A New Class of Homology and Cohomology 3-Manifolds

D. J. Garity, U. H. Karimov, D. Repovš and F. Spaggiari

Abstract

We show that for any set of primes \mathcal{P} there exists a space $M_{\mathcal{P}}$ which is a homology and cohomology 3-manifold with coefficients in \mathbb{Z}_{p} for $p \in \mathcal{P}$ and is not a homology or cohomology 3-manifold with coefficients in \mathbb{Z}_{q} for $q \notin \mathcal{P}$. In addition, $M_{\mathcal{P}}$ is not a homology or cohomology 3-manifold with coefficients in \mathbb{Z} or \mathbb{Q}.

Mathematics Subject Classification. Primary 55P99, 57P05, 57P10; Secondary $55 \mathrm{~N} 05,55 \mathrm{~N} 35,57 \mathrm{M} 25$.
Keywords. Cohomology 3-manifold, cohomological dimension, BorelMoore homology, Čech cohomology, Milnor-Harlap exact sequence, lens space, ANR.

1. Introduction

In 1908 Tietze [7] constructed famous 3-manifolds $L(p, q)$ called lens spaces. These spaces have many interesting properties. For example, lens spaces $L(5,1)$ and $L(5,2)$ have isomorphic fundamental groups and the same homology, but they do not have the same homotopy type (proved by Alexander [1] in 1919). It is well-known that for every prime q, the lens space $M^{3}=L(q, 1)$ has the following properties:

- M^{3} is a 3-dimensional homology manifold with coefficients in \mathbb{Z}_{p} (denoted as 3 - $h m_{\mathbb{Z}_{p}}$) for every prime $p \neq q$;
- M^{3} is not a 3-dimensional homology manifold with coefficients in \mathbb{Z}_{q};
- M^{3} is not a 3-dimensional homology manifold with coefficients in \mathbb{Z}.

We shall generalize this classical result as follows:
Theorem 1.1. Given any set of primes \mathcal{P} there exists a space $M_{\mathcal{P}}$ which is a homology and cohomology 3-manifold with coefficients in \mathbb{Z}_{p} for $p \in \mathcal{P}$ and is not a homology or cohomology 3-manifold with coefficients in \mathbb{Z}_{q} for $q \notin \mathcal{P}$. In addition, $M_{\mathcal{P}}$ is not a homology or cohomology 3-manifold with coefficients in \mathbb{Z} or \mathbb{Q}.

2. Preliminaries

First, we fix the terminology, notation, and remind the reader of some wellknown facts. We let L be the ring of integers \mathbb{Z} or a field.

Definition 2.1 ($c f$. [2, Corollary 16.9]). A space X is called an n-dimensional cohomology manifold over L (denoted $n-c m_{L}$) if:
(1) X is locally compact and has finite cohomological dimension over L;
(2) X is cohomologically locally connected over $L\left(c l c_{L}\right)$; and
(3) for all $x \in X$,

$$
\check{H}^{p}(X, X \backslash\{x\} ; L) \cong \begin{cases}L & \text { for } p=n \\ 0 & \text { for } p \neq n\end{cases}
$$

where \check{H}^{*} are Čech cohomology groups with coefficients in L.
Definition 2.2. A homology L-manifold of dimension n over L (denoted as $\left.n-h m_{L}\right)$ is a locally compact topological space X with finite cohomological dimension over L such that for any $x \in X$, the Borel-Moore homology groups $H_{p}(X, X \backslash\{x\} ; L)$ are trivial unless $p=n$, in which case they are isomorphic to L. Homology manifolds will stand for homology \mathbb{Z}-manifolds.

Any n-dimensional cohomology manifold $\left(n-c m_{L}\right)$ is an n-dimensional homology manifold $\left(n-h m_{L}\right)$ by [2, Theorem 16.8]. Therefore we will construct only cohomology manifolds which will be automatically homology manifolds by this theorem.

