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Simply Connected 3-Manifolds with a Dense
Set of Ends of Specified Genus
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Abstract. We show that for every sequence (ni), where each ni is either
an integer greater than 1 or is ∞, there exists a simply connected open
3-manifold M with a countable dense set of ends {ei} so that, for every
i, the genus of end ei is equal to ni. In addition, the genus of the ends
not in the dense set is shown to be less than or equal to 2. These simply
connected 3-manifolds are constructed as the complements of certain
Cantor sets in S3. The methods used require careful analysis of the
genera of ends and new techniques for dealing with infinite genus.
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1. Introduction

The ends of an open 3-manifold M are determined by any properly nested
sequence C1 ⊂ C2 ⊂ . . . of compact 3-manifolds Ci whose union is M . Such
a sequence is called an exhaustion of M . The components of M \ Ci form an
inverse sequence with the bonding maps given by inclusions.

Each end e is a point in this inverse sequence. An end e is thus associated
with a sequence D1 ⊃ D2 . . . where Di is a component of M \Ci. The genus of
the end e associated with the sequence (Ci), denoted by g(e, (Ci)), is defined
to be sup{g(Di)}, where g(Di) is the genus of the boundary of Di. The genus
of the end e, denoted by g(e), is the minimum of g(e, (Ci)), taken over all
possible exhaustions (Ci) of the manifold M .

The endpoint (or Freudenthal) compactification of M adds a point to
M for each end. We say that a set of ends is dense (in the set of all ends)
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if it is dense in the set of all ends of the endpoint compactification. For
background on endpoint compactifications and the theory of ends, see [8,
9,14,19]. For an alternate proof using defining sequences of the result that
every homeomorphism of the open 3-manifold extends to a homeomorphism
of its endpoint compactification, see [10].

It is easy to construct 3-manifolds with a finite number of ends of spec-
ified genus. For example, if H is a surface of genus k, then H × R has two
ends of genus k. It is more difficult to construct simply connected examples
or examples with more complicated end structures. The examples we produce
will be complements of certain Cantor sets in S3. The Cantor sets will have
simply connected complements and the end sets of the complements will be
these Cantor sets. See Kirkor [15], DeGryse and Osborne [7], Ancel and Star-
bird [1], and Wright [24] for further discussion of wild (non-standard) Cantor
sets with simply connected complement. For more recent results on Cantor
sets with simply connected complements, see [11,12].

The main theorem we will prove in this paper is the following.

Theorem 1.1. Let S = (n1, n2, . . .) be a sequence where each ni is either an
integer greater than 1 or is ∞. Then, there is a simply connected open 3-
manifold M = MS with uncountably many ends so that the following holds:
There is a countable dense set D of ends {e1, e2, . . .} in the endpoint com-
pactification of M so that, for every i, the genus of ei is ni. The genus of
each end not in D is less than or equal to 2.

This theorem will follow as a corollary of the following result about
Cantor sets in S3.

Theorem 1.2. Let S = (n1, n2, . . .) be a sequence where each ni is either an
integer greater than 1 or is ∞. Then, there is a Cantor set C = CS in S3 with
simply connected complement so that the following holds: There is a countable
dense set D of points {x1, x2, . . .} in C so that, for every i, the local genus
of C at xi is ni. The local genus of C at each point not in D is less than or
equal to 2.

Section 2 provides details about the local genus of points in a Cantor
set in S3 (introduced in [25]) and relates this to the genus of an end of the
3-manifold that is the complement of the Cantor set. Section 3 gives two
replacement constructions we will need in the construction of our examples.
Section 4 gives the main construction of our examples. Section 5 shows that
the examples we construct give a proof of the theorems from Sect. 1. Section
6 lists some question arising from our results.

For the remainder of this paper, we assume all surfaces referred to are
closed (i.e. compact, connected and without boundary) and that all 1-handles
are orientable and unknotted.

2. Local Genus of Points in a Cantor Set

We review the definition and some facts from [25] about the local genus of
a point in a Cantor set in S3. At the end of this section, we relate the local
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genus of a point x in a Cantor set C ⊂ S3 to the genus of an end x of
the complementary 3-manifold S3 \ C. We use IntX and FrX to denote the
topological interior and boundary of a subset X of a space Y .

