that each partial injective cofinite selfmap f of A induces a
homeomorphism f*: A* — A* of the remainder \* = S\ X of the Stone-Cech
compactification of the discrete space A\. Moreover, under some set theoretic
axioms (like PFA or OCA), each homeomorphism of w* is induced by some
partial injective cofinite selfmap of w (see [I5]-[20]). So the inverse semigroup J§!
admits a natural homomorphism b: Jf\f — H(A*) to the homeomorphism group
FH(A*) of \* and this homomorphism is surjective under certain set theoretic
assumptions.

The semigroups 3 (N) and 3£ (Z) of injective isotone partial selfmaps with
cofinite domains and images of positive integers and integers, respectively, were
studied in [9] and [10]. There it was proved that the semigroups 3£ (N) and
J{o(Z) have properties similar to the bicyclic semigroup: they are bisimple and
every non-trivial homomorphic image of 3 (N) and 3, (Z) is a group, and more-
over, the semigroup 3. (N) has Z(+) as a maximal group image and 3£, (Z) has
Z(+) x Z(+), respectively.

In this paper we shall study algebraic properties of the semigroup J‘j\f. We shall
show that Jf\f is a bisimple inverse semigroup and every chain of idempotents in
J$f is contained in a bicyclic subsemigroup of J§f, we shall describe the Green
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relations on Jf\f and we shall prove that every non-trivial congruence on Jf\f
is a group congruence. Also, we shall describe the structure of the quotient
semigroup Jf\f /o, where o is the least group congruence on Jf\f.

2. Algebraic properties of the semigroup IJ§

PRroOPOSITION 2.1.
(i) 9§t is a simple semigroup.
(ii) An element o of the semigroup ISt is an idempotent if and only if (z)a = =
for every x € doma.
(iii) Ife,. € E(I), then e < ¢ if and only if dome C dom.
(iv) The semilattice E(J$') is isomorphic to (P<y,(A),U) under the mapping
(e)h =X\ dome.
v) Every mazimal chain in is an w-chain.
E imal chain in E(IS) i hai
vi) aRB in IS if and only if dom o = dom 3.
i) aRB in IS if and only if d dom f8
vil) aLB in I§ if and only if ran a = ran 3.
i) alpB inI5 if and only if B
)
)

(viil) aHB in I§' if and only if dom o = dom B and ran v = ran f3.
(ix
Proof.

(1) We shall show that 5 - o - 3§f = I for every element a € I§f. Let o
and 3 are arbitrary elements of the semigroup J5!. We shall choose elements
v, € J‘j\f such that v-a-§ = 5. We put domy = dom g, rany = dom «,
domd = ran« and rand = ran /3. Since the sets A \ doma and A \ dom 3 are
finite we conclude that there exists a bijective map f: doma — dom 3. We put
~v = fand (((z)y) o) 6 = (z)B for all x € dom 3. Then we have that v-«-§ = S.

Statements (ii)—(v) are trivial and they follow from the definition of the semi-
group J§f. The proofs of (vi)—(viii) follow trivially from the fact that I is a
regular semigroup, and [I2: Proposition 2.4.2, Exercise 5.11.2].

aDg for all o, B € Jf\f and hence the semigroup J‘j\f 1s bisimple.

(ix) Let o and /3 be arbitrary elements of the semigroup JS'. Since the sets
A\ doma and A\ ran 8 are finite we conclude that there exists a bijective map
v: doma — ran 8. Then v € I§f and by statements (vi) and (vii) we have that
aRy and BLy in I§f and hence oD in IS O

We denote the group of all bijective transformations of a set of cardinality A
by 8x. Then we get the following:
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COROLLARY 2.2. The group of units H(I) of the semigroup Jf\f is isomorphic
to 8.

For any idempotents € and ¢ of the semigroup J‘j\f we denote:
He)={xelf|x x ' =cand x ' x=1} and H(e) = H(g,e).

Proposition 2| viii) implies that the set H(e,¢) is a H-class and the set H(e) is
a a maximal subgroup in J‘j\f for all idempotents €,¢ € J‘j\f.
Corollary and [5t Proposition 2.20] imply the following:

COROLLARY 2.3. FEwery maximal subgroup of the semigroup J‘j\f 1§ isomorphic
to S/\.

PROPOSITION 2.4. |I§f| = 2/A,

Proof. Since |Ax A| = |A| we have that |Sy| < 2**A = 217 Since (AU = ||
there exists an injective map f: P(A) — Syux from the set P(A) of all subset
of the cardinal A into the group Sy defined in the following way: f(A) is a
bijection on A U A with support A LI A. Then we have that [§y| > 2AA = 2/
and hence |8, | = 2/*!.

