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Preface

This book is dedicated to the theory of continuous selections of multi�
valued mappings� a classical area of mathematics �as far as the formulation
of its fundamental problems and methods of solutions are concerned� as well
as an area which has been intensively developing in recent decades and has
found various applications in general topology� theory of absolute retracts
and innite�dimensional manifolds� geometric topology� xed�point theory�
functional and convex analysis� game theory� mathematical economics� and
other branches of modern mathematics� The fundamental results in this the�
ory were laid down in the mid �	���s by E� Michael�

The book consists of �relatively independent� three parts � Part A�
Theory� Part B� Results� and Part C� Applications� �We shall refer to these
parts simply by their names�� The target audience for the rst part are
students of mathematics �in their senior year or in their rst year of graduate
school� who wish to get familiar with the foundations of this theory� The
goal of the second part is to give a comprehensive survey of the existing
results on continuous selections of multivalued mappings� It is intended for
specialists in this area as well as for those who have mastered the material of
the rst part of the book� In the third part we present important examples
of applications of continuous selections� We have chosen examples which
are su�ciently interesting and have played in some sense key role in the
corresponding areas of mathematics� The necessary prerequisites can all be
found in the rst part� It is intended for researchers in general and geometric
topology� functional and convex analysis� approximation theory and xed�
�point theory� di�erential inclusions� and mathematical economics�

The style of exposition changes as we pass from one part of the book
to another� Proofs in Theory are given in details� Here� our philosophy was
to present �the minimum of facts with the maximum of proofs�� In Results�
however� proofs are� as a rule� omitted or are only sketched� In other words�
as it is usual for advanced expositions� we give here �the maximum of facts
with the minimum of proofs�� Finally� in every paragraph of Applications
the part concerning selections is studied in details whereas the rests of the
argument is usually only sketched� So the style is of mixed type�

Next� we wish to explain the methodical approach in Theory� We have
presented the proofs in some xed structurized form� More precisely� every
theorem is proved in two steps� Part I� Construction and Part II� Veri�cation�
The rst part lists all steps of the proof and in the sequel we formulate the
necessary properties of the construction� The second part brings a detailed
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verication of each of the statements of the rst part� In this way� an
experienced reader can only browse through the rst part and then skip the
second part altogether� whereas a beginner may well wish to pause after
Construction and try to verify all steps by himself� In this way� Construction
part can also be regarded as a set of exercises on selection theory�

Consequently� there are no special exercise sections in Theory after each
paragraph� instead� we have organized each proof as a sequence of exercises�
We have also provided Theory with a separate introduction� where we explain
the ways in which multivalued mappings and their continuous selections arise
in di�erent areas of mathematics�

Some comments concerning terminology and notations� A multivalued
mapping to a space Y can be dened as a singlevalued mapping into a suitable
space of subsets of Y � Such approach forces us to introduce a special notation
for specic classes of subsets of Y � In the following table we have collected
various notations which one can nd in the literature�

Classes of subsets of Y Notations

all subsets A�Y �� �Y � P �Y �� B�Y �

all nonempty subsets �Y � expY� N�Y �

closed expY� F�Y �� Cl�Y �� C�Y �

compact Cp�Y �� C�Y �� K�Y �� Comp�Y �� C�Y �


nite F �Y �� K�Y �� exp
�
�Y �� J �Y �

convex Cv�Y �� C�Y �� K�Y �� Conv�Y �

closed convex FC�Y �� CC�Y �� CC�Y �� CK�Y �

compact convex Kv�Y �� CK�Y �� ComC�Y �� Uk�Y �� conv��Y �

complete CMP�Y �� ��Y �

bounded B�Y �� Bd�Y �

combination of above BdF �Y �� �K�Y �� �CK�Y �� � � �

We have solved the problem of the choice of notations in a very simple
way� we did not make any choice� More precisely� we prefer the language
instead of abbreviations and we always �except in some places in Results� use
phrases of the type �let F � X � Y be a multivalued mapping with closed
�compact� bounded� etc�� values� � � �� The only general agreement is that all
values of any multivalued mapping F � X � Y are nonempty subsets of Y �

According to our decision� we systematically use the notation �F � X �
Y � and associate with it the term �multivalued mapping�� although from
purely pedagogical point of view the last term should be related to notions
of the type �F � X � �Y � F � X � FC�Y �� etc�� Finally� a word about
cross�references in our book� when we are e�g� in Part B� Results and refer
to say� Theorem �A���	� �resp� Denition �C������� we mean Theorem ���	�
of Part A� Theory �resp� Denition ����� of Part C� Applications��
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We conclude by some comments concerning the existing literature� There
already are some textbooks and monographs where some attention is also
given to certain aspects of the theory of selections ��
�������������������	��
��
������ However� none of them contains a systematic treatment of the
theory and so to the best of our knowledge� the present monograph is the
rst one which is devoted exclusively to this subject�

Preliminary versions of the book were read by several of our col�
leagues� In particular� we acknowledge remarks by S� M� Ageev� V� Gutev�
S� V� Konyagin� V� I� Levin� and E� Michael� The manuscript was prepared
using TEX by M� Zemlji�c and we are very grateful for his technical help and
assistance through all these years� The rst author acknowledges the support
of the Ministry for Science and Technology of the Republic of Slovenia grants
No� P�����������	� and No� J�����	������	�� and the second author the sup�
port of the International Science G� Soros Foundation grant No� NFU��� and
the Russian Basic Research Foundation grant No� 	
�������

a�

D� Repov�s and P� V� Semenov
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PART A� THEORY

x�� PRELIMINARIES

This chapter is a short survey of some basic notions and facts of general
topology �Section ��� functional analysis �Section ��� geometry of Banach
spaces �Section ��� and theory of extensors and retracts �Section ��� All
proofs have been omitted and we only list main denitions and theorems�
This material is usually covered in the beginning of every standard textbook
on the above topics� e�g� Bessaga and Pe�lczy�nski ���� �Section ��� Borsuk
����� Dugundji ������ Engelking ����� �Sections � and ��� Lindenstrauss and
Tzafriri ���
� �Section ��� and Rudin ��
�� �Sections � and ��� In Section �
more specic topics for the present book are discussed � we introduce and
prove some basic facts of the theory of multivalued mappings�

�� Topological spaces

Let X be a set and let T be a family of subsets of X satisfying the
following conditions�
��� � � T and X � T �
��� If U � T and V � T � then U � V � T � and
��� If U� � T � for every � � �� then S��� U� � T �

Such a family T is called a topology on the set X and the pair �X�T �
is called a topological space� Equivalent expressions are �T is a topology on
the space X� or �X is a topological space�� Members of T are called open
sets� their complements are called closed sets �in the topology T �� If T is a
topology on X and T � is the family of the complements of all elements of T
then T � satises the following conditions�
���� � � T � and X � T ��
���� If A � T � and B � T � then A �B � T �� and
���� If B� � T �� for every � � �� then T���B� � T ��

Sometimes it is more convenient to dene a family T � of subsets of a
set X with properties ��������� and hence to dene a topology on T as the
complements of all elements of T �� With a xed topology T on X we usually
omit T and we simply say that X is a topological space�

For any subset A � X we denote by ClA the intersection of all closed
sets containing A and we call ClA the closure of A� For any A � X we
denote by IntA the union of all open sets contained in A and we call IntA
the interior of A� The di�erence ClAn IntA is called the boundary of A and
is denoted by �A�

A subfamily B of the topology T is called a basis of T if for every
nonempty open set V � T there exist elements B� � B� � � �� such that
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� Preliminaries

V �
S
���B� � Let x � X be an arbitrary point� Any open set G � T

containing x is called a neighborhood of x� A family B�x� of neighborhoods of
x is called a local basis of T at the point x if for every neighborhood V of the
point x there exists B � B�x� such that B � V � Any open set U containing
a subset A � X is called a neighborhood of A�

If A � X is an arbitrary subset and T is a topology on X then A is
usually considered with the following topology

TA � fA � V j V � T g �
Clearly� TA is a topology on the set A� Such topology is called induced
�or relative� on A� We refer the reader to ����� Chapter III� for examples�
exercises and standard facts about these notions�

Let X and Y be topological spaces� A mapping f � X � Y is said to be
continuous if the preimage f���U� of every open subset U � Y is an open
subset of X� A continuous mapping into the real line IR �with the usual
topology� is often called a continuous function� A homeomorphism between
topological spaces X and Y is a bijection f � X � Y such that both f and
its inverse f�� � Y � X are continuous mappings� A continuous mapping
r � X � A from a topological space X onto its subspace A �endowed with
the relative topology� is called a retraction of X onto A if r�x� � x� for every
x � A�

De�nition ������ A topological space X is called�
��� T��space if for every pair of di�erent points x � X and x� � X� either x

has a neighborhood which does not contain x�� or x� has a neighborhood
which does not contain x�

��� T��space �or Hausdor� space� if for every pair of di�erent points x � X
and x� � X� there exist disjoint neighborhoods of x and x��

��� T��space if for every closed subset A � X and for every point x � XnA�
there exist disjoint neighborhoods of x and x��

��� T� �
�
�space if for every closed subset A � X and every point x � XnA�

there exists a continuous function f � X � ��� �� such that f�x� � � and
f�a� � �� for every a � A� i�e� A � f������

��� T��space if for every two disjoint closed subsets A and B of X� there exist
disjoint neighborhoods of A and B�

�
� regular �completely regular
 normal� space if X is both a T��space and a
T��space �resp� T� �

�
�space� T��space��

The following inclusions hold�

fHausdor� spacesg � fregular spacesg �
�fcompletely regular spacesg � fnormal spacesg �

We prefer to describe properties of an arbitrary space with terms Hausdor��
regular� completely regular and normal� rather than T�� T�� etc� Also� all

�



Topological spaces �

spaces will be assumed to be Hausdor� unless otherwise speci�ed� In fact� we
will usually work with normal spaces�

Theorem ������ The following properties of a topological space X are
equivalent�
��� X is normal�
��� For every pair of disjoint closed subsets A � X and B � X
 there exists

a continuous function f � X � ��� �� such that A � f����� and B �
f������

��� For every closed subset A � X and every continuous function f � A� IR

there exists a continuous function �f � X � IR
 such that �f�a� � f�a�
 for

every a � A� Moreover
 one can assume that inf �f�X� � inf f�A� and

sup �f�X� � sup f�A�� and
��� If U � fU�� U�� � � � � Ung is an open covering of X
 i�e� Ui are open and

X �
Sn
i�� Ui
 then there exists an open covering V � fV�� V�� � � � � Vng of

X such that Cl�Vi� � Ui
 for every i � f�� �� � � � � ng�
The equivalence ��� �� ��� is the Urysohn characterization of nor�

mality and the function f from ��� is often called the Urysohn function of
the pair �A�B�� A space X is said to be perfectly normal if for every pair of
disjoint closed subsets A � X and B � X� there exists a continuous function
f � X � ��� �� such that A � f����� and B � f������ The equivalence ���

�� ��� is the Tietze characterization of normality and the function �f from
��� is said to be a continuous extension of f from A to X� The equivalence
��� �� ��� is often called the �shrinkability� of open coverings of normal
spaces� In an opposite sense we have the following �thickening� property for
open coverings of normal spaces�

Theorem ������ Let X be a normal space and let fA�� � � � � Ang be a
�nite family of closed subsets of X� Then there exists a family fU�� � � � � Ung
of open sets of X such that Ai � Ui
 for all � 	 i 	 n
 and for every
fi�� � � � � ikg � f�� �� � � � � ng
 we have�

Ai� � � � � �Aik � � if and only if Ui� � � � � � Uik � � �

One of the standard ways to construct new topological spaces from given
ones is the operation of the Cartesian product of topological spaces� Let
fX�g��A be a family of nonempty topological spaces� In the Cartesian
product

Q
��A

X� of the sets X� we dene the Cartesian product topology �or

Tihonov topology� by dening for every nite f��� � � � � �ng � A and for every
open U�i in X�i � � 	 i 	 n�

O�f��� � � � � �ng� U�� � � � � � U�n� �
Y
��A

Y�
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� Preliminaries

where

Y� �

�
X�� � �� f��� � � � � �ng
U�i � � � �i

The family O of all O�f��� � � � � �ng�U�� � � � � � U�n� over all n � IN� where
f��� � � � � �ng � A and open U�i � Xi� by denition constitutes the basis of
the Cartesian product topology� This means that we say that O is open inQ
��AX� if and only if O �

S
���O� � for some O� � O� � � �� One can

check that this really denes a topology in
Q
��AX��

One of the most important examples of topological spaces are metric
spaces� A metric space is a pair �M���� where M is a set and � is a function
from M 
M � ����� such that�
�i� ��x� y� � � if and only if x � y�
�ii� ��x� y� � ��y� x�� for all x� y �M � and
�iii� ��x� y�  ��y� z� � ��x� z�� for all x� y� z �M �

Any function � with properties �i���iii� is called a metric on M and the
property �iii� is called the triangle inequality for the metric �� To each metric
� there corresponds a family of all open balls �disks��

D�x� �� � fy �M j ��x� y� � �g� where x �M and � 	 � �

The family ID of all open balls over all x � M and � 	 � by denition
constitutes the basis of a topology T� on M generated by the metric �� This
means that U is open in M if and only if U can be represented as a union
of open balls� If M is a topological space with topology T and � is a metric
on M � then we say that the metric � is compatible with T if T � T�� A
topological space X is said to be metrizable if there exists a metric � on X
compatible with the given topology on X� A sequence �xn�

�
n�� of elements

of a metric space �M��� is said to be a Cauchy sequence �with respect to ��
if for every � 	 �� there exists an index N � IN such that for all n 	 N and
k 	 N � we have that

��xn� xk� � � �

A sequence �xn�
�
n�� of elements of a metric space �M��� is said to be

convergent if there exists x� � M such that lim
n��

��xn� x�� � �� A metric

space �M��� is said to be complete if every Cauchy sequence is convergent
with respect to �� Metric spaces �M��� and �M �� ��� are said to be isometric
if there exists a bijection f �M �M � such that

���f�x�� f�y�� � ��x� y�� for all pairs of points x� y �M �

Such a bijection is called an isometry between �M��� and �M �� ���� Clearly�
if f is an isometry� then f�� � M � � M is also an isometry� If f � M � M �

is only an injection and equality ���f�x�� f�y�� � ��x� y� holds for every pair
of points x� y � M � then f is called an isometric embedding of �M��� into
�M �� ����
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Topological spaces �

Theorem ������
��� For every metric space �M��� there exists an isometric embedding i �

M �M � of M into a complete metric space �M �� ��� such that Cl i�M� �
� M �� Moreover
 if �M ��� ���� is another complete metric space with the
same property then M � is isometric to M ���

��� For every complete metric space �M��� and for every decreasing sequence
A� � A� � � � � of closed subsets with diamAn � supf��x� y� j x� y � Ang
converging to zero
 the intersection

T�
n��An is a singleton�

��� If �M��� is a complete metric space and M �
S�
n��An
 where each subset

An is closed
 then at least one An has a nonempty interior�
��� If �M��� is a complete metric space and if for some � 	 
 � �
 the

inequality
��f�x�� f�y�� 	 
��x� y�� x� y �M

holds for a mapping f � M � M 
 then there exists a unique point x� �
M such that f�x�� � x��

Assertion ��� of Theorem �������� is due to Hausdor�� ��� is the Cantor
theorem� ��� is the Baire category theorem� and ��� is the Banach contraction
principle�

Theorem ���	�� Let n � IN and let IRn be the Cartesian product of n
copies of the real line� Then for every subset A � IRn
 the following assertions
are equivalent�
��� A is closed and bounded�
��� If �xn�

�
n�� is a sequence of elements of A
 then there exist a point x� � A

and a subsequence �xnk�
�
k�� such that lim

k��
xnk � x�� and

��� If fU�g��� is an open covering of A
 i�e� U� are open for every � � � and
A � S

��� U� 
 then there exists a �nite subset of indices f��� � � � � �kg � �
such that A � Sk

i�� U�i �

Theorem ���
�� Let �M��� be a metric space� Then for every subset
A �M 
 the following assertions are equivalent�
��� If �xn�

�
n�� is a sequence of elements of A
 then there exist a point x� � A

and a subsequence �xnk�
�
k�� such that lim

k��
xnk � x��

��� If fU�g��� is an open covering of A
 i�e� U� are open for every � � �
 and
A � S

��� U� 
 then there exists a �nite subset of indices f��� � � � � �kg � �
such that A � Sk

i�� U�i � and
��� If fF�g��� is a family of closed subsets of M such that for every �nite

subset of indices f��� � � � � �kg � �
 the intersection
Tk
i�� F�i is nonempty


then the intersection
T
��� F� is also nonempty�

Theorem ������ Let X be a topological space� Then for every subset
A � X
 the following conditions are equivalent�
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�� Preliminaries

��� If fU�g��� is an open covering of A
 i�e� U� are open for every � � �
 and
A � S

��� U� 
 then there exists a �nite subset of indices f��� � � � � �kg � �
such that A � Sk

i�� U�i � and
��� If fF�g��� is a family of closed subsets of M such that for every �nite

subset of indices f��� � � � � �kg � � the intersection
Tk
i�� F�i is nonempty


then the intersection
T
��� F� is also nonempty�

Theorems ����������� in fact deal with the notion of a compact topological
space� A topological spaceK is said to be compact if every family of open sets
fU�g��� with S��� U� � K� contains a nite subfamily U�� � � � � � U�k such

that
Sk
i�� U�i � K� So� Theorems ����������� give criteria for compactness of

subsets of nite�dimensional Euclidean spaces� metric spaces� and topological
spaces� respectively�

Theorem ������ Every Cartesian product of nonempty compact spaces
is a compact space�

