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Abstract 

We prove that the following fundamental problems of geometric dimension theory are 
equivalent: (1) The Mapping Intersection Problem. Given compacta X and Y such that 
dim(X x Y) < II, can every pair of maps f : X ---) Iw” and g : Y + R” be approximated 
arbitrarily closely by maps f’ : X+ [w” and g ‘:Y+Iw” such that f’(X)ng’(Y)=@? (2) 
The Cohomological Dimension Approximation Problem. Given a compactum X of dimension 
< n - 2 and an Abelian group G, can every map f : X + R” be approximated arbitrarily 
closely by a map f’ : X + [w” such that dim,;f’(X) = dim,X? (3) The Dimension Type 

Embedding Problem. Given a compactum X of dimension Q n - 2, does there exist a 
compactum X’ c IQ” of the same dimension type, i.e., dim,X’ = dim,X, for every Abelian 
group G? By using this equivalence, we obtain the main result of the paper: Let X and Y be 

compacta such that dim (X X Y) < n and (codim X)(codim Y) > n. Then every pair of maps 

f : X + R” and g : Y + R” can be approximated arbitrarily closely by maps f ’ : X + R” and 

g’ : Y + R” such that f’(X) n g’(Y) = 0, p rocided that dim X < n - 3 and dim Y < n - 3. 
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1. Introduction 

There are two approaches to define the dimensional type of a space X: 
algebraic and geometric. The algebraic or cohomological dimension type of a space 
X is defined by its cohomological dimensions dim,X with respect to different 
coefficient groups G. Two spaces X and Y are said to be of the same cohomologi- 
cal dimension type if and only if dim.X = dim,Y for every Abelian group G. For 
the geometric approach, based on dimensions of products, one defines X and Y to 
be of the same geometric dimension type if and only if dim(X x 2) = dim(Y x Z) 
for every compacturn 2. These approaches are known to be equivalent for the 
class of compacta, i.e., compact metric spaces - the only class of interest in this 
paper. 

Bockstein defined a countable family of groups, the so-called Bockstein basis 
and proposed an effective algorithm to calculate the dimension of products via the 
cohomological dimension of factors over the basic groups [l]. Hence the coinci- 
dence of cohomological types of compacta implies the coincidence of geometrical 
dimension types. On the other hand, the theory of test spaces originated by 
Kodama [ll] and Kuz’minov [12] and completed recently by Dranisnikov [2] allows 
one to prove the converse implication. 

Given an Abelian group G, one says that a compacturn X is a G-testing space 
for some class 5%’ of spaces if for all spaces YE ‘&? the following testing equality 
holds: 

dim,Y = dim( X x Y) - dim X. 

Since Kuz’minov [12] constructed testing compacta T,(G) for the class of n-dimen- 
sional compacta and any Abelian group G, it follows that the geometric dimension 
type completely determines the cohomological dimension types. Kuz’minov test 
spaces T,(G) have dimension in general greater than n. His result was strength- 
ened by DraniSnikov [2], who constructed test spaces of dimension dim T’(G) = n. 
For our purposes we need a little more exact result which is proved in Section 2 - 
on the Bockstein algebra. 

Test Space Theorem 1.1. For any Abelian group G and any natural number n, there 
exists an n-dimensional compactum T,(G) such that T,,(G) is a G-testing space for 
the class of compacta Y which satisfy the inequaliw dim Y - dim.Y < n. 

Compacta having the same cohomological (and hence geometric) type are said 
to be of the same dimension type. The dimension type of a space will be written as 
DIM X (in contrast with the Lebesgue dimension dim X). It was the problem 
stated below which stimulated us to introduce the notion of the dimension type. A 
pair of maps f : X + S and g : Y + S of compacta X and Y into a metric space S 
is said to have a stable intersection [5] is for some F > 0, every pair of maps 
f’:X+Sand g’:Y+Ssuchthat d(f,f’)< F and d(g, g’) <E has the property 
that f’(X) n g’(Y) # @. In the sequel, we shall assume that S E AR. 
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Mapping Intersection Problem 1.2. Is it true that compacta X and Y such that 
dim(X x Y) < IZ fail to possess mappings into R” with stable intersections? 

Compacta X and Y having no stable intersections in space S are called 
disjoinable in S and denoted by XllY in S. (Note the following two elementary 
properties of disjoinability: (1) If XllY in S, X’ CX and Y’ c Y then also X’IIY’ in 

S; and (2) if X = U (Xi1 i E N}, Xi are closed and pairwise disjoint and X,1/Y in S 
then also XllY in S.) It turns out that the property of disjoinability is a problem of 
dimension types: 

Dimension Type Determination Theorem 1.3. 1f dim X < II - 3, dim Y < n - 3, 
DIM X = DIM X’, and DIM Y = DIM Y’ then X(IY in R” implies X’I(Y’ in R”. 

The proof of this theorem is based on the interplay of two dualities, one of them 
being the duality of negligibility and dimension, stated in the following theorem 
from [3,4]. (Note that the tameness of X is used only in the proof of the 
implication (1) * (2).) 

Duality of Negligibility and Dimension Theorem 1.4. For any tame compactum 
X c R” of dimension < n - 3, and any other compactum Y, the following statements 
are equiualent : 

(1) dim(X x Y) < n; and 
(2) X is Y-negligible. 

A subset X of a space S is said to be negligible with respect to some compactum 
Y (Y-negligible) if mappings of Y into S are approximable by mappings whose 
images miss X. (Note the following two elementary properties of Y-negligibility: 
(1) Every subspace X’ CX of a Y-negligible set X is also Y-negligible; and (2) the 
union of any countable family (XJ ( N of closed Y-negligible sets Xi is also 
Y-negligible.) The Duality of Negligibility and Dimension Theorem 1.4, together 
with the Test Space Theorem 1.1 allow us to determine the dimension type of X 
by its negligibility type. 

The second duality, needed for the proof of Theorem 1.3, is rather elementary. 
Before stating it let us introduce some terminology. We will say that a compactum 
X is approximable in space S with mappings of class 9 (9-approximable) if 
mappings of the class 9 form a dense subset in the space %7(X, S) of all 
continuous mappings from X into S. We now state our second duality-for 
mutual neglibility- which easily follows from a lemma due to H. Torui%zyk (cf. 