Since |P<,(A)] = |P<w(A) X Py (A)] = A we conclude that [5: Theorem 2.20]
and Proposition 2| viii) imply that

957] = 19 2(X) X Pew () X Sl = [P<u(X) X P (V)] - 182] = [A] - 2 = 21V,

(]

PROPOSITION 2.5. For every o, 3 € J‘j\f, both sets

{xeila x=8} and {xei|x -a=8}

are finite. Consequently, every right translation and every left translation by an
element of the semigroup Jf\f s a finite-to-one map.

Proof. We denote
A={xe¥|a-x=8} and B={xe¥|a "t a-x=a" 8}.

Then A C B and the restriction of any partial map x € B onto dom(a~! - «)
coincides with the partial map a~! - 3. Since every partial map from J‘j\f has
cofinite range and cofinite domain we conclude that the set B is finite and hence
so is A. O

PROPOSITION 2.6. Fach mazimal chain L of idempotents in Jf\f coincides with
the idempotent band E(S) of a bicyclic subsemigroup S of JSE.
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Proof. By Proposition 2I](iii), the chain L can be written as L = {&,}22,
where €1 > €9 > -+ > &, > ---. Since every infinite subchain of an w-chain is
also an w-chain we have that Proposition 2.I(v) implies that L is an w-chain.
Then by Proposition [2ZII(iii) we get that dome; \ dome; 11 # & for all positive
integers i. Also, the maximality of L implies that the set dome; \ dome;;q
is a singleton for all positive integers ¢. For every positive integer i we put
{z;} = dome; \ dome;;1. Then we put D = dome; \ |J {z;} and define the
partial maps a: A — A and 8: A — X as follows: e
{an, if 2 =1, €dome; \ D and n > 1;
(x)a = ,
x, if z € D;
and
()8 = {xn_l, if z ==, € dome; \ D and n > 1;
x, if x e D.

Since the set A\ dome; is finite we have that a, 8 € Jf\f and Remark [I] implies
the statement of our proposition. O

Proposition and the Axiom of Choice imply the following proposition.

PROPOSITION 2.7. Each chain of idempotents in Jf\f is contained in a bicyclic
subsemigroup of I

PROPOSITION 2.8. Let € be a congruence on the semigroup Jf\f. If there exist
two non-H-equivalent elements o, € Tj\f such that a€f, then &€ is a group
congruence on IS

Proof. First we suppose that o and 3 are distinct idempotents of the semigroup
Jf\f. Without loss of generality we can assume that o and 8 are compatible and
a < B. Otherwise, replace a by « - 8. Then by Proposition [27] there exists
a maximal chain L in E(J$') such that L contains the elements a and 3, and
hence L contained in a bicyclic subsemigroup S of J‘j\f. Then [B: Corollary 1.32]
implies that € for all elements € and ¢ of the chain L.

Let v be an arbitrary idempotent of the semigroup Jf\f. Obviously, if e,¢ € L
such that € < ¢ then e-v < ¢-v. Since Te is a finite subset of the free semilattice
with unity (P« (A), C) for any e € (P (A), C), we have that Proposition 2I|(iv)
implies that vL is an infinite chain in E(JSf). Then we have that €. for all
e,0 € vL. We put L, = vLU{v} U {I}. Then L, is a chain in E(J§'). Therefore
by Proposition 27 we get that there exists a maximal chain Ly, in E(J5F) which
contains the chain L, and L. is a band of a bicyclic subsemigroup S in Jf\f.
Now [t Corollary 1.32] implies that e€: for all elements e and ¢ of the chain L,,.
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Hence v€T and €T imply that v€a. Therefore all idempotents of the semigroup
J‘j\f are €-equivalent. Since the semigroup J‘j\f is inverse we conclude that quotient
semigroup I /€ contains only one idempotent and by [I3t Lemma I1.1.10] the
semigroup J‘j\f /€ is a group.

Suppose that o and § are distinct non—H-equivalent elements of the semi-
group Jf\f such that a@B. Then Proposition 2] implies that at least one of the
following conditions holds:

aa~t #£ 71 or ata# BB,

By [13 Lemma II1.1.1] we have that a~'€8~'. Then aa !'€af~! and
BB~ 1¢aB~! and hence aa~t¢BA L. Similarly we get that o~ 'a€s~13. Then
the first part of the proof implies that € is a group congruence on J‘f\f. (]

THEOREM 2.9. FEvery non-trivial congruence on the semigroup Jf\f 15 a group
congruence.