As a corollary� the Cartesian power ��� ��� is a compact space�

Theorem ����� Every completely regular space is homeomorphic to a
subspace of some Cartesian power ��� ��� �

Theorems ����� and ���	� are well�known Tihonov�s theorems� Clearly�
every compact space is normal and hence is completely regular� Also� every
subspace of a completely regular space is completely regular� Hence Theorem
���	� is in fact a characterization of completely regular spaces as homeo�
morphic images of subsets of the cubes ��� ��� � I� �

One of the most important technical instruments in general topology is
the notion of a covering� A family U � fU�g��� of nonempty subsets U� of a
set X is said to be a covering of X if X �

S
��� U� � A covering V � fV�g��A

of a set X is called a re�nement of a covering U � fU�g��� of X if for every
� � A� there exists � � � such that V� � U� � A covering U � fU�g��� of a
topological space X is said to be locally �nite if for every x � X� there exists
a neighborhood V �x� of x which intersects only a nite number of elements
of U � i�e� the set f� � � j V �x� � U� � �g is nite�

Below� for a topological space X� the term �covering� as a rule means
open covering� i�e� a covering by a family of open subsets of X� We can
reformulate the denition of compactness as follows� A topological space X
is compact if every open covering of X has a nite subcovering�

We end this section by an equivalence of certain useful facts from set
theory� A partial ordering on a set X is a binary relation 	 such that�
�i� x 	 y and y 	 z implies x 	 z �transitivity��
�ii� x 	 x� for every x � X �re!exivity�� and
�iii� x 	 y and y 	 x implies x � y �antisymmetry��

A pair �X�	� is called a partially ordered set whenever 	 is a partial
ordering on X� A subset Y of a partially ordered set �X�	� is said to be
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Topological vector spaces ��

linearly ordered if for every pair of points y� y� � Y � either y 	 y� or y� 	 y
holds�

Theorem ������� The following statements are equivalent�
��� If �X�	� is a nonempty partially ordered set and if everyone of its linearly

ordered subset Y has an upper bound a �i�e� y 	 a
 for all y � Y �
 then
X has a maximal element m �i�e� m 	 x implies x � m
 for every
x � X��

��� Every nonempty partially ordered set has a linearly ordered subset which
is maximal with respect to the property of being linearly ordered�

��� For every nonempty set X
 there exists a mapping f which associates to
each nonempty subset Y of X an element of Y 
 i�e� f�Y � � Y � and

��� For every indexed family fX�g��A of nonempty pairwise disjoint sets
X� there exists a subset Y of the union X �

S
��AX� such that the

intersection Y �X� is a singleton
 for each � � A�

Statement ��� is the Zorn lemma� ��� is the Hausdor� maximality prin�
ciple� whereas ��� and ��� are versions of the Axiom of choice�

�� Topological vector spaces

A vector �or� linear� space over the eld IR of real scalars is a set E
equipped with two operations � addition of elements of E and multiplication
of scalars and elements of E� Elements of E are called vectors and the
addition and multiplication operations have the following properties�
��� E is an abelian group for addition� the neutral element is denoted by O

and called the origin of E�
��� � � x � x� for every x � E�
��� 
 � �� � x� � �
�� � x� for every x � E and 
� � � IR�
��� 
 � �x y� � 
 � x 
 � y� for every x� y � E and 
 � IR� and
��� �
 �� � x � 
 � x � � x� for every x � E and 
� � � IR�
Usually� � is omitted�

A vector x � E is said to depend linearly on vectors x�� x�� � � � � xn � E
if x � 
�x� 
�x� � � �  
nxn� for some scalars 
�� 
�� � � � � 
n � IR� A nite
subset fx�� x�� � � � � xng � E is said to be linearly independent if the equality

�x�  
�x�  � � �  
nxn � � holds only when 
� � 
� � � � � � 
n � ��
Equivalently� fx�� x�� � � � � xng is a linearly independent set if no xi linearly
depends on fx�� x�� � � � � xngnfxig� A subset S � E is said to be linearly
independent if every nite subset of S is linearly independent�

Consider the family S of all linearly independent subsets S of a given
vector space E� The inclusion of subsets of E induces a partial ordering
on S� Clearly� every chain in this ordering has an upper bound� namely� the
union of all elements of the chain� So� by the Zorn lemma we can nd a
maximal element S� in S� Such a maximal linear independent subset of E is
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called an algebraic basis or a Hamel basis of E� Every x � E admits a unique
representation x � 
�x�  
�x�  � � �  
nxn� for some n � IN� some scalars

