DIMENSION OF PRODUCTS WITH CONTINUA

A. N. DRANISHNIKOV, D. REPOVŠ¹ AND E. V. ŠČEPIN

ABSTRACT. We construct a subset $W \subset \mathbb{R}^3$ and a continuum Y with the dimension of the product $\dim(W \times Y) = \dim W = 2$. This solves negatively a long standing problem in dimension theory.

0. INTRODUCTION

It has been known ever since the 1930's that the logarithmic law for dimension, $\dim(X \times Y) = \dim X + \dim Y$, fails to hold for arbitrary compact metric spaces. The first known counterexamples are due to L. S. Pontryagin (see e.g. [8]). His compacta, now called *Pontryagin surfaces*, lie in \mathbb{R}^4 and are 2-dimensional whereas the dimension of their product is equal to three.

The ingredients of Pontryagin's construction come from algebraic (rather than point-set) topology. Note that it follows from a classical theorem of P. S. Aleksandrov [8] that there are no such counterexamples in \mathbb{R}^3 .

It is well known that the product inequality $\dim(X \times Y) \leq \dim X + \dim Y$ always holds. Also, for compact spaces X and Y of dimension ≥ 1 it is also known that $\dim(X \times Y) \geq \dim X + 1$. On the other hand, as it was shown in [2], for any fixed $n = \dim X$ and $m = \dim Y$ this inequality cannot be improved any further.

Approximately 40 years ago, K. Morita [10] proved that for every X (not necessarily compact), multiplication of X by the

¹ Supported in part by a grant from the Ministry of Science and Technology of the Republic of Slovenia.

⁵⁷

interval I increases dimension by one, $\dim(X \times I) \ge \dim X + 1$. A natural question arose whether the inequality $\dim(X \times Y) \ge \dim X + 1$ holds for an arbitrary compactum Y with $\dim Y \ge 1$ (see [8], [11; Problem (42.5)]).

The purpose of this paper is to give a negative answer to this question. Namely, we construct a 2-dimensional subset $W \subset \mathbb{R}^3$ and a 1-dimensional metric continuum Y such that $\dim(W \times Y) = 2$. Although this solves a problem in general topology, this paper, like in Pontryagin's case [8], belongs essentially to algebraic topology.

1. Supersolenoids

Every sequence of numbers $\{m_i > 1\}_{i \in \mathbb{N}}$ defines a *solenoid* as the limit space of the inverse system $\{S^1; p_i^{i+1}\}_{i \in \mathbb{N}}$ where each projection p_i^{i+1} is an m_i times winding of the circle S^1 onto itself. When $m_i = p$ for all i, the solenoid is called the p-adic solenoid and it's denoted by Σ_p .

Let (C, c^{\pm}) be a continuum with a fixed pair of points $c^+, c^- \in C$. Attach an arc I to C at the points c^{\pm} and denote such a continuum by \overline{C} . The exact sequence of the pair (\overline{C}, C) produces the short exact sequence

$$0 \to \mathbb{Z} \to \check{H}^1(\bar{C}) \to \check{H}^1(C) \to 0 \tag{(*)}$$

for the Čech cohomology with integer coefficients. Note that the pair $(C, \{c^+, c^-\})$ produces exactly the same sequence. The problem of splitting this exact sequence has a direct relation to the Generalized homotopy problem and was considered in [1], [12]. In the case when C is a solenoid we give the following splitting criterion: Let (C, c^{\pm}) be a solenoid. Then the sequence (*) can be split if and only if c^+ and c^- can be connected by a path in C. For the p-adic solenoid Σ_p this criterion claims, in algebraic terms, that c^{\pm} generate a splittable sequence (*) if and only if the pair c^{\pm} is homotopic to a pair a^{\pm} with $a^+ - a^- \in \mathbb{Z} \subset \mathbb{A}_p \subset \Sigma_p$. Here \mathbb{A}_p denotes the group of p- adic integers and \subset means 'is a subgroup of'. Note that every pair c^{\pm} in Σ_p is homotopic to a pair in $a^{\pm} \in \mathbb{A}_p$. Let $\mathbb{Z}_{(p)}$ denote the localization of \mathbb{Z} in p. Then there exist the inclusions $\mathbb{Z} \subset \mathbb{Z}_{(p)} \subset \mathbb{A}_p$.

Proposition 1.1. Let C be a p-adic solenoid. Then there exist $c^{\pm} \in C$ such that $Hom(\pi, \mathbb{Z}) = 0$, where $\pi = \check{H}^1(\bar{C})$.

Proof: We will consider the Steenrod-Sitnikov homology. Whenever we omit the coefficient group we mean the integers. By [9] $\operatorname{Hom}(\pi,\mathbb{Z}) = H_1(\bar{C})$. Since \bar{C} is one-dimensional, the Steenrod homology $H_1(\bar{C})$ coincides with the Čech homology $\check{H}_1(\bar{C})$ [13]. So it suffices to prove that the one-dimensional Čech homology group of \bar{C} is trivial.