[131): 

Mutual Negligibility Lemma 1.5. For any pair of compacta X and Y, the following 
statements are equivalent: 

(1) XllY in R”; 
(2) X is approximable in R” with Y-negligible images; and 
(3) Y is approximable in R” with X-negligible images, 
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The strongest result up until now, with respect to the Mapping Intersection 
Problem 1.2 has been the following theorem (cf. [3,6], and also [15]>: 

Metastable Disjoining Theorem 1.6. If compacta X and Y satisfy the inequalities 
dim(X x Y) < n and 2 dim X + dim Y < 2n - 2 then XllY in R”. 

This theorem is now an easy consequence of Theorem 1.4 and the following 
approximation theorem (and it also follows from Theorem 1.18). 

Metastable Approximation Theorem 1.7. Suppose that G is an Abelian group and X 
is a compactum such that dim X < n - 3 and 2 dim X - dim,X < n - 1. Then 
{f~ I??‘( X, W) ]dim,f(X) = d im,X] is a dense G,-subset of %7X, R”). 

If we consider X and a test space T,(G), the disjoining X and the test space 
T,(G) in [w” is equivalent, by the Mutual Negligibility Lemma 1.5 to T,(G)-negligi- 
ble approximability of X in Iw”. But T,(G)-negligibility by Theorem 1.4 means 
simply restriction on the G-dimension of f(X). Precise analysis of the above 
arguments produces the following result: 

Disjoining Approximation Equivalence Theorem 1.8. For every compactum X of 
dimension < n - 3, the following statements are equicalent : 

(1) X is approximable in R” by mappings not changing its dimension type; and 
(2) XllY in R” f or any compactum Y such that dim(X X Y) < n. 

So we see that the Mapping Intersection Problem 1.2 turns out to be equivalent 
to the following general fundamental problem: 

Cohomological Dimension Approximation Problem 1.9. Is every compacturn X of 
dimension < n - 2 approximable in R” with mappings whose images have the 
same cohomological dimension as X? 

In fact, it follows that the results in Section 4 that the Cohomological Dimen- 
sion Approximation Problem 1.9 reduces to the case of cyclic groups. The 
described reduction was not surprising for the authors (cf. [2]). But the following 
reduction of both problems to a problem of realization of a given dimension type 
in some R” was very surprising for us. This reduction is based on the following 
ingenuous geometric observation. 

Approximation Lemma 1.10. If X is a compact subspace of R” then any mapping of 
X into R” is approximable by mappings which do not change its dimension type. 

As an immediate corollary of the Approximating Lemma 1.10 and by virtue of 
the Disjoining Approximation Equivalence Theorem 1.8, one obtains the following 
result: 
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Subset Disjoining Theorem 1.11. If X c R” and Y are compacta such that dim X < 
n - 3 and dim(X X Y) <n then XllY in R”. 

Positive solution of the Cohomological Dimension Approximation Problem 1.9 
for some X implies that for most mappings f : X + R”, the images have the same 
dimension type as X. So DIM X is embeddable into [w”. 

Now we are ready to observe that embedding of X into [w” up to DIM-type 
immediately solves the Cohomological Dimension Approximation Problem 1.9. 
Indeed, Problem 1.9 for X is equivalent to the disjoining problem for dimension 
types, by the Dimension Type Determination Theorem 1.3. So the Approximation 
Lemma 1.10 solves Problem 1.9 for subsets of [w”, and hence solves it for all 
dimension types which are representable in [w”. 

The above discussion can be summarized by the following result: 

Reduction Theorem 1.12. For any compactum X of dimension < n - 3, the follow- 
ing statements are equivalent: 

(1) DIM X = DIM X’ for some compactum X’ c R”; 
(2) XllY in IR” f or any Y with dim(X X Y> <n; and 
(3) X is approximable in R” with mappings cp : X - R” such that DIM cp(X) = 

DIM X. 

Now one sees the third aspect of the Mapping Intersection Problem 1.2 which 
turns out to be equivalent to the following: 

Dimension Types Embedding Problem 1.13. Given a compacturn X of dimension 
<n - 2, does there exist a compact subset X’ c R” of the same dimension type, 
DIM X’ = DIM X? 

Having finished with reduction let us start to solve the problem. First, the 
Reduction Theorem 1.12, coupled with the Approximation Lemma 1.10 produces 
almost complete (codimension 2 excluding1 solution of the Mapping Intersection 
Problem 1.2 for compact subsets of Iw”. 

The main tool in the further developments provides the Splitting Theorem for 
Dimension Type 1.14. This theorem presents a decomposition of an arbitrary type 
into basic types. The complete description is presented in Section 2 (cf. Theorems 
2.11 and 2.13). For our present purpose it suffices to state the following version of 
this theorem. 

G-Splitting Theorem 1.14. For every Abelian group G and every compactum X there 
exists a pair of compacta X, and X, such that 

(1) DIM X = DIM(X, u X,); 
(2) dim,X, = 1; and 
(3) dim X, < dimoX+ 1. 

First, apply the G-Splitting Theorem 1.14 to solve the Cohomological Dimen- 
sion Approximation Problem 1.9 for dim,. By DIM-invariance of approximability 
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it is sufficient to solve this problem for the case X=X, uX,, where X, and X, 
satisfy conditions of Theorem 1.14. 

Now the problem breaks into two parts. It follows for X, by the Metastable 
Approximation Theorem 1.7. Concerning Xi, by using regularly branched maps 
and the G-analogue of the Hurewicz theorem [lo] on dimension raising mappings 
we can prove the following result (by codim X we shall always denote n - dim X, 
even when X doesn’t lie in W): 

Dimension Bounding Lemma 1.15. Let G be any Abelian group. Zff : X -+ R” is a 
regularly branched map and if dim,X = 1 then 

n-l 
d&f(X) G codim X’ 

Namely, X is approximable in R” with regularly branched maps [5]. As an 
immediate application of the above lemma we obtain the following: 

Approximation Theorem 1.16. Let G be any Abelian group and X any compactum of 
dimension < n - 3. Then every mapping of X into R” can be approximated arbitrar- 
ily closely by mappings f : X --f R” such that 

dim,f (X) < max dim,X, 

If one denotes by dim X the minimum of {dim,XIG} the inferior dimension of 
X, one can formulate the following condition providing a positive solution of the 
approximation problem for X: 

codim X.dimX>n - 1. 

