

DOI: 10.1515/ms-2015-0067 Math. Slovaca **65** (2015), No. 5, 981–992

ON MONOIDS OF INJECTIVE PARTIAL COFINITE SELFMAPS

Oleg Gutik* — Dušan Repovš**

(Communicated by Eubica Holá)

ABSTRACT. We study the semigroup $\mathfrak{I}^{cf}_{\lambda}$ of injective partial cofinite selfmaps of an infinite cardinal λ . We show that $\mathfrak{I}^{cf}_{\lambda}$ is a bisimple inverse semigroup and each chain of idempotents in $\mathfrak{I}^{cf}_{\lambda}$ is contained in a bicyclic subsemigroup of $\mathfrak{I}^{cf}_{\lambda}$, we describe the Green relations on $\mathfrak{I}^{cf}_{\lambda}$ and we prove that every non-trivial congruence on $\mathfrak{I}^{cf}_{\lambda}$ is a group congruence. Also, we describe the structure of the quotient semigroup $\mathfrak{I}^{cf}_{\lambda}/\sigma$, where σ is the least group congruence on $\mathfrak{I}^{cf}_{\lambda}$.

> ©2015 Mathematical Institute Slovak Academy of Sciences

1. Introduction and preliminaries

In this paper we shall denote the first infinite ordinal by ω and the cardinality of the set A by |A|. We shall identify all cardinals with their corresponding initial ordinals. We shall denote the set of integers by \mathbb{Z} and the additive group of integers by $\mathbb{Z}(+)$.

A semigroup S is called *inverse* if for every element $x \in S$ there exists a unique $x^{-1} \in S$ such that $xx^{-1}x = x$ and $x^{-1}xx^{-1} = x^{-1}$. The element x^{-1} is called the *inverse of* $x \in S$. If S is an inverse semigroup, then the function inv: $S \to S$ which assigns to every element x of S its inverse element x^{-1} is called the *inversion*.

²⁰¹⁰ Mathematics Subject Classification: Primary 20M20, 20M18; Secondary 20B30. Keywords: bicyclic semigroup, semigroup of bijective partial transformations, congruence, symmetric group, group congruence, semidirect product.

This research was supported by the Slovenian Research Agency grants P1-0292-0101, J1-5435-0101 and J1-6721-0101 and BI-UA/11-12-001.

A congruence \mathfrak{C} on a semigroup S is called *non-trivial* if \mathfrak{C} is distinct from the universal and the identity congruences on S, and a group congruence if the quotient semigroup S/\mathfrak{C} is a group.

If S is a semigroup, then we shall denote the subset of all idempotents in S by E(S). If S is an inverse semigroup, then E(S) is closed under multiplication and we shall refer to E(S) as a band (or the band of S). Then the semigroup operation on S determines the following partial order \leq on E(S): $e \leq f$ if and only if ef = fe = e. This order is called the *natural partial order* on E(S). A semilattice is a commutative semigroup of idempotents. A semilattice E is called *linearly ordered* or a *chain* if its natural order is a linear order. A maximal *chain* of a semilattice E is a chain which is not properly contained in any other chain of E.

The Axiom of Choice implies the existence of maximal chains in every partially ordered set. According to [13: Definition II.5.12], a chain L is called an ω -chain if L is isomorphic to $\{0, -1, -2, -3, \ldots\}$ with the usual order \leq or equivalently, if L is isomorphic to (ω, \max) . Let E be a semilattice and $e \in E$. We put $\downarrow e = \{f \in E \mid f \leq e\}$ and $\uparrow e = \{f \in E \mid e \leq f\}$. By $(\mathcal{P}_{<\omega}(\lambda), \cup)$ we shall denote the *free semilattice with identity* over a set of cardinality $\lambda \geq \omega$, i.e., $(\mathcal{P}_{<\omega}(\lambda), \cup)$ is the set of all finite subsets (with the empty set) of λ with the semilattice operation "union".

If S is a semigroup, then we shall denote the Green relations on S by \mathcal{R} , \mathcal{L} , \mathcal{J} , \mathcal{D} and \mathcal{H} (see [5]). A semigroup S is called *simple* if S does not contain proper two-sided ideals and *bisimple* if S has only one \mathcal{D} -class.

The bicyclic semigroup $\mathcal{C}(p,q)$ is the semigroup with the identity 1 generated by elements p and q subject only to the condition pq = 1. The bicyclic semigroup is bisimple and every one of its congruences is either trivial or a group congruence. Moreover, every homomorphism h of the bicyclic semigroup is either an isomorphism or the image of $\mathcal{C}(p,q)$ under h is a cyclic group (see [5: Corollary 1.32]). The bicyclic semigroup plays an important role in algebraic theory of semigroups and in the theory of topological semigroups. For example a well-known Andersen's result [1] states that a (0-)simple semigroup is completely (0-)simple if and only if it does not contain the bicyclic semigroup. The bicyclic semigroup admits only the discrete topology [7]. The problem of embeddability of the bicycle semigroup into compact-like semigroups was studied in [2–4,8,11].

Remark 1. We observe that the bicyclic semigroup is isomorphic to the semigroup $C_{\mathbb{N}}(\alpha, \beta)$ which is generated by partial transformations α and β of the set of positive integers \mathbb{N} , defined as follows: $(n)\alpha = n+1$ if $n \ge 1$ and $(n)\beta = n-1$ if n > 1 (see [13: Exercise IV.1.11(ii)]).

ON MONOIDS OF INJECTIVE PARTIAL COFINITE SELFMAPS

If T is a semigroup, then we say that a subsemigroup S of T is a *bicyclic* subsemigroup of T if S is isomorphic to the bicyclic semigroup $\mathcal{C}(p,q)$.

Hereafter we shall assume that λ is an infinite cardinal. If $\alpha \colon X \to Y$ is a partial map, then we shall denote the domain and the range of α by dom α and ran α , respectively.

Let \mathcal{I}_{λ} denote the set of all partial one-to-one transformations of an infinite set X of cardinality λ together with the following semigroup operation:

$$x(\alpha\beta) = (x\alpha)\beta$$
 if $x \in \operatorname{dom}(\alpha\beta) = \{y \in \operatorname{dom} \alpha \mid y\alpha \in \operatorname{dom} \beta\}$, for $\alpha, \beta \in \mathfrak{I}_{\lambda}$.