Let C be a Cantor set in S3. A defining sequence for C is a nested
sequence (Mi) of compacta Mi ⊂ C whose intersection is C such that each
Mi consists of pairwise disjoint handlebodies and so that, for every i, Mi+1 ⊂
IntMi. The genus of a handlebody H is denoted by g(H).

Let D(C) be the set of all defining sequences for C. Let (Mi) ∈ D(C).
For any x ∈ C, we denote by M

{x}
i the component of Mi which contains x.

Define

gx(C; (Mi)) = sup{g(M{x}
i ); i ≥ 0} and

gx(C) = inf{gx(C; (Mi)); (Mi) ∈ D(C)}.

The number gx(C) is called the local genus of the Cantor set C at the point
x.

Remark 2.1. This definition immediately implies that gx(D) ≤ gx(C) if D is
a Cantor set contained in C.

Determining gx(C) using the definition can be difficult. If a defining
sequence for C is given, one can easily determine an upper bound. The idea
of slicing discs introduced in [3] can be used to derive the following addition
theorem for local genus. This can then be used for establishing the exact local
genus. See [25, Theorem 14] for details.

Theorem 2.2. Let X,Y ⊂ S3 be Cantor sets and p a point in X ∩Y . Suppose
there exist a 3-ball B and a 2-disc D ⊂ B such that

1. p ∈ Int B, FrD = D ∩ FrB, D ∩ (X ∪ Y ) = {p}; and
2. X ∩ B ⊂ BX ∪ {p} and Y ∩ B ⊂ BY ∪ {p} where BX and BY are the

components of B \ D.

Then, gp(X ∪ Y ) = gp(X) + gp(Y ).

The 2-disc D in the above theorem is called a slicing disc for the Cantor
set X ∪ Y .

The lemma below points out the relationship between genus of an end
and local genus of points in a Cantor set in the context we are discussing.

Lemma 2.3. Let C ⊂ S3 be a Cantor set. Let M = S3\C. Then, the endpoint
compactification of M is S3 with the ends of M corresponding to the points
in C. The genus g(e) of an end e of M is equal to the local genus ge(C) of e
in C.

The proof of this lemma is just an exercise in the definitions. This
follows since every defining sequence (Mi) for C corresponds to an exhaustion
C1 ⊂ C2 ⊂ . . . of M where Ci = S3 \ Mi.
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(a) Original Handlebody (b) Original and Replace-
ment

(c) Replacement Handle-
body

Figure 1. Genus Replacement

3. Replacement Constructions

In this section, given a solid handlebody H ⊂ S3, we define two possible
constructions that replace H by one or more handlebodies contained in the
interior of H. These replacement constructions will be used in the next sec-
tion in constructing a defining sequence for a certain Cantor set with the
properties needed for the proof of the main theorem.

3.1. Genus Replacement

(See Fig. 1.) Let H be a unknotted genus k solid handlebody in S3. View H
as a solid ball with k 1-handles attached as in Fig. 1a.

The genus replacement construction replaces H by a handlebody H ′ ⊂
H of genus k+1. One of the handles of H is replaced by two smaller handles.
One of the new handles is a parallel interior copy of the replaced handle. The
other new handle is contractible in H and lies in the interior of the replaced
handle as in Fig. 1. As a final step, remove a small neighborhood of the
boundary of the new handlebody to guarantee that H ′ is in the interior of H
as needed for a defining sequence.

3.2. Size Replacement

(See Fig. 2). Let H be an unknotted genus k solid handlebody in S3. View H
as a solid ball with k 1-handles attached as in Fig. 1a. Replace H by a single
smaller genus k handlebody H ′ contained in the solid ball (see Fig. 2a), and
by chains of smaller unknotted genus 2 handlebodies in each handle of H as
in Fig. 2b. This replacement can be done so the diameter of each of the new
handlebodies in H is less than half the diameter of H.

Remark 3.1. Let B be a 3-cell containing H, and let H1,H2, . . . Hk be the new
handlebodies in H. Then, there are pairwise disjoint 3-cells B1, B2, . . . Bk in
B so that Hi ⊂ Bi. This follows from the fact that the genus 2 handlebodies
around each handle are not linked in B even though they are linked in H.
See [13,20] for more details on this.
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Figure 2. Size Replacement

Note: The inductive hypotheses imply that there is a nested sequence of
unions of pairwise disjoint 3-cells associated with the Cantor set constructed
in the next section. This collection of 3-cells, however, does not imply that
the constructed Cantor set is tame, since the diameters of the 3-cells do not
go to 0.

