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GENERAL POSITION PROPERTIES 
THAT CHARACTERIZE 3-MANIFOLDS 

R. J. DAVERMAN1 AND D. REPOVS2 

ABSTRACT. This paper defines three simplicial approximation properties for maps 
of 2-cells and 2-spheres into spaces, each providing homotopical tameness conditions 
on the approximating images. These are the general position properties used in the two 
main results. The first shows that a resolvable generalized 3-manifold is a genuine 3-
manifold if and only if it has the weakest of these approximation properties as well 
as a mild 3-dimensional disjoint disks condition known as the Light Map Separation 
Property. The second shows a resolvable generalized 3-manifold to be a 3-manifold if 
and only if it satisfies the strongest of these approximation properties. 

In proposing the manifold recognition problem, J. W. Cannon [ 10] asked for a short 
list of relatively simple topological properties, reasonably easy to check, that characterize 
topological manifolds among topological spaces. He conjectured that manifolds might be 
characterized as generalized manifolds satisfying a minimal amount of general position. 
Here we address the 3-dimensional version of this recognition problem. 

Though the focus will rest on one particular dimension, contrast with results obtained 
for other cases provides useful insight as well as motivation. In low dimensions (« = 1,2) 
the problem has long been solved. It is convenient to explain this now in terms of gener
alized n-manifolds Xn, namely, locally compact, locally contractible, finite dimensional 
metric spaces with the local relative homology of R n (i.e., H*(X\ Xn\ x\ Z) is isomorphic 
to //*(Rn, Kn\0; Z) for all x G Xn). (In this paper manifolds and generalized manifolds 
will be assumed to have no boundary, unless otherwise specified.) For « < 2 the «-
manifolds coincide with the generalized «-manifolds [33], but for n > 2 the situation is 
much more complex. Upon making the obvious observations that «-manifolds are gener
alized «-manifolds and that the latter are defined in terms of elementary properties, one 
sees why the goal in Cannon's conjecture is to recognize genuine manifolds among the 
generalized ones. 

If / : M —• X is a proper, cell-like surjective map defined on an «-manifold and 
dimX < oo, then X is a generalized «-manifold, but examples like R. H. Bing's famous 
dogbone space [4] reveal that X need not be a topological manifold. Cell-like maps like 
this one form the primary source for non-manifold examples. With that in mind, one calls 
a generalized «-manifold X resolvable if there exists a proper, cell-like, surjective map 
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/ : M —> X defined on some rc-manifold M, in which case the map/ is called a (cell-like) 
resolution of X. Except for certain 3-dimensional examples whose existence depends on 
the hypothetical failure of the 3-dimensional Poincaré Conjecture, the generalized man
ifolds explicitly described in the literature are all known to be resolvable. According 
to F. S. Quinn [26], the existence of a resolution for a given generalized «-manifold X, 
n > 4, reduces to an integer-valued algebraic obstruction (to local surgery) problem. 
This obstruction has the intriguing feature of being locally defined and locally constant. 
Consequently, if X is connected and the obstruction vanishes on some open subset of X 
(for instance, if some open subset is a manifold), then X is resolvable. 

QuiNN's RESOLUTION THEOREM [26]. A generalized n-manifoldX, n > 4, has a 

resolution if and only if a certain local surgery obstruction i(X) equals 1. 

No example of a generalized «-manifold X with i(X) ^ 1 is known to exist. Note that 
no such connected example could have a manifold neighborhood at any point. If the 3-
dimensional Poincaré Conjecture is false, however, there is a nonresolvable generalized 
3-manifold X3; moreover, X3 contains a point *o such thatX3\ {xç>} is a 3-manifold [33]. 
M. G. Brin and D. R. McMillan, Jr. [8] even have such an example where X3\ {jt0} is 
a monotone union of cubes with handles. The central 3-dimensional resolution problem 
asks: under the assumption that the Poincaré conjecture is true, do all generalized 3-
manifolds have resolutions? T. L. Thickstun [31] has supplied an affirmative answer for 
generalized 3-manifolds with O-dimensional nonmanifold set. See D. Repovs' survey ar
ticle [27] for additional background information concerning the existence of resolutions. 

In dimensions greater than four the work of R. D. Edwards [16] provides a means 
for detecting genuine manifolds among the resolvable generalized ones, in terms of the 
following optimal general position property. A metric space X is said to have the Disjoint 
Disks Property (abbreviated as DDP) if every pair of maps of/2 to X can be approximated, 
arbitrarily closely, by a pair of maps with disjoint images. 

EDWARDS' CELL-LIKE APPROXIMATION THEOREM [16]. Letp: M —> X be a cell-like 
resolution of a generalized n-manifold X, n>5. Then p is a near-homeomorphism if and 
only ifX has the DDP. 

(A near homeomorphism is a map X —• Y onto a metric space that is the uniform limit 
of surjective homeomorphisms.) This paper presents some 3-dimensional adaptations of 
Edwards' theorem. Part of the difficulty has been to produce appropriate general position 
properties. The DDP is clearly inappropriate, being possessed by neither 3-manifolds nor 
4-manifolds, so some alternative must be set forth. 

No general position property found in the literature is entirely satisfactory. The first 
obvious analog to the DDP in dimension three—the disjoint arcs property—is useless 
since every generalized 3-manifold satisfies it [12]. The Map Separation Property and 
Dehn's Lemma Property introduced in [20] and further investigated in [29] function 
most effectively for those generalized 3-manifolds whose nonmanifold sets are known 
to have dimension at most zero. M. Starbird's two Disjoint Disks Properties [30], like 
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the Inessentially Spanning Property of [12, Sec. 19], have the liability from this perspec
tive of pertaining to the domains of given cell-like resolutions instead of intrinsically 
depending on the target spaces. 