�� 
�� � � � � 
n and some elements x�� x�� � � � � xn of the Hamel basis S�� For
every subset S � E� we denote by span�S�� the set fPn

i�� 
ixi j n � IN� xi �
S� 
i � IRg of all linear combinations of elements of S� Thus for every Hamel
basis S� of E we have that E � span�S��� The cardinality of a Hamel basis is
called the �linear� dimension of the vector space E and is denoted by dimE�
This notion is well�dened because every two Hamel bases of a given vector
space E have the same cardinality� If dimE � �� then E is called a �nite
dimensional vector space� If dimE� � dimE�� then there exists a linear
isomorphism between E� and E�� i�e� a bijection h of E� onto E�� such that
h�
x �y� � 
h�x�  �h�y�� for all scalars 
� � and for all vectors x� y � E�
Such an isomorphism h is induced by a bijection h� between Hamel bases of
E� and E�� We can simply set

h�
nX
i��


ixi� �
nX
i��


ih��xi�

i�e� h is a linear extension of h��

A subset L of a vector space E is called a subspace of E if 
x �y � L�
for all scalars 
� � and for all vectors x� y � L� For every subspace L of a
vector space E� there exists a subspace M � E� called the complement of L�
This means that L �M � fOg and that E � L  M � fx  y j x � L� y �
Mg� In this case we say that E is decomposed into a direct sum L �M �
The codimension of a subspace L of a vector space E is dened to be the
dimension of its complement�

To every vector space E and to every one of its subspaces L one can
associate a new vector space� namely� the quotient space E�L� Elements of
E�L are cosets �x� � x  L � fx  y j y � Lg and the vector operations in
E�L are dened by

�x�  �x�� � �x x��� 
�x� � �
x� �

If we have a family fE�g��A of vector spaces E� then the Cartesian
product E �

Q
��AE� is a vector space for pointwise addition and multipli�

cation by scalars�

fx�g fy�g � fx�  y�g and 
fx�g � f
x�g �

Typical examples of vector spaces are the eld IR with the usual addition and
multiplication of real numbers�

IRn � IR
 IR
 � � �
 IR� �z �
n times

��
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and the Cartesian power IRA of A copies of IR� Every vector space E is
isomorphic to a subspace of some IRA � To see this� it su�ces to nd a Hamel
basis S� � fx�g��A of E� identify x� by the mapping e� � A� IR� where

e���� �

�
�� � � �

�� � � �

and put h�x� �
Pn

i�� 
ie�i � IRA� for every x �
Pn

i�� 
ix�i � E� Clearly�
h � E � IRA is then a linear bijection�

As a rule� innite�dimensional vector spaces have no simple description
of their Hamel bases� For example� one can consider the vector space C�X� of
all continuous functions on a topological space X� or the space C��IR� of all
functions f from IR into IR with a continuous rst derivative f �� etc� On the
other hand� the space of all polynomials P �IR� is an example of an innite�
�dimensional vector space with the obvious countable Hamel basis feng�n���
where en�t� � tn� t � IR�

One can associate to every vector space E a so�called conjugate space
E� � fh � E � IR j h��x  �y� � �h�x�  �h�y�g� with the usual pointwise
operations �h�  h���x� � h��x�  h��x� and �
h��x� � 
h�x�� Elements of
E� are called linear functionals on E� Linear functionals always exist� In
fact� if fx�g��A is a Hamel basis for E and �� � A� then one can associate
to every x � E� the coe�cient 
� � IR from the representation x � 
�x��  
 
P

����� 
�x�� In this way one can dene a linear functional h� � E�� h� �
E � IR�

If x and y are elements of a vector space E then the segment �x� y� with
ends x� y is dened as

�x� y� � f�� � t�x ty j � 	 t 	 �g �
A subset P of E is said to be convex if for every x � P and y � P it follows
that �x� y� � P � Clearly� the intersection of convex sets is also convex� Every
subspace L of a convex space E is a convex subset� Many examples of convex
subsets can be obtained by observing that for every linear functional h �
E � IR and for every c � IR� the sets h����c����� h������� c�� are convex
subsets of E� For every subset S of E� there exists the unique minimal convex
subset P of E which contains S� Namely� P is the intersection of all convex
subsets which contain S� Such intersection is called the convex hull of S and
is denoted by conv S� The convex hull of S can also be written as follows�

conv S � f
nX
i��


ixi j n � IN� xi � S� 
i 	 ��
nX
i��


i � �g �

The standard n�dimensional simplex is the convex hull of the points
��� �� � � � � ��� ��� �� �� � � � � ��� � � � � ��� �� � � � � �� �� � IRn��� A convex sub�
set P � E of a vector space E is called a convex body if there exists a point