4. The Construction

Fix a sequence S = (n1, n2, . . .) where each ni is either an integer greater
than 1 or is ∞. We will construct inductively a defining sequence S1, S2,
. . . for a Cantor set X = X(S) in S3. Equivalently, we specify an increasing
union of open 3−manifolds Ni where each Ni = S3 \ Si. At the same time,
we associate with each component M(i,j) of Si the specific term nj of the
sequence S above.
Inductive hypotheses:

IH 1: The components M(i,1), . . . M(i,m(i)) of Si are unknotted handle-
bodies of genus 2 or greater which are contained in pairwise disjoint
3-cells in S3.
IH 2: The genus of M(i,j) is less than or equal to nj .

The construction will show that the components of S2k+1 are obtained
from S2k by a suitable replacement construction performed on the compo-
nents of S2k. The components of S2k will be obtained by replacing each com-
ponent of S2k−1 by an appropriate chain of linked handlebodies. All except
possibly one handlebody in this chain will have genus 2.

Stage 1: To begin the construction, let S1 consist of a single component
M(1,1), where M(1,1) is an unknotted genus 2 handlebody in S3. Note that
n1 is greater than or equal to the genus of M(1,1). The inductive hypotheses
are clearly satisfied since n1 ≥ 2.

Stage k + 1 if k is odd:

By the inductive hypothesis, every component of Sk is an unknotted handle-
body of genus 2 or greater. Let M(k,i) be a component of Sk. Again, by the
inductive hypothesis, the genus of M(k,i) is less than or equal to ni. If the
genus of M(k,i) is less than ni, perform a genus replacement on M(k,i). Note
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Figure 3. Linking Along the Spine of Some Handle of N

that this replaces a component M(k,i) at stage k by a component M(k+1,i) at
stage k + 1. This genus of M(k+1,i) is then (genus of M(k,i))+1. So the genus
of M(k+1,i) is less than or equal to ni.

If the genus of M(k,i) is equal to ni, let M(k+1,i) be M(k,i) with a small
open neighborhood of the boundary removed. Since the genus of M(k+1,i) is
the genus of M(k,i), this genus is still less than or equal to ni. In either case,
inductive hypothesis IH 2 is satisfied at stage k + 1.

By construction, each component M(k+1,i) is an unknotted handlebody
of genus at least 2. Since each new component is in the interior of a compo-
nent from Sn, the inductive hypothesis IH 1 at stage k guarantees that the
inductive hypothesis IH 1 is still satisfied at stage k + 1.

Stage k + 1 if k is even:

By the inductive hypothesis, every component of Sk is an unknotted han-
dlebody of genus 2 or greater. Let M(k,i) be a component of Sk of genus g.
Again, by the inductive hypothesis, g is less than or equal to ni. Perform a
size replacement on M(k,i), replacing M(k,i) by a single genus k smaller copy
(labelled M(k+1,i)) of M(k,i), and by 6g unknotted genus 2 handlebodies as
in Fig. 2.

This procedure performed on each component of Sk produces smaller
copies of M(k,i), 1 ≤ i ≤ m(n), labeled M(n+1,i), and a collection of unlabeled
genus 2 handlebodies. Arbitrarily label these new genus 2 handlebodies as
M(k+1,m(k)+1) . . . M(n+1,m(k+1)).

By IH 1 at stage k, by the construction above, and by Remark 3.1, IH
1 is satisfied at stage k + 1.

If 1 ≤ i ≤ m(k), the genus of M(k+1,i) is equal to the genus of M(k,i)

which is less than or equal to ni, by IH 2 at stage k. If i ≥ m(k)+1, the genus
of M(k+1,i) is equal to 2 which is less than or equal to ni by the assumption
about the terms of S. In either case, IH 2 is satisfied at stage k + 1.
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x0

J

W

Figure 4. Simple Connectivity of the Complement

This completes the inductive description of the defining sequence. Define
the Cantor set C = CS associated with the sequence S to be C = CS =⋂

i Mi.

In the next section, we will show that C = CS is the required Cantor
set needed for proving Theorem 1.2.