We do that here for any c^{\pm} with $c^{+}-c^{-} \in \mathbb{A}_{p}-\mathbb{Z}_{(p)}$. Actually, we can prove a criterion which claims that a pair c^{\pm} produces the nontrivial Hom (π, \mathbb{Z}) if and only if it is homotopic to a pair a^{\pm} such that $a^{+} - a^{-} \in \mathbb{Z}_{(p)}$.

Since $\bar{C} = \lim_{\longleftarrow} \{S^1 \cup I\}$, where each bonding map sends S^1 onto S^1 , winding p times around, and sends I onto I homeomorphically, it follows that $\check{H}_1(\bar{C}) = \lim_{\longleftarrow} \{H_1(S^1 \cup I), \varphi_i^{i+1}\}_{i \in \mathbb{N}}$. We are going to describe the bonding maps $\varphi_i^{i+1} : \mathbb{Z} \oplus \mathbb{Z} \to \mathbb{Z} \oplus \mathbb{Z}$. Note that \mathbb{A}_p is identified with a fiber of the projection $\Sigma_p \to S^1$. Without loss of generality, we may assume that $c^- = 0$. Let c^+ be represented as an element of \mathbb{A}_p in the following way: $c^+ = n_0 + n_1 p + \cdots + n_k p^k + \cdots$ [7]. To choose a basis in $H_1(S^1 \cup I)$, fix an orientation on the circle S^1 and on the interval I and consider this oriented circle as the first basis element, and the cycle generated by the interval I and a part of the circle with proper orientation as the second basis element. Then a homomorphism φ_i^{i+1} is defined by the matrix $A_i = \begin{pmatrix} p & n_i \\ p & n_i \end{pmatrix}$.

$$A_i = \left(\begin{array}{cc} p & n_i \\ 0 & 1 \end{array}\right).$$

Claim. If $c^+ \notin \mathbb{Z}_{(p)}$ then $\lim_{k \to \infty} \{\mathbb{Z} \oplus \mathbb{Z}; A_i\} = 0$.

Indeed, we may consider $A_i^{-1} = \begin{pmatrix} p^{-1} & -n_i p^{-1} \\ 0 & 1 \end{pmatrix}$ over \mathbb{Q} . Let c_k denote the truncated c^+ : $c_k = n_0 + n_1 p + \cdots + n_k p^k$. Then

$$p^{k}A_{k}^{-1} \circ \dots \circ A_{2}^{-1} \circ A_{1}^{-1} = \begin{pmatrix} 1 & -c_{k} \\ 0 & p^{k} \end{pmatrix}.$$

First, show that the projection of the limit group on the first level is trivial. Choose an arbitrary $(n,m) \in \mathbb{Z} \oplus \mathbb{Z}$. If there is an element in the limit group which is projected to (n,m) then for each i, the number $n - c_k m$ is divisible by p^k . Let us consider a p-adic number $\beta = n - c^+m$. Then the p-adic norm of β is zero hence $\beta = 0$ and $mc^+ \in \mathbb{Z}$. Therefore $c^+ = \frac{n}{m} \in \mathbb{Q} \cap \mathbb{A}_p = \mathbb{Z}_{(p)}$ so we get a contradiction.

Thus, by the above argument we can prove that the projection on the second level is trivial, and so on. This proves the claim and also the proposition. \Box

Proposition 1.2. In the *p*-adic solenoid *C* there are points c^{\pm} for which the inclusion-induced homomorphism $\tilde{H}_0(\{c^-, c^+\}) \rightarrow \tilde{H}_0(C)$ is a monomorphism.

Proof: Consider the exact sequence of the pair (C, c^{\pm}) for the points c^{\pm} from Proposition 1.1. It suffices to show that $H_1(C/c^{\pm}) = 0$. This was proved above. \Box

For convenience, instead of the triple (C, c^{\pm}) we shall consider sometimes a continuum with hands, i.e. a continuum C with two arcs $[b^-, c^-]$ and $[c^+, b^+]$ attached to the marked points. We denote a continuum with hands obtained from (C, c^{\pm}) by (C', b^{\pm}) .

Definition. Let (C', b^{\pm}) be a continuum with hands. A compactum X with the property

(**)for every closed subset $A \subset X$ and every continuous map $\varphi : A \to \{b^-, b^+\}$ this is an extension $\psi : X \to C'$

is called a (C, c^{\pm}) -compactum. We call X a (C, c^{\pm}) -continuum if it is in addition a continuum. (Note that hands are inessential here.) A (C, c^{\pm}) -continuum for solenoid C we shall call a *supersolenoid*.

60

Proposition 1.3. Let X be a (C, c^{\pm}) -compactum and let $A \subset X$ be a closed subset. Then

(a) A is a (C, c^{\pm}) -compactum; and

(b) X/A is a (C, c^{\pm}) -compactum.

The proof easily follows from the definition.

Proposition 1.4. Suppose that X and Y are (C, c^{\pm}) -compacta and that dim $(X \cap Y) = 0$. Then $X \cup Y$ is a (C, c^{\pm}) -compactum.