Proof. Let € be a non-trivial congruence on the semigroup J§'. Let a and 3
be distinct €-equivalent elements of the semigroup J§. If the elements a and 3
are not H-equivalent then Proposition [2.8 implies the statement of the theorem.

Suppose that a3{5. Then [B: Theorem 2.20] implies that without loss of
generality we can assume that « and  are elements of the group of units H (I)
of the semigroup J§! and hence I€(Ba~1). We denote v = Sa~!. Since I #
we conclude that there exists o € A such that (xg)y # zo. We define ¢ to be
an identity selfmap of the set A\ {zo}. Then ¢ € J§ and (¢ - I)€(e - 7). Since
(z0)y # o we have that Proposition [2J|(viii) implies that the elements ¢ and
€ - v are not H-equivalent. Then by Proposition [Z.8 we get that € is a group
congruence on J‘j\f. O

3. On the least group congruence on the semigroup J§'

Every inverse semigroup S admits the least group congruence o (see [I3t
Section III]):

sot if and only if there exists an idempotent e € S such that se = te.

Theorem Z0implies that every non-injective homomorphism h: J§f — S from
the semigroup Jf\f into an arbitrary semigroup S generates a group congruence h
on J§'. In this section we describe the structure of the quotient semigroup J5 /o
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ProrosiTiON 3.1. If aof in Jf\f then

A\ doma| — |A\ranal = |A\ dom 3| — |\ \ ran j3|.

Proof. Let € be an idempotent of the semigroup Jf\f such that ae = Be. We
shall show that the statement of the proposition holds for the elements o and
Qe.

Without loss of generality we can assume that ¢ < a~la, ie., dome C
dom(a~ta). Since « is an injective partial map with |\ \ doma| < oo and
A\ rana| < oo, and ¢ is an identity map of the cofinite subset dome in A we
conclude that

A\ doma| — |A\ ranal = |A\ dom(ae)| — |\ ran(ae)].

This implies the statement of the proposition. O

For an arbitrary element « of the semigroup Jf\f we denote
d(a) = |\ \ domaf and 7o) = [A\ ran .
PROPOSITION 3.2. If v and 3 are arbitrary elements of the semigroup IS then
d(aB) = T(ap) = d(a) = T(a) +d(B) = F(B).

Proof. We consider four cases.

(B)-
(a),

(1) First we consider the case when ran« C dom 8. We put k = 7(«)
Then the definition of the semigroup J§f implies that k& > 0, d(af)
7(af) =T(B) — k, and hence in this case we get that

d(aB) = T(aB) = d(a) — T(a) + d(B) — T(B).

—d
=d

(2) Suppose that the case when dom 3 C ran a holds. We put k = d(3) —7().
Then the definition of the semigroup J§' implies that k > 0, d(a) = d(a) + k,
7(af) =T(B), and hence in this case we have that

d(aB) = T(aB) = d(a) — T(a) + d(B) — T(B).

(3) Now we consider the case (A \ rana) N (A\ domj3) # &, rana ¢ dom 3
and dom 3 € ran . Then the definition of the semigroup J‘j\f implies that there
exist positive integers i, j and k such that ¢ = [(A\rana) \ (A \ domp)|, j =
[(AM\ rana) N (A\dom )| and & = |(A\domp)\ (A\ran«)|. Then we have
that 7(a) = i + j, d(B) = j+ k, d(aB) = d(a) + k and F(aB) = 7(B) + i.
Therefore, in this case we get that

d(aB) = T(aB) = d(a) — T(a) + d(B) — T(B).
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(4) In the case when (A \rana)N (A \ dom ) = & we have that the definition
of the semigroup J§' implies that d(af) = d(a) +d(B), F(aB) = F(a) + (), and
hence we get that

d(apB) —7(ap) = d(a) — 7(a) + d(B) = 7(B).
This completes the proof of the proposition. O

On the semigroup I we define a relation ~, in the following way:
an~y B if and only if  d(a) —7(a) = d(B) — 7(B),
for o, 8 € I¢L.

PRrROPOSITION 3.3. Let A be an infinite cardinal. Then ~4 is a congruence on
the semigroup J‘j\f and moreover the quotient semigroup J‘j\f/ ~y 18 1somorphic to
the additive group of integers Z(+).