We investigate several alternatives here, chiefly described in terms of what we call 
simplicial approximation properties. A space B is said to have the Weak Simplicial Ap
proximation Property (WSAP) if for each map p:I2 —• B and each e > 0, there exists a 
map IJJ:I2 —> B such that dist^C/i, V7 ) < e and ip (I2) is contained in a finite union of 2-
cells Dj C #, each 1 -LCC embedded in B (see § 1 for the definition of 1 -LCC). Moreover, 
B is said to have the Simplicial Approximation Property (SAP) if for each p\I2 —» B and 
each e > 0, there exist a map -0:12 —+ B and a finite topological 2-complex K^ C B 
such that (1) dist*(^,/i) < e, (2) ^(I2) C K^, and (3) £\^ t / ; is 1-FLG in B (a term 
also defined in § 1). Finally, B is said to have the Spherical Simplicial Approximation 
Property (SSAP) if the same holds when I2 is replaced by S2 throughout. The 1-FLG 
condition is known to characterize tamely embedded 2-complexes K^ in 3-manifolds 
B [23J. There are three elementary but significant observations to make: first, that for 
a 2-complex K$ C B having no local cut points, where B is a generalized 3-manifold, 
B\K^ is 1-FLG in B if and only if each 2-simplex in K^ is 1-LCC embedded in B\ 
second, that SSAP implies SAP and SAP in turn implies WSAP; and third, that mani
folds of dimension n > 3 have all of these approximation properties. Our main results 
are two recognition theorems for 3-manifolds, which depend on these terms. The first 
of them, Theorem 2.4, shows that a resolvable generalized 3-manifold X is a topologi
cal 3-manifold if and only if X possesses both the WSAP and a feature introduced and 
studied in [141 called the Light Map Separation Property. The second one, Theorem 3.1, 
demonstrates that a resolvable generalized 3-manifold is a topological 3-manifold if and 
only if it possesses the SSAP. As a corollary, a resolvable generalized 3-manifold with 
nowhere dense nonmanifold set is 3-manifold if and only if it has the SAP. 

In a similar vein we also derive answers in terms of two hybrid properties, hybrid in 
the sense of being defined with the aid of given resolution even though ultimately the 
properties are measured in the range of the resolution map. These involve approxima
tions to restrictions of the resolution either by embeddings or by maps achieving some 
disjointness. The most useful hybrids are two Resolution Disk Embedding Properties, 
abbreviated as RDEP and RDEP*: a cell-like map p. M —• B defined on a manifold M 
is said to have the RDEP if for every disk D tamely embedded (equivalently, 1-LCC 
embedded) in M and for every e > 0, there exists an embedding X:D —> B satisfying 
dist£(A,/?|Z)) < e; if, more strongly, A can be taken to be a 1-LCC embedding, then/? 
is said to have the RDEP*. In § 4 we prove that every cellular resolution/?: M —> X of a 
generalized 3-manifold X with RDEP* is a near-homeomorphism (and consequently X is 
a 3-manifold); capitalizing on our earlier work [14], we also find that a cellular resolution 
p\M —> B with RDEP is a near-homeomorphism whenever p has nondegeneracy set of 
embedding dimension < 1 in M. 

Another hybrid, called the Resolution Disjoint Disks Property (RDDPW), played a 
major role in [14]. § 5 puts forward a relative version of it powerful enough to imply that 
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all cellular resolutions of generalized 3-manifolds with this relative RDDP^ are near-
homeomorphi sms. 

§ 6 offers an application to generalized 4-manifolds by demonstrating, for any such 
space X satisfying a 4-dimensional variation to the WSAP, how arbitrary resolutions of 
X can be altered to ones for which the image of the nondegeneracy set is 1-dimensional. 

The first author would like to express his gratitude to the Institute of Mathematics, 
Mechanics, and Physics at the University of Ljubljana for its hospitality and support 
during the summer of 1989, when work on this manuscript was begun. 

1. Preliminaries. Given a map/: X —» Y, we say that/ is 1-1 over A C Yiff\f~l(A) 
is 1-1, and we define the nondegeneracy set off as Nf — U{/_1(y) : f~x(y) contains 
more than one point}. 

By the singular set S(X) of a generalized rc-manifold X we mean 

{ x G X : x has no Euclidean neighborhood in X}. 

PROPOSITION 1.1 (APPROXIMATION PRINCIPLE FOR COUNTABLE UNIONS). Suppose 
f:M —> X is a proper, cellular mapping defined on an n-manifold M and {Aj} is a se
quence of closed subsets ofX such that, for each j , f can be approximated, arbitrarily 
closely, by a proper, cellular mapff. M —• X that is 1-1 over Aj. Thenf can be approxi
mated, arbitrarily closely, by a cellular map F:M —• X that is 1-1 over UAj, where F is 
a uniform limit of maps fht determined by self-homeomorphisms hi ofM. 

Edwards made strong and repeated used of this Approximation Principle in his Cell
like Approximation Theorem. For discussions of the argument, see [16, pp. 120-122] or 
[12, pp. 175-176]. 

A subset C of a space X is said to be locally k-coconnected (abbreviated as fc-LCC) if 
every neighborhood U C X of an arbitrary point x G X contains another neighborhood 
V of x such that all maps dlk+] —> V\ C extend to maps Ik+l —• U\ C. We list without 
proof some elementary information suggesting how certain fc-LCC properties will be 
employed: C is ( -1 )-LCC inX iff X\ C is dense; C is 0-LCC in X iff U\ C is 0-connected, 
for all 0-connected open sets U CX; and C is &-LCC for k G { — 1,0,1} iff the collection 
of all maps {/: I2 —> X\ C} is dense in the space of maps { g: I2 —• X} (with the sup-
norm metric). 

Somewhat similarly, for C homeomorphic to a finite complex X\ C is said to have 
free local fundamental group at c G C (abbreviated as: X\ C is 1-FLG at c) if for each 
sufficiently small neighborhood U of c there exists another neighborhood V, with c G 
V C U, and if W is any open connected set with c G W C V, then for each non-empty 
component W' of W\C the (inclusion-induced) image of ir\(Wf) —y TT\(U') is a free 
group on m — 1 generators, where U' is the component of U\ C containing W' and m 
is the number of components of st(p)\p that meet CI (Wf). In standard fashion, X\ C is 
1-FLG in X if X\ C is 1-FLG at each point of its frontier relative to X. 

To better perceive the role of these local fundamental group conditions, consider a 
wedge W of two 2-simplexes in R3. The 1-LCC property cannot hold for W, as it always 
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fails to be 1-LCC at the wedge point. Recall that R3 contains mildly wild arcs [17]; to 
be explicit, these are wild arcs expressed as a wedge of two tame ones. Any mildly wild 
arc can be blown up to a wild wedge W of two tame 2-simplexes in R3. What sets tame 
wedges apart from wild ones is the 1-FLG property, not the inapplicable 1-LCC property: 

PROPOSITION 1.2. Let K be a finite, connected 2-complex having no local separating 
points andX D K be a generalized 3-manifoldX. The following statements are equiva
lent. 