Instead of introducing restrictions on the inferior dimension it is possible to 
change it by adding to X some k-dimensional cubes. Equality DIM(X u I“) = 
DIM X is the equivalent form for dim X > k. In such a way one deduces from 
Approximation Theorem 1.16 the following result: 

Realization Theorem 1.17. For any compacturn X of dimension 6 n - 3 there exists 
a compact subset X’ c R" of type DIM X’ = DIM(XLIZ~) where k = [(n - 
l)/codim Xl. 

Apply now our Realization Theorem 1.17 to produce a new solution of the 
disjoining problem, thus attaining the main goal of this paper: 

Disjoining Theorem 1.18. Suppose that X and Y are compacta such that dim X < n 
- 3, dim Y < n - 3. Zf dim(X X Y> < n and codim X. codim Y > n then XllY in 
R”. 

It is not too difficult to show that the inequality codim X. codim Y 2 n is a 
consequence of the metastable case, i.e., when 2 dim X + dim Y < 2n - 2. Indeed, 
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observe first that the inequality dim X + dim Y < y1 is equivalent to the inequality 
codim X + codim Y > n, whereas 2 dim X + dim Y < 2n - 2 is equivalent to 
2 codim X + codim Y > n + 2. It then easily follows (under the hypothesis that 
codim X > 2 and codim Y > 2) that the inequality 2 codim X + codim Y 2 n + 2 
implies the inequality codim X. codim Y > n. So the Disjoining Theorem 1.18 
covers the metastable case, i.e., it implies the Metastable Disjoining Theorem 1.6. 

On the other hand, note that the Disjoining Theorem 1.18 significantly improves 
the Metastable Disjoining Theorem 1.6. For example, every pair of compacta X 
and Y such that dim X < n - 6 and dim Y < II - & clearly satisfies the inequal- 
ity codim X. codim Y 2 IZ of the Disjoining Theorem 1.18, whereas it may clearly 
fail to satisfy the condition 2 dim X + dim Y < y1 - 2 of the Metastable Disjoining 
Theorem 1.6. It is reasonable to expect that Theorem 1.18 is true also in the 
exceptional case when codim X = codim Y = 2. However, the well-known result on 
nonembeddability of certain real projective spaces into [w” leads us to believe that 
Theorem 1.18 with just one condition, i.e., dim(X x Y) < n, probably fails to be 
true. 

A compacturn X is said to be the Bockstein n-complement of a compacturn Y if 
dim(X X Y) = IZ and X has the maximal dimension type among compacta with this 
property, i.e., if for some compacturn X’, dim(X’X Y> =rz then DIM X’< 
DIM X, i.e., for every G, dim,X’ < dim,X. In the Realization Theorem 1.17 we 
also have a duality: 

Realization of the Complements Theorem 1.19. Suppose that X is a compactum 
such that dim X < II - 3 and the DIM X can be realized in R”. Then DIM X * can 
also be realized in KY’, where X* is the Bockstein (n - 1)complement of X. 

We shall prove that (X*)* has the same DIM-type as X. The previous theorem 
allows us to give a new formulation of the Reduction Theorem 1.12: 

Theorem 1.20. If X and X * are DIM-complementary compacta and dim X < n - 3 
2 dim X* then the following statements are equivalent: 

(1) DIM X embeds in IR”; 
(2) DIM X* embeds in R”; and 
(3) X11X* in R”. 

2. Bockstein algebra: testing and splitting 

Let be the class of all Abelian groups. Bockstein defined a family of Abelian 
groups which is sufficient to calculate the cohomological dimension of compacta 
with respect to any group G E& 111. Bockstein’s basis u cd consists of: 

(1) The rationals Q; 
(2) the p-cyclic groups Z, = Z/pZ (p-prime); 
(3) the p-localization of integers ZCP) = {m/nIn is not divisible by p}; and 
(4) the p-adic circle ZPm = Q/Z,,,. 
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To define a cohomological dimension with respect to an arbitrary group G EA? it 
is sufficient to know the cohomological dimension over a family a(G) c u defined 
as follows 

(1) Cl E (T(G) if and only if Q 8 G # 0; 
(2) L, E (T(G) if and only if Z, 8 G # 0; 
(3) ZCPj E a(G) if and only if ZPm 8 G f 0; and 
(4) L,m E a(G) if and only if Z, * G # 0. 

Theorem 2.1 (Bockstein Basis Theorem) 111. For every compactum X and for every 
Abelian group G EL%‘, dim,X = max{dim,XJH E a(G)). 

Any compact space X defines a function D, : A?’ - N U (0, ~1 on the class S? by 
the formula D,(G) = dimoX, for every G ES’. The second fundamental Bock- 
stein theorem 111 establishes inequalities which are valid for all such functions. It is 
known that these inequalities are the only restrictions on the set of values of 
cohomological dimensions with respect to Bockstein groups [2]. 

Theorem 2.2 (Bockstein Inequalities1 111. For every compactum X the following 
conditions hold: 

(1) D,@,m) <D,(Z 1. 
(2) D&J < D&$+ 1; 
(3) Q&J <D,@,,,); 
(4) D.&&J < maxiD,( DX(Zp~) + 11; 
(5) DX(Zp~) G maxID,( D(Zcp,> - 11; 
(6) D,(Q) < D,@,,,,); and 
(7) if D,(G) = 0 f or some G E u then D(G) = 0 for all G E u. 

The system of inequalities (l)-(6) above can be written in the following 
(simpler) equivalent form: 

(i> def,X 2 0; 
(ii) A,X > 0; 

(iii> A,X . (def,X - 1) = 0; and 
(iv> epX. (E~X - 1) = 0; 

where def,X = Dx(ZCP,> - Dx(ZPco) is the p-defect of X, A,X = Dx(ZCP,> - D,(Q) 
is the p-variation of X, and epX= D&T,> - Dx(Z,,~). 

For an arbitrary prime p, the compactum X is said to be p-regular if dimzDX = 
dim zpmX = dim, X = dimoX, otherwise X is said to be p-singular. It is easy to 
see that X is din%nsionally full valued (i.e., for every G EM, dim,X = dim X) if 
and only if X is p-regular for all primes p. Note that a compactum X is p-regular 
if and only if def,X = 0. Furthermore, if X is p-regular then the logarithmic law is 
valid for the dimension of the product XX Y with respect to the groups Z&,) and 
ZPw. Every p-singular compactum X has the following properties: (i) A,X > 0; (ii) 
def,X > 0; (iii) A,X = 0 if def,X > 1; and (iv) dim, X E {dim, ,X, dimzPmX + l]. 