Proof: For arbitrary $\varphi : A \to \{c^{\pm}\}$ first extend φ over $X \cap Y$ to get $\psi : A \cup (X \cap Y) \to \{c^{\pm}\}$. Then extend ψ separately over X and over Y. \Box

Proposition 1.5. Let $\pi = \check{H}^1(\bar{C})$. Then for every (C, c^{\pm}) compactum X there exists an epimorphism $\oplus \pi \to \check{H}^1(X)$.

Proof: There is a natural projection $\omega : \overline{C} \to S^1$ with one non-trivial preimage. Since X has the property (**) it follows that for every map $f : X \to S^1$ there is a homotopy lifting $f' : X \to \overline{C}$. Let $\{f_i\}_{i \in \mathbb{N}}$ be a countable family of maps to the circle, representing all cohomologies of X, and let $\{f'_i\}_{i \in \mathbb{N}}$ be a family of liftings. Consider the diagonal product $\Delta f'_i :$ $X \to \prod_i \overline{C}$. It induces an epimorphism for the 1-dimensional cohomologies. It remains to note that $\check{H}^1(\prod_i C) = \bigoplus_i \pi$. \square

Theorem 1.6. 1) For every triple (C, c^{\pm}) there exists a (C, c^{\pm}) -continuum.

2) Suppose that a cohomology theory \tilde{h}^* is trivial on a onedimensional continuum C. Then for every n, there exists an n-dimensional (C, c^{\pm}) -continuum.

Proof: We prove 2) so that the construction for 2) is valid also for 1).

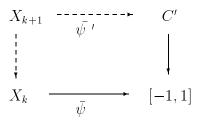
We construct an *n*-dimensional (C, c^{\pm}) -continuum X as the limit space of an inverse system $\{X_i, p_i^{i+1}\}_{i \in \mathbb{N}}$. The system will be constructed by induction.

Define $X_0 \cong S^n$. Note that $h^*(X_0)$ is a nontrivial group.

For each *i*, we define a finite covering \mathcal{U}_i of a compact space X_i by closed sets A of diameter $\leq 1/i$ and moreover with diameters of projections $p_k^i(A)$ less than 1/i, for all k < i. Denote by \mathcal{B}_i the set of all disjoint pairs (B^-, B^+) consisting of the unions of elements of \mathcal{U}_i . For every element $\beta = (B^-, B^+) \in \mathcal{B}_i$ fix a map $\varphi_\beta : B^- \cup B^+ \to \{b^-, b^+\}$, by setting $\varphi_\beta(B^-) = b^-$ and $\varphi_\beta(B^+) = b^+$.

Now we can describe a step of the induction from k to k+1. We suppose the set $\bigcup_{i=0}^{k} \mathcal{B}_i$ has a numeration: $\{\beta_1, \beta_2, ..., \beta_m\}$. Choose $\beta = \beta_k$. We have $\beta = (B^-, B^+) \in \mathcal{B}_i$ for some $i \leq k$. The map φ_β produces a map $\psi : (p_i^k)^{-1}(B^- \cup B^+) \to \{b^{\pm}\}$.

Let $\pi : C' \to [-1, 1]$ be a projection which sends $[b^-, c^-]$ onto [-1, 0] and $[c^+, b^+]$ onto [0, 1] and C in 0. There is an extension $\bar{\psi}$ of the composition map $\pi \circ \psi$ with $\dim(\bar{\psi}^{-1}(0)) \leq n-1$ (see for instance [5]). Define X_{k+1} as the pull-back of the following diagram:



The projection p_k^{k+1} is defined as a projection of the pullback onto X_k . Note that:

- (a) A homomorphism $(p_k^{k+1})^*$ is an isomorphism for h^* by virtue of the Vietoris-Begle theorem.
- (b) Dimension of X_{k+1} is $\leq n$ because X_{k+1} consists of an open subset which is homeomorphic to a subset of X_k and a closed set $\bar{\psi}^{-1}(0) \times C$ which is *n*-dimensional.
- (c) The map φ_{β} has an extension as a map to C' on the k+1 level. Indeed, $\psi' = \varphi_{\beta} \circ p_i^{k+1}$ has an extension $\bar{\psi}'$.

Choose a covering \mathcal{U}_{k+1} and define \mathcal{B}_{k+1} and add it to the union $\bigcup_{i\leq k} \mathcal{B}_i$ with the corresponding numbering.

Properties a) and b) will imply the *n*-dimensionality of the limit space. Since all X_i are continua the limit space is also a continuum.

The property c) and the construction guarantee the condition (**). Indeed, if $\varphi : A \to \{b^{\pm}\}$ is a map, there exists $\beta = (B^-, B^+) \in \bigcup_{i=0}^{\infty} \mathcal{B}_i$ such that $(p_i^{\infty})^{-1}(B^- \cup B^+) \supset A$ and $\varphi_{\beta} \circ p_i^{\infty}|_A = \varphi$. By the construction there is an extension in C'of φ_{β} onto some level $k \geq i$. Hence φ has an extension. \square

Corollary 1.7. For any family of primes ℓ and for every pair $x^{\pm} \in \Sigma_{\ell}$ there exist the ℓ -adic supersolenoid of arbitrary dimension n > 0.