1) X\Kis l-¥LGinX; 
2) K is 1-LCC in X; 
3) each 2-simplex ofK is 1-LCC in X. 

PROOF. Just as Nicholson observes in [23, Proposition 1.3], the equivalence of 1) 
and 2) follows routinely from the definitions. The implication 2) => 3) relies on the de
termination of a homotopy between a given small loop in X\ (2-simplex) and a product 
of small loops in X\ K, whereas the converse depends on little more than a local Seifert-
vanKampen argument. 

Next we point out why the simplicial approximation properties defined in the Intro
duction can be construed as reasonable 3-dimensional analogs of the DDP. Common to 
all three properties is their provision of a dense collection of maps into B with images 
covered by a finite union of 1-LCC embedded 2-cells. 

PROPOSITION 1.3. A generalized n-manifold X (n > 5) has WSAP (alternatively: 
SAP; SSAPj if and only if it has DDP. 

PROOF. Given maps p,\, [i^. I2 —> X, where X has WSAP, we approximate fi\ by a 
map (f\ : I2 —> X whose image is contained in a finite union of 2-cells 1-LCC embedded 
in X. Since these 2-cells have codimension at least 3 in X, ip\ (I2) is 1-LCC in X. Hence, 
we can approximate /i2 by (f2 where (f2(l2) H (f\(l2) = 0. 

The converse is even easier, for the DDP implies every map of a finite 2-complex into 
X can be approximated by a 1-LCC embedding [11, Theorem 2.1]. 

A cellular resolution of a generalized manifold X is a resolution/: M —> X for which 
all point preimages are cellular in the domain. Although certain resolvable generalized 
3-manifolds have no cellular resolution (for example, the quotient space obtained by col
lapsing out some noncellular arc in S3), they always have a resolution circumventing the 
Poincaré Conjecture locally, in the sense that each point preimage has a neighborhood 
embeddable in S3. New terminology to describe such improved resolutions is not neces
sary for our purposes because among generalized 3-manifolds with WSAP the existence 
of a resolution implies the existence of a cellular one. 

PROPOSITION 1.4. Suppose X is a generalized 3-manifold with a (cell-like) resolution 
f:M —> X. Then X has a cellular resolution p: M' —> X if and only if each x G X is 1-LCC 
in X. 

PROOF. By [13, Proposition4.5], the resolution/: M —• X leads to another resolution 
p:M' —> X where all/?"1 (x) have neighborhoods in M' that embed in S3. Then x G X being 
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1-LCC in X is equivalent to p~l(x) satisfying McMillan's Cellularity Criterion in M' (see 
[12, p. 145]) and, in this context, the latter is equivalent to p~\x) being cellular in M1 

[21]. 

PROPOSITION 1.5. If X is a generalized 3-manifold having WSAP (resp., SAP, 
SSAP), then every x G X is 1-LCC in X. 

PROOF. Assume X has WSAP. From the space J of all maps I2 —> X extract a count
able dense subset { i/>/} where T/>/(/2) is contained in a finite union of 1-LCC embedded 
2-cells Dt\,..., A,*(0- Given any neighborhood U C X of x G ipt(I2), choose some DQ 
with x G Dij. The 1-LCC condition provides a smaller neighborhood V of x in £/ such 
that any loop in V\DQ contracts in U\D(j, and a Seifert-vanKampen argument shows 
7Ti ( V\ { JC} ) —* 7Ti (U\ { x} ) is trivial. For points of X\ U ̂ t(I2) the same 1 -LCC property 
follows automatically from the denseness of {xpi} in ^. 

COROLLARY 1.6. Every resolvable generalized 3-manifold with WSAP (resp., SAP, 
SSAP) has a cellular resolution. 

Reference will be made to the shrinking theorem of [14], which involves another 
hybrid property. A resolution/?: M —+ X of a generalized 3-manifold X is said to have 
the Resolution Disjoint Disks Property (abbreviated here as "RDDP^", although in [14] 
it was written simply as "RDDP") if for each e > 0, integer k > 2, and collection of k 
pairwise disjoint, tamely embedded disks E\ in M, there exist maps gf. E[ —> X satisfying 
(i) àistx(gi9p\Ei) < e and (ii) &•(£;) H gj(Ej) = 0 whenever / f j . 

We will use a somewhat unfamiliar shrinking theorem in deriving one of our recog
nition theorems. The idea behind it has appeared previously in work of both Cannon [9] 
and E. P. Woodruff [34], [35]. We introduce new terminology, however, and say that a 
use decomposition G of a metric space S is locally semi-controlled shrinkable if to ev
ery go £ G and neighborhood Uo of go there corresponds a neighborhood W0 C U0 of 
go such that for every e > 0 and every homeomorphism h: S —> S there exists another 
homeomorphism h'\ S —• S satisfying: 

1) hf and h coincide on 5\ £/o, 
2) dizmh'(g) < e for all g G G with g C W0, and 
3) diam/iV) < e + diam h(g') for ail g' G G. 

This merely describes a partial control because the difference in the two motions is lim
ited only by the original neighborhood Uo, not at all by the epsilon governing the sizes 
effected via the partial shrinking H. 

THEOREM 1.7. If G is a locally semi-controlled shrinkable decomposition of a lo
cally compact metric space S such that dim(S/ G) < oo, then G is shrinkable (equiva
lent^, the decomposition map TT:S —> S/ G is a near-homeomorphism). 

In effect, this was proved by Cannon [9, pp. 97-100]. Later Woodruff [35, Lemma 2.1 ] 
treated a closely related local shrinkability condition in the 3-manifold setting and de
veloped a global shrinking result. Because of the result's significance and for the conve
nience of the readers, we sketch a proof for the compact case. 
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OUTLINE OF PROOF (S COMPACT). The definition of shrinkability requires that for 
every e > 0 there exists a homeomorphism 0: S —y S such that dist5/G(7r, 7r0) < e and 
diam 0(g) < e for all g G G. 

Let n — dim(S/G). For fixed g G G specify a neighborhood Vg D g with 
diam7r(Vg) < e/ (n + 1). Restrict Vg using the upper semicontinuity of G so that Vg — 
7r_17r(V^). Find an open refinement Q of the cover { n{Vg) \ g G G} of S/ G, where 
Çl is partitioned into n + 1 subcollections Q,Q, £l\,..., £ln and every Q consists of pair-
wise disjoint sets. Now for each g G G choose an index p(g) and Ua G QP(g) such 
that ir(g) G Ua\ since G is locally semi-controlled shrinkable, g has a neighborhood 
Wg C 7T~l(Ua) satisfying conditions 1-3 of the definition (with ir~~l(Ua) playing the 
role of Uo). Note for future reference that diam Ua < e / (n + 1 ) for all a. 