For the construction and some simple properties of lens spaces see $[4,6]$. In particular, the homology groups of the lens space $M^{3}=L(q, 1)$ are

$$
H_{n}\left(M^{3} ; \mathbb{Z}\right)= \begin{cases}\mathbb{Z} & n=0,3 \\ \mathbb{Z}_{q} & n=1 \\ 0 & n=2 \text { or } n \geq 4\end{cases}
$$

By the Universal Coefficients Theorem we have for any abelian group G,

$$
H_{n}\left(M^{3} ; G\right) \cong H_{n}\left(M^{3} ; \mathbb{Z}\right) \otimes G \oplus H_{n-1}\left(M^{3} ; \mathbb{Z}\right) * G
$$

Therefore, if p and q are prime and $p \neq q$ then

$$
H_{n}\left(M^{3} ; \mathbb{Z}_{p}\right) \cong \begin{cases}\mathbb{Z}_{p} & \text { if } n=0,3 \\ 0 & \text { otherwise }\end{cases}
$$

whereas

$$
H_{n}\left(M^{3} ; \mathbb{Z}_{q}\right) \cong \begin{cases}\mathbb{Z}_{q} & n=0,1,3 \\ 0 & \text { otherwise }\end{cases}
$$

Local conditions of Definitions 2.1 and 2.2 are satisfied since M^{3} is a manifold therefore $M^{3}=L(q, 1)$ is a $3-h m_{\mathbb{Z}_{p}}$ and a $3-c m_{\mathbb{Z}_{p}}$ but is neither a 3 - $h m_{\mathbb{Z}_{q}}$ nor a $3-c m_{\mathbb{Z}_{q}}$ if p and q are prime and $p \neq q$ (cf. [2]).

3. Proof of Theorem 1.1

Let $\mathcal{P}=\left\{p_{i}\right\}_{i \in K}$, for $K=\mathbf{N}$ or $K=\{1, \ldots, k\}$, be a set of some prime numbers. If the set K is infinite then we define the numbers n_{i} as $n_{i}=$ $p_{1} \cdot p_{2} \cdot p_{3} \cdots p_{i}$. If the set K is finite and consists of exactly k elements, then define n_{i} as $n_{i}=p_{1} \cdot p_{2} \cdot p_{3} \cdots p_{k}$ for all i.

Let X be a solenoid in the 3 -dimensional sphere S^{3}, i.e., the inverse limit of solid tori corresponding to the following inverse system:

$$
\mathbb{Z} \stackrel{n_{1}}{\leftrightarrows} \mathbb{Z} \stackrel{n_{2}}{\leftrightarrows} \mathbb{Z} \stackrel{n_{3}}{\leftrightarrows} \ldots
$$

naturally embedded in S^{3}, see, e.g., [3, Chapter IIX, Exercise E.4].
Let us prove that the quotient space S^{3} / X is a cohomology 3-manifold $c m_{\mathbb{Z}_{p}}$. It is obvious that S^{3} / X is 3-dimensional, compact and metrizable. So the space S^{3} / X satisfies the condition (1) of Definition 2.1.

To prove that the space S^{3} / X satisfies the conditions (2) and (3) of Definition 2.1, let us calculate first the groups $\breve{H}^{n}\left(S^{3} / X,\{x\} ; G\right)$ with respect to the one-point subset $\{x\}=X / X$ for $G \cong \mathbb{Z}_{p}, p \in \mathcal{P} ; G \cong \mathbb{Z}_{q}, q \notin \mathcal{P} ; G \cong$ $\mathbb{Z} ; G \cong \mathbb{Q}$. Since S^{3} / X is connected and 3-dimensional it follows that

$$
\begin{equation*}
\check{H}^{0}\left(S^{3} / X,\{x\} ; G\right) \cong 0 \quad \text { and } \check{H}^{n}\left(S^{3} / X,\{x\} ; G\right) \cong 0 \text { for } n>3 \tag{1}
\end{equation*}
$$

Let U_{i} be the open i th solid torus neighborhood of X in S^{3} (c.f. [3]). Then $\left\{U_{i} / X\right\}_{i \in \mathbb{N}}$ is a neighborhood base of x in S^{3} / X. By continuity of the Čech cohomology and by the Excision Axiom it follows that:

$$
\begin{aligned}
& \check{H}^{n}\left(S^{3} / X,\{x\} ; G\right) \cong \check{H}^{n}\left(\lim _{\leftarrow} S^{3} / \bar{U}_{i}, \bar{U}_{i} / \bar{U}_{i} ; G\right) \\
\cong & \lim _{\rightarrow} \check{H}^{n}\left(S^{3} / \bar{U}_{i}, \bar{U}_{i} / \bar{U}_{i} ; G\right) \cong \lim _{\rightarrow} \check{H}^{n}\left(S^{3}, \bar{U}_{i} ; G\right) .
\end{aligned}
$$

