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Abstract. We show that for any set of primes P there exists a space
MP which is a homology and cohomology 3-manifold with coefficients
in Zp for p ∈ P and is not a homology or cohomology 3-manifold with
coefficients in Zq for q �∈ P. In addition, MP is not a homology or
cohomology 3-manifold with coefficients in Z or Q.
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1. Introduction

In 1908 Tietze [7] constructed famous 3-manifolds L(p, q) called lens spaces.
These spaces have many interesting properties. For example, lens spaces
L(5, 1) and L(5, 2) have isomorphic fundamental groups and the same homol-
ogy, but they do not have the same homotopy type (proved by Alexander [1]
in 1919). It is well-known that for every prime q, the lens space M3 = L(q, 1)
has the following properties:

• M3 is a 3-dimensional homology manifold with coefficients in Zp

(denoted as 3-hmZp
) for every prime p �= q;

• M3 is not a 3-dimensional homology manifold with coefficients in Zq;
• M3 is not a 3-dimensional homology manifold with coefficients in Z.

We shall generalize this classical result as follows:

Theorem 1.1. Given any set of primes P there exists a space MP which is a
homology and cohomology 3-manifold with coefficients in Zp for p ∈ P and is
not a homology or cohomology 3-manifold with coefficients in Zq for q �∈ P.
In addition, MP is not a homology or cohomology 3-manifold with coefficients
in Z or Q.
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2. Preliminaries

First, we fix the terminology, notation, and remind the reader of some well-
known facts. We let L be the ring of integers Z or a field.

Definition 2.1 (cf. [2, Corollary 16.9]). A space X is called an n-dimensional
cohomology manifold over L (denoted n − cmL) if:

(1) X is locally compact and has finite cohomological dimension over L;
(2) X is cohomologically locally connected over L (clcL); and
(3) for all x ∈ X,

Ȟp(X,X\{x};L) ∼=
{

L for p = n
0 for p �= n

where Ȟ∗ are Čech cohomology groups with coefficients in L.

Definition 2.2. A homology L-manifold of dimension n over L (denoted as
n − hmL) is a locally compact topological space X with finite cohomological
dimension over L such that for any x ∈ X, the Borel–Moore homology groups
Hp(X,X\{x};L) are trivial unless p = n, in which case they are isomorphic
to L. Homology manifolds will stand for homology Z-manifolds.

Any n-dimensional cohomology manifold (n−cmL) is an n-dimensional
homology manifold (n − hmL) by [2, Theorem 16.8]. Therefore we will con-
struct only cohomology manifolds which will be automatically homology man-
ifolds by this theorem.

For the construction and some simple properties of lens spaces see [4,6].
In particular, the homology groups of the lens space M3 = L(q, 1) are

Hn(M3; Z) =

⎧⎨
⎩

Z n = 0, 3
Zq n = 1
0 n = 2 or n ≥ 4

By the Universal Coefficients Theorem we have for any abelian group
G,

Hn(M3;G) ∼= Hn(M3; Z) ⊗ G ⊕ Hn−1(M3; Z) ∗ G.

Therefore, if p and q are prime and p �= q then

Hn(M3; Zp) ∼=
{

Zp if n = 0, 3
0 otherwise

whereas

Hn(M3; Zq) ∼=
{

Zq n = 0, 1, 3
0 otherwise

Local conditions of Definitions 2.1 and 2.2 are satisfied since M3 is a
manifold therefore M3 = L(q, 1) is a 3-hmZp

and a 3-cmZp
but is neither a

3-hmZq
nor a 3-cmZq

if p and q are prime and p �= q (cf. [2]).
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3. Proof of Theorem 1.1

Let P = {pi}i∈K , for K = N or K = {1, . . . , k}, be a set of some prime
numbers. If the set K is infinite then we define the numbers ni as ni =
p1 · p2 · p3 · · · pi. If the set K is finite and consists of exactly k elements, then
define ni as ni = p1 · p2 · p3 · · · pk for all i.