After again restricting to make ir~]7r(Wg) — Wg, determine a finite subcover W\,..., 
Wk of S (by compactness). Order them so that there are integers 

0 = d(-\) < d(0) < d{\) < < d(n) = k 

and d(m — 1) < s < dim), m G { 0 , 1 , . . . , n} , implies the existence of some Ua G Qm 

with 7T~~l(Ua) D Ws. Relabel this index a as s, and set ho =Identity. Maintaining the 
specified ordering, use the definition of locally semi-controlled shrinkability to obtain 
successive homeomorphisms h\,... ,hi,...,hk'.S —• S satisfying 

1) hj-] and hi coincide on S\ 7T~l(Ui); 
2) dmmhi(g) < e/T for all g G G in Wt\ and 
3) dizmhi(g') < diam A;_,(gf) + e/ 2' for all g' G G. 

Clearly the final homeomorphism hk shrinks all elements of G to small size: for every 
g G G there exists an index / = i(g) with g C W/. Then diam/î/(g) < e/ 2' by 2) above, 
and inductively we have by 3), for j = 1 ,....& — /, 

diamhH(g) < dmmhi(g)+ J2 ^J < E ^ 7 < e-

Moreover, size restrictions on the various Ut C 7r(V/) force 

dist5/G(7r/zj(m_n,7r^(m)) < e/(n+ l)form G {0 ,1 , . . . , «} , 

because Trhd(m-\), ^hd(m) agree outside the union of the pairwise disjoint sets { Ud{m-\)+\ » 
%(m-i)+2, • • •, %(m)} and because 7r^(w_i)(7r^(m))_1(^) = ^£ for all sets Ut in this 
list. As a consequence, distiyG(7r,7r^) < e. 

2. The First Recognition Theorem. The foundation of this paper is an important 
recognition theorem first noted by J. W. Cannon. Using radically different terminology, 
Cannon stated our Theorem 2.1 as his 1-LC Taming Theorem [9, pp. 90, 1021, only he 
did so for 2-spheres instead of 2-cells. (In the same paper Cannon also derived higher-
dimensional versions of this theorem.) Although the details are formidable, the philo
sophical approach, which has since become standard in this subject, is straightforward: 
if X were a 3-manifold, the hypothesis would imply D is tame, and proofs for this known 
taming result can be modified to establish 2.1, even for 2-cell case at hand in place of 
2-spheres. 
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THEOREM 2.1 (CANNON). Suppose X is a resolvable generalized 3-manifold such 
that S(X) C D, where D is a closed 2-cell 7-LCC embedded in X. Then X is a 3-manifold. 

COROLLARY 2.2. Ifp: M —> X is a cellular resolution of a generalized 3-manifold 
X and if D C X is a 7-LCC embedded closed 2-cell, then p can be approximated by a 
cellular map q:M —> X which is 1-1 over D. 

PROOF. Let Go denote the (use) decomposition of M induced by p over D; that is, Go 
consists of all sets p~x(d), d G D, plus the singletons from M\p~~](D). By Theorem 2.1 
and Armentrout's Cellular Approximation Theorem [3], the quotient map 
IT: M —• M/ Go is a near-homeomorphism, and we define q = p o ir~l o 9, where 
9: M —•> M J Go is a homeomorphic approximation to n. Obviously then 

q~\d) = e~lirp~](d)= point 

for elide D while, for x £ X\D, q'x (x) = 0-{7rp~l(x) is embedded in M\q~\D) just 
likep_1(jc) in M\p~\D), implying g is cellular. (Remark: making 9 sufficiently close to 
7T causes q to be close top o ir~l o TT = p.) 

LEMMA 2.3. Suppose p: M —> X is a cellular resolution of a generalized 3-manifold 
X which satisfies WS AP. Then p can be approximated by a cellular resolution q.M —• X 
where q(Nq) is 0-dimensional, q is a uniform limit of {phi}, and each hi'.M —• M is a 
homeomorphism. 

PROOF. Corollary 2.2 combines with the Countable Shrinking Principle (Proposi
tion 1.1) to provide q:M —• X which is 1-1 over a countable dense subset of images 
ij)i{I2) obtained from WSAP. 

Since q(Nq) C l \ U ipi(I2) is a-compact, it is enough to show every compact sub
set of X\ U V>i(/2) is O-dimensional. Consider A C U, where A is compact and U is 
an orientable open subset of X [7] with A C U\ U ipi(I2). Clearly it suffices to prove 
dim A < 0 and, to that end, it suffices to show A has (integral) cohomological dimen
sion < 0 (cf. [32]). Since X locally satisfies Alexander-Lefshetz duality (see [7] or [1]), 
HX(A,A') = H2(U\Af, U\A) for every compact A' C A. We will explain why the latter 
is trivial. 

Strictly speaking, we first should prove that dim A < 1, but we omit the details and 
treat this as a fact—its proof is similar to but easier than the forthcoming one that dim A < 
0. Given a relative singular 2-cycle with carrier (C,dC) C (U\Af, U\A), subdivide to 
make the singular 2-simplexes in this chain extremely small (all contained in small open 
sets V C U\A'), and homotopically adjust, using the omitted step dim A < 1, to make 
each boundary miss A. Let a denote a typical singular 2-simplex from this subdivided 
cycle. For some open set V, a can be approximated by a singular disk ^(Z2) C V\A 
closely enough that there is a homotopy between da and i/>*(3/2) in V\A, implying da 
bounds a singular disk Da C V\A. Had we insisted each V be contractible in U\A\ a 
matter easily arranged, then a and Da would be homologous (rel 3) relative cycles in 
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(U\Af, U\A), and the combination over all 2-simplexes a appearing in C would show 
(C, dC) to be homologically trivial. 