An integral function D : u + N U (0, m] defined o;er CT and sitisfying conditions 
(l)-(7) above, will be called in Bockstein function. The following fundamental 
theorem is proved in [2]. 
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Realization Theorem 2.3. For any Bockstein function D there exists a compactum X 
such that D = D,. 

To complete the reduction of the theory of dimension types to Bockstein 
algebra, we have to define operations for Bockstein functions which correspond to 
the sum and the product operation for spaces. The first one of them, denoted by 
V, and corresponding to the union of spaces, is very simple: CD, V D,)(G) = 

maxID,( D,(G)}. It is easy to see that D,, Ux2 = D,, V Dx2. The definition 
of v generalizes to arbitrary sums in a straightforward manner. 

Proposition 2.4. For every (possibly uncountable) family (DJaE .I of Bockstein 
functions there exists a countable subset A’ c A such that V cy t ,‘, D, = V a t :z D,. 

Proof. Take an arbitrary group G E CT from the Bockstein basis u. If the maximum 
of Da(G) is attained on one of the Bockstein functions Da,., for some index 
(Ye E A, then define A, = {ac}. Otherwise, there exists a sequence {CX~}~ E N such 

that lim. , ,,D,;<G) = ~0. In this case we define A, = (c$-}~ ~ N. We do this for all 
groups G E CT. Let A’ = IJ GECAC;. Since (T is countable, and since card A, < N,, 
it follows that card A’ = K,,, too. q 

Proposition 2.5. For every (possibly uncountable) family {D,}, E ., of Bockstein 
functions, V o1 ~ ,1 D, is also a Bockstein function. 

Proof. Apply Proposition 2.4 to reduce to the countable case and then apply the 
Realization Theorem 2.3 (or use the majorization argument, i.e., x, <yy, for all 
(Y E A implies that max{x,lu E A} < max{y,la E A). q 

The definition of the other operation, the Bockstein product D, q D,, yields the 
equality D, H D, = Dxxv and it turns out to be rather complicated. 

For any prime p, we call a Bockstein function p-regular if all three p-related 
dimensions coincide: D(Z,J = D(ZCP,) = D(Z/po). Functions which are not p-regu- 
lar are called p-singular. As it follows from the Bockstein inequalities for p-regular 
D we additionally have the following equalities (p-regular equality): 

D(Q) = D(&) =D&) = D(Q+ 

Now we are ready to define the Bockstein product D, H D, as follows: 

(1) CD, W D,>(Qn> = D,(Q) + D2(Q); 
(2) CD, EB D,XL,J = D,(Z,> + Dz(L,J; 
(3) (0, q D,)@p> = max{D,(Zp> + D2(ZpmPo), CD1 H D,XZ,) - 1); 

(4R) CD, q D,XL,,,) = D,(ZcpJ + D,@,) if D, or D, is p-regular; and 

(4s) (0, q D2)(ZC1,,) = max(D,@,m) + D,@,m) + 1, (0, H D2)@,J, CD, q 

D,)(Q)} if both Dj are p-singular. 
The Bockstein theorem on products now takes the following form: 

Bockstein Theorem on Products 2.6 [I]. For euery pair of compacta X and Y, 
DxmDD.=D,... 
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By the infinite sum LI Xi in the category of compacta we mean the one-point 
compactification of LI Xi. 

Theorem 2.7 (Distributivity Law). For every family {D,t E n of Bockstein functions 
and for every Bockstein function D, D ffl( V Ly ~ *Da) = V u E *(D H 0,). 

Proof. For the case when A is countable, the assertion follows by the Realization 
Theorem 2.3. Indeed, by Theorem 2.3, for very D, there exists a compacturn X, 
such that D, = D, . Similarly, for D there exists a compactum X such that 
D = D,. By Proposi?ion 2.4 it suffices to prove the theorem for the case when A is 
countable. In this case, X* = LI a E .X, realizes V a ~ ,iD, and dim(X* XX) = 
max{dim( X, XX) 1 CY E A}, so X* XX realizes V oI E JD q 0,). Therefore the 
formula is the consequence of the distributivity law for spaces, i.e., ( lJ at ,,rX,> x Y 

=U aE,@a x Y). 0 

We shall write D, <D, if D,(G) <D,(G) for all Abelian groups G E u. Define 
the superior and inferior norm of function D as 11 D II= max{D( G) IG E a} and 
ID]=min{D(G)IG E (T], respectively. The superior norm of D, is known to 
coincide with the Lebesgue dimension of X, i.e., ]I D, II = dim X, for finite-dimen- 
sional compacta X [12]. 

Proposition 2.8 (Monotonicity Property of Multiplication). For all triples of Bock- 
stein functions D,, D, and D such that D, > D,, the inequality D, q D > D, H D 
holds. 

Product Inequalities Lemma 2.9. For all pairs of Bockstein functions D, and D, 

one has that I D, I + II 4 II G II DI EE 4 II =G II D, II + II D, II. 

Proof. It easily follows from the Bockstein inequalities that ]I D II = max{D(LC,,)} 
and I D I = min{D(Q>, D(ZP~)). Apply now the formulae (4R) and (4s) to complete 
the proof. q 

Kuz’minov [12] found a basis for the Bockstein algebra. Kuz’minov’s basic 
functions are presented in Table 1. 

Theorem 2.10 (Algebraic Splitting of Basis) [12]. Every Bockstein function D can be 
represented in the form D = V (@( G, k) IG E u}. 
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Compacta realizing the basic functions are called the fundamental compacta 
and denoted by F(G, n), where DFCG,nj = @(G, n). The Algebraic Splitting Theo- 
rem 2.10 plus the Realization Theorem 2.3 immediately imply the following: 

Splitting Theorem 2.11. For every compactum X there exists a sequence of funda- 
mental compacta {Fi;:(Gi, k,Ni E N such that DIM X = DIM( LI i E NFi(Gi, hi)), where 
by the infinite sum in the category of compacta one understands the one-point 
compactifica tion of the infinite union. 

Lemma 2.12. For every Abelian group G, every integer n, and for every fundamental 
compactum F(H, n), either dim,F(H, n) = 1 or dim,F(H, n) > n - 1. 

Proof. Due to Theorem 2.1 it suffices to do the proof only for basic groups G. But 
in this case this property follows from Table 1. 0 

Now we are ready to prove the G-Splitting Theorem. 