5. Proof of the Main Theorems

For a sequence S = (n1, n2, . . .) where each ni is either an integer greater
than 1 or is ∞, let C = CS be the Cantor set constructed in the previous
section. Note that C is indeed a Cantor set since each component of Mn

contains more than one component of Mn+2 and since the diameter of the
components goes to 0 as n goes to ∞. We now verify that C satisfies the
conditions listed in Theorem 1.2.

5.1. Simple Connectivity of the Complement

Let γ : S1 → S3 \ C. The set γ(S1) is compact and misses C so there exists
an even n large enough such that γ(S1) ∩ Mn = ∅.

By IH 1, the components M(n,1), . . . M(n,m(n)) of Mn are unknotted
handlebodies of genus 2 or greater which are contained in pairwise disjoint 3-
cells in S3. Since the components are cubes with unknotted handles and lie in
disjoint 3-cells, the fundamental group of the complement of the components
is generated by the meridional curves on the components. It, therefore, suffices
to show how any meridional loop (say J) of some component N can be shrunk
to a point in the complement of the components at the next stage contained
in N .

By construction, it is clear that J can be moved in N \ Mn+1 to the
loop W on BdN (see Fig. 4) and then moved off N . Hence, [J ] = 0 ∈
π1(S3 \ C). �



109 Page 8 of 12 D. J. Garity and D. D. Repovš MJOM

Figure 5. The Handlebody T

5.2. The Countable Dense Subset

Fix a point x ∈ C and let M(j, x(j)) be the component of Mj containing x.
Then

M(1, x(1)) ⊃ M(2, x(2)) ⊃ . . . ⊃ M(n, x(n)) ⊃ . . . , and

x =
⋂

n

M(n, x(n)).

For a fixed i > 0, define the point xi ∈ C as follows. Choose n so that the
number m(n) of components in Mn is greater than i. Then, M(k, i) is a
component of Mk for each k ≥ n and by construction M(k + 1, i) ⊂ M(k, i).
Let xi =

⋂

k≥n

M(k, i). The countable dense subset of C that we are looking for

is the subset D = {x1, x2. . . .}. The set D is dense in C since each component
M(k, j) of Mk contains a point of D, namely xj .

5.3. Genus at xj When nj is Finite

Note that xj =
⋂

k≥n

M(k, j) where n is chosen so that m(n) ≥ j. The genus of

M(n, j) is less than or equal to nj , and the genus modification at subsequent
stages guarantees that there is an n′ ≥ n so that the genus of M(n′, j) is
equal to nj . Then, for each � > n′, the genus of M(�, j) is also equal to nj .
It follows from the definition of local genus that the local genus gxj

(C) of C
at xj is then less than or equal to nj .

It remains to be shown that gxj
(C) is greater than or equal to nj .

Choose the component N = M(2i+1, j) of M2i+1 containing xj , where
m(2i + 1) > j and 2i + 1 is large enough so that the genus of N is equal to
nj . Then, N is a union of genus 1 handlebodies as in the previous section.
Let T be one of these genus 1 handlebodies. By construction, we have that
Bd(T ) ∩ C is the singleton xj . Let W be a loop in Bd(T) that bounds a disc
in Bd(T) containing xj in its interior as in Fig. 5a.

By Theorem 2.2, to show that the local genus of xj in C is at least nj ,
it suffices to show that the local genus of xj in C ∩ T is at least 1. For this,
we will need two technical lemmas.
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Lemma 5.1. If there exists a 2-disc D ⊂ T such that D ∩ Mr+1 = ∅ for some
r > 2i + 1, and Bd(D) = W , then there exists a 2-disc D ′ ⊂ T such that
Bd(D ′) = Bd(D) and D ′ ∩ Mr = ∅.
Proof. This is essentially Lemma 5.1 in [13]. Complete details of the proof
are provided there. The main idea is that if D∩Mr+1 = ∅, D can be adjusted
so as to miss a core of each component of Mr ∩ T . This allows the formation
of a new disc D′ with the same boundary so that D ′ ∩ Mr = ∅. �

Lemma 5.2. Let W be a loop on Bd(T ) as in Fig. 5a and let xj be the point
in C ∩ Bd(T ). If gxj

(C ∩ T ) = 0, then W bounds a disc D in T missing C.