The semigroup \mathcal{I}_{λ} is called the *symmetric inverse semigroup* over the set X (see [5: Section 1.9]). The symmetric inverse semigroup was introduced by Vagner [21] and it plays a major role in the theory of semigroups.

Furthermore, we shall identify the cardinal $\lambda = |X|$ with the set X. By $\mathcal{I}_{\lambda}^{cf}$ we shall denote a subsemigroup of injective partial selfmaps of λ with cofinite domains and ranges in \mathcal{I}_{λ} , i.e.,

 $\mathfrak{I}^{\mathrm{cf}}_{\lambda} = \left\{ \alpha \in \mathfrak{I}_{\lambda} \mid |\lambda \setminus \operatorname{dom} \alpha| < \infty \quad \text{and} \quad |\lambda \setminus \operatorname{ran} \alpha| < \infty \right\}.$

Obviously, $\mathcal{I}_{\lambda}^{cf}$ is an inverse submonoid of the semigroup \mathcal{I}_{λ} . We shall call the semigroup $\mathcal{I}_{\lambda}^{cf}$ the monoid of injective partial cofinite selfmaps of λ .

Next, by \mathbb{I} we shall denote the identity and by $H(\mathbb{I})$ the group of units of the semigroup $\mathcal{I}_{\lambda}^{\mathrm{cf}}$.

It well known that each partial injective cofinite selfmap f of λ induces a homeomorphism $f^* \colon \lambda^* \to \lambda^*$ of the remainder $\lambda^* = \beta \lambda \setminus \lambda$ of the Stone-Čech compactification of the discrete space λ . Moreover, under some set theoretic axioms (like **PFA** or **OCA**), each homeomorphism of ω^* is induced by some partial injective cofinite selfmap of ω (see [15]–[20]). So the inverse semigroup $\mathcal{I}^{cf}_{\lambda}$ admits a natural homomorphism $\mathfrak{h} \colon \mathcal{I}^{cf}_{\lambda} \to \mathcal{H}(\lambda^*)$ to the homeomorphism group $\mathcal{H}(\lambda^*)$ of λ^* and this homomorphism is surjective under certain set theoretic assumptions.

The semigroups $\mathscr{V}_{\infty}^{\prec}(\mathbb{N})$ and $\mathscr{V}_{\infty}^{\prec}(\mathbb{Z})$ of injective isotone partial selfmaps with cofinite domains and images of positive integers and integers, respectively, were studied in [9] and [10]. There it was proved that the semigroups $\mathscr{V}_{\infty}^{\prec}(\mathbb{N})$ and $\mathscr{V}_{\infty}^{\prime}(\mathbb{Z})$ have properties similar to the bicyclic semigroup: they are bisimple and every non-trivial homomorphic image of $\mathscr{V}_{\infty}^{\prime}(\mathbb{N})$ and $\mathscr{V}_{\infty}^{\prime}(\mathbb{Z})$ is a group, and moreover, the semigroup $\mathscr{V}_{\infty}^{\prime}(\mathbb{N})$ has $\mathbb{Z}(+)$ as a maximal group image and $\mathscr{V}_{\infty}^{\prime}(\mathbb{Z})$ has $\mathbb{Z}(+) \times \mathbb{Z}(+)$, respectively.

In this paper we shall study algebraic properties of the semigroup $\mathcal{I}_{\lambda}^{cf}$. We shall show that $\mathcal{I}_{\lambda}^{cf}$ is a bisimple inverse semigroup and every chain of idempotents in $\mathcal{I}_{\lambda}^{cf}$ is contained in a bicyclic subsemigroup of $\mathcal{I}_{\lambda}^{cf}$, we shall describe the Green

OLEG GUTIK — DUŠAN REPOVŠ

relations on $\mathcal{I}_{\lambda}^{cf}$ and we shall prove that every non-trivial congruence on $\mathcal{I}_{\lambda}^{cf}$ is a group congruence. Also, we shall describe the structure of the quotient semigroup $\mathcal{I}_{\lambda}^{cf}/\sigma$, where σ is the least group congruence on $\mathcal{I}_{\lambda}^{cf}$.

2. Algebraic properties of the semigroup $\mathcal{I}_{\lambda}^{cf}$

PROPOSITION 2.1.

- (i) $\mathfrak{I}^{\mathrm{cf}}_{\lambda}$ is a simple semigroup.
- (ii) An element α of the semigroup $\mathbb{J}_{\lambda}^{cf}$ is an idempotent if and only if $(x)\alpha = x$ for every $x \in \operatorname{dom} \alpha$.
- (iii) If $\varepsilon, \iota \in E(\mathfrak{I}^{\mathrm{cf}}_{\lambda})$, then $\varepsilon \leq \iota$ if and only if dom $\varepsilon \subseteq \mathrm{dom}\,\iota$.
- (iv) The semilattice $E(\mathfrak{I}_{\lambda}^{\mathrm{cf}})$ is isomorphic to $(\mathfrak{P}_{<\omega}(\lambda), \cup)$ under the mapping $(\varepsilon)h = \lambda \setminus \operatorname{dom} \varepsilon.$
- (v) Every maximal chain in $E(\mathcal{I}^{cf}_{\lambda})$ is an ω -chain.
- (vi) $\alpha \mathcal{R}\beta$ in $\mathcal{I}^{\text{cf}}_{\lambda}$ if and only if dom $\alpha = \text{dom }\beta$.
- (vii) $\alpha \mathcal{L}\beta$ in $\mathfrak{I}^{\mathrm{cf}}_{\lambda}$ if and only if $\operatorname{ran} \alpha = \operatorname{ran} \beta$.

(viii) $\alpha \mathcal{H}\beta$ in $\mathcal{I}^{cf}_{\lambda}$ if and only if dom $\alpha = \operatorname{dom} \beta$ and $\operatorname{ran} \alpha = \operatorname{ran} \beta$.

(ix) $\alpha \mathcal{D}\beta$ for all $\alpha, \beta \in \mathfrak{I}^{\mathrm{cf}}_{\lambda}$ and hence the semigroup $\mathfrak{I}^{\mathrm{cf}}_{\lambda}$ is bisimple.

Proof.