Proof: Let
$$p \in \ell$$
. Then $\check{H}(\Sigma_{\ell}; \mathbb{Z}_p) = 0$, where $\mathbb{Z}_p = \mathbb{Z}/p\mathbb{Z}$. \Box

2. Connectedness with respect to a group

We call a space Y connected with respect to an abelian group G if its reduced Steenrod-Sitnikov 0-dimensional homology group with the coefficients in G is trivial. For example, Proposition 1.2 implies that a *p*-adic solenoid is disconnected with respect to the integers. This is also true for the corresponding supersolenoid.

Proposition 2.1. Suppose that the inclusion $c^{\pm} \subset C$ induces a monomorphism of homology groups. Then for any (C, c^{\pm}) -compactum X and for arbitrary pair $x^{\pm} \subset X$, the inclusion induces a monomorphism.

Proof: Extend the map $\{x^{\pm}\} \to \{c^{\pm}\}$ to a map $X \to C$. Then our homomorphism is a left divisor of a monomorphism. \Box

Proposition 2.2. Let a one-dimensional continuum X be the limit space of an inverse system $\{X_i, r_i^{i+1}\}_{i \in \mathbb{N}}$, all projection of

which are retractions. Then $\lim_{\leftarrow i} {}^1 \{ \operatorname{Hom}(\check{H}^1(X_i), \pi) \} = 0$ for an arbitrary group π .

Proof: Let β_i be a left inverse to $(r_i^{i+1})^*$, i.e. $\beta_i \circ (r_i^{i+1})^* =$ id. Show that every homomorphism $h_i : \operatorname{Hom}(\check{H}^1(X_{i+1}), \pi) \to$ $\operatorname{Hom}(\check{H}^1(X_i), \pi)$ is an epimorphism. Let $f : \check{H}^1(X_i) \to \pi$ be an arbitrary homomorphism. Note that $h_i(f \circ \beta_i) = (f \circ \beta_i) \circ$ $(r_i^{i+1})^* = f \circ (\beta_i \circ (r_i^{i+1})^*) = f$. \Box

Proposition 2.3. Let $(X, D) = \lim_{\leftarrow} \{(X_i, D_i); r_i^{i+1}\}$ where X is a 1-dimensional continuum, $D_i \cong D$ are two-point sets and r_i^{i+1} are retractions. Suppose that for all *i*, the boundary homomorphism $H_1(X_i/D_i; \pi) \to H_0(D_i, \pi)$ is an epimorphism. Then the boundary homomorphism $\partial : H_1(X/D; \pi) \to$ $H_0(D; \pi)$ is also an epimorphism.

Proof: First, we show that the limit homomorphism

$$\lim H_1(X_i/D_i;\pi) \to \lim H_0(D_i;\pi)$$

is an epimorphism. We have the functor \varprojlim applied to the short exact sequence:

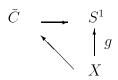
$$0 \to H_1(X_i; \pi) \to H_1(X_i/D_i; \pi) \to H_0(D_i; \pi) \to 0$$

hence by [9] we have an exact sequence

$$\lim_{\longleftarrow} H_1(X_i/D_i;\pi) \to \lim_{\longleftarrow} H_0(D_i;\pi) \to \lim_{\longleftarrow} {}^1H_1(X_i;\pi) \,.$$

Since X_i are one-dimensional, $H_1(X_i; \pi) = \text{Hom}(\check{H}^1(X_i), \pi)$. Apply Proposition 2.2 to obtain the required epimorphism. Since X is 1-dimensional, in dimension one Steenrod homologies coincide with the Čech homologies and hence $\lim_{\leftarrow} H_1(X_i/D_i; \pi) = H_1(X/D; \pi)$. It is easy to check that $H_0(D; \pi) = \lim_{\leftarrow} H_0(D_i; \pi)$ and our epimorphism coincides with ∂ . \Box **Lemma 2.4.** Let X be a (C, c^{\pm}) -compactum and suppose that dim C = 1. Then the inclusion-induced homomorphism $H_0(c^{\pm}; \check{H}^1(X)) \to H_0(C; \check{H}^1(X))$ is trivial (the points c^- and c^+ are $\check{H}^1(X)$ -connected in C.

Proof: It is sufficient to show that the boundary homomorphism is an epimorphism. The boundary homomorphism is generated by the functor Hom $(,\check{H}^1(X))$ from the co-boundary homomorphism $\delta: \check{H}^0(\{c^{\pm}\}) \to \check{H}^1(C/c^{\pm})$. Choose an arbitrary homomorphism $f: \check{H}^0(\{c^{\pm}\}) \to \check{H}^1(X)$ and consider the extension problem. This extension problem diagram



can be obtained from the diagram by applying cohomologies \check{H}^1 . Here g represents f(1) and the horizontal arrow is the collapsing of C in \bar{C} to the point (see §1).