For $n=1$ we have the exact sequence of the pair ($S^{3}, \overline{U_{i}}$):
$\check{H}^{0}\left(S^{3} ; G\right) \longrightarrow \check{H}^{0}\left(\overline{U_{i}} ; G\right) \longrightarrow \check{H}^{1}\left(S^{3}, \bar{U}_{i} ; G\right) \longrightarrow \check{H}^{1}\left(S^{3}, G\right) \longrightarrow \check{H}^{1}\left(\overline{U_{i}} ; G\right)$.
Since the 1-dimensional cohomology of the 3-sphere is trivial for any group of coefficients G and $\overline{U_{i}}$ is connected space for every i, it follows that $\check{H}^{1}\left(S^{3}, \bar{U}_{i}\right.$; $G) \cong 0$, therefore $\check{H}^{n}\left(S^{3} / X,\{x\} ; G\right) \cong 0$ and, in particular,

$$
\begin{equation*}
\check{H}^{1}\left(S^{3} / X,\{x\} ; \mathbb{Z}_{p}\right) \cong 0 \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\check{H}^{1}\left(S^{3} / X,\{x\} ; \mathbb{Z}_{q}\right) \cong 0, \check{H}^{1}\left(S^{3} / X,\{x\} ; \mathbb{Z}\right) \cong 0, \check{H}^{1}\left(S^{3} / X,\{x\} ; \mathbb{Q}\right) \cong 0 \tag{3}
\end{equation*}
$$

For $n=2$ we have the following exact sequence of the pair $\left(S^{3}, \overline{U_{i}}\right)$:
$\check{H}^{1}\left(S^{3} ; G\right) \longrightarrow \check{H}^{1}\left(\bar{U}_{i} ; G\right) \longrightarrow \check{H}^{2}\left(S^{3}, \bar{U}_{i} ; G\right) \longrightarrow \check{H}^{2}\left(S^{3}, G\right) \longrightarrow \check{H}^{2}\left(\overline{U_{i}} ; G\right)$.
The cohomology groups $\check{H}^{1}\left(S^{3} ; G\right)$ and $\check{H}^{2}\left(S^{3}, G\right)$ are trivial, and the groups $\check{H}^{1}\left(\bar{U}_{i} ; G\right)$ are isomorphic to G since U_{i} has the homotopy type of a circle. The homomorphisms $\check{H}^{1}\left(\bar{U}_{i} ; G\right) \rightarrow \check{H}^{1}\left(\bar{U}_{i+1} ; G\right)$ are multiplications by n_{i} that take the group G into itself. Therefore for the group of coefficients $G \cong \mathbb{Z}_{p}$ it follows that

$$
\begin{equation*}
\check{H}^{2}\left(S^{3} / X,\{x\} ; \mathbb{Z}_{p}\right) \cong 0 \tag{4}
\end{equation*}
$$

However,

$$
\begin{equation*}
\check{H}^{2}\left(S^{3} / X,\{x\} ; \mathbb{Z}_{q}\right) \not \neq 0, \check{H}^{2}\left(S^{3} / X,\{x\} ; \mathbb{Z}\right) \not \neq 0, \check{H}^{2}\left(S^{3} / X,\{x\} ; \mathbb{Q}\right) \nsubseteq 0 \tag{5}
\end{equation*}
$$

For $n=3$ consider the next cohomology exact sequence for the pair $\left(S^{3}, \overline{U_{i}}\right):$

$$
\check{H}^{2}\left(\bar{U}_{i} ; G\right) \longrightarrow \check{H}^{3}\left(S^{3}, \bar{U}_{i} ; G\right) \longrightarrow \check{H}^{3}\left(S^{3}, G\right) \longrightarrow \check{H}^{3}\left(\bar{U}_{i} ; G\right) .
$$

Since $\bar{U}_{i} \simeq S^{1}$, it follows that:

$$
\begin{equation*}
\check{H}^{3}\left(S^{3} / X, x ; G\right) \cong G . \tag{6}
\end{equation*}
$$

Let us calculate the groups $\check{H}^{n}\left(S^{3} / X-\{x\} ; \mathbb{Z}_{p}\right)$. The space $S^{3} / X-\{x\}$ is the union $\bigcup_{i=1}^{\infty}\left(S^{3}-U_{i}\right)$ of an increasing sequence of "complementary" solid tori.