Let X be a solenoid in the 3-dimensional sphere S3, i.e., the inverse
limit of solid tori corresponding to the following inverse system:

Z
n1←− Z

n2←− Z
n3←− . . .

naturally embedded in S3, see, e.g., [3, Chapter IIX, Exercise E.4].
Let us prove that the quotient space S3/X is a cohomology 3-manifold

cmZp
. It is obvious that S3/X is 3-dimensional, compact and metrizable. So

the space S3/X satisfies the condition (1) of Definition 2.1.
To prove that the space S3/X satisfies the conditions (2) and (3) of

Definition 2.1, let us calculate first the groups Ȟn(S3/X, {x};G) with respect
to the one-point subset {x} = X/X for G ∼= Zp, p ∈ P; G ∼= Zq, q �∈ P; G ∼=
Z; G ∼= Q. Since S3/X is connected and 3-dimensional it follows that

Ȟ0(S3/X, {x};G) ∼= 0 and Ȟn(S3/X, {x};G) ∼= 0 for n > 3. (1)

Let Ui be the open ith solid torus neighborhood of X in S3 (c.f. [3]).
Then {Ui/X}i∈N is a neighborhood base of x in S3/X. By continuity of the
Čech cohomology and by the Excision Axiom it follows that:

Ȟn(S3/X, {x};G) ∼= Ȟn(lim← S3/U i, U i/U i;G)

∼= lim→ Ȟn(S3/U i, U i/U i;G) ∼= lim→ Ȟn(S3, U i;G).

For n = 1 we have the exact sequence of the pair (S3, Ui):

Ȟ0(S3;G) −→ Ȟ0(Ui;G) −→ Ȟ1(S3, U i;G) −→ Ȟ1(S3, G) −→ Ȟ1(Ui;G).

Since the 1-dimensional cohomology of the 3-sphere is trivial for any group of
coefficients G and Ui is connected space for every i, it follows that Ȟ1(S3, U i;
G) ∼= 0, therefore Ȟn(S3/X, {x};G) ∼= 0 and, in particular,

Ȟ1(S3/X, {x}; Zp) ∼= 0 (2)
and

Ȟ1(S3/X, {x}; Zq) ∼= 0, Ȟ1(S3/X, {x}; Z) ∼= 0, Ȟ1(S3/X, {x}; Q) ∼= 0. (3)

For n = 2 we have the following exact sequence of the pair (S3, Ui):

Ȟ1(S3;G) −→ Ȟ1(U i;G) −→ Ȟ2(S3, U i;G) −→ Ȟ2(S3, G) −→ Ȟ2(Ui;G).

The cohomology groups Ȟ1(S3;G) and Ȟ2(S3, G) are trivial, and the
groups Ȟ1(U i;G) are isomorphic to G since Ui has the homotopy type of
a circle. The homomorphisms Ȟ1(U i;G) → Ȟ1(U i+1;G) are multiplications
by ni that take the group G into itself. Therefore for the group of coefficients
G ∼= Zp it follows that

Ȟ2(S3/X, {x}; Zp) ∼= 0. (4)
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However,

Ȟ2(S3/X, {x}; Zq) � 0, Ȟ2(S3/X, {x}; Z) � 0, Ȟ2(S3/X, {x}; Q) � 0. (5)

For n = 3 consider the next cohomology exact sequence for the pair
(S3, Ui):

Ȟ2(U i;G) −→ Ȟ3(S3, U i;G) −→ Ȟ3(S3, G) −→ Ȟ3(U i;G).

Since U i � S1, it follows that:

Ȟ3(S3/X, x;G) ∼= G. (6)

Let us calculate the groups Ȟn(S3/X −{x}; Zp). The space S3/X −{x}
is the union

⋃∞
i=1(S

3−Ui) of an increasing sequence of “complementary” solid
tori.