Since X is a (C, c^{\pm}) -compactum there exists a homotopy lifting g' of g. \Box

Proposition 2.5. For any one-dimensional compactum X there is a map of the Cantor discontinuum $f: K \to X$ which induces an epimorphism $f_*: H_0(K; G) \to H_0(X; G)$ for every group G.

Proof: We define a sequence of finite tilings $\mathcal{H}_i = \{H_i^j\}$ of X by closed subsets with nonempty interiors such that

- a) the diameter of H_i^j is less than 1/i;
- 2) dim $(H_i^j \cap H_i^k) \leq 0$ for all i, j, k;
- 3) \mathcal{H}_{i+1} is a refinement of \mathcal{H}_i ; and
- 4) each \mathcal{H}_i has an one-dimensional nerve.

This sequence defines an inverse system $\{X_i, p_i^{i+1}\}_{i \in \mathbb{N}}$ with $X_1 \cong X$ and with the limit space homeomorphic to the Cantor set K. Denote by $E_i = \bigcup_{j,k} (H_i^j \cap H_i^k)$. Fix embeddings $X_i \subset \mathbb{R}^3$

and $X_{i+1} \subset \mathbb{R}^3$ and consider a graph of p_i^{i+1} in $\mathbb{R}^3 \times \mathbb{R}^3$. For every $x \in E_i$ we join the points in $(p_i^{i+1})^{-1}(x)$ by a straight interval in $\{x\} \times \mathbb{R}^3$. The resulting space we shall denote by \bar{X}_{i+1} . Since the projection of \bar{X}_{i+1} on X_i is a cell-like map, the inclusion-induced homomorphism $H_0(X_{i+1}; G) \to H_0(\bar{X}_{i+1}; G)$ coincides with the bonding homeomorphism $(p_i^{i+1})_*$.

In order to prove that every bonding homomorphism is an epimorphism it is sufficient to show that $H_0(\bar{X}_i, X_i; G) = 0$ for every *i*. Note that $H_0(\bar{X}_i, X_i; G) = \text{Ext}(\check{H}^1(\bar{X}_i, X_i), G)$. This Ext group is trivial because of $\check{H}^1(\bar{X}_i, X_i) = \check{H}^1(S^1 \times E_{i-1}, \{pt\} \times E_{i-1}) = \check{H}^1(S^1 \times E_{i-1}) = \check{H}^0(E_{i-1}) = \oplus \mathbb{Z}$ is a free abelian group. \Box

Proposition 2.6. Let X be a separable metrizable space and G be an abelian group. Suppose that X is G-connected and locally G-connected, i.e. for every two-points subset $D \subset X$ the inclusion-induced homomorphism $\tilde{H}_0(D;G) \to \tilde{H}_0(X;G)$ is trivial and if diameter of D is small enough then the inclusion-induced homomorphism is trivial in a small neighbourhood. Then $\tilde{H}_0(X;G) = 0$.

Proof: We show that for every compact $Y \,\subset X$, the inclusioninduced homomorphism i_* is trivial. Choose an arbitrary $\alpha \in$ $H_0(Y;G)$. By Proposition 2.5, there exist a map $f: K \to Y$ of the Cantor set and an element $\beta \in H_0(K;G)$ such that $f_*(\beta) = \alpha$. There are maps $p_n: K \to D^n$ and $q_n: D^n \to K$ such that $\lim q_n \circ p_n = \operatorname{id}_K$. Here D^n is a 2ⁿ-point set. Since X is locally G-connected, any two close enough maps of K in Y send a given element of the 0-dimensional homology of K into the same element of $H_0(X;G)$. Therefore for some n, we have that $i_*(\alpha) = i_*f_*(\beta) = i_*f_*(q_n)_*(\beta)$. The right hand side of this equality is trivial because the cycle $(p_n)_*(\beta)$ has a finite support. □

3. Continua nets and their complements in \mathbb{R}^3 .

Let $\mathbb{N}^3 \subset \mathbb{R}^3$ be the integer lattice and let $\mathcal{N}_k = (\frac{1}{2^k}\mathbb{N})^3$ denote the corresponding subdivision of \mathbb{N}^3 . Two points in \mathcal{N}_k are called *neighbor points* if they agree in two coordinates and they differ in the third by $\frac{1}{2^k}$. Let (X, x^{\pm}) be a one-dimensional continuum. We construct a 1-dimensional net T_k by attaching to every neighbor points a copy of X at the points x^- and x^+ .

Proposition 3.1. For every 1-dimensional continuum (X, x^{\pm}) there exists a sequence of nets T_k with the following properties:

- (a) all examples X in T_k intersect each other only in the vertices of \mathcal{N}_k at their marked points;
- (b) for every n > k, $T_k \cap T_n = \mathcal{N}_k$; and
- (c) every example X of T_k has diameter $\leq \frac{1}{2^k}$.

The proof easily follows by general position property in \mathbb{R}^3 . \Box

Denote by T the union of all T_k .