For $n=1$ we have the following exact sequence of Milnor-Harlap [5, Theorem 1]:
$0 \rightarrow{\underset{\longleftarrow}{\lim }}^{(1)} \check{H}^{0}\left(S^{3}-U_{i} ; \mathbb{Z}_{p}\right) \rightarrow \check{H}^{1}\left(S^{3}-X ; \mathbb{Z}_{p}\right) \rightarrow \underset{\rightleftarrows}{\lim } \check{H}^{1}\left(S^{3}-U_{i} ; \mathbb{Z}_{p}\right) \rightarrow 0$,
where $\lim ^{(1)}$ is the first derived functor of the functor of the inverse limit. Since $p \in \mathcal{P}$ it follows that the inverse limit $\underset{ }{\lim } \check{H}^{1}\left(S^{3}-U_{i} ; \mathbb{Z}_{p}\right)$ is trivial. The group $\lim ^{(1)} \check{H}^{0}\left(S^{3}-U_{i} ; \mathbb{Z}_{p}\right)$ is trivial since the corresponding inverse sequence satisfies the Mittag-Leffler (ML) condition, so we have

$$
\begin{equation*}
\check{H}^{1}\left(S^{3}-X ; \mathbb{Z}_{p}\right) \cong 0 \tag{7}
\end{equation*}
$$

Analogously, it is easy to see that

$$
\begin{equation*}
\check{H}^{1}\left(S^{3}-X ; \mathbb{Z}_{q}\right) \not \equiv 0 \text { for } q \notin \mathcal{P}, \quad \check{H}^{1}\left(S^{3}-X ; \mathbb{Z}\right) \cong 0, \check{H}^{1}\left(S^{3}-X ; \mathbb{Q}\right) \not \equiv 0 \tag{8}
\end{equation*}
$$

Let $n=2$, then we have the Milnor-Harlap exact sequence for the presentation $S^{3} / X \backslash\{x\}=\bigcup_{i=1}^{\infty}\left(S^{3}-U_{i}\right)$:
$0 \rightarrow \lim ^{(1)} \check{H}^{1}\left(S^{3}-U_{i} ; \mathbb{Z}_{p}\right) \rightarrow \check{H}^{2}\left(S^{3}-X ; \mathbb{Z}_{p}\right) \rightarrow \underset{\rightleftarrows}{\lim \check{H}^{2}\left(S^{3}-U_{i} ; \mathbb{Z}_{p}\right) \rightarrow 0 .}$
The groups $\lim ^{(1)} \check{H}^{1}\left(S^{3}-U_{i} ; \mathbb{Z}_{p}\right)$ are trivial since the groups $\check{H}^{1}\left(S^{3}-U_{i} ; \mathbb{Z}_{p}\right)$ are isomorphic to the finite group \mathbb{Z}_{p} and the corresponding inverse sequence satisfies the ML condition. The groups $\check{H}^{2}\left(S^{3}-U_{i} ; \mathbb{Z}_{p}\right)$ are also trivial since the "complementary" solid tori have the homotopy type of the circle. Therefore

$$
\begin{equation*}
\check{H}^{2}\left(S^{3}-X ; \mathbb{Z}_{p}\right) \cong 0 \tag{9}
\end{equation*}
$$

For $n=3$ we have the exact sequence of Milnor-Harlap for the same presentation of $S^{3} / X \backslash\{x\}$ as before:
$0 \rightarrow \varliminf^{(1)} \check{H}^{2}\left(S^{3}-U_{i} ; \mathbb{Z}_{p}\right) \rightarrow \check{H}^{3}\left(S^{3}-X ; \mathbb{Z}_{p}\right) \rightarrow \lim \check{H}^{3}\left(S^{3}-U_{i} ; \mathbb{Z}_{p}\right) \rightarrow 0$.
The groups $\check{H}^{3}\left(S^{3}-U_{i} ; \mathbb{Z}_{p}\right)$ and $\check{H}^{2}\left(S^{3}-U_{i} ; \mathbb{Z}_{p}\right)$ are trivial since the spaces $S^{3}-U_{i}$ have the homotopy type of a circle. Therefore:

$$
\begin{equation*}
\check{H}^{3}\left(S^{3}-X ; \mathbb{Z}_{p}\right) \cong 0 \tag{10}
\end{equation*}
$$

Next, let us calculate the groups $\check{H}^{n}\left(S^{3} / X, S^{3} / X-X / X ; G\right)$ for certain groups G.

