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Abstract

We describe the structure of 0-simple countably compact topological inverse
semigroups and the structure of congruence-free countably compact topological
inverse semigroups.
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We follow the terminology of [3], [4], [8]. In this paper all topological spaces
are Hausdorff. If S is a semigroup then we denote the subset of idempotents
of S by E(S). A topological space S that is algebraically a semigroup with a
continuous semigroup operation is called a topological semigroup. A topological
inverse semigroup is a topological semigroup S that is algebraically an inverse
semigroup with continuous inversion. If Y is a subspace of a topological space
X and ACY, then we denote by cly (A) the topological closure of A in Y.
The bicyclic semigroup %(p,q) is the semigroup with the identity 1
generated by two elements p and ¢, subject only to the condition pg = 1. The
bicyclic semigroup plays an important role in the algebraic theory of semigroups
and in the theory of topological semigroups. For example, the well-known
Andersen’s result [1] states that a (0—) simple semigroup is completely (0-)
simple if and only if it does not contain the bicyclic semigroup. The bicyclic
semigroup admits only the discrete topology and a topological semigroup S
can contain €(p,q) only as an open subset [7]. Neither stable nor I'-compact
topological semigroups can contain a copy of the bicyclic semigroup [2], [12].
Let S be a semigroup and I a non-empty set of cardinality A\. We define
the semigroup operation /- / on the set By(S) = I\xS*xI\U{0} as follows

R (X

*This research was supported by the Slovenian Research Agency grants P1-0292-0101-04
and BI-UA/04-06-007. We thank the referee and the editor for comments.




GUTIK AND REPOVS 465

and (a,a,B)-0 = 0-(a,a,3) = 0-0 = 0, for «,3,7,0€l, and a,beS!. The
semigroup By(S) is called a Brandt X-extension of the semigroup S [10].
Furthermore, if ACS then we shall denote 4,3 = {(a, s, 8) | s€A} for «, Bl .
If a semigroup S is trivial (i.e. if S contains only one element), then By(S) is
the semigroup of I\xIy-matriz units [4], which we shall denote by By. By
Theorem 3.9 of [4], an inverse semigroup 7T is completely O-simple if and
only if T is isomorphic to a Brandt A-extension B)(G) of some group G
and A > 1. We also note that if A = 1, then the semigroup B\(S) is
isomorphic to the semigroup S with adjoint zero. Gutik and Pavlyk [11] proved
that any continuous homomorphism from the infinite topological semigroup of
matrix units into a compact topological semigroup is annihilating, and hence the
infinite topological semigroup of matrix units does not embed into a compact
topological semigroup. They also showed that if a topological inverse semigroup
S contains a semigroup of matrix units B), then B, is a closed subsemigroup
of S.

Suschkewitsch [17] proved that any finite semigroup S contains a min-
imal ideal K. He also showed that K is a completely simple semigroup and
described the structure of finite simple semigroups. Rees [15] generalized the
Suschkewitsch Theorem and showed that if a semigroup S contains a minimal
ideal K then K is isomorphic to a Rees matrix semigroup M|[G; I, A, P] over a
group G with a regular sandwich matrix P. He also proved that any completely
0-simple semigroup is isomorphic to a Rees matrix semigroup M[G;1, A, P]
over a 0-group GV with a regular sandwich matrix P. Wallace [18] proved
the topological analogue of the Suschkewitsch-Rees Theorem for compact topo-
logical semigroups: every compact topological semigroup contains a minimal
ideal, which is topologically isomorphic to a topological paragroup. Paalman-
de-Miranda [14] proved that any 0-simple compact topological semigroup S
is completely O-simple, the zero of S is an isolated point in S and S\{0} is
homeomorphic to the topological product X xGxY , where X and Y are com-
pact topological spaces and G is homeomorphic to the underlying space of a
maximal subgroup of S, contained in S\{0}. Owen [13] showed that if S is a
locally compact completely simple topological semigroup, then S has a struc-
ture similar to a compact simple topological semigroup. Owen also gave an
example which shows that a similar statement does not hold for a locally com-
pact completely 0-simple topological semigroup. Gutik and Pavlyk [11] proved
that the subsemigroup of idempotents of a compact 0-simple topological in-
verse semigroup is finite, and hence the topological space of a compact 0-simple
topological inverse semigroup is homeomorphic to a finite topological sum of
compact topological group and a single point.