Proposition 3.2. Let (C, c^{\pm}) be a 1-dimensional continuum with $\pi = \check{H}^1(\bar{C})$ such that $Hom(\pi, \mathbb{Z}) = 0$ and let the net Tbe constructed by means of (C, c^{\pm}) -continuum (X, x^{\pm}) . Then for any compactum $Y \subset T$ and for any two-point subset $D \subset$ Y there exists a proper subcompactum $Y' \subset Y, D \subset Y'$, such that the inclusion-induced homomorphism $H_1(Y'/D) \to$ $H_1(Y/D)$ is an epimorphism.

Proof: It follows by the Baire Category theorem that there exists an open set $V \subset Y - D$ such that $V \subset T_k$ for some k. Define Y' = Y - V and consider the exact sequence of the pair (Y/D, Y'/D):

$$H_2(V) \rightarrow H_1(Y'/D) \rightarrow H_1(Y/D) \rightarrow H_1(V)$$

First, note that $H_2(V) = 0$ by dimension reasons, and $H_1(V) = \text{Hom}(H_c^1(V), \mathbb{Z}) = \text{Hom}(\check{H}^1(Z), \mathbb{Z})$, where $Z = \text{Cl}V/\partial V$. By Propositions 1.3 and 1.4, Z is a (C, c^{\pm}) -compactum. By Proposition 1.5, there is an epimorphism $\bigoplus_i \pi \to \check{H}^1(Z)$. The functor

Hom gives a monomorphism $\operatorname{Hom}(\check{H}^1(Z), \mathbb{Z}) \to \operatorname{Hom}(\oplus_i \pi, \mathbb{Z})$. The target is zero by the assumption, therefore $H_1(V) = 0$. \Box

Lemma 3.3. Let T be as in Proposition 3.2. Then for every open subset $U \subset T$, $H_0(U) \neq 0$.

Proof: Suppose to the contrary that $H_0(U) = 0$. Let $D \subset U$ be a two-points set. Then there is a compactum $Y \supset D$ such that the inclusion-induced homomorphism $H_0(D) \to H_0(Y)$ is trivial. This means that $H_1(Y/D) \neq 0$. By the transfinite induction construct a decreasing sequence of compacta $Y_1 \supset Y_2 \supset \cdots \supset Y_{\alpha} \supset Y_{\alpha+1} \cdots$ such that

a) $D \subset Y_{\alpha}$ for every α ;

b) $Y_1 = Y$; and

3) the inclusion $Y_{\alpha} \subset Y$ induces an isomorphism $H_1(Y_{\alpha}/D) \to H_1(Y/D)$.

We can do every non-limit step of the induction due to Proposition 3.2. Let us consider a limit step, $\alpha = \lim_{\beta < \alpha} \beta$. We define in that case that $Y_{\alpha} = \bigcap_{\beta} Y_{\beta}$. Since Y_{α}/D is onedimensional, $H_1(Y_{\alpha}/D) = \lim_{\leftarrow} H_1(Y_{\beta}/D)$ and the property 3) holds. Properties 1)-2) hold by trivial reasons. Any decreasing sequence of distinct closed subsets of a metric compact space can not be more than countable. But we have constructed such a sequence of the length ω_1 . This contradiction completes the proof. \square

By the definition, a paracompact space Y has the cohomological dimension $\leq n$ with respect to abelian group G (we write c-dim_G(Y) $\leq n$) if for every closed subset $A \subset Y$ and every map $\varphi : A \to K(G, n)$ to the Eilenberg-MacLane complex K(G, n) has an extension. It is well known (see e.g. [8]) that this definition is equivalent to the property that $H^{n+1}(Y, A;$ G) = 0, for every closed subset $A \subset Y$ (here we consider the Alexander-Spanier cohomologies).

Let us consider the net T as in Proposition 3.2. Such a net exists by virtue of Propositions 1.1 and 3.1. Additionally,

68

69

we may assume the property of (C, c^{\pm}) from Proposition 1.2. Denote by $W(C, c^{\pm})$ the complement of T in \mathbb{R}^3 .

Theorem 3.4. Under the above conditions the space $W(C, c^{\pm})$ is two-dimensional.

Proof: Let *B* be a 3-dimensional ball in \mathbb{R}^3 . Sitnikov duality implies $H_0(\operatorname{Int} B \cap T) = H^2(W(C, c^{\pm}) \cap B, (C, c^{\pm}) \cap \partial B)$. By Lemma 3.3, this group is nontrivial, hence the integral cohomological dimension of $W(C, c^{\pm})$ is greater than or equal to 2. It is easy to see that it is less than 3. □

Definition [8]. A system of open subsets $\{U_{\alpha}\}$ is called a big basis for X if for every closed subset $A \subset X$ and for every neighborhood $V \supset A$ there exists a locally finite covering of A by elements of $\{U_{\alpha}\}$ lying in V.

Example [8]. For $X \subset \mathbb{R}^n$ the set $U(a, r) = \{x : d(x, a) < r\} \cap X$ is a big basis for X.