For n = 1 we have the following exact sequence of Milnor–Harlap [5,
Theorem 1]:

0 → lim←−
(1)Ȟ0(S3 − Ui; Zp) → Ȟ1(S3 − X; Zp) → lim←−Ȟ1(S3 − Ui; Zp) → 0,

where lim←−(1) is the first derived functor of the functor of the inverse limit.
Since p ∈ P it follows that the inverse limit lim←−Ȟ1(S3 − Ui; Zp) is trivial.
The group lim←−(1)Ȟ0(S3 − Ui; Zp) is trivial since the corresponding inverse
sequence satisfies the Mittag-Leffler (ML) condition, so we have

Ȟ1(S3 − X; Zp) ∼= 0. (7)

Analogously, it is easy to see that

Ȟ1(S3−X; Zq)�0 for q /∈P, Ȟ1(S3 − X; Z)∼=0, Ȟ1(S3−X; Q)�0. (8)

Let n = 2, then we have the Milnor–Harlap exact sequence for the
presentation S3/X\{x} =

⋃∞
i=1(S

3 − Ui):

0 → lim←−
(1)Ȟ1(S3 − Ui; Zp) → Ȟ2(S3 − X; Zp) → lim←−Ȟ2(S3 − Ui; Zp) → 0.

The groups lim←−(1)Ȟ1(S3−Ui; Zp) are trivial since the groups Ȟ1(S3−Ui; Zp)
are isomorphic to the finite group Zp and the corresponding inverse sequence
satisfies the ML condition. The groups Ȟ2(S3 − Ui; Zp) are also trivial since
the “complementary” solid tori have the homotopy type of the circle. There-
fore

Ȟ2(S3 − X; Zp) ∼= 0. (9)
For n = 3 we have the exact sequence of Milnor–Harlap for the same

presentation of S3/X\{x} as before:

0 → lim←−
(1)Ȟ2(S3 − Ui; Zp) → Ȟ3(S3 − X; Zp) → lim←−Ȟ3(S3 − Ui; Zp) → 0.

The groups Ȟ3(S3 − Ui; Zp) and Ȟ2(S3 − Ui; Zp) are trivial since the spaces
S3 − Ui have the homotopy type of a circle. Therefore:

Ȟ3(S3 − X; Zp) ∼= 0. (10)

Next, let us calculate the groups Ȟn(S3/X, S3/X −X/X;G) for certain
groups G.
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Since the space S3/X is connected and dim S3/X = 3 it follows that
these groups are trivial groups for n = 0, n > 3.

Since the space S3 − X is connected and Ȟ1(S3/X; Zp) ∼= 0 by (2), it
follows by the exact cohomology sequence of the pair (S3/X, S3/X − X/X)
or the pair S3/X, S3\X (S3/X\X/X = S3\X) that

Ȟ1(S3/X, S3 − X; Zp) ∼= 0. (11)

By the exact sequence:

Ȟ1(S3 − X; Zp)
δ−→ Ȟ2(S3/X, S3 − X; Zp) −→ Ȟ2(S3/X; Zp)

−→ Ȟ2(S3 − X; Zp)

and since the groups Ȟ1(S3 − X; Zp) and Ȟ2(S3/X; Zp) are trivial by (7)
and (4) it follows that

Ȟ2(S3/X, S3 − X; Zp) ∼= 0. (12)

For any group of coefficients the corresponding homomorphism δ is a
monomorphism by (3). Since the groups Ȟ1(S3 −X; Zq) for q /∈ P, Ȟ1(S3 −
X;Q) are nontrivial by (8), and the groups Ȟ1(S3/X; Zq), Ȟ1(S3/X;Q) are
trivial if follows that

Ȟ2(S3/X, S3 − X; Zq) � 0, Ȟ2(S3/X, S3 − X; Q) � 0. (13)

Consider the following exact sequence of the pair (S3/X, S3 − X; Zp):

Ȟ2(S3 − X; Zp)
δ−→ Ȟ3(S3/X, S3 − X; Zp) −→ Ȟ3(S3/X; Zp)

−→ Ȟ3(S3 − X; Zp).