Since the space S^{3} / X is connected and $\operatorname{dim} S^{3} / X=3$ it follows that these groups are trivial groups for $n=0, n>3$.

Since the space $S^{3}-X$ is connected and $\check{H}^{1}\left(S^{3} / X ; \mathbb{Z}_{p}\right) \cong 0$ by (2), it follows by the exact cohomology sequence of the pair ($S^{3} / X, S^{3} / X-X / X$) or the pair $S^{3} / X, S^{3} \backslash X\left(S^{3} / X \backslash X / X=S^{3} \backslash X\right)$ that

$$
\begin{equation*}
\check{H}^{1}\left(S^{3} / X, S^{3}-X ; \mathbb{Z}_{p}\right) \cong 0 \tag{11}
\end{equation*}
$$

By the exact sequence:

$$
\begin{aligned}
& \check{H}^{1}\left(S^{3}-X ; \mathbb{Z}_{p}\right) \stackrel{\delta}{\longrightarrow} \check{H}^{2}\left(S^{3} / X, S^{3}-X ; \mathbb{Z}_{p}\right) \longrightarrow \check{H}^{2}\left(S^{3} / X ; \mathbb{Z}_{p}\right) \\
& \quad \longrightarrow \check{H}^{2}\left(S^{3}-X ; \mathbb{Z}_{p}\right)
\end{aligned}
$$

and since the groups $\check{H}^{1}\left(S^{3}-X ; \mathbb{Z}_{p}\right)$ and $\check{H}^{2}\left(S^{3} / X ; \mathbb{Z}_{p}\right)$ are trivial by (7) and (4) it follows that

$$
\begin{equation*}
\check{H}^{2}\left(S^{3} / X, S^{3}-X ; \mathbb{Z}_{p}\right) \cong 0 \tag{12}
\end{equation*}
$$

For any group of coefficients the corresponding homomorphism δ is a monomorphism by (3). Since the groups $\check{H}^{1}\left(S^{3}-X ; \mathbb{Z}_{q}\right)$ for $q \notin \mathcal{P}, \check{H}^{1}\left(S^{3}-\right.$ $X ; Q)$ are nontrivial by (8), and the groups $\check{H}^{1}\left(S^{3} / X ; \mathbb{Z}_{q}\right), \check{H}^{1}\left(S^{3} / X ; Q\right)$ are trivial if follows that

$$
\begin{equation*}
\check{H}^{2}\left(S^{3} / X, S^{3}-X ; \mathbb{Z}_{q}\right) \not \equiv 0, \check{H}^{2}\left(S^{3} / X, S^{3}-X ; \mathbb{Q}\right) \not \equiv 0 \tag{13}
\end{equation*}
$$

Consider the following exact sequence of the pair $\left(S^{3} / X, S^{3}-X ; \mathbb{Z}_{p}\right)$:

$$
\begin{aligned}
& \check{H}^{2}\left(S^{3}-X ; \mathbb{Z}_{p}\right) \stackrel{\delta}{\longrightarrow} \check{H}^{3}\left(S^{3} / X, S^{3}-X ; \mathbb{Z}_{p}\right) \longrightarrow \check{H}^{3}\left(S^{3} / X ; \mathbb{Z}_{p}\right) \\
& \quad \longrightarrow \check{H}^{3}\left(S^{3}-X ; \mathbb{Z}_{p}\right) .
\end{aligned}
$$

The groups $\check{H}^{2}\left(S^{3}-X ; \mathbb{Z}_{p}\right)$ and $\check{H}^{3}\left(S^{3}-X ; \mathbb{Z}_{p}\right)$ are trivial by (9) and (10) respectively. Next, observe that $\check{H}^{3}\left(S^{3} / X ; \mathbb{Z}_{p}\right) \cong \mathbb{Z}_{p}$ therefore

$$
\begin{equation*}
\check{H}^{3}\left(S^{3} / X, S^{3}-X ; \mathbb{Z}_{p}\right) \cong \mathbb{Z}_{p} \tag{14}
\end{equation*}
$$