The next general position property appeared in [14] and now reappears here as part of 
our first recognition theorem. A generalized 3-manifold Y has the Light Map Separation 
Property (abbreviation: LMSP) if, for every positive integer k, every e > 0, and every 
map/: B^Y defined on the disjoint union B of k 2-cells Bt such that (i) Nf C Int B, (ii) 
dim(A^) < 0, and (iii) dim(Z/) < 0, where 

Zf = {yeY\y efmnfiBj) for some i ^ j}, 

there exists a map F:B —> Y satisfying 
1) distr(F,/) < e, 
2) F\dB=f\dB, and 
3) the images { F(Bt) \ i — 1, . . . , k} are pairwise disjoint. 

RECOGNITION THEOREM 2.4. A resolvable generalized 3-manifoldX is a topological 
3-manifold if and only if X possesses the WSAP and LMSP. 

PROOF. If X has WSAP, Corollary 1.6 ensures it has a cellular resolution/?: M —> X, 
and Lemma 2.3 attests that/?: M —• X can be approximated by q: M —> X, where q(Nq) is 
0-dimensional. When X also has LMSP, the Recognition Theorem (1.2) of [14] indicates 
X is a 3-manifold. 

Conversely, as remarked in the Introduction, 3-manifolds clearly satisfy WSAP. The
orem 1.2 of [14] certifies that they also satisfy LMSP. 

REMARKS. Still unsettled is the issue of whether in Theorem 2.4 the WSAP by itself 
implies X is a 3-manifold; the warning below spotlights a key difficulty. It can be said 
that WSAP is not enough, however, if the 1-FLG requirement is dropped, since the non-
manifolds resulting from decompositions of R3 into points and straight line segments of 
Armentrout [2] or Bing [6] satisfy this less restrictive WSAP condition. 

WARNING. Bing [6] (or see [12, Example 9.6]) has described a remarkably simple 
cellular decomposition of S3 automatically leading to a resolution p:S3 —> X of a non-
manifold X where p(Np) is countable and all singular disks in X can be approximated 
by singular disks in X\p(Np). Sharing key properties with the intermediate cell-like map 
q:M —> X which arises in the proof of Theorem 2.4, Bing's map makes it clear that, in 
order to approximate q by homeomorphisms without appealing to the LMSP hypothe
sis, one must rely on additional geometric features of singular disks I/J (I2) obtained from 
WSAP, not merely their avoidance of q(Nq). 

THEOREM 2.5. If X is a generalized 3-manifold with WSAP and p. M —• X is a 
cellular resolution with RDDP^, then p is a near-homeomorphism. 

PROOF. Use Lemma 2.3 to approximate p by q:M —• X, where g(A^) is 
0-dimensional and q is a limit of a sequence {phi} determined by homeomorphisms 
hi'. M —+ M. By [15] q can be further adjusted so Nq has embedding dimension < 1 
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and q has RDDPW, by virtue of arising as a uniform limit of {phi} as before. Then the 
Shrinking Theorem (1.1) of [14] yields the conclusion. 

3. The Second Recognition Theorem. 

RECOGNITION THEOREM 3.1. A resolvable generalized 3-manifold is a topological 
3-manifold if and only if it possesses the SSAP. 

This theorem is an immediate consequence of Corollary 1.6 and the subsequent Propo
sition 3.2. 

PROPOSITION 3.2. A cellular resolution p: M3 —>X is a near-homeomorphism if and 
only ifX has SSAP. 

PROOF. The forward implication is trivial. For the reverse, specify countable collec
tions {\j)i\ S2 —• X} with {ijji} dense in the space of all maps S2 —> X and 2-complexes 
{K^p(i) D ^i(S2)} satisfying the conditions of SSAP. Use Proposition 1.1 and Corol
lary 2.2 to approximate/? so it is 1-1 over UA^,). 

It will suffice to show that this approximation (still called p) is a near-homeomorph
ism. To that end, we shall prove that the decomposition G = {p~\x) : x G X} induced 
by p is locally semi-controlled shrinkable and apply Theorem 1.7. To be completely 
rigorous, we should insert a homeomorphism h: M —> M and study { hp~l(x) : i G l } , 
but this would affect only the notation, not the proof, so we suppress h. 

Fix go G G and a neighborhood UQ of g0 in M3, and restrict Uo, if necessary, to an open 
3-cell neighborhood. Choose a neighborhood V c X o f i o = p(go) with/?-1(V) C UQ. 
Find a map i/;,-: S2 —> X from the collection above giving a singular 2-sphere S = 0/(S2) C 
V\ { XQ} such that t/̂  is null-homotopic in V but not in V\ {xo} and S separates xo from 
X\ V. Let W denote the component of X\ S containing jto, and let Wo = p~l(W). 

The 2-complex K^^ D S promised by the SSAP hypothesis can be trimmed back, 
if necessary, to a 2-complex K with 5 C ^ C V ( 1 % and X\ K 1-FLG in X. Since 
p is 1-1 over K^^ D K, approximate lifting properties (cell-like maps naturally induce 
7Ti-isomorphisms) routinely disclose that, for K' — p~l(K), M\K' is 1-FLG in M. As a 
result, K! is tame in M [23]. 

For simplicity we first discuss the case in which K' has no local separating points. 
Find an open set U\ with K' C U\ C UQ such that/?-1(x) fl (/] / 8 implies 

diam/?-1 Qt) < e/6. We construct an auxiliary map \ of M to itself fixed outside U\, 
collapsing some topological regular neighborhood N(K') onto K', moving points less 
than e/6, being 1-1 over M\ K'. This is arranged so that if z belongs to the interior of an 
/-cell ofK\ then x~x(z) is a tame (3 — /)-cell. (Express \ as X2X1X0, where xo collapses 
a 3-cell neighborhood of each vertex v to v while sending both K' and its 1-skeleton 
to themselves, where xi squeezes a relative regular neighborhood of each edge (3 in 
K'(l) — xo(^/(1)) to (3 while sending K' to itself, and where \2 behaves similarly for 
2-simplexes of Kf.) In particular, we do this carefully to make certain that the decompo
sition 

r={(pX)-i(x)\x<=X\K}u{{y} \yEN(K')} 
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is upper semicontinuous, which comes about by modifying \ so all components of 
dx~~](x)\ IntN(K') become singletons. Since each of these components is cell-like (here 
is where the hypothesis concerning no local separating is invoked), we can apply a theo
rem of R. L. Moore [22] about cell-like decompositions of 2-manifolds to obtain a map 
6:M —» M which sends N(K') onto itself, sends the components of d\~l W \ lntN(Kf) to 
distinct points, and is 1-1 over M\ dN(K'). We define the desired modification as \0 ~{. 
Note thatp~l(x)C\ U\ ^ 0 implies diam(/?x)_1W < e/2. 