(i) We shall show that $\mathcal{I}_{\lambda}^{cf} \cdot \alpha \cdot \mathcal{I}_{\lambda}^{cf} = \mathcal{I}_{\lambda}^{cf}$ for every element $\alpha \in \mathcal{I}_{\lambda}^{cf}$. Let α and β are arbitrary elements of the semigroup $\mathcal{I}_{\lambda}^{cf}$. We shall choose elements $\gamma, \delta \in \mathcal{I}_{\lambda}^{cf}$ such that $\gamma \cdot \alpha \cdot \delta = \beta$. We put dom $\gamma = \text{dom }\beta$, ran $\gamma = \text{dom }\alpha$, dom $\delta = \text{ran }\alpha$ and ran $\delta = \text{ran }\beta$. Since the sets $\lambda \setminus \text{dom }\alpha$ and $\lambda \setminus \text{dom }\beta$ are finite we conclude that there exists a bijective map $f: \text{dom }\alpha \to \text{dom }\beta$. We put $\gamma = f$ and $(((x)\gamma)\alpha)\delta = (x)\beta$ for all $x \in \text{dom }\beta$. Then we have that $\gamma \cdot \alpha \cdot \delta = \beta$.

Statements (ii)–(v) are trivial and they follow from the definition of the semigroup $\mathcal{I}_{\lambda}^{\text{cf}}$. The proofs of (vi)–(viii) follow trivially from the fact that $\mathcal{I}_{\lambda}^{\text{cf}}$ is a regular semigroup, and [12: Proposition 2.4.2, Exercise 5.11.2].

(ix) Let α and β be arbitrary elements of the semigroup $\mathcal{I}_{\lambda}^{\text{cf}}$. Since the sets $\lambda \setminus \operatorname{dom} \alpha$ and $\lambda \setminus \operatorname{ran} \beta$ are finite we conclude that there exists a bijective map $\gamma \colon \operatorname{dom} \alpha \to \operatorname{ran} \beta$. Then $\gamma \in \mathcal{I}_{\lambda}^{\text{cf}}$ and by statements (vi) and (vii) we have that $\alpha \mathcal{R}\gamma$ and $\beta \mathcal{L}\gamma$ in $\mathcal{I}_{\lambda}^{\text{cf}}$ and hence $\alpha \mathcal{D}\beta$ in $\mathcal{I}_{\lambda}^{\text{cf}}$.

We denote the group of all bijective transformations of a set of cardinality λ by S_{λ} . Then we get the following:

COROLLARY 2.2. The group of units $H(\mathbb{I})$ of the semigroup $\mathfrak{I}^{cf}_{\lambda}$ is isomorphic to \mathfrak{S}_{λ} .

For any idempotents ε and ι of the semigroup $\mathcal{I}^{cf}_{\lambda}$ we denote:

$$\begin{split} H(\varepsilon,\iota) &= \left\{ \chi \in \mathbb{J}_{\lambda}^{\mathrm{cf}} \mid \chi \cdot \chi^{-1} = \varepsilon \text{ and } \chi^{-1} \cdot \chi = \iota \right\} \qquad \text{and} \qquad H(\varepsilon) = H(\varepsilon,\varepsilon). \\ \text{Proposition 2.1(viii) implies that the set } H(\varepsilon,\iota) \text{ is a \mathcal{H}-class and the set } H(\varepsilon) \text{ is a maximal subgroup in } \mathbb{J}_{\lambda}^{\mathrm{cf}} \text{ for all idempotents } \varepsilon, \iota \in \mathbb{J}_{\lambda}^{\mathrm{cf}}. \end{split}$$

Corollary 2.2 and [5: Proposition 2.20] imply the following:

COROLLARY 2.3. Every maximal subgroup of the semigroup $\mathcal{J}_{\lambda}^{cf}$ is isomorphic to S_{λ} .

Proposition 2.4. $|\mathcal{I}_{\lambda}^{cf}| = 2^{|\lambda|}$.

Proof. Since $|\lambda \times \lambda| = |\lambda|$ we have that $|S_{\lambda}| \leq 2^{|\lambda \times \lambda|} = 2^{|\lambda|}$. Since $|\lambda \sqcup \lambda| = |\lambda|$ there exists an injective map $f: \mathcal{P}(\lambda) \to S_{\lambda \sqcup \lambda}$ from the set $\mathcal{P}(\lambda)$ of all subset of the cardinal λ into the group $S_{\lambda \sqcup \lambda}$ defined in the following way: f(A) is a bijection on $\lambda \sqcup \lambda$ with support $A \sqcup A$. Then we have that $|S_{\lambda}| \geq 2^{|\lambda \sqcup \lambda|} = 2^{|\lambda|}$ and hence $|S_{\lambda}| = 2^{|\lambda|}$.

Since $|\mathcal{P}_{<\omega}(\lambda)| = |\mathcal{P}_{<\omega}(\lambda) \times \mathcal{P}_{<\omega}(\lambda)| = \lambda$ we conclude that [5: Theorem 2.20] and Proposition 2.1(viii) imply that

$$\left|\mathcal{I}_{\lambda}^{\mathrm{cf}}\right| = \left|\mathcal{P}_{<\omega}(\lambda) \times \mathcal{P}_{<\omega}(\lambda) \times \mathcal{S}_{\lambda}\right| = \left|\mathcal{P}_{<\omega}(\lambda) \times \mathcal{P}_{<\omega}(\lambda)\right| \cdot \left|\mathcal{S}_{\lambda}\right| = \left|\lambda\right| \cdot 2^{\left|\lambda\right|} = 2^{\left|\lambda\right|}.$$

PROPOSITION 2.5. For every $\alpha, \beta \in \mathbb{J}_{\lambda}^{cf}$, both sets

$$\left\{\chi\in\mathbb{J}^{\mathrm{cf}}_{\lambda}\mid\alpha\cdot\chi=\beta\right\} \qquad and \qquad \left\{\chi\in\mathbb{J}^{\mathrm{cf}}_{\lambda}\mid\chi\cdot\alpha=\beta\right\}$$

are finite. Consequently, every right translation and every left translation by an element of the semigroup $\mathbb{J}^{cf}_{\lambda}$ is a finite-to-one map.