Let us show that S^{3} / X is a $\operatorname{clc}_{Z_{p}}$ space at all points. Obviously, the space S^{3} / X is a $\operatorname{clc}_{Z_{p}}$ space for all points except at the point $x=X / X$ since $S^{3} \backslash X$ is an open manifold. As mentioned before, the sets $\left\{U_{i} / X\right\}_{i \in \mathbb{N}}$ form a neighborhood base of the point x. Consider the groups $\check{H}^{n}\left(U_{i} / X, X / X ; \mathbb{Z}_{p}\right)$. By the Excision Axiom it follows that $\check{H}^{n}\left(U_{i} / X, X / X ; \mathbb{Z}_{p}\right) \cong \check{H}^{n}\left(U_{i}, X ; \mathbb{Z}_{p}\right)$.

From the following commutative diagram with exact rows

$$
\begin{aligned}
0 \cong \check{H}^{0}\left(X ; \mathbb{Z}_{p}\right) \longrightarrow \check{H}^{1}\left(U_{i}, X ; \mathbb{Z}_{p}\right) \longrightarrow \check{H}^{1}\left(U_{i} ; \mathbb{Z}_{p}\right) & \cong \mathbb{Z}_{p} \\
& \downarrow \pi^{i} \\
& \downarrow \times n_{i} \\
& \cong \check{H}^{0}\left(X ; \mathbb{Z}_{p}\right) \longrightarrow \check{H}^{1}\left(U_{i+1}, X ; \mathbb{Z}_{p}\right) \longrightarrow \check{H}^{1}\left(U_{i+1} ; \mathbb{Z}_{p}\right) \cong \mathbb{Z}_{p}
\end{aligned}
$$

it follows that for a large enough i, the homomorphism

$$
\check{H}^{1}\left(U_{i}, X ; \mathbb{Z}_{p}\right) \xrightarrow{\pi^{i}} \check{H}^{1}\left(U_{i+1}, X ; \mathbb{Z}_{p}\right)
$$

is trivial. Therefore

$$
\begin{equation*}
S^{3} / X \text { is a } 1-\operatorname{cl}_{\mathbb{Z}_{p}} \text { space. } \tag{15}
\end{equation*}
$$

By the analogous diagram for the group of coefficients \mathbb{Z} it is easy to see that the homomorphism $\check{H}^{1}\left(U_{i}, X ; \mathbb{Z}\right) \xrightarrow{\pi^{i}} \check{H}^{1}\left(U_{i+1}, X ; \mathbb{Z}\right)$ is a monomorphism of the group \mathbb{Z}. Therefore

$$
\begin{equation*}
S^{3} / X \text { is not } 1-\operatorname{cl}_{\mathbb{Z}} . \tag{16}
\end{equation*}
$$

By the exact sequence

$$
\check{H}^{1}\left(X ; \mathbb{Z}_{p}\right) \longrightarrow \check{H}^{2}\left(U_{i}, X ; \mathbb{Z}_{p}\right) \longrightarrow \check{H}^{2}\left(U_{i}, \mathbb{Z}_{p}\right)
$$

since $\check{H}^{2}\left(U_{i}, \mathbb{Z}_{p}\right) \cong 0$ and the Čech cohomology group $\check{H}^{1}\left(X ; \mathbb{Z}_{p}\right)$ is obviously isomorphic to the direct limit of the sequence

$$
\mathbb{Z}_{p} \xrightarrow{\times n_{1}} \mathbb{Z}_{p} \xrightarrow{\times n_{2}} \mathbb{Z}_{p} \xrightarrow{\times n_{3}} \cdots
$$

it follows that $\check{H}^{2}\left(U_{i}, X ; \mathbb{Z}_{p}\right) \cong 0$. By the Excision Axiom it follows that $\check{H}^{2}\left(U_{i} / X, X / X ; \mathbb{Z}_{p}\right) \cong 0$ and

$$
\begin{equation*}
S^{3} / X \text { is a } 2-c l c_{\mathbb{Z}_{p}} \text { space. } \tag{17}
\end{equation*}
$$