The Sphere Theorem [24] ensures the existence of a PL embedded 2-sphere Z in 
IntA^C^) C U\ separating (px)_1(*o) fromM\x~l(W0), so Z bounds a 3-cell C with 

(PX)~10CO) C x"\W0) C Int C C C C U0. 

There exists a homeomorphism h:M —> M fixed outside C such that 

diamh(pxV\x) < e for all x epx(Q\K. 

All that remains is to find a map/: M —• M shrinking out all the nontrivial point preim-
ages of hx~x without allowing the sizes of h(px)~l(x) to increase very much. This can 
be accomplished by shrinking the tame complex h(N(K')\ to a copy of K' via a map sup
ported in CU U\ and expressed as a finite sequence of adjustments each moving points 
less than e/4—any nondegenerate element h(g'), g' G F and g' C C U U\, which ex
pands to dangerously large size (i.e., e/ 2 < diam O/z^') < e) after the composition <I> 
of finitely many adjustments is left alone by the remainder—and the guiding principles 
require a homeomorphism À : K' —• f(K') such that \x\K' = fh\K'. Then, being well-
defined, the rule/ ohox~x is a self-homeomorphism of M, and one can easily verify it 
has the desired effect on G. 

Now we describe the modification needed for the general case in which K is allowed to 
have local separating points. The major change appears with the map 9: M —• M, which 
now will take N(Kf) into, not onto, itself, while sending components of 
dx~l(z)\ IntN(K') to distinct points and being 1-1 over M\ 6 (N(K')). When x is a vertex 
with disconnected link in AT, for each non-simply connected component K of 
(dx~l(z)\ IntN(Kf)y we produce a compact set TK C x~l W s u c n t n a t ^ U TK is cellular 
in M and TK\K is a finite union of open disks in In tx - 1 (x). Standard general position 
adjustments allow us to make the sets TK associated with the various components K be 
pairwise disjoint. If Z Pi TK ^ 0, we trade subdisks of Z for those parallel to disks in 
TK\K (since ZD TK C TK \ ft) to form a new PL 2-sphere Z7 in N(K')\ U {TK} bounding 
another 3-cell C with 

(PX)~\XO) C X^C^o) C Inter C C C £/0. 

Then 0 will crush the distinct sets TK U ft to distince points, keeping Z' pointwise fixed. 
Similarly, for points x belonging to the interior of a 1-simplex /3, where Int (3 is an open 
subset of K, we can alter Z' to make If n x - 1 W = 0 a nd then require that #x ' M 
equals x. The rest of the program proceeds as before. 
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COROLLARY 3.3. Let Xbe a resolvable generalized 3-manifold. The following state
ments are equivalent: 

(i) X has the WSAP and the LMSP; 
(ii) X has the SSAP; 

(Hi) X is a 3-manifold. 

The proof of Theorem 3.1 actually establishes the slightly stronger result below. 

THEOREM 3.4. A resolvable generalized 3-manifoldX is a 3-manifold if each x G X 
is 7-LCC and has arbitrarily small neighborhoods U such that there exists a map ji'.S2 —> 
U\ {x} such that p is null-homotopic in U but not in U\ {x} as well as a 2-complex K 
satisfying properties 2) and 3) 6>/SSAP. 

Our formal application of Theorem 3.4 is the following corollary, which is also an 
immediate consequence of [9, Theorem 62]. The argument here, which generalizes Can
non's in [9], is less efficient than his due to complications surrounding the blow-up pro
cedure required in Proposition 3.2. These complications emerge specifically for treating 
singular 2-spheres but can be easily circumvented in deriving (3.5) directly. 

COROLLARY 3.5 (CANNON [9]). A cellular resolution p. M —> X is a 
near-homeomorphism if and only if for every 2-sphere S tamely embedded in M, p\S 
can be approximated, arbitrarily closely, by 7-LCC embeddings X : S —> X. 

THEOREM 3.6. Suppose X is a resolvable generalized 3-manifold such that 
dim S(X) < 2. Then X is a 3-manifold if and only ifX has SAP. 

PROOF. This is another application of Theorem 3.4. Name a cellular resolution 
p. M —> X (Corollary 1.6) and consider any neighborhood U of x G X. Use cellular-
ity to find a pair of open 3-cells W, W in M and a pair of connected open subsets V, V 
in X with null-homotopic inclusion V' —» V and 

p~\x) C W <Zp-\V)<Zp-\V) CWCp~\U). 

Locate a tame 2-sphere X C W separating p~l(x) from M\ W (and thus from M\ W), 
and adjust I s o Z H / ? - 1 (X\S(X)) contains a 2-cell B. 

Choose a homeomorphism e: I2 —> Z\ Int B and invoke SAP to obtain a map ^'.l1 —-> 
V\ { x} with -0 (I2) in the usual sort of nicely embedded 2-complex K and with 0 close 
enough to p o e to make i/j\dl2 null-homotopic in V'\S(X). Combine 0 and the null-
homotopy as a map p'\ Z —• V \ {x} with /z ' | I \ Int£ = ipe~x and //(£) C V'\S(X). 
Since again 0 (/2)Pl (V'\ 5(X)) is tame [23], general position techniques in the 3-manifold 
V \ S(X) yield an approximation /i to p' such that p and p' coincide on 1\ B and K U 
p(l\B) is a 2-complex whose complement is 1-FLG in X (simply require p(Z\B) U 
(K\ 5(X)) to be tame in V'\ S(X)). All of these adjustments can be done sop\ £ and p are 
homotopic in V'\ {x}. 

Clearly p is null-homotopic in V, but it cannot be so in V\ { x}, for otherwise relative 
approximate lifting properties would show Z is homotopically trivial inp~l(V\{x}) C 
W\p~l(x), an impossibility since the latter retracts to Z. 
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4. Hybrid Properties. This section examines the resolution disk embedding prop
erties defined in the Introduction. Our primary goal here is to verify that all cellular 
resolutions with RDEP* are near-homeomorphisms; along the way, we obtain the same 
conclusion for cellular resolutions/?: M —-> X with RDEP, provided dimp(Np) < 0. Ap
proximation techniques presented in § 2 make this quite effortless. 

In a precise sense each of these resolution disk embedding properties, like the WS AP, 
is a natural analog of the DDP for resolvable generalized manifolds. 