A Hausdorff topological space X is called countably compact if any open
countable cover of X contains a finite subcover [8]. In this paper we shall
prove that the bicyclic semigroup cannot be embedded into any countably
compact topological inverse semigroup. We shall also describe the structure of
0-simple countably compact topological inverse semigroups and the structure
of congruence-free countably compact topological inverse semigroups.
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Theorem 1. A countably compact topological inverse semigroup cannot con-
tain the bicyclic semigroup. Therefore every (0-)simple countably compact topo-
logical inverse semigroup is (0-)completely simple.

Proof. Let T be a countably compact topological inverse semigroup and sup-
pose that T contains €'(p, q) as a subsemigroup. Let .S = clp(€(p, q)). Then by
Theorem 3.10.4 of [8], S is a countably compact space and by Proposition I1.2
of [7], S is a topological inverse semigroup. Thus by Corollary 1.2 of [7], the
semigroup €(p, q) is a discrete subspace of S and by Theorem 1.3 of [7], € (p, q)
is an open subspace of S and S\%(p, q) is an ideal in S. Therefore any element
of €(p,q) is an isolated point in the topological space S. We define the maps
p: S—E(S) and ¢: S—E(S) by the formulae ¢(x) = zx~! and ¢ (z) = 2 1.
Since S\ (p,q) is an ideal of S, A = =1 ({1}) Uy~ 1({1})C%(p,q), and since
the maps ¢ and v are continuous A is a clopen and hence countably com-
pact infinite subset of S. But A is an open subspace of S whose elements are
isolated points in S. A contradiction.

The second part of the theorem follows from Theorem 2.54 of [4]. m

Let . be a class of topological semigroups. Let A be a cardinal > 1,
and (S, 7)e.”. Let 75 be a topology on By (S) such that (Bx(S),75) € and
TB|(a,5,0) = T for some a € Iy. Then (Bx(S),7p) is called a topological Brandt
A-extension of (S,7) in .7 [10].

Let «,f8,v,6€I, and A be a subspace of S. Since the restriction
‘pz%‘Aaﬂ:Aaﬁ — A.s of the map (pl‘sﬁ: B)(S)—DBx(S) defined by the formula

cpl%(s) =(v,1,a)-s-(0,1,6) is a homeomorphism, we get the following:

Lemma 1. Let A > 1 and B)(S) be a topological Brandt X-extension of a
topological semigroup S and A a subspace of S. Then the subspaces Ang and
As in BA(S) are homeomorphic for all «, 3,7, 8€1I .

Theorem 2. Let S be a 0-simple countably compact topological inverse
semigroup. Then there exist a nonempty finite set In of cardinality \ and
a countably compact topological group H such that S is topologically isomor-
phic to a topological Brandt A-extension By(H) of H in the class of topological
inverse semigroups. Moreover, S is homeomorphic to a finite topological sum
of countable compact topological groups and a single point.

Proof. By Theorem 1, the semigroup S is completely 0-simple. Now Theo-
rem 3.9 of [4] implies that there exist a nonempty set I of cardinality A and a
group G such that S is algebraically isomorphic to By(G). Therefore for any
a€ly the subset G, is a subgroup of By(G) and since By(G) is a topologi-
cal inverse semigroup, a topological subspace G, of B)(G) with the induced
multiplication is a topological group. We fix a€l) an put H = G,o. Then
the topological semigroup S is topologically isomorphic to a topological Brandt
A-extension By(H) of the topological group H .
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Let ey be the identity of H. Then the subsemigroup Bj(ey) = {0} U
{(a,eq,B) | a, B} of By(H) is algebraically isomorphic to the semigroup
of matrix units By. By Theorem 14 [11], By(eg) is a closed subsemigroup of
B)(H) and hence by Theorem 3.10.4 of [8], Bx(em) is a countably compact
topological space. Therefore Theorem 6 of [11] implies that By(ey) is a finite
discrete subsemigroup of By(H) and hence the set I is finite.