Proof. We denote

 $A = \left\{ \chi \in \mathfrak{I}^{\mathrm{cf}}_{\lambda} \mid \alpha \cdot \chi = \beta \right\} \quad \text{and} \quad B = \left\{ \chi \in \mathfrak{I}^{\mathrm{cf}}_{\lambda} \mid \alpha^{-1} \cdot \alpha \cdot \chi = \alpha^{-1} \cdot \beta \right\}.$

Then $A \subseteq B$ and the restriction of any partial map $\chi \in B$ onto $\operatorname{dom}(\alpha^{-1} \cdot \alpha)$ coincides with the partial map $\alpha^{-1} \cdot \beta$. Since every partial map from $\mathcal{I}_{\lambda}^{\mathrm{cf}}$ has cofinite range and cofinite domain we conclude that the set B is finite and hence so is A.

PROPOSITION 2.6. Each maximal chain L of idempotents in $\mathfrak{I}^{\mathrm{cf}}_{\lambda}$ coincides with the idempotent band E(S) of a bicyclic subsemigroup S of $\mathfrak{I}^{\mathrm{cf}}_{\lambda}$.

OLEG GUTIK — DUŠAN REPOVŠ

Proof. By Proposition 2.1(iii), the chain L can be written as $L = \{\varepsilon_n\}_{n=1}^{\infty}$ where $\varepsilon_1 > \varepsilon_2 > \cdots > \varepsilon_n > \cdots$. Since every infinite subchain of an ω -chain is also an ω -chain we have that Proposition 2.1(v) implies that L is an ω -chain. Then by Proposition 2.1(iii) we get that dom $\varepsilon_i \setminus \operatorname{dom} \varepsilon_{i+1} \neq \emptyset$ for all positive integers i. Also, the maximality of L implies that the set dom $\varepsilon_i \setminus \operatorname{dom} \varepsilon_{i+1}$ is a singleton for all positive integers i. For every positive integer i we put $\{x_i\} = \operatorname{dom} \varepsilon_i \setminus \operatorname{dom} \varepsilon_{i+1}$. Then we put $D = \operatorname{dom} \varepsilon_1 \setminus \bigcup_{i \in \mathbb{N}} \{x_i\}$ and define the partial maps $\alpha \colon \lambda \to \lambda$ and $\beta \colon \lambda \to \lambda$ as follows:

$$(x)\alpha = \begin{cases} x_{n+1}, & \text{if } x = x_n \in \operatorname{dom} \varepsilon_1 \setminus D \text{ and } n \ge 1; \\ x, & \text{if } x \in D; \end{cases}$$

and

$$(x)\beta = \begin{cases} x_{n-1}, & \text{if } x = x_n \in \operatorname{dom} \varepsilon_1 \setminus D \text{ and } n > 1; \\ x, & \text{if } x \in D. \end{cases}$$

Since the set $\lambda \setminus \operatorname{dom} \varepsilon_1$ is finite we have that $\alpha, \beta \in \mathfrak{I}_{\lambda}^{\operatorname{cf}}$ and Remark 1 implies the statement of our proposition.

Proposition 2.6 and the Axiom of Choice imply the following proposition.

PROPOSITION 2.7. Each chain of idempotents in $\mathbb{J}^{cf}_{\lambda}$ is contained in a bicyclic subsemigroup of $\mathbb{J}^{cf}_{\lambda}$.

PROPOSITION 2.8. Let \mathfrak{C} be a congruence on the semigroup $\mathfrak{I}_{\lambda}^{cf}$. If there exist two non- \mathfrak{H} -equivalent elements $\alpha, \beta \in \mathfrak{I}_{\lambda}^{cf}$ such that $\alpha \mathfrak{C}\beta$, then \mathfrak{C} is a group congruence on $\mathfrak{I}_{\lambda}^{cf}$.

Proof. First we suppose that α and β are distinct idempotents of the semigroup $\mathcal{I}_{\lambda}^{\mathrm{cf}}$. Without loss of generality we can assume that α and β are compatible and $\alpha \leq \beta$. Otherwise, replace α by $\alpha \cdot \beta$. Then by Proposition 2.7 there exists a maximal chain L in $E(\mathcal{I}_{\lambda}^{\mathrm{cf}})$ such that L contains the elements α and β , and hence L contained in a bicyclic subsemigroup S of $\mathcal{I}_{\lambda}^{\mathrm{cf}}$. Then [5: Corollary 1.32] implies that $\varepsilon \mathfrak{C}\iota$ for all elements ε and ι of the chain L.

Let ν be an arbitrary idempotent of the semigroup $\mathcal{I}_{\lambda}^{cf}$. Obviously, if $\varepsilon, \iota \in L$ such that $\varepsilon \leq \iota$ then $\varepsilon \cdot \nu \leq \iota \cdot \nu$. Since $\uparrow e$ is a finite subset of the free semilattice with unity $(\mathcal{P}_{<\omega}(\lambda), \subseteq)$ for any $e \in (\mathcal{P}_{<\omega}(\lambda), \subseteq)$, we have that Proposition 2.1(iv) implies that νL is an infinite chain in $E(\mathcal{I}_{\lambda}^{cf})$. Then we have that $\varepsilon \mathfrak{C}\iota$ for all $\varepsilon, \iota \in \nu L$. We put $L_{\nu} = \nu L \cup \{\nu\} \cup \{\mathbb{I}\}$. Then L_{ν} is a chain in $E(\mathcal{I}_{\lambda}^{cf})$. Therefore by Proposition 2.7 we get that there exists a maximal chain L_{\max} in $E(\mathcal{I}_{\lambda}^{cf})$ which contains the chain L_{ν} and L_{\max} is a band of a bicyclic subsemigroup S in $\mathcal{I}_{\lambda}^{cf}$. Now [5: Corollary 1.32] implies that $\varepsilon \mathfrak{C}\iota$ for all elements ε and ι of the chain L_{ν} . Hence $\nu \mathfrak{CI}$ and $\alpha \mathfrak{CI}$ imply that $\nu \mathfrak{C} \alpha$. Therefore all idempotents of the semigroup $\mathcal{I}_{\lambda}^{\mathrm{cf}}$ are \mathfrak{C} -equivalent. Since the semigroup $\mathcal{I}_{\lambda}^{\mathrm{cf}}$ is inverse we conclude that quotient semigroup $\mathcal{I}_{\lambda}^{\mathrm{cf}}/\mathfrak{C}$ contains only one idempotent and by [13: Lemma II.1.10] the semigroup $\mathcal{I}_{\lambda}^{\mathrm{cf}}/\mathfrak{C}$ is a group.