Proof. Simple verifications and Proposition imply that ~; is a congruence
on the semigroup J§'. We define a homomorphism h: J§' — Z(+) by the formula
(@)h = d(a)—7(a). Then the definitions of the semigroup J§' and the congruence
~p on Jf\f, and Proposition imply that thus defined map h is a surjective
homomorphism and moreover (a)h = (8)h if and only if a ~, 8 in I§f. This
completes the proof of the proposition. O

PROPOSITION 3.4. Let A be an infinite cardinal. Then for every element B of
the semigroup 1§ such that d(3) = 7(B) there exists an element « of the group
of units of Jf\f such that aof.

Proof. Fix an arbitrary element 5 of the semigroup Jf\f. Without loss of gen-
erality we can assume that d(3) = 7(8) = k > 0. Let {z1,...,21} = A\ dom 3
and {y1,...,yxt = A\ ran 3. We define a map a: A — X in the following way:

() = (x)B, if = € domp;
"y, ifar=a,i=1,... .k

Then « is an element of the group of units of the semigroup J§' and it is obviously
that ae = Be, where ¢ is the identity map of the set ran . O

For every a € 8, we denote supp(a) = {x € A | (z)a # x}. We define
S° = {a € 8, | supp(«) is finite} .
We observe that the Schreier-Ulam theorem (see [14: Theorem 11.3.4]) implies
that 83° is a normal subgroup of 8, and hence 8,/8%° is a group.

Later on, when € is a congruence on a semigroup S we shall denote the natural
homomorphism generated by the congruence € on S by m¢: S — S/¢€.
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The definition of the least group congruence o on the semigroup Jf\f implies
the following proposition.

PROPOSITION 3.5. Let A be an infinite cardinal. Then the homomorphic image
(H()m, of the group of units H(I) of IS¢ under the natural homomorphism
7o IS — ISE /o is isomorphic to the quotient group 8y /8.

THEOREM 3.6. Let A be an infinite cardinal. Then the following conditions hold:
(1) (HI))m, = 8,/85° is a normal subgroup of the group I /o;
(ii) The group I§f /o contains the infinite cyclic subgroup G (i.e., the additive
group of integers Z(+)) such that GN8 /83 = {e}, where e is the unit of
the group 35t /o,
(iii) 8,/8%° -G =135 /o.

and hence the group I$' /o is isomorphic to the semidirect product 8y /8° x Z(+).

Proof. (i) Since 0 C~y we conclude that [58 Theorem 1.6] implies that there
exists a unique homomorphism g¢: J‘j\f /o — G such that the following diagram

cf o cf
I —=15/o

commutes. Then by Proposition we have that the homomorphic image
(H(I))m, of the group of units H(I) of J§ under the natural homomorphism
7o I$ — J§8 /0 is isomorphic the the quotient group 8)/83°. Now Proposi-
tions B4 and B8 imply that the subgroup (H(I))m, = 8)/8%° of the group I /o
is the kernel of the homomorphism g: I$f /o — G, and hence (H(I))7r, = 8)/8°
is a normal subgroup of Jf\f /o.

(ii) Fix an arbitrary o € J§f such that |\ \ doma| =1 and rana = A. Then
the definition of the congruence ~4 on Jf\f implies that the element o™ is not ~y-
equivalent to any element of the group of units H(I) for every non-zero integer
n, and hence by Proposition we get that ((a)m,)" ¢ 8/83°. This implies
that {((a)7~,)" | n € Z}N8,/8 = {e}, where e is the unit of the group I§ /0.
Also, it is obvious that (a™)m., = n € G and {(a™)7~, | n € Z} is a cyclic
subgroup of 8y /85°.

(iii) Fix an arbitrary element z in J§' /o. Let & be an arbitrary element of the
semigroup J§' be such that (&), = x. If d(¢) = 7(£) then by Proposition [3.4]
we have that 03 for some element § from the group of units of J$f, and hence
we get that z = (B)7, - € € 8,/85° - G, where e is the unit of the group J§ /0.
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Suppose that d(¢) —7(£) = n # 0. Then by Proposition we have that
d(&-(a™)")=F (£ (@™1)™) = 0. Now, Proposition 3.4 implies that the element
¢ - (a™h)™ is o-equivalent to some element 3 of the group of units H(I) of Jf\f.
Then we have that (¢-(a=1)") 71, = (8)7, and since J§' /o is a group we get that
= (87, = (B)7s - (a™)7, € 85/8F° - G. This implies that 8,/8 - G = I /0.

The last statement of the theorem follows from statements (i)—(iii) and [6:
Exercise 2.5.3]. O

Remark 2. Proposition implies that for every infinite cardinal A the group
Jf\f /o has infinitely many normal subgroups and hence the semigroup Jf\f has
infinitely many group congruences.

Acknowledgement. The authors are grateful to the referee for several useful
comments and suggestions.
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