G-Splitting Theorem 2.13. For every G, any compacturn X with dim X> 1 has 
dimension type of a union X, u X,, such that dim,X, = 1 and dim,X > dim X, - 
1. 

Proof. By Splitting Theorem 2.11 we can work with the union lJ F,(G,, ni) of 
fundamental compacta. Let us denote by X, = U{&(Gi, ni)ldim,Fi(Gi, ni> = 1) 
and X, = LI{Fi(Gi, n,)ld im,F,(G,, n,) # l}. Then dim,X, = 1 and dimoX, > 
dim X, - 1 follows by Lemma 2.12. 0 

Now we have to perform calculations of dimensions of products of fundamental 
compacta (n > m): 

The result of the calculations, presented in Table 2, can be summarized in the 
following formula (n > m): 

II@(G, n) q @(G’, m) 11 = max{ @( G, n)( G’) 

=@(G’, m)(G) +n. 

Lemma 2.14. For any fundamental function @(G, n) 

Table 2 

tm,n+l} 

and any other function D, 

if IIDJI >n, 

if lIDI <n. 

wq,,, n) m,, n) @@p, n) @(Cl, n) 

P=4 P#4 P=4 P#q 

w,,,, m) m+?l 1+n l+n m+?l 
@@,, m) m+ll m+n 1+n l+n l+n 
@@p, m) m+n m+n-1 m+n-I l+n l+n 
@(Q, m) m+n l+n l+n min 
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Proof. If D = @(G’, rn) and G’ is a basic group then the assertion follows from 
Table 2. If D is arbitrary, use the Splitting Principle 2.11 and the Distributivity 
Law 2.7 to complete the proof. 0 

Now we are ready to prove Test Space Theorem 1.1 from the Introduction. For 
any Abelian group G one defines T(G, n) as the sum V {@( H, n) IH E a(G)}. Let 
us consider a compacturn X such that 1 dim,X - dim X I< n. If 11 D, II< n then by 
Lemma 2.14 the assertion follows. On the other hand, for 11 D, II > n it follows from 
the above calculations that 11 @(G, n) H D, II= max(II D, 11 + 1, n + D,(G)}. So if 
IID,II+l<n+D,(G), i.e., if IID,II-D,(G)< n then one obtains the test 
equality II@(G, n) q D,ll=n+Do(G). 

3. Approximation and disjoining: proofs 

We begin by an observation that the Mutual Negligibility Lemma 1.5 easily 
follows from the following lemma, due to Toruficzyk [13], Lemma (A.411: 

Lemma 3.1 [13]. Let X and Y be compacta such that X(IY in R”. Then K = {f E 
‘Z( X, R”)If(X) is Y-negligible in Rn) is a dense G,-set in %77(X, Rn>. 

Indeed, Lemma 3.1 implies (1) 3 (2) and (1) * (3) of Lemma 1.5, whereas 
(2) 3 (1) and (3) * (1) is obvious. 

Proof of the Dimension Type Determination Theorem 1.3. It clearly suffices to 
consider the case when X=X’. Since, the hypothesis, X]]Y, it follows by the 
Mutual Negligibility Lemma 1.5 and [16] that for every map f : X + R” there exists 
an approximation f ’ : X -+ R” such that f’(X) is Y-negligible and tame. Therefore 
by the Duality of Negligibility and Dimension Theorem 1.4, dim(f '(X) X Y) < n. 
Apply now Proposition 3.3 below to conclude that dim(f’(X) X Y’) < n. Again, by 
Theorem 1.4 we have that f’(X) is Y ‘-negligible, so by Lemma 1.5, XIIY’. q 

Disjoining Monotonic@ Theorem 3.2. Let X, X’, Y and Y’ be compacta such that 
dim X<n-3,dim Y<n-3,DIM X’<DIM X,DIM Y’<DIM Y,andXllYin 

R”. Then X’IjY’ in R”, too. 

Proof. The hypotheses imply that DIM(X u X’) = DIM X and DIM(Y LI Y’) = 
DIM Y, so by Theorem 1.3, (X u X’) IJ(Y LI Y’) in R” which obviously implies that 
X’IJY’ in R”, too. 0 

Proposition 3.3. Let X and X’ be arbitrary compacta. Then the following statements 
are equicalent: 

(1) DIM X= DIM X’; and 
(2) for euery compactum Y, dim(X X Y) = dim(X’ X Y). 
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Proof. (-) Suppose that DIM X = DIM X’. Then by the definition of the 
cohomological dimension type, dim,X = dim,X’, for every Abelian group G. 
Now, by the Bockstein formula for dimension of the product (see 112, Chapter 211, 
dim(X x Y) (respectively dim(X’ x Y)) is calculated via dim,X and dim,Y (re- 
spectively dim,X’ and dim,Y) for various Abelian groups G. Consequently, 
dim(XX Y) = dim(X’ X Y). 

( - ) We must check that for any Abelian group G, dim,X = dim.X’. So pick 
G and let n > max(dim X, dim X’}. By the Test Space Theorem 1.1, there exists 
the test space T,(G). If we now take Y to be the compactum T,(G), we obtain the 
following equalities: dim,X + II = dim,X + dim T,(G) = dim(X X 7”(G)) = 
dim(X’ x T,(G)) = dim.X’ + dim T,(G) = dim,X’ + II. Therefore dim,X = 
dim,X’, for any G, hence DIM X= DIM X’. q 

In order to prove the Metastable Approximation Theorem 1.7 we need the 

following lemma: 

Lemma 3.4 [5]. Let X and Y be compacta such that dim(X X Y) < n and 2 dim X + 
dim Y<2n-2. Then (f~~(X,iW”)ldim(f(X)xY)~dim(XxY)) is a dense 
G8-subset of E?‘(X, W). 

Proof of the Metastable Approximation Theorem 1.7. If dim,X = dim X the 
assertion follows trivially. So we may assume that dim,X < dim X. Let m = (n - 
1) - dim,X and Y= T,(G). Since by hypothesis, dim X- dimoX< (n - 1) - 
dim X = m + dim,X - dim X < m, Y is the G-test space for X. Therefore dim(X 
xY)=dim,X+dimY=dim,X+m=dim,X+(n-l)-dim,X=n-l<n. 
Also,2dim X+dimY=2dim X+m=2dim X-dim,X+(n-l)<(n-l)+ 
(n - 1) = 2n - 2. 