By the following exact sequence of the pair $\left(U_{i}, X\right)$

$$
\check{H}^{2}\left(X ; \mathbb{Z}_{p}\right) \longrightarrow \check{H}^{3}\left(U_{i}, X ; \mathbb{Z}_{p}\right) \longrightarrow \check{H}^{3}\left(U_{i}, \mathbb{Z}_{p}\right)
$$

and since the space X is 1-dimensional and U_{i} is homotopy equivalent to the circle it follows that $\check{H}^{3}\left(U_{i}, X ; \mathbb{Z}_{p}\right) \cong 0$ therefore $\check{H}^{3}\left(U_{i} / X, X / X ; \mathbb{Z}_{p}\right) \cong 0$ and

$$
\begin{equation*}
S^{3} / X \text { is a } 3-c l c_{\mathbb{Z}_{p}} \text { space. } \tag{18}
\end{equation*}
$$

By the local connectedness of the space S^{3} / X, by (15), (17), (18) and since $\operatorname{dim} S^{3} / X=3$ it follows that S^{3} / X is a $c l c_{\mathbb{Z}_{p}}$ space and S^{3} / X satisfies the condition (2) of Definition 2.1.

By (11), (12), and (14) it follows that S^{3} / X satisfies the condition (3) of Definition 2.1, therefore S^{3} / X is a $c m_{\mathbb{Z}_{p}}$ and a $h m_{\mathbb{Z}_{p}}$ 3-manifold.

However, the space S^{3} / X is neither a $3-c m_{\mathbb{Z}_{q}}$ nor a $3-c m_{\mathbb{Q}}$ since $\check{H}^{2}\left(S^{3} / X, S^{3}-X ; \mathbb{Z}_{q}\right) \not \neq 0$ and $\check{H}^{2}\left(S^{3} / X, S^{3}-X ; \mathbb{Q}\right) \not \not 二 0$ by (16), and is not a $3-c m_{\mathbb{Z}}$ since it is not a $1-c l c_{\mathbb{Z}}$. This completes the proof.

4. Epilogue

The spaces which we have constructed are not ANR's, so there is an interesting question:

Question 4.1. Let \mathcal{P} be any set of prime numbers. Does there exist a 3dimensional ANR X with the following properties:
(1) for every prime $p \in \mathcal{P}, X$ is a $3-h m_{p}$
(2) for every prime $q \notin \mathcal{P}, X$ is not a $3-h m_{q}$?

Acknowledgements

This research was supported by the Slovenian Research Agency grants No. BI-US/13-14-027, P1-0292-0101, J1-4144-0101, J1-5435-0101, and J1-67210101.

References

[1] Alexander, J.W.: Note on two three-dimensional manifolds with the same group. Trans. Am. Math. Soc 20, 339-342 (1919)
[2] Bredon, G.E.: Sheaf Theory, 2nd Edn. Graduate Texts in Math. No. 170. Springer, Berlin (1997)
[3] Eilenberg, S., Steenrod, N.: Foundations of algebraic topology. Princeton University Press, Princeton (1952)
[4] Hatcher, A.: Algebraic topology. Cambridge Univ. Press, Cambridge (2002)
[5] Kharlap, È.A.: Local homology and cohomology, homology dimension and generalized manifolds. Math. Sb. (N. S.) 96(138), 347-373 (1975) (in Russian); English transl.: Math. USSR-Sb. 25(3),323-349 (1975)
[6] Seifert, H., Threlfall, W.: A textbook of topology. Academic Press, New York (1980)
[7] Tietze, H.: Über die topologischen Invarianten mehrdimensionaler Mannigfaltigkeiten. Monathsh. Für Math. Und Phys. 19, 1-118 (1908)
D. J. Garity

Department of Mathematics
Oregon State University
Corvallis, OR 97331, USA
e-mail: garity@math.oregonstate.edu
U. H. Karimov

Institute of Mathematics
Academy of Sciences of Tajikistan
Ul. Ainy 299^{A}
734063 Dushanbe
Tajikistan
e-mail: umedkarimov@gmail.com
D. Repovš

Faculty of Education and Faculty of Mathematics and Physics
University of Ljubljana
Kardeljeva pl. 16
Ljubljana 1000
Slovenia
e-mail: dusan.repovs@guest.arnes.si
F. Spaggiari

Department of Physics, Informatics and Mathematics
University of Modena and Reggio E.
via Campi 213/B
41125 Modena
Italy
e-mail: fulvia.spaggiari@unimore.it
Received: November 4, 2014.
Accepted: February 16, 2015.