Suppose that α and β are distinct non- \mathcal{H} -equivalent elements of the semigroup $\mathcal{I}_{\lambda}^{\text{cf}}$ such that $\alpha \mathfrak{C}\beta$. Then Proposition 2.1 implies that at least one of the following conditions holds:

$$\alpha \alpha^{-1} \neq \beta \beta^{-1}$$
 or $\alpha^{-1} \alpha \neq \beta^{-1} \beta$.

By [13: Lemma III.1.1] we have that $\alpha^{-1}\mathfrak{C}\beta^{-1}$. Then $\alpha\alpha^{-1}\mathfrak{C}\alpha\beta^{-1}$ and $\beta\beta^{-1}\mathfrak{C}\alpha\beta^{-1}$ and hence $\alpha\alpha^{-1}\mathfrak{C}\beta\beta^{-1}$. Similarly we get that $\alpha^{-1}\alpha\mathfrak{C}\beta^{-1}\beta$. Then the first part of the proof implies that \mathfrak{C} is a group congruence on $\mathfrak{I}^{\mathfrak{C}}_{\lambda}$.

THEOREM 2.9. Every non-trivial congruence on the semigroup $\mathcal{I}_{\lambda}^{cf}$ is a group congruence.

Proof. Let \mathfrak{C} be a non-trivial congruence on the semigroup $\mathfrak{I}_{\lambda}^{cf}$. Let α and β be distinct \mathfrak{C} -equivalent elements of the semigroup $\mathfrak{I}_{\lambda}^{cf}$. If the elements α and β are not \mathcal{H} -equivalent then Proposition 2.8 implies the statement of the theorem.

Suppose that $\alpha \mathcal{H}\beta$. Then [5: Theorem 2.20] implies that without loss of generality we can assume that α and β are elements of the group of units $H(\mathbb{I})$ of the semigroup $\mathcal{I}^{cf}_{\lambda}$ and hence $\mathbb{I}\mathfrak{C}(\beta\alpha^{-1})$. We denote $\gamma = \beta\alpha^{-1}$. Since $\mathbb{I} \neq \gamma$ we conclude that there exists $x_0 \in \lambda$ such that $(x_0)\gamma \neq x_0$. We define ε to be an identity selfmap of the set $\lambda \setminus \{x_0\}$. Then $\varepsilon \in \mathcal{I}^{cf}_{\lambda}$ and $(\varepsilon \cdot \mathbb{I})\mathfrak{C}(\varepsilon \cdot \gamma)$. Since $(x_0)\gamma \neq x_0$ we have that Proposition 2.1(viii) implies that the elements ε and $\varepsilon \cdot \gamma$ are not \mathcal{H} -equivalent. Then by Proposition 2.8 we get that \mathfrak{C} is a group congruence on $\mathcal{I}^{cf}_{\lambda}$.

3. On the least group congruence on the semigroup $\mathcal{I}_{\lambda}^{cf}$

Every inverse semigroup S admits the least group congruence σ (see [13: Section III]):

 $s\sigma t$ if and only if there exists an idempotent $e \in S$ such that se = te.

Theorem 2.9 implies that every non-injective homomorphism $h: \mathfrak{I}_{\lambda}^{\mathrm{cf}} \to S$ from the semigroup $\mathfrak{I}_{\lambda}^{\mathrm{cf}}$ into an arbitrary semigroup S generates a group congruence \mathfrak{h} on $\mathfrak{I}_{\lambda}^{\mathrm{cf}}$. In this section we describe the structure of the quotient semigroup $\mathfrak{I}_{\lambda}^{\mathrm{cf}}/\sigma$. **Proposition 3.1.** If $\alpha\sigma\beta$ in $\mathfrak{I}^{cf}_{\lambda}$ then

$$|\lambda \setminus \operatorname{dom} \alpha| - |\lambda \setminus \operatorname{ran} \alpha| = |\lambda \setminus \operatorname{dom} \beta| - |\lambda \setminus \operatorname{ran} \beta|.$$

Proof. Let ε be an idempotent of the semigroup $\mathcal{I}_{\lambda}^{\text{cf}}$ such that $\alpha \varepsilon = \beta \varepsilon$. We shall show that the statement of the proposition holds for the elements α and $\alpha \varepsilon$.

Without loss of generality we can assume that $\varepsilon \leq \alpha^{-1}\alpha$, i.e., dom $\varepsilon \subseteq$ dom $(\alpha^{-1}\alpha)$. Since α is an injective partial map with $|\lambda \setminus \operatorname{dom} \alpha| < \infty$ and $|\lambda \setminus \operatorname{ran} \alpha| < \infty$, and ε is an identity map of the cofinite subset dom ε in λ we conclude that

$$|\lambda \setminus \operatorname{dom} \alpha| - |\lambda \setminus \operatorname{ran} \alpha| = |\lambda \setminus \operatorname{dom}(\alpha \varepsilon)| - |\lambda \setminus \operatorname{ran}(\alpha \varepsilon)|.$$

This implies the statement of the proposition.

For an arbitrary element α of the semigroup $\mathcal{I}_{\lambda}^{\text{ef}}$ we denote

$$\overline{d}(\alpha) = |\lambda \setminus \operatorname{dom} \alpha| \quad \text{and} \quad \overline{r}(\alpha) = |\lambda \setminus \operatorname{ran} \alpha|.$$

PROPOSITION 3.2. If α and β are arbitrary elements of the semigroup $\mathbb{J}_{\lambda}^{cf}$ then

$$\overline{d}(\alpha\beta) - \overline{r}(\alpha\beta) = \overline{d}(\alpha) - \overline{r}(\alpha) + \overline{d}(\beta) - \overline{r}(\beta).$$

Proof. We consider four cases.