Therefore we can now apply Lemma 3.4 to conclude that Z“(G) = (f~ 
%(X, R”) ]dim(f(X) X Y > < dim(X X Y)} is a dense G,-subset of ZF(X, lRn). Since 
Y = T,(G) we have that Z(G) = {f~ %?( X, Rn)ldimGf(X) < dim,X]. 

On the other hand, by the Hurewicz Light Mappings Theorem [lo], ZL = (f~ 
%(X, R”) If is light} is a dense G,-subset of E’(X, R”). Therefore the intersection 
Z(G) n xL is a dense G,-subset of E’(X) Rn>, too. Since light maps do not lower 
dimension [12], we have that 

Z(G) nPLc{f~g(X, P)]dim.f(X) =dim,X) 

so the assertion follows. q 

Corollary 3.5. Suppose that X is a compactum such that dim X < n - 3 and 
2 dim X - dim (;X < n - 1, for ecery Abelian group G. Then (f E 
‘Z’( X, R”) [DIM f(X) = DIM X] is a dense G,-subset of %‘7(X, [WE>. 

Proof. By the proof of the Metastable Approximation Theorem 1.7 we have that 
for every Abelian group G, Z(G) n ZL is a dense G,-subset of F(X, Rn>. It 
suffices to consider only all G E u, where u is the Bockstein basis. Therefore such 
is also the intersection ll{Z(G) nz?“lG E a}. q 
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Proof of the Disjoining Approximation Equivalence Theorem 1.8. (-1 Suppose 
that dim(X x Y) < n and take any pair of maps f : X + R” and g : Y + R”. By 
hypothesis, we may assume that DIM f(X) = DIM X. Therefore by Proposition 
3.3, dim(f(X) x Y) = dim(XX Y) <n. By [161, we may assume that f(X) is 
tamely embedded in R”. Apply the Duality of Negligibility and Dimension Theo- 
rem 1.4 to conclude that f(X) is Y-negligible. This proves that XJIY in W. 

(-I Suppose now that XllY in R” and that dim(XX Y> <II. It follows by the 
Mutual Negligibility Lemma 1.5 that X can be approximated by a compacturn 
X’ c R” such that X’ is Y-negligible, therefore by [2,31, dim(X’ X Y) <n. This is 
true for all compacta Y which satisfy the hypotheses of (2), so in particular for the 
test space Y = T’(G), where m = (n - 1) - dim,X. Thus n > dim(X’ x 7”(G)) = 
dim,X’ + dim T’(G) = dim,X’ + m = dim,X’ + (n - 1) - dim,X hence 
dim,X’ - dim,X < 0. q 

Remark 3.6. For every compacturn X such that dim X< n - 3, the following 
statements are equivalent: 
(1) X is approximable in R” by maps which do not change dimoX; and 
(2) XIIT’(G) in R” f or any G-test space T’(G) for X such that dimoX + m < n. 

For the proof of the Approximation Lemma 1.10 we shall need the following 
result: 

Proposition 3.7. Let X c R” be an arbitrary compactum. Then every map f : X + R” 
is approximable by a map f’ : X -+ R” such that d( f ‘(XI> = d(X) for all dimen- 
sional functions d such that (1) for every closed subset YO c Y of Y, d(Y,) =G d(Y) 
and (2) for every pair of compacta YI and Y2, d(Y, U Y2> = maxId( d(Y,)}. 

Proof. Let f : X --f R” be given. Take a compact, n-dimensional polyhedron P c R” 

such that Xc P and extend f over P, i.e., get a map f : P + R” such that AX = f 
(this is possible since R” is an absolute retract). Approximate f by a simplicial, 
general position map F: P + IR”, i.e., FI, -+ F(a) is an embedding for every 
simplex Ain P.Let f’:X--+R”bethemap f’=FIX.SinceX=U{XnAlAEP} 
it follows that f’(X) = U { f ‘( X n A) )A E P}. By hypotheses, df ‘(X n A) = d(X n 
A) < d(A) for every A E P and so d( f ‘(XI) G max{d( A) IA E PI < d(X). 0 

Proof of the Approximation Lemma 1.10. Let f : X + R” be any map. Apply 
Proposition 3.7 for d = dim,, where G is any Abelian group, to get an approxima- 
tion f’:X-+W such that dim,f ‘(X) = dim,X, for all Abelian groups G. 
Therefore DIM f’(X) = DIM X. 0 

Proof of the Reduction Theorem 1.12. First note that the equivalence (2) 0 (3) 
follows by the Disjoining Approximation Equivalence Theorem 1.8 while (3) * (1) 
is obvious. It therefore remains to prove that (1) 3 (2). So suppose that X’ c R” is 
a compacturn in R” such that DIM X’ = DIM X. Let Y be a compacturn such 



A.N. DraniSnikoLl et al. /Topology and its Applications 55 (1994) 67-86 81 

that dim(X x Y) < n. Then by Proposition 3.3 dim(X’ X Y) < n. Consider a map 
g : X’ + R”. Apply the Approximation Lemma 1.10 and [16] to approximate g by a 
map g’ : X’ + R”, such that g’(X’) is tame, DIM g’(X) = DIM X’, and 
dim g’(X’) < it - 3. By the Duality of Negligibility and Dimension Theorem 1.4, 
g’( X’) IIY in R”, hence by the Dimension Type Determination Theorem 1.3, XllY 
in R”. 0 

Proof of the Dimension Bounding Lemma 1.15. Let G be any Abelian group and 
f : X--f R” any regularly branched map of a compacturn X such that dim,X = 1. 
Then by the cohomological analogue of the Hurewicz theorem on (k + l)-to-l 
maps [12, Theorem (14.1) p. 271, applied for Y =f(X), we get that 1 = dimoX > 
dimof - k, where k - 1 is the multiplicity of S. Hence dimof < k + 1. Let 
B, = {x E WI f-‘( x) I> k}. S’ mce f is regularly branched, it follows that dim B, + 1 
< n - (k + 1). codim X, thus k + 1~ (n - dim B, + ,)/codim X, hence k + 1~ 
[(n - dim B,+,)/codim X] < (n - l)/codim X or dim Bk+l = 0. 