LEMMA 4.1. Suppose p: M —> X is a resolution of a generalized n-manifold, n > 5. 
Then the following are equivalent: 

1) phas RDEP; 
2) p has RDEP*; 
3) X has DDP. 

PROOF. Assume 1). Consider maps p,\,H2'.I2 —>Xande > 0. Standard approximate 
lifting and general position methods give tame embeddings et\ I

2 —• M (i = 1,2) with 
distxipet, fit) < e/ 2. Connecting the two disks together with a tame band, we find a disk 
E with é?/(/2) Ue2(I

2)CE CM and apply RDEP to obtain an embedding A : E —* X with 
distx(A,/?|£) < e/2. The maps Xe\, \ei show 3) holds. 

That 3) implies 2) stems from the same Cannon result [11, Theorem 2.1] used in 
Proposition 1.3. Of course, that 2) implies 1) is immediate. 

LEMMA 4.2. Every resolution p:M—+B with RDEP also has RDDPW. 

PROOF. Given a finite collection {£/} of tame disks in M, use multiple banding 
operations as in Lemma 4.1 to collect them in a single disk E, where \JEt C E C M, and 
apply RDEP. The restrictions gi — \\Et of the resulting embedding \:E—+B establish 
RDDP^. 

THEOREM 4.3. Ifp: M—+B is a cellular resolution with RDEP andp has (domain) 
nondegeneracy set of embedding dimension < 1, then p is a near-homeomorphism. 

PROOF. By Lemma 4.2 p has RDDP^, so the Shrinking Criterion (1.1) of [14] gives 
the conclusion. 

LEMMA 4.4. Ifp: M —y X had RDEP (RDEP*) and { ht} is a sequence ofhomeomor-
phisms such that {phi} converges uniformly to q:M —> B, then q has RDEP (RDEP*). 

PROOF. This is straightforward: choose / with phi close to q, and apply RDEP 
(RDEP*) for/7 to the disk hf(E) C M. 

THEOREM 4.5. Every cellular resolution f: M —• X with RDEP, where dimf(Nf) < 
0, is a near-homeomorphism. 

PROOF. According to [15],/ can be approximated by F: M —> X, where there are 
self-homeomorphisms hi of M such that {fhi} converges uniformly to F and the non-
degeneracy set Np of F has embedding dimension < 1. Lemma 4.4 and Theorem 4.3 
disclose F and/ can be approximated by homeomorphisms. 
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THEOREM 4.6. Every cellular resolution p: M —• X with RDEP* is a 
near-homeomorphism. 

PROOF. We identify a countable collection of 1-LCC embedded disks Dt C X, con
sisting of images promised by RDEP* of a dense subset of the space of all maps of the 
form/?A, where À : I2 —• M is an embedding. As in the proof of Lemma 2.3, we approxi
mate p by a resolution q = \\m(phi) which is 1 -1 over U Dt. Once we verify X\ U Dt is 0-
dimensional, Lemma 4.4 and Theorem 4.5 will show q and/? are near-homeomorphisms. 

Consider any x G X\ U Dt and connected neighborhood U of q~](x) in M. Select 
an index / such that B — q~x(Di) C U. Since B is 1-LCC and therefore locally flat in 
U [5], we can produce another 2-cell B' C U such that B U Bl is a 2-sphere separating 
the cellular set <7-1(jt) from M\ U. Finally, by choosing another indexa for which there 
exists a homotopy in U\ q~~l(x) between q~l(Dj) and B\ we can conclude B U q~l(Dj) 
also separates q~l(x) from M\ U, as required. 

COROLLARY 4.7. Le£ X be a generalized 3-manifold with a cellular resolution 
p. M —y X. The following statements are equivalent, 

(i) p has RDEP and X has WS AP; 
(ii) p has RDEP*; 

(Hi) X is a 3-manifold. 

PROOF. Clearly (iii) implies both (i) and (ii). That (i) implies (iii) is an immediate 
consequence of Lemma 2.3 and Theorem 4.5, and Theorem 4.6 certifies that (ii) implies 
(iii). 

5. Another Hybrid Property. Whether all cellular resolutions p: M —> X with 
RDDP^ are near-homeomorphisms is an open problem. One natural and attractive ap
proach involves attempting to show that, for all closed A C X, the map associated with 
the decomposition GA induced by p over A (i.e., GA consists of all p~l(a), a G A, and 
singletons from M\p~l(A)) also has RDDP^, but to date this secondary problem has 
proved insurmountable. Here in § 5 we look at a relative version of the RDDP^ strong 
enough to allow consummation of this attack. 

A cellular resolution p: M —• B has the relative resolution disjoint disks property 
(RRDDP^) if for every finite collection { Et \ i = 1, . . . , k} of pairwise disjoint disks 
tamely embedded in M, for every collection of 1-dimensional finite graphs { rt C £/} , 
and for every e > 0, there exist a homeomorphism 0:M —+ M moving points less 
than e and maps/: Et —+ B satisfying: (1) {/)(£/)} is a pairwise disjoint collection; (2) 
fi\rf = pOlTt; and (3) distB(fhP9\Et) < e. 

LEMMA 5.1. Ifp-M —• B has RRDDP^ and A is a closed subset of B, then the 
natural map n:M —> Mj G A also has RRDDP^,. 

PROOF. Fix e > 0 and a collection { Et; | / = 1, ...,&} of pairwise disjoint disks 
tamely embedded in M. For each / we require a small mesh triangulation Tt of Ei (explicit 
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restrictions on mesh size are provided in the next paragraph). Then we let T, denote the 

1-skeleton of Et and P, the union of all a £ Tt meeting p~{(A). 

Find 8 > 0 and a compact neighborhood U of N(A PI /?(UF/); 8 ) in X such that, for 

every F c t / with diam Y < 8, diam 7r/?-1 (T) < e/9. Also find 5 ' > 0 and a compact 

neighborhood/? D N{p~xp(UEi); 38') in M such that for all Y' C P with diam Y' < 38', 

diamTr(r') < e / 9 . Then find 77 > 0 such that dizmp(K) < 8/1 for K C A^UF,-;/?) 

with diam K < rj. Finally, measure the distance d betweenp~x (A) and U (F/ \ P/), assume 

27 < min{ 6,6',r],d}, and choose F/ of mesh less than 7 . 