Lemma 3.5. [8] Suppose that X is a paracompact space and $\{U_{\alpha}\}$ is a big basis for X. Assume that $H^{n+1}(X, X-U_{\alpha}; G) = 0$ for all α . Then c-dim_GX $\leq n$.

Theorem 3.6. Let $W(C, c^{\pm})$ be as above and suppose that the net T is constructed by means of (C, c^{\pm}) -continuum (X, x^{\pm}) . Then for every (X, x^{\pm}) -compactum Y, c-dim_{$\check{H}^1(Y)$} $W(C, c^{\pm}) = 1$.

Proof: Consider a big basis for $W(C, c^{\pm})$ from the above example. For every regular open ball $V \subset \mathbb{R}^3$ we prove that $V \cap T$ is connected and locally connected with respect to the coefficient group $\check{H}^1(Y)$. We prove the connectedness of $V \cap T$. For every two-point set $D = \{a, b\} \subset V \cap T$ there are two sequences $\{a_i\}_{i \in \mathbb{N}}$ and $\{b_i\}_{i \in \mathbb{N}}$ converging to a and b respectively, with the following properties:

(1) a_1 and b_1 are neighbor points for some \mathcal{N}_k and the continuum X, joining a and b, lies in V; and

(2) for every *i*, points a_i and a_{i+1} (also b_i and b_{i+1}) are neighbor points for some \mathcal{N}_k and the corresponding example of continuum X joining those points lies in V.

The union of all those continua X defines a compactum Z. We may assume that Z consists of an infinite chain of continua, homeomorphic to X, between a and b. Hence the continuum Z can be represented as the limit space of an inverse system of continua Z_i , consisting of the parts of that chain from a_i to b_i . The bonding maps in this system are retractions defined by collapsing the ends to the end points. Lemma 2.4 implies that for each space Z_i , the inclusion $D_i = \{a_i, b_i\} \subset Z_i$ induces trivial homomorphism of the 0-dimensional homology groups with $\check{H}^1(Y)$ as coefficients. Apply Proposition 2.3 to obtain that the inclusion $D \subset Z$ induces a trivial homomorphism in the dimension 0.

By Proposition 2.6, $\tilde{H}_0(V \cap T; \check{H}^1(Y)) = 0$. The Sitnikov duality for the *n*- sphere S^n says that $H^q(X; G) \cong \check{H}^c_{n-q-1}(S^n - X; G)$, for every nonempty subset $X \subset S^n$ (c.f. [9; Corollary (11.21)]). Let us consider the quotient space $V/\partial V \simeq S^3$ and let us apply the Sitnikov duality to $U/\partial U \subset V/\partial V$, where $U = V \cap W$ is an element of our big basis for $W = W(C, c^{\pm})$. We obtain that

$$\begin{array}{rcl} H^2(U/\partial U; \check{H}^1(Y)) &\cong& \check{H}_0(V-W; \check{H}^1(Y)) \\ &\cong& \check{H}_0(V\cap T; \check{H}^1(Y)) = 0 \end{array}$$

Note also that $H^2(W, W-U; \check{H}^1(Y)) \cong H^2(U/\partial U; \check{H}^1(Y))$.

4. The main result.

The following fact we leave without a proof because it is an elementary exercise in general topology.

Lemma 4.1. Let $\{U_{\alpha}\}$ be a big basis for a paracompact space W and let $\{V_{\beta}\}$ be a basis for compact space Y. Then $\{U_{\alpha} \times V_{\beta}\}$ forms a big basis for the product $W \times Y$.

70

71

Theorem 4.2. There exist a 2-dimensional subset $W \subset \mathbb{R}^3$ and a 1-dimensional continuum Y with $\dim(W \times Y) = 2$.

Proof: We consider $W = W(C, c^{\pm})$, where $C \cong \Sigma_p$ and c^{\pm} are as in Proposition 1.2 and the net T is constructed by using a $(C, c^{\pm}$ -continuum (X, x^{\pm}) . Let Y be a 1-dimensional (X, x^{\pm}) -continuum. For every open subset $V \subset X$, the space $\operatorname{Cl}(V)/\partial V$ is a (X, x^{\pm}) -compactum by virtue of Proposition 1.3. By Lemma 4.1 and Lemma 3.5, it suffices to show that $H^3(W \times Y, W \times Y - U \times V)) = 0$ for every element U of big basis for W, described in §3, and every open set $V \subset Y$.

Note that

$$\begin{aligned} H^{3}(W \times Y, & W \times Y - U \times V) \\ &= & H^{3}((W, W - U) \times (Y, Y - V)) \\ &= & H^{2}((W, W - U); \check{H}^{1}(Y, Y - V)) \\ &= & H^{2}((W, W - U); \check{H}^{1}(\mathrm{Cl}(V)/\partial V)) = 0 \end{aligned}$$

The last equality is due to Theorem 3.6.