(1) First we consider the case when $\operatorname{ran} \alpha \subseteq \operatorname{dom} \beta$. We put $k = \overline{r}(\alpha) - \overline{d}(\beta)$. Then the definition of the semigroup $\mathcal{I}_{\lambda}^{\operatorname{cf}}$ implies that $k \ge 0$, $\overline{d}(\alpha\beta) = \overline{d}(\alpha)$, $\overline{r}(\alpha\beta) = \overline{r}(\beta) - k$, and hence in this case we get that

$$\overline{d}(\alpha\beta) - \overline{r}(\alpha\beta) = \overline{d}(\alpha) - \overline{r}(\alpha) + \overline{d}(\beta) - \overline{r}(\beta).$$

(2) Suppose that the case when dom $\beta \subseteq \operatorname{ran} \alpha$ holds. We put $k = \overline{d}(\beta) - \overline{r}(\alpha)$. Then the definition of the semigroup $\mathcal{I}_{\lambda}^{\text{cf}}$ implies that $k \ge 0$, $\overline{d}(\alpha\beta) = \overline{d}(\alpha) + k$, $\overline{r}(\alpha\beta) = \overline{r}(\beta)$, and hence in this case we have that

$$\overline{d}(\alpha\beta) - \overline{r}(\alpha\beta) = \overline{d}(\alpha) - \overline{r}(\alpha) + \overline{d}(\beta) - \overline{r}(\beta).$$

(3) Now we consider the case $(\lambda \setminus \operatorname{ran} \alpha) \cap (\lambda \setminus \operatorname{dom} \beta) \neq \emptyset$, $\operatorname{ran} \alpha \not\subseteq \operatorname{dom} \beta$ and $\operatorname{dom} \beta \not\subseteq \operatorname{ran} \alpha$. Then the definition of the semigroup $\mathfrak{I}_{\lambda}^{\mathrm{cf}}$ implies that there exist positive integers i, j and k such that $i = |(\lambda \setminus \operatorname{ran} \alpha) \setminus (\lambda \setminus \operatorname{dom} \beta)|, j =$ $|(\lambda \setminus \operatorname{ran} \alpha) \cap (\lambda \setminus \operatorname{dom} \beta)|$ and $k = |(\lambda \setminus \operatorname{dom} \beta) \setminus (\lambda \setminus \operatorname{ran} \alpha)|$. Then we have that $\overline{r}(\alpha) = i + j, \overline{d}(\beta) = j + k, \overline{d}(\alpha\beta) = \overline{d}(\alpha) + k$ and $\overline{r}(\alpha\beta) = \overline{r}(\beta) + i$. Therefore, in this case we get that

$$\overline{d}(\alpha\beta) - \overline{r}(\alpha\beta) = \overline{d}(\alpha) - \overline{r}(\alpha) + \overline{d}(\beta) - \overline{r}(\beta).$$

988

(4) In the case when $(\lambda \setminus \operatorname{ran} \alpha) \cap (\lambda \setminus \operatorname{dom} \beta) = \emptyset$ we have that the definition of the semigroup $\mathfrak{I}^{\mathrm{cf}}_{\lambda}$ implies that $\overline{d}(\alpha\beta) = \overline{d}(\alpha) + \overline{d}(\beta), \ \overline{r}(\alpha\beta) = \overline{r}(\alpha) + \overline{r}(\beta), \ \mathrm{and}$ hence we get that

$$\overline{d}(\alpha\beta) - \overline{r}(\alpha\beta) = \overline{d}(\alpha) - \overline{r}(\alpha) + \overline{d}(\beta) - \overline{r}(\beta).$$

This completes the proof of the proposition.

On the semigroup $\mathcal{I}^{cf}_{\lambda}$ we define a relation $\sim_{\mathfrak{d}}$ in the following way:

 $\alpha \sim_{\mathfrak{d}} \beta$ if and only if $\overline{d}(\alpha) - \overline{r}(\alpha) = \overline{d}(\beta) - \overline{r}(\beta)$, for $\alpha, \beta \in \mathcal{I}_{\lambda}^{\mathrm{cf}}$.

PROPOSITION 3.3. Let λ be an infinite cardinal. Then $\sim_{\mathfrak{d}}$ is a congruence on the semigroup \mathtt{J}^{cf}_λ and moreover the quotient semigroup $\mathtt{J}^{cf}_\lambda/\sim_\mathfrak{d}$ is isomorphic to the additive group of integers $\mathbb{Z}(+)$.

Proof. Simple verifications and Proposition 3.2 imply that $\sim_{\mathfrak{d}}$ is a congruence on the semigroup $\mathfrak{I}_{\lambda}^{\mathrm{cf}}$. We define a homomorphism $h: \mathfrak{I}_{\lambda}^{\mathrm{cf}} \to \mathbb{Z}(+)$ by the formula $(\alpha)h = \overline{d}(\alpha) - \overline{r}(\alpha)$. Then the definitions of the semigroup $\mathcal{I}_{\lambda}^{cf}$ and the congruence $\sim_{\mathfrak{d}}$ on $\mathfrak{I}^{\mathrm{cf}}_{\lambda}$, and Proposition 3.2 imply that thus defined map h is a surjective homomorphism and moreover $(\alpha)h = (\beta)h$ if and only if $\alpha \sim_{\mathfrak{d}} \beta$ in $\mathfrak{I}_{\lambda}^{cf}$. This completes the proof of the proposition.

PROPOSITION 3.4. Let λ be an infinite cardinal. Then for every element β of the semigroup $\mathfrak{I}^{\mathrm{cf}}_{\lambda}$ such that $\overline{d}(\beta) = \overline{r}(\beta)$ there exists an element α of the group of units of $\mathcal{I}^{\mathrm{cf}}_{\lambda}$ such that $\alpha\sigma\beta$.

Proof. Fix an arbitrary element β of the semigroup $\mathcal{I}_{\lambda}^{cf}$. Without loss of generality we can assume that $\overline{d}(\beta) = \overline{r}(\beta) = k > 0$. Let $\{x_1, \ldots, x_k\} = \lambda \setminus \operatorname{dom} \beta$ and $\{y_1, \ldots, y_k\} = \lambda \setminus \operatorname{ran} \beta$. We define a map $\alpha \colon \lambda \to \lambda$ in the following way:

$$(x)\alpha = \begin{cases} (x)\beta, & \text{if } x \in \text{dom }\beta; \\ y_i, & \text{if } x = x_i, \ i = 1, \dots, k. \end{cases}$$

Then α is an element of the group of units of the semigroup $\mathcal{I}_{\lambda}^{cf}$ and it is obviously that $\alpha \varepsilon = \beta \varepsilon$, where ε is the identity map of the set ran β .