In the first case we are done. In the second case we apply the cohomological 
analogue of the Hurewicz theorem on (k + 1)-to-lAmaps [14,17] to conclude that 
dimof < max , ci9k+,{dim,ABi + i - 11, where Bi =f-‘(Bi). Since dimoX= 1, 
we have that max 
dim gk+i = 

1 ~ i G ,Jdimo B, + i - 1) < k. Since dim B, +, = 0 it follows that 
0 hence dim,B,+, + k = k, thus dimof < k G (n - l)/codim X. 

0 

Proof of the Approximation Theorem 1.16. Let f : X * R” be any map and G any 
Abelian group. By the G-Splitting Theorem 1.14, there exist compacta X, and X, 
such that DIM X= DIM(X, LIX,), dim,X, = 1 and dim X, < dim,X+ 1. Apply 
for X, and fi : X, -+ IF!” the Dimension Bounding Lemma 1.15: It follows that f, 
can be approximated by fi’ : X, + R” with the property that dim,fi’(X,) < (n - 
l)/codim Xi. Apply for X, and f2 : X --) R” the Metastable Approximation Theo- 
rem 1.7. Since dim X, < n - 2, it remains to check that 2 dim X, - dimoX, < n - 
1 which, in turn, is an easy exercise. 

So apply Theorem 1.7 to conclude that f2 : X2 --f R” can be approximated by a 
map f;:X,+R” such that dimof; = dimoX,. So now dim&f, uf,)(X, u 
X,) < max{dim,X,, (n - l)/codim Xi}. 

We have that DIM X = DIM(X, U X,). Hence DIM(X U Ik) = DIM(X, U X2 
U Ik>. Choose k = [(n - l)/codim X,]. Then every map g of Y=X, UX, U Ik 
into R” can be approximated by a map g’ : Y + R” such that dim,g’(Y) < 
max{dim,X,, k) = dim,Y. 

Remark 3.6 implies that YllTo for every testing space TG with 11 TG 11 + dim,Y < 

n. By Theorem 1.3 we have that XL.JZ~~/T,. By Remark 3.6, XU Zk is approx- 
imable by a map into R” not changing dim,. Therefore dim&‘(X) < dim,f(Xu 
Zk) < max(dim,X, k}. q 

Proof of the Realization Theorem 1.17. Suppose that X is a compacturn of 
dimension < n - 3. For every Abelian group G E u from the Bockstein basis (T, 
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the set FG={f:X -+ [W”]dim,f(X) < max{dim,X, (n - l)/codim X}} is a dense 
G,-subset of %7:(X, [Wn>, by the Approximation Theorem 1.16. Therefore the set 
F= (n{F,lG E a}) n {fe '27(X, lR")lf light} is also dense in %7(X, W). Let f~ 9 
and set X’=f(X> I_ Zk, where k = (n - l)/codim X. Then DIM X’ = 
DIM(f(X)uZk)=DIM XuZk. q 

Proof of the Disjoining Theorem 1.18. Consider X’ =X U Zt(n-l)/c”dim x1. Since 
DIM X’ is realizable in [w”, the disjoining of X’ and Y will be provided by the 
inequality dim(X’ X Y) < IZ. Now, 

dim( X’ x Y) = max{dim( X X Y), dim Zt(n-l)/codim xj X Y}. 

So the condition X’](Y follows by the inequality [(n - l)/codim X] + dim Y < II 
which after a simple transformation reduces to codim X. codim Y 2 n. Therefore 
the conditions of our theorem imply X’(IY. But X being a subspace of X’ is thus 
also disjoinable with Y. This completes the proof. •I 

4. Complementary dimensional functions 

For any Bockstein function D with 11 D II < y1 we define a function [n - Dl = 
v {D’l II D’ q D II G n} which is called the n-complementary function of D. The 
following theorem summarizes the basic properties of the n-complementary func- 
tions: 

Theorem 4.1. 

(1) Il[n-D]mD((=n; 
(2) (maxima&y) [n - Dl 2 D’, for every D’ with II D’ q D II < n; 

(3) [n - [n - D]] = D; and 

(4) /[n-D]ll=n-IDI. 

Proof. (1) By the definition, II[n-D]mDII<n. Hence \l[n-D]mDII= 

Il(V(D’lllD’mD(I<n)) q DII=IIVID’mDIIID’mDI(~n}I(~n, by distributivity. 
But D,=n-1IDI( t f sa is ies the property that II D, q DI) = n and [n - Dl > D, 

~0 Ilb -Dl HDiI a ~1, by Theorem 2.10. 
(2) This property is a straightforward consequence of the definition. 

(3) Dm[n-Dl<n, hence by (21, i.e., the maximality of [n - [n - 011, D < [n 
- [n - D]]. For any basic group G, consider the fundamental function @(G, IZ - 

D(G)). Since )I D (1 - D(G) < n - D(G) it follows that ]I @( G, IZ - D(G)) q D 1) = n 
-D(G) + D(G) = n, by Section 2. Hence, due to the maximality of [n - Dl, one 
obtains that [n - D] & @(G, n - D(G)). Therefore by Theorem 2.10, n 
=I~[TZ-D]~[IZ-[~-D]]~\Z=I~[~-[~-D]]~@(G,~-D(G))II. Since 

lb - b -Dll q b -~lll= n it follows by Lemma 2.9 that 12 > I[ n - D] I 
+~~[n-[n-~]]~~>~~[n-[n-~]]~~.This,plustheinequalityD~[n-[n-Dl1 
from above, imply that IZ - 1) [n - [n - D]] II > D(G) - [n - in - D]](G), hence 

II[n-[n-D]]II-[n-[n-D11(G)< n -D(G). Therefore @(G, IZ -D(G)) is a 
G-test function for the function [n - [n - D]] by virtue of the Realization Theorem 
2.3 and the Testing Space Theorem 1.1. This means that I][n -[n - 011 q 
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@(G, n -D(G))II= [n - [n -D]](G) + n - D(G). Hence [n - [n - D]](G) < 
D(G). Since G is arbitrary, we have that [n - [n - II]] G D so [n - [n - D]] = D. 

(4) BY Lemma 2.9, 1 D, I + 11 D, 11 G II D, w D, II < II D, 11 + 11 D, II and hence I D 1 
+I~[~-D]~I=sI~[~-D]BDII=~, so Il[n-~]ll<n-lDI. Consider any basic 
groupGsuchthat D(G)=JDJ.Then((@(G,n-D(G))~DI(=nhence@(G,n 
-D(G))<[n-Dl. Now, n-IDI=n-D(G)=jI@(G,n-D(G))II<II[n-D]Ij. 