Proof. This is essentially Lemma 5.2 in [13]. Complete details of the proof are
provided there. The argument there is for a component N of genus greater
than or equal to 3. Since the argument is actually applied separately to each
1-handle of N , the same argument works here where the genus of N is greater
than or equal to 2. �

Now assume that gxj
(C ∩ T ) = 0. Then by Lemma 5.2, the loop W

bounds a disc D missing C, and so missing Mr∩T for some large r. Repeated
application of Lemma 5.1 then implies that W bounds a disc D ′ so that
D ′ ∩ M2i+2 = ∅. An argument similar to that used in Section 6.2 of [13]
then shows that W bounds a disc also missing the filled in disks in Fig 5b.
This disk can then be pushed to the boundary of T minus xj . Since W is
nontrivial in the boundary of T minus xj , this cannot happen. It follows that
gxj

(C ∩ T ) ≥ 1.
This completes the argument that the local genus of C at xj is equal to

nj when nj is finite. �

5.4. Genus at xj When nj is Infinite

It suffices to show that gxj
(C) is greater than or equal to K for each positive

integer K.
Fix a positive integer K and choose a stage Mn of the defining sequence

for C so that m(n) > j and so that the genus g of N = M(n, j) is at least K.
Then, N is a union of g genus 1 handlebodies. Let T be one of these genus
1 handlebodies. By construction, even though the genus of the handlebody
containing xj in Mr increases as r goes to infinity, we still have that Bd(T )∩C
is the singleton xj .

Exactly the same argument as above (in the case when nj was finite)
can now be applied to conclude that the local genus of xj in C ∩T is at least
one. It follows that the local genus of xj in C ∩N is at least K which is what
we needed to show. So the local genus of xj in C is infinity. �

5.5. Genus at Points Not in the Dense Set

If x ∈ C \ D, then for each N ∈ Z+, there is an N ′ ≥ N so that the genus
of M(N ′, x(N ′)) is two. To see this, consider the component M(N, i) of MN

that contains x. If the genus of M(N, i) is two, we are done. If not, there
must be a first stage N + k > N such that x(N + k) �= i. If there is no
such stage, then x = xi ∈ D which cannot happen. For this stage N + k,



109 Page 10 of 12 D. J. Garity and D. D. Repovš MJOM

M(N + k, x(N + k)) has genus two by the construction of C. It follows that
in the sequence whose intersection is x,

M(1, x(1)) ⊃ M(2, x(2)) ⊃ · · · ⊃ M(n, x(n)) ⊃ . . . ,

infinitely many of the terms have genus two. It then follows from the definition
of local genus that gx(C) ≤ 2.

Remark 5.3. An inductive argument using techniques similar to those of
Lemma 5.1 can be used to show the following. Let M(k, i) be a component
of Mk. Then, there are no 2-spheres missing C in the interior of M(k, i) that
separate M(k, i) ∩ C. This in turn can be used to show that the local genus
of each point in C is strictly greater than 0. So the local genus at each point
of C \ D is either 1 or 2.

This completes the proof of Theorem 1.2. By Lemma 2.3, Theorem 1.1
(the main theorem) follows as an immediate corollary. �

6. Questions

Both Theorems 1.1 and 1.2 contain the requirement that each term in the
sequence S is greater than one. Additionally, the genus of each end not in
the dense set D (Theorem 1.1) and of each point of C not in D (Theorem
1.2) are shown to be less than two. This leads to two interesting questions,
listed below.

Question 6.1. Can the restrictions that ni ≥ 2 in Theorem 1.1 and Theorem
1.2 be removed? That is, is it possible to construct simply connected examples
with certain points in the dense set specified to have genus 1?

Question 6.2. By Remark 5.3, the genus of points not in the dense sets from
Theorem 1.1 and Theorem 1.2 is either 1 or 2. Can it be shown that their
genus is exactly equal to 2?

It seems that new construction techniques need to be developed to an-
swer the first question since the specific genus 2 handlebodies used in the size
replacement modification are essential to the argument that the complement
of the Cantor set constructed is simply connected.
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[11] Garity, D.J., Repovš, D.D., Wright, D.G.: Simply connected open 3-manifolds
with rigid genus one ends. Rev. Mat. Complut. 27(1), 291–304 (2014)
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[25] Željko, M.: Genus of a Cantor Set. Rocky Mountain J. Math. 35(1), 349–366
(2005)



109 Page 12 of 12 D. J. Garity and D. D. Repovš MJOM

Dennis J. Garity
Mathematics Department
Oregon State University
Corvallis
OR 97331
USA
e-mail: garity@math.oregonstate.edu
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