For every $\alpha \in S_{\lambda}$ we denote $\operatorname{supp}(\alpha) = \{x \in \lambda \mid (x) \alpha \neq x\}$. We define

$$S_{\lambda}^{\infty} = \{ \alpha \in S_{\lambda} \mid \operatorname{supp}(\alpha) \text{ is finite} \}.$$

We observe that the Schreier–Ulam theorem (see [14: Theorem 11.3.4]) implies that S^{∞}_{λ} is a normal subgroup of S_{λ} and hence $S_{\lambda}/S^{\infty}_{\lambda}$ is a group.

Later on, when \mathfrak{C} is a congruence on a semigroup S we shall denote the *natural* homomorphism generated by the congruence \mathfrak{C} on S by $\pi_{\mathfrak{C}} \colon S \to S/\mathfrak{C}$.

989

The definition of the least group congruence σ on the semigroup $\mathcal{I}^{\text{cf}}_{\lambda}$ implies the following proposition.

PROPOSITION 3.5. Let λ be an infinite cardinal. Then the homomorphic image $(H(\mathbb{I}))\pi_{\sigma}$ of the group of units $H(\mathbb{I})$ of $\mathfrak{I}^{\mathrm{cf}}_{\lambda}$ under the natural homomorphism $\pi_{\sigma} \colon \mathfrak{I}^{\mathrm{cf}}_{\lambda} \to \mathfrak{I}^{\mathrm{cf}}_{\lambda}/\sigma$ is isomorphic to the quotient group $\mathfrak{S}_{\lambda}/\mathfrak{S}^{\infty}_{\lambda}$.

THEOREM 3.6. Let λ be an infinite cardinal. Then the following conditions hold:

- (i) $(H(\mathbb{I}))\pi_{\sigma} = S_{\lambda}/S_{\lambda}^{\infty}$ is a normal subgroup of the group $\mathfrak{I}_{\lambda}^{\mathrm{cf}}/\sigma$;
- (ii) The group J^{cf}_λ/σ contains the infinite cyclic subgroup G (i.e., the additive group of integers Z(+)) such that G ∩ S_λ/S[∞]_λ = {e}, where e is the unit of the group J^{cf}_λ/σ;
- (iii) $\mathcal{S}_{\lambda}/\mathcal{S}_{\lambda}^{\infty} \cdot G = \mathcal{I}_{\lambda}^{\mathrm{cf}}/\sigma$.

and hence the group $\mathfrak{I}_{\lambda}^{\mathrm{cf}}/\sigma$ is isomorphic to the semidirect product $\mathfrak{S}_{\lambda}/\mathfrak{S}_{\lambda}^{\infty}\ltimes\mathbb{Z}(+)$.

Proof. (i) Since $\sigma \subseteq \sim_{\mathfrak{d}}$ we conclude that [5: Theorem 1.6] implies that there exists a unique homomorphism $g: \mathfrak{I}_{\lambda}^{\mathrm{cf}}/\sigma \to G$ such that the following diagram

commutes. Then by Proposition 3.5 we have that the homomorphic image $(H(\mathbb{I}))\pi_{\sigma}$ of the group of units $H(\mathbb{I})$ of $\mathfrak{I}_{\lambda}^{\mathrm{cf}}$ under the natural homomorphism $\pi_{\sigma} \colon \mathfrak{I}_{\lambda}^{\mathrm{cf}} \to \mathfrak{I}_{\lambda}^{\mathrm{cf}}/\sigma$ is isomorphic the the quotient group $\mathfrak{S}_{\lambda}/\mathfrak{S}_{\lambda}^{\infty}$. Now Propositions 3.4 and 3.5 imply that the subgroup $(H(\mathbb{I}))\pi_{\sigma} = \mathfrak{S}_{\lambda}/\mathfrak{S}_{\lambda}^{\infty}$ of the group $\mathfrak{I}_{\lambda}^{\mathrm{cf}}/\sigma$ is the kernel of the homomorphism $g \colon \mathfrak{I}_{\lambda}^{\mathrm{cf}}/\sigma \to G$, and hence $(H(\mathbb{I}))\pi_{\sigma} = \mathfrak{S}_{\lambda}/\mathfrak{S}_{\lambda}^{\infty}$ is a normal subgroup of $\mathfrak{I}_{\lambda}^{\mathrm{cf}}/\sigma$.

(ii) Fix an arbitrary $\alpha \in \mathcal{J}_{\lambda}^{cf}$ such that $|\lambda \setminus \operatorname{dom} \alpha| = 1$ and $\operatorname{ran} \alpha = \lambda$. Then the definition of the congruence $\sim_{\mathfrak{d}}$ on $\mathcal{J}_{\lambda}^{cf}$ implies that the element α^{n} is not $\sim_{\mathfrak{d}}$ equivalent to any element of the group of units $H(\mathbb{I})$ for every non-zero integer n, and hence by Proposition 3.5 we get that $((\alpha)\pi_{\sigma})^{n} \notin S_{\lambda}/S_{\lambda}^{\infty}$. This implies that $\{((\alpha)\pi_{\sim_{\mathfrak{d}}})^{n} \mid n \in \mathbb{Z}\} \cap S_{\lambda}/S_{\lambda}^{\infty} = \{e\}$, where e is the unit of the group $\mathcal{J}_{\lambda}^{cf}/\sigma$. Also, it is obvious that $(\alpha^{n})\pi_{\sim_{\mathfrak{d}}} = n \in G$ and $\{(\alpha^{n})\pi_{\sim_{\mathfrak{d}}} \mid n \in \mathbb{Z}\}$ is a cyclic subgroup of $S_{\lambda}/S_{\lambda}^{\infty}$.

(iii) Fix an arbitrary element x in $\mathcal{I}_{\lambda}^{\text{cf}}/\sigma$. Let ξ be an arbitrary element of the semigroup $\mathcal{I}_{\lambda}^{\text{cf}}$ be such that $(\xi)\pi_{\sigma} = x$. If $\overline{d}(\xi) = \overline{r}(\xi)$ then by Proposition 3.4 we have that $\xi\sigma\beta$ for some element β from the group of units of $\mathcal{I}_{\lambda}^{\text{cf}}$, and hence we get that $x = (\beta)\pi_{\sigma} \cdot e \in \mathcal{S}_{\lambda}/\mathcal{S}_{\lambda}^{\infty} \cdot G$, where e is the unit of the group $\mathcal{I}_{\lambda}^{\text{cf}}/\sigma$.