Proof of the Realization of the Complements Theorem 1.19. We shall use the 
notation DIM X = D,. Suppose that Xc R” is a compacturn of codimension 2 3. 
We must show that there exists a compactum Y c W” of complementary DIM-type, 
such that dim(X x Y) = y1 - 1. Let us consider a compacturn Y’ which is the 
Bockstein (n - l)-complement of X. By the Approximation Lemma 1.10, X is 
DIM-approximable and by Stanko’s theorem [16], we may assume that the image is 
tame in [w”. By the Duality of Negligibility and Dimension Theorem 1.4 it follows 
that X is Y’-negligibly approximable. Therefore by the Mutual Negligibility 
Lemma 1.5, Y’ is X-negligibly approximable. Consider the space E’(Y’, [Wn) of all 
maps of Y’ to [w”. Then there are two dense G,-subsets of ‘Z?(Y ‘, P?), the first 
one consists of the maps f : Y’ + Iw” whose images are X-negligible, whereas the 
second set consists of the zero-dimensional maps (in fact, they are even regularly 
branched) which do not decrease any kind of dimension. Taking their intersection, 
we get a map f : Y’ + [w” with both of these properties, so DIM f(Y ‘) 2 DIM Y’ 
and f(Y’> is X-negligible. By [S], the latter condition implies that dim(f(Y’1 x X) 
< n, so by the maximality property of the complement it follows that DIM f(Y ‘) 
< [(n - 1) - DIM X] = DIM Y ‘, hence DIM f(Y’) = DIM Y’. 0 

Corollary 4.2. For every compactum X such that dim X < II - 3 and dim X > 2 and 

every Bockstein (n - I&complement X * of X, the following statements are equiva- 
lent: 

(1) DIM Xembeds in R”; 
(2) DIM X* embeds in R”; and 
(3) XllX* in R”. 

Proof. The equivalence (1) = (2) follows by the Realization of the Complements 
Theorem 1.19 because the condition dim X > 2 implies that dim X* = (n - 1) 
- dim X < n - 3. Next, the implication (1) d (3) follows by the Subset Disjoining 
Theorem 1.11 and the Dimension Type Determination Theorem 1.3. It remains to 
check the implication (3) - (1). If XllX * in 178” then by Theorem 3.1, Xl]Y in [w” 
for every compactum Y such that dim(XX Y) <n since the latter implies that 
DIM Y < DIM X * by the maximality property of the complement. Now invoke 
Theorem 1.3. 0 

Note that Corollary 4.2 implies Theorem 1.20. 

Theorem 4.3. For every prime p, the following equalities hold: 

(1) [n - Dl(Zcp,) = n - min(D(Q), D@,~)); 
(2) [n - Dl@,~> = n - minlD(L~,,), D(ZPw) + 1); 
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(3) [n - Dl@,) = n - Dcz,); and 
(4) [n - D](Q) = n - D(Q). 

Proof. By the Splitting Theorem 2.11, one obtains that [n - D] = V {@( G, k) 1 
Il@(G,k)fflDIIad= VkP(G,k)lD(G)+koz}= V(@(G,n-D(G))lGe 

@P %o’ Zplp prime) U {O)}. We now check the formulae (1) and (2) (and leave 
(3) and (4) as an exercise). 

(1) 

@Pw n - wP,))(z~,,) = n - %LO)~ 

VP, rz - %J)(%,) = n -%A 

@&“, n - D(Z,w))(Z& = n - D(L& 

@(Q, n -~(O>)(Z,,,) =n -D(Q), 

@(%P rz - ~(%J)(~CP,) = n - wCC7,)~ 

@(& ?r -w&w = 1, 

@(&+ n -D&~))(&) = 1. 

By the Bockstein inequalities, D(ZC4,) 2 D(O), D(Z&,> > II@,) 2 D(ZPw). There- 
fore the maximum is max{n -D(Q), II - D(Z~CO)} = IZ - min(D(Q), D(z~oo)}. 

(2) 

Table 3 

@(Q, n)* n n n-1 1 n n n-l 

m,,,, n1* 1 1 1 1 ?I n n-l 

@@,, n)* n 1 1 II n n n 

@@,m, n)* n 2 1 n n n n 
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By the Bockstein inequalities, D@,) 2 D(ZPw) so maxin - D(zcP,>, IZ - D@,m) - 
l} = YE - min{D(L(,,), D(ZPm) + 11. 0 

Corollary 4.4. Fur the singular case, [n - D](zPoo) = n - D(Z~OO) - 1. 

Corollary 4.5. For every prime p, the following formulae hold: 
(1) (D H In - DlXZ,> = n; 
(2) CD q b2 - DIXz,,,> = n; 
(3) (D q [n - DIXZp~) = n if p is regular, and n - 1 if p is singular; 
(4) (D q b2 -olXa> =n. 

In Table 3 we present the calculations for the fundamental compacta. For every 
fundamental function @(G, n), let @(G, n>* denote its Bockstein (n + l)- 
complementary function. 

We summarize the calculations above as follows: 

Theorem 4.6. 
(1) @(Q, n)* = V{@(Z,, n)lpprime); 

(2) @@,,,, n>* = V{@(Z,, n)lp Zqprime); 
(3) @<z,, TZ>* = @(Cl, n> v I@&,, n)lp f 4prim4; 
(4) Q(+, n)* = @(Q, n) v @@,, 2) v I+,,,, +lp + 4pemeJ. 

Theorem 4.7. Suppose that R” contains all compacta of the type F(Z,, n - 3) LI Z*, 
for all primes p. Then for every (n - 3)-dimensional compactum X such that 
dim X> 2, DIM X can be realized in R”. 

Proof. Consider 0 = IJ{F(Z,, n - 3) uZ*lp prime}. Note that 0 is embeddable in 
R”, by hypothesis. By the previous theorem and by Theorem 4.1(3), the Bockstein 
(n - l)-complement of 0 is F(Q, n - 3) U Z2. By Theorem 1.19, F(Q, n - 3) I_ Z* 
embeds in [w”. Similarly, we can prove that F(Z Cq,, n - 3) u Z2 embeds in [w” and 
Theorem 4.6(4) implies that F(Zpm, n - 3) U Z embeds in KY’. The Splitting 
Theorem 1.14 then implies that every (n - 3)-dimensional type with dim X > 2 is 
embeddable in Iw”. 0 
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