The space W is 2-dimensional according to Theorem 3.4. \Box

Lemma 4.3. Let Y be a continuum and $D \subset Y$ a two-point subset. Then for every prime p, the localization $\mathbb{Z}_{(p)}$ belongs to the Bockstein family $\sigma(\check{H}^1(Y/D))$.

Proof: By the definition of the Bockstein family it suffices to show that $\mathbb{Z}_{p^{\infty}} \otimes \check{H}^{1}(Y/D) \neq 0$ [4]. Since $\operatorname{Tor}\check{H}^{1}(Y) =$ 0, the multiplication of the short exact sequence $0 \to \mathbb{Z} \to$ $\check{H}^{1}(Y/D) \to \check{H}^{1}(Y) \to 0$ by $\mathbb{Z}_{p^{\infty}}$ produces a monomorphism $\mathbb{Z} \otimes \mathbb{Z}_{p^{\infty}} \to \check{H}^{1}(Y/D)$. \Box

Theorem 4.4. There exists a space W such that $\dim_{\mathbb{Z}} W = 2$ and $\sup\{\dim_{H} W; h \in \sigma(\mathbb{Z})\} = 1$. In particular, the Bockstein theorem asserting that $\operatorname{c-dim}_{G} X = \sup\{\operatorname{c-dim}_{H} X; H \in \sigma(G)\}$ does not generalize to the class of noncompact spaces. *Proof:* Suppose that Bockstein theorem were correct. Consider a space W from Theorem 4.2. Then by Lemma 4.3 and Theorem 3.6, it would follow that $\operatorname{c-dim}_{\mathbb{Z}_{(p)}} W \leq 1$. Since $\sigma(\mathbb{Z}) = \{\mathbb{Z}_{(p)}; p \text{ runs over all primes}\}, \text{ Bockstein theorem would}$ then imply that $c-\dim_{\mathbb{Z}} W \leq 1$ which would contradict Theorem 3.4. 🗖

Remark. It is possible to construct such a space W as above with the dimensions = 1 with respect to all localization $\mathbb{Z}_{(p)}$. This solves a problem from [8].

Acknowledgements

This paper was written during the visit by the first and the third author to the University of Ljubliana in the summer of 1992 (and announced in [3]), on the basis of the agreement between the Slovenian Academy of Sciences and Arts and the Russian Academy of Sciences (1991–1995), and supported by a grant from Ministry of Science and Technology of the Republic of Slovenia. It was presented by the third author at the IX. International Topological Conference, Kiev (October 5-11, 1992) and by the first author at the Spring Topology Conference, Columbia, SC. (March 9–11, 1993).

References

- [1] O. A. Batanin, Mappings of spectral sequences and generalized ho*motopy axiom*, Sibirsk. Mat. Zurn. **28**:5 (1987), 22-31 (in Russian); English transl. in Siberian Math. J. 28:5 (1987), 709-716.
- [2] A. N. Dranishnikov, Homological dimension theory, Uspehi Mat. Nauk 43:4 (1988), 11-55 (in Russian); English transl. in Russian Math. Surveys 43:4 (1988), 11-63.
- A. N. Dranishnikov, D. Repovš and E. V. Ščepin, Dimension of prod-[3] ucts with continua, Abstr. Amer. Math. Soc. 14 (1993), 590-591, No. 93T-55-110.
- [4] A. N. Dranishnikov, D. Repovš and E. V. Ščepin, On approximation and embedding problems for cohomological dimension, Topol. Appl. **55** (1994), 67-86.
- [5] S. Eilenberg, Une theorème de la dualité, Fund. Math. 26 (1936), 280-232.

- U. H. Karimov, On generalized homotopy axiom, Dokl. AN TadžSSR 22:9 (1979), 521-524 (in Russian).
- [7] N. Koblitz, *p-Adic Numbers*, *p-Adic Analysis*, and Zeta-functions, Springer-Verlag, New York, Heidelberg, Berlin, 1977.
- [8] V. I. Kuz'minov, Homological dimension theory, Uspehi Mat. Nauk 23:5 (1968), 3-49 (in Russian); English transl. in Russian Math. Surveys 23:5 (1968), 1-45.
- [9] W. S. Massey, Homology and Cohomology Theory, Marcel Dekker, New York, Basel, 1978.
- [10] K. Morita, On dimension of product spaces, Amer. J. Math. 75 (1953), 205-223.
- [11] K. Nagami, Dimension Theory, Academic Press, New York 1970.
- [12] L. A. Nguen, *Generalized homotopy axiom*, Mat. Zametki, **33**:1 (1983), 117-130 (in Russian); English transl. in Math. Notes **33**: 1-2 (1982), 5864.
- [13] E. G. Sklyarenko, On the homology theory associated with Aleksandrov-Čech cohomology, Uspehi Mat. Nauk 34:6 (1979), 90-118 (in Russian); English transl. in Russian Math. Surveys 34:6 (1979).

Institute for Mathematics, Physics and Mechanics University of Ljubljana, Jardranska 19 P. O. Box 64, Ljubljana 61111, Slovenia

Steklov Mathematical Institute 42 Vavilov Stz. Moscow, Russia 117966