Suppose that $\overline{d}(\xi) - \overline{r}(\xi) = n \neq 0$. Then by Proposition 3.2 we have that $\overline{d}(\xi \cdot (\alpha^{-1})^n) - \overline{r}(\xi \cdot (\alpha^{-1})^n) = 0$. Now, Proposition 3.4 implies that the element $\xi \cdot (\alpha^{-1})^n$ is σ -equivalent to some element β of the group of units $H(\mathbb{I})$ of $\mathcal{I}_{\lambda}^{\mathrm{cf}}$. Then we have that $(\xi \cdot (\alpha^{-1})^n)\pi_{\sigma} = (\beta)\pi_{\sigma}$ and since $\mathcal{I}_{\lambda}^{\mathrm{cf}}/\sigma$ is a group we get that $x = (\xi)\pi_{\sigma} = (\beta)\pi_{\sigma} \cdot (\alpha^n)\pi_{\sigma} \in \mathcal{S}_{\lambda}/\mathcal{S}_{\lambda}^{\infty} \cdot G$. This implies that $\mathcal{S}_{\lambda}/\mathcal{S}_{\lambda}^{\infty} \cdot G = \mathcal{I}_{\lambda}^{\mathrm{cf}}/\sigma$.

The last statement of the theorem follows from statements (i)–(iii) and [6: Exercise 2.5.3]. \Box

Remark 2. Proposition 3.3 implies that for every infinite cardinal λ the group $\mathcal{J}_{\lambda}^{\text{cf}}/\sigma$ has infinitely many normal subgroups and hence the semigroup $\mathcal{J}_{\lambda}^{\text{cf}}$ has infinitely many group congruences.

Acknowledgement. The authors are grateful to the referee for several useful comments and suggestions.

REFERENCES

- ANDERSEN, O.: Ein Bericht über die Struktur abstrakter Halbgruppen. PhD Thesis, Hamburg, 1952.
- [2] ANDERSON, L. W.—HUNTER, R. P.—KOCH, R. J.: Some results on stability in semigroups, Trans. Amer. Math. Soc. 117 (1965), 521–529.
- [3] BANAKH, T.—DIMITROVA, S.—GUTIK, O.: The Rees-Suschkiewitsch theorem for simple topological semigroups, Mat. Stud. 31 (2009), 211–218.
- [4] BANAKH, T.—DIMITROVA, S.—GUTIK, O.: <u>Embedding the bicyclic semigroup into</u> <u>countably compact topological semigroups</u>, Topology Appl. 157 (2010), 2803–2814.
- [5] CLIFFORD, A. H.—PRESTON, G. B.: The Algebraic Theory of Semigroups, Vol. I/II, Amer. Math. Soc., Providence, RI, 1961/1967.
- [6] DIXON, J. D.—MORTIMER, B.: Permutation Groups, Springer, Berlin, 1996.
- [7] EBERHART, C.—SELDEN, J.: On the closure of the bicyclic semigroup, Trans. Amer. Math. Soc. 144 (1969), 115–126.
- [8] GUTIK, O.—REPOVŠ, D.: On countably compact 0-simple topological inverse semigroups, Semigroup Forum 75 (2007), 464–469.
- [9] GUTIK, O.—REPOVŠ, D.: Topological monoids of monotone injective partial selfmaps of N with cofinite domain and image, Studia Sci. Math. Hungar. 48 (2011), 342–353.
- [10] GUTIK, O.—REPOVŠ, D.: On monoids of injective partial selfmaps of integers with cofinite domains and images, Georgian Math. J. 19 (2012), 511–532.
- [11] HILDEBRANT, J. A.—KOCH, R. J.: Swelling actions of Γ-compact semigroups, Semigroup Forum 33 (1986), 65–85.
- [12] HOWIE, J. M.: Fundamentals of Semigroup Theory. London Math. Soc. Monogr. Ser. 12, Clarendon Press, Oxford, 1995.
- [13] PETRICH, M.: Inverse Semigroups. Pure Appl. Math., John Wiley & Sons, New York, 1984.
- [14] SCOTT, W. R.: Group Theory, Dover Publications, Inc., New York, 1987.

OLEG GUTIK — DUŠAN REPOVŠ

- [15] SHELAH, S.—STEPRĀNS, J.: Non-trivial homeomorphisms of $\beta N \setminus N$ without the Continuum Hypothesis, Fund. Math. **132** (1989), 135–141.
- [16] SHELAH, S.—STEPRĀNS, J.: Somewhere trivial autohomeomorphisms, J. Lond. Math. Soc. (2) 49 (1994), 569–580.
- [17] SHELAH, S.—STEPRĀNS, J.: Martin's axiom is consistent with the existence of nowhere trivial automorphisms, Proc. Amer. Math. Soc. 130 (2002), 2097–2106.
- [18] VELIČKOVIĆ, B.: Definable automorphisms of $\mathcal{P}(\omega)/\text{ fin}$, Proc. Amer. Math. Soc. 96 (1986), 130–135.
- [19] VELIČKOVIČ, B.: Applications of the Open Coloring Axiom. In: Set Theory of the Continuum (H. Judah, W. Just, H. Woodin, eds.). Pap. Math. Sci. Res. Inst. Workshop, Berkeley, 1989, Math. Sci. Res. Inst. Publ. 26, Springer-Verlag, Berlin, 1992, pp. 137–154.
- [20] VELIČKOVIĆ, B.: OCA and automorphisms of $\mathcal{P}(\omega)/\text{ fin}$, Topology Appl. **49** (1993), 1–13.
- [21] VAGNER, V. V.: Generalized groups, Dokl. Akad. Nauk SSSR 84 (1952), 1119–1122 (Russian).

Received 23. 10. 2012 Accepted 22. 11. 2012 * Department of Mechanics and Mathematics Ivan Franko National University of Lviv Universytetska 1 Lviv, 79000 UKRAINE E-mail: o_gutik@franko.lviv.ua ovgutik@yahoo.com

** Faculty of Education, and Faculty of Mathematics and Physics University of Ljubljana Kardeljeva ploščad 16 Ljubljana, 1000 SLOVENIA E-mail: dusan.repovs@guest.arnes.si