��
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x � P such that for every y � E� there exists � � ��y� 	 � such that x ty �
P � for all jtj � �� For example� a triangle in the plane IR� is a convex body�
but it is only a convex subset �not a convex body� of the three�dimensional
space IR��

A very important example of a convex hull is the n�dimensional simplex�
i�e� the convex hull of a linearly independent set fx�� x�� � � � � xng� consisting
of n � points in a linear space of dimension � n�

A subset S � E is said to be absorbing if ftx j t � �� x � Sg � E�

De�nition ������� Let P be a convex absorbing subset of a vector space
E� Then the function �P � E � ������ dened by

�P �x� � infft 	 � j x � tPg

is called a gauge functional �or Minkowski functional� of the set P �

Theorem ������� If P is a convex absorbing set then its gauge func�
tional �P is a sublinear functional
 i�e�

�P �x y� 	 �P �x�  �P �y� and �P �
x� � 
�P �x�� for every 
 � � �

Conversely� we have�

Theorem ������� If p � E � ����� is a sublinear functional
 i�e�
p�x y� 	 p�x�  p�y� and p�
x� � 
p�x�
 for 
 � �
 then the set P �
� fx � E j p�x� � �g is a convex absorbing subset of E�

A pseudonorm on a vector space E is a sublinear functional p � E �
����� with the property p�
x� � j
jp�x�� for every x � E and every scalar

� Pseudonorms on E are exactly the gauge functionals of convex absorbing
and symmetric �with respect to the origin� subsets of E� A norm on a vector
space E is a pseudonorm p � E � ����� which is equal to zero only at the
origin of E� Note that if p is a norm then ��x� y� � p�x� y� is a metric�

There exists a relation between a norm� a pseudonorm and a quotient
space� If p � E � ����� is a pseudonorm on E then L � fx j p�x� � �g is
the subspace of E and on the quotient space E�L one can dene �p� � E�L�
����� by setting

�p���x�� � inffp�x l� j l � Lg �
Clearly� �p� is a norm on E�L� The following is one of the principal theorems
on extension of linear functionals from a subspace to the whole space�

Theorem ������ �Hahn�Banach�� Let L be a subspace of a vector space
E
 p � E � ����� a sublinear functional and h � L � IR a linear functional

with jh�x�j 	 p�x�
 for all x � L� Then there exists a linear functional �h �

E � IR such that �hjL � h and j�h�x�j 	 p�x�
 for all x � E�

��
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De�nition ����	�� A topological vector space is a pair �E�T �� where E
is a vector space and T is a topology in E such that each singleton is a closed
set and the vector operations �x� y� �� x  y� �
� x� �� 
x are continuous
mappings� with respect to topology T �

In Denition ������ we assumed that E 
 E and IR 
 E are equipped
with the Cartesian product topologies� Every topological vector space is a
Hausdor� topological space� A mapping h � E� � E� between topological
vector spaces is called an isomorphism if it is both a homeomorphism and a
linear isomorphism�

If dimE� � dimE� � � then E� and E� are isomorphic� Every locally
compact topological vector space is a nite�dimensional space� If B� is a local
basis of a topological vector space E at the origin then the family fx  V j
x � E� V � B�g constitutes a basis of the topology T of E� A topological
vector space E is called locally convex if there exists a local basis B� at the
origin consisting of convex subsets of E� A subset S of a topological vector
space is said to be bounded if for every open neighborhood V of the origin�
there exists 
 	 � such that S � 
V �

Theorem ����
� �a� Let V be a convex absorbing subset of a topological
vector space E symmetric with respect to the origin� Then the gauge func�
tional �V � E � ����� is a pseudonorm on E�
�b� Let B� be a local basis consisting of convex absorbing subsets of a topolog�
ical vector space E symmetric with respect to the origin� Then f�V j V � B�g
is a family of continuous pseudonorms on E which separate points of E
 i�e�
for every x � y � E
 there exists V � B� with �V �x� � �V �y��

Conversely� we have�

Theorem ������� Let P be a family of continuous pseudonorms on a
vector space E which separate points of E and let for every p�� � � � � pn � P
and for every � 	 �


V �p�� � � � � pm� �� � fx j p��x� � �� � � � � pn�x� � �g �

Then the sets V �p�� � � � � pn� �� are convex absorbing and symmetric
 with
respect to the origin
 and B� � fV �p�� � � � � pn� �� j n � IN� pi � P� � 	 �g is a
local basis of topology T on E such that �E�T � is a locally convex topological
vector space with every p � P continuous and with S � E bounded if and
only if p�S� is a bounded subset of IR
 for all p � P�

If we start by a locally convex topological vector space E and nd a family
f�V j V � B�g of continuous pseudonorms� then we can apply Theorem
������ and dene a topology on E� Such a topology in fact� coincides with
the original topology on E�

The theorem above provides a well�known way to dene a locally convex
topological vector space� For example� let X be a �compact topological
space� i�e� X �

S�
n��Kn� where Kn are compact subsets of X� We may

��
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assume that K� � K� � K� � � � �� In the vector space C�X� of all continu�
ous functions on X we consider the sequence �pn�

�
n�� of pseudonorms

pn�f� � maxfjf�x�j
��� x � Kng� f � C�X� �

Clearly� �pn�
�
n�� separates elements of C�X�� Thus fpng induces a locally

convex topology on C�X�� due to Theorem ������� Another example is given
by the vector space C����� ��� of innitely di�erentiable functions on the
interval ��� ��� The standard locally convex topology on C����� ��� is induced
by the sequence �pk�

�
k�� of pseudonorms

pk�f� � maxfjf �k	�t�j j t � ��� ��g �

In the class of all locally convex topological vector spaces the Hahn�Ba�
nach theorem ������ admits an interpretation as a theorem on separation of
convex subsets� We summarize some consequences in the following theorem�

Theorem ������� Let E be a locally convex topological vector space and
let P and Q be convex disjoint subsets of E� Then�
��� If P is a compact subset and Q is a closed subset then there exists a con�

tinuous linear functional h � E � IR such that

supfh�x� j x � Pg � inffh�x� j x � Qg�

��� If P � fxg and Q � fyg with x � y
 then there exists a continuous linear
functional h � E � IR such that h�x� � h�y��

��� If P � fxg and Q is a subspace of E with x �� ClQ then there exists a
continuous linear functional h � E � IR such that f�x� � � and hjQ � ��
and

��� If P is a subspace of E and h � P � IR is a continuous linear functional

then there exists a continuous linear functional �h � E � IR such that
�hjP � h�

We say that � is an invariant metric on a topological vector space E
if � is compatible with the topology of E and if ��x� y� � ��x � y� ��� for
all x� y � E� In this case we say that the pair �E� �� is a metric vector
space� If� in addition� � is a complete metric on E then the pair �E� �� is
called a complete metric vector space� We say that E is an F �space if it
admits a complete invariant metric� compatible with the given topology of
the topological vector space E� Finally� if E is a locally convex topological
vector space and it admits a complete invariant metric � compatible with the
given topology then E is called a Fr�echet space�

Theorem ����� �Birkho��Kakutani�� A topological vector space E
admits an invariant metric compatible with the given topology on E
 if and
only if E has a countable local basis at the origin O � E�

��
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Theorem ������ �Kolmogorov�� A topological vector space E admits
a norm
 compatible with the topology on E if and only if E has a convex
bounded neighborhood of the origin O � E�

There are three fundamental principles of abstract functional analysis�
The rst one of them is the Hahn�Banach theorem ������� We formulate the
other two principles for the class of F �spaces�

Theorem ������ �Banach�Steinhaus�� Let fhng�n�� be a sequence of
continuous linear mappings hn � E � L from an F �space E into a topological
vector space L� Let the sequence fhng�n�� be pointwisely converging to h �
E � L� Then h is also a continuous linear mapping�

Theorem ������ �Banach open mapping principle�� If h is a continu�
ous linear surjection from an F �space E onto an F �space L
 then h is an
open mapping
 i�e� h�U� is open in L
 whenever U is open in E�

As an application of Theorem ������ we note that to nd an isomorphism
between F �spaces E and L it su�ces to nd a one�to�one continuous linear
surjection h � E � L� Due to Theorem ������� the inverse mapping h�� �
L � E is also continuous� As another application we note that under the
hypothesis of Theorem ������� the F �space L is isomorphic to the quotient
space E�Ker h� where Kerh � fx � E j h�x� � Og�

�� Banach spaces

A topological vector space E is called a normed space if its topology
is generated by some norm� i�e� by some mapping p � E � ����� with
properties�
�i� �p�x� � ��� �x � ���
�ii� p�x y� 	 p�x�  p�y�� and
�iii� p�
x� � j
jp�x��
for all scalars 
 and x� y � E� We denote by k�k � p and kxk the norm p�x�
of an element x � X� A normed space �E