The RRDDP^ promises a7-homeomorphism h'.M —* M and maps/):F/ —> 5 such 

that (1) {fi(Ei)} is a pairwise disjoint collection; (2) fi\Fi = /7/i|T"/, and 

(3) distfî(/;,/?/î|£/) < 6 / 7 . Clearly fc(cr) C R and diam/i(<r) < 38' for all <r G Th 

so diam7r/i(<j) < e / 9 . Restrictions on 7 imply (4) distfî(/?|£;,/?/î|£/) < 8/I. Relative 

approximate lifting properties of cell-like maps ensure the existence of maps Ff. Et —y M 

such that (5) {/?F/(£/)} are pairwise disjoint; (6) Fi\Ti — h\Ti, (7) distB(pFi,ph\Ei) < 

8/1. Now (3), (4), and (7) combine with the other size restrictions to yield: (8) for 

all G G Tt, pFi(a) lives in the (36 / 7)-neighborhood of p(a). Hence, a C Pi implies 

diam/7(c) < 8 /1 andpFi(a) C U. For such a choices of 7 , 8 give that 

distfi(7r|<7,7rF/|cr) = distB(7rp~lp\a,np~lpFi\cr) < e / 9 ; 

as a result, diam7rF,(cr) < e / 3. 

One could hope to define the required maps Et —> M/ G A simply using 7rF/|P/ and 

7r/z|F/\P/, but there remains a difficulty caused by potential intersections between 

7rF/(P/) and ixh{Ej\ Pj). All these intersections occur in 7r/j(Int<7), where a C Cl(F/\ P/) 

is a 2-simplex of 7}, and constraints on h reveal h(a) Pi /?-1(A) = 0, so nh(lnta) resides 

in the 3-manifold 7r(M\/?_1(A)). Working successively with indices k for which some 

component of 7rF^(P^) is contained in a disk in irh(a) whose interior meets no other 

TrFe(Pt) (including TTFJ(PJ) among these possibilities here is imperative), we do (sin

gular) disk trading to eliminate such intersections without creating new ones; the map 

redefinition occurs on disks in the interiors of 2-simplexes r from Tt in Pt and entails 

adjustments limited by 2e / 3, the diameter of 7TF/(T) U irh(a). The outcome is a collec

tion of maps V[\ Ei —y M/ G A close to p\Ej and having mutually exclusive images, as 

required. 

LEMMA 5.2. Ifp.M^B has RRDDP^ and A is a closed subset of B, then the 

natural map TT:M —• M / G A is a near-homeomorphism. 

PROOF. By induction on dimA. If dimA = 0, this follows immediately from 

Lemma 5.1 and our earlier shrinking theorem from [14]. When dimA = k > 0, ele

mentary dimension theory enables us to find closed subsets A/ of A such that dim A7 < k 

and dim(A\ U Aj) — 0. The inductive assumption applied to the various A/s combines 

with the Countable Approximation Principle (Proposition 1.1 ) to provide a new CE map 

7r': M —> Mj G A, where TT' — lim irht as / —• 00 (hi a self-homeomorphism of M) and IT' 

is 1-1 over (UA ;)U 7r(M\p-](A)). Thus dimTr'(AV) < dim7r(A^7r) < 0 and IT' has the 
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RDDP, since the RDDP is preserved by taking limits of the form IT hi [14]. Just as above, 
7r; ( and, thus, n itself) is a near-homeomorphism. 

The case A = B of Lemma 5.2 precipitates the desired theorem. 

THEOREM 5.3. Every cellular resolution p. M —> B with RRDDP^ is a 
near-homeomorphism. 

It is noteworthy that a converse to Theorem 5.3 fails—the RRDDP^ cannot hold if 
some point-preimage has non-empty interior. 

6. Applications to generalized 4-manifolds. Here we briefly outline how the pre
ceding techniques allow improvement to resolutions of generalized 4-manifolds satisfy
ing the relevant variation to the WSAP. 

Locally flat embeddings of 2-cells in 4-manifolds are not classified by the 1-LCC 
condition but, rather, by the following one. A closed subset C of a space B is locally 
homotopically unknotted in B if for each c G C and each neighborhood U of c there 
exists a smaller neighborhood V of c such that (1) for k > 1 every map Sk —> V\ C is 
null-homotopic in U\ C and (2) every map Sl —> V\ C which is null-homologous in V\ C 
is null-homotopic in U\ C. The WSAP must be modified to accomodate this distinction. 
Accordingly, we say that a space B has the 4-dimensional WSAP if every map I2 —» B 
can be approximated by one whose image is covered by a finite number of 2-cells locally 
homotopically unknotted in B. 

LEMMA 6.1. If X is a generalized 4-manifold satisfying the 4-dimensional WSAP, 
then every resolution p: M —• X is cellular. 

PROOF. Just as in Proposition 1.5, each x G X is 1 -LCC embedded, implying p~l (x) 
satisfies McMillan's Cellularity Criterion in M. For cell-like subsets of 4-manifolds, the 
Cellularity Criterion ensures cellularity [18, Theorem 1.11]. (See [28] for an additional 
hypothesis required in the statement of Freedman's theorem.) 

At the heart of this 4-dimensional application is the following strong adaptation of 
Cannon's Recognition Theorem (2.1) due to M. H. Freedman and F. S. Quinn [19] (see 
also [25]). 

THEOREM 6.2. Suppose X is a generalized 4-manifold (without boundary) and D C 
X is a 2-cell locally homotopically unknotted in X such that X\ D is a 4-manifold. Then 
X is a 4-manifold. 

THEOREM 6.3. Suppose p: M —• X is a resolution of a generalized 4-manifold X 
satisfying the 4-dimensional WSAP. Then p can he approximated by a resolution q: M —• 
X such that dim q(Nq) < 1 and q is a uniform limit of {phi}, where each ht represents a 
self-homeomorphism ofM. 

SKETCH. With Theorem 6.2 supplanting Theorem 2.1 and Quinn's Cell-like Ap
proximation Theorem [25, Corollary 2.6.2] supplanting Armentrout's, the proof of Corol
lary 2.2 indicates that/? can be approximated by a new resolution 1-1 over any prede
termined locally homotopically unknotted 2-cell. The hypothesis provides a dense col
lection of maps i/ji'. I2 —> X, where each individual image is covered by finitely many 
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embedded 2-cells locally homotopically unknotted in X, and application of the Count
able Approximation Principle furnishes an approximation q\M —• X which is 1-1 over 
Uipi(I2). That dim q(Nq) < 1 follows as in Lemma 2.3. 
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