We define the maps ¢: Byx(H)—Bx(ey) and ¢: B\(H)—By(ex) by the
formulae ¢(z) = zz~! and ¥ (z) = 2~ 'z. Since Byx(H) is a topological inverse
semigroup, the maps ¢ and v continuous and hence by Lemma 4 of [11], the
set Hop = o ((a,em, 8))Ne~ (o, em, 3)) is clopen in By(H). By Lemma 1,
the subspaces H,g and H,s are homeomorphic for any «, 3,7, €1, and hence
all of them are homeomorphic to the topological group H . |

A Tychonoff topological space X is called pseudocompact if every con-
tinuous real-valued function on X is bounded. Since the topological space of
Ty-topological group is Tychonoff and any topological sum of Tychonoff spaces
is a Tychonoff space, Theorem 3.10.20 of [8] implies:

Corollary 1. The topological space of a 0-simple countably compact topo-
logical inverse semigroup is Tychonoff and hence pseudocompact.

Let X be a topological space. The pair (Y,c), where Y is a compactum
and ¢: X—X is a homeomorphic embedding of X into Y, such that cly¢(X) =
Y, is called a compactification of the space X . Define the ordering < on
the family C(X) of all compactifications of a topological space X as follows:
co(X)=e1(X) if and only if there exists a continuous map f: ¢1(X)—ca(X)
such that fc; = c¢o. The greatest element of the family C(X) with respect
to the ordering < is called the Stone-Cech compactification of the space X
and it is denoted by SX. Comfort and Ross [6] proved that the Stone-Cech
compactification of a pseudocompact topological group is a topological group.
The next theorem is an analogue of the Comfort—Ross Theorem:

Theorem 3. Let S be a 0-simple countable compact topological inverse
semigroup. Then the Stone-Cech compactification of S admits a structure of
0-simple topological inverse semigroup with respect to which the inclusion map-
ping of S into BS is a topological isomorphism.

Proof. By Theorem 2, S is topologically isomorphic to a Brandt A-extension
of some topological group H in the class of topological inverse semigroups and
A < w. Now by Lemma 1, the subspaces H,g and H,s are homeomorphic
in B\(H), for any «,3,v,8€I,. Since a maximal subgroup in S is closed we
have that H,g is a clopen subset of By(H), for every a, S€ly. By Corollary 1,
the topological space By(H) is pseudocompact. Since any clopen subspace of a
pseudocompact topological space is pseudocompact (see [5]) the subspace H,g is
pseudocompact, for every a, Sl . Obviously, the topological space By(H)\{0}
is homeomorphic to H xIyxIy. Since the topological space I x I is finite and
hence compact, by Corollary 3.10.27 of [8], the space Byx(H)\{0} is pseudo-
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compact. Now by Theorem 1 of [9], we have S(HxI\xIy) = BHxBI\xBI\ =
BHxIy\xIy and therefore B(Bx(H)) = BA(GH). ]

Corollary 2. Every 0-simple countable compact topological inverse semi-
group is a dense subsemigroup of a 0-simple compact topological inverse semi-
group.

If S is completely simple inverse semigroup then the semigroup S with
joined zero S° is completely O-simple and hence by Theorem 3.9 of [4], the
semigroup S° is isomorphic to a Brandt A-extension By(G) of some group
G. Therefore any nonzero idempotent of S° is primitive. Let e and f are
nonzero idempotents of S. Since S is an inverse subsemigroup of S° we
have ef = fe < e and ef = fe < f, and hence e = ef = f. Thus, the inverse
semigroup S contains the unique idempotent and hence it is a group. Therefore
a completely simple inverse semigroup is a group and Theorem 1 implies that
every simple countably compact topological inverse semigroup is a topological
group.

A semigroup S is called congruence-free if it has only two congruences:
the identity relation and the universal relation [16].

Theorem 4. Let S be a congruence-free countably compact topological in-
verse semigroup with zero. Then S is isomorphic to a finite semigroup of matriz
units.

Proof.  Suppose not. Since the semigroup S contains a zero by Theo-
rem 2, S is topologically isomorphic to a topological Brandt M-extension
B)\(H) of a pseudocompact topological group H in the class of topological
inverse semigroups and A < w. Suppose that the group H is not triv-
ial. Then we define a map h:By(H)—B) by the formulae h((a,g,0)) =
(a, 8) and h(0) = 0. Since h((a,g,8)(7,s,6))=h((a,gs,6)) = (a,8) =
(o, B)(7,0) = h((a, g, 8))h((7, 8,0)) for B =7~ and h((a, g, B)(7,s,0)) = h(0) =
0= (o, 0)(7,6) = h((r,9,08))((7,s,6)) for § # ~, the map h is a homomor-
phism. This contradicts the assumption that S is a congruence-free semigroup.

]
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