The groups Ȟ2(S3 − X; Zp) and Ȟ3(S3 − X; Zp) are trivial by (9) and (10)
respectively. Next, observe that Ȟ3(S3/X; Zp) ∼= Zp therefore

Ȟ3(S3/X, S3 − X; Zp) ∼= Zp. (14)

Let us show that S3/X is a clcZp
space at all points. Obviously, the space

S3/X is a clcZp
space for all points except at the point x = X/X since

S3\X is an open manifold. As mentioned before, the sets {Ui/X}i∈N form a
neighborhood base of the point x. Consider the groups Ȟn(Ui/X,X/X; Zp).
By the Excision Axiom it follows that Ȟn(Ui/X,X/X; Zp) ∼= Ȟn(Ui,X; Zp).

From the following commutative diagram with exact rows

0 ∼= Ȟ0(X; Zp) −→ Ȟ1(Ui,X; Zp) −→ Ȟ1(Ui; Zp) ∼= Zp

↓ ↓ πi ↓ ×ni

0 ∼= Ȟ0(X; Zp) −→ Ȟ1(Ui+1,X; Zp) −→ Ȟ1(Ui+1; Zp) ∼= Zp

it follows that for a large enough i, the homomorphism

Ȟ1(Ui,X; Zp)
πi

−→ Ȟ1(Ui+1,X; Zp)

is trivial. Therefore
S3/X is a 1 − clcZp

space. (15)
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By the analogous diagram for the group of coefficients Z it is easy to see that

the homomorphism Ȟ1(Ui,X; Z) πi

−→ Ȟ1(Ui+1,X; Z) is a monomorphism of
the group Z. Therefore

S3/X is not 1 − clcZ. (16)

By the exact sequence

Ȟ1(X; Zp) −→ Ȟ2(Ui,X; Zp) −→ Ȟ2(Ui, Zp)

since Ȟ2(Ui, Zp) ∼= 0 and the Čech cohomology group Ȟ1(X; Zp) is obviously
isomorphic to the direct limit of the sequence

Zp
×n1→ Zp

×n2→ Zp
×n3→ · · ·

it follows that Ȟ2(Ui,X; Zp) ∼= 0. By the Excision Axiom it follows that
Ȟ2(Ui/X,X/X; Zp) ∼= 0 and

S3/X is a 2 − clcZp
space. (17)

By the following exact sequence of the pair (Ui,X)

Ȟ2(X; Zp) −→ Ȟ3(Ui,X; Zp) −→ Ȟ3(Ui, Zp)

and since the space X is 1-dimensional and Ui is homotopy equivalent to the
circle it follows that Ȟ3(Ui,X; Zp) ∼= 0 therefore Ȟ3(Ui/X,X/X; Zp) ∼= 0
and

S3/X is a 3 − clcZp
space. (18)

By the local connectedness of the space S3/X, by (15), (17), (18) and
since dim S3/X = 3 it follows that S3/X is a clcZp

space and S3/X satisfies
the condition (2) of Definition 2.1.

By (11), (12), and (14) it follows that S3/X satisfies the condition (3)
of Definition 2.1, therefore S3/X is a cmZp

and a hmZp
3-manifold.

However, the space S3/X is neither a 3 − cmZq
nor a 3 − cmQ since

Ȟ2(S3/X, S3 −X; Zq) � 0 and Ȟ2(S3/X, S3 −X; Q) � 0 by (16), and is not
a 3 − cmZ since it is not a 1 − clcZ. This completes the proof. �

4. Epilogue

The spaces which we have constructed are not ANR’s, so there is an inter-
esting question:

Question 4.1. Let P be any set of prime numbers. Does there exist a 3-
dimensional ANR X with the following properties:
(1) for every prime p ∈ P, X is a 3-hmp

(2) for every prime q /∈ P, X is not a 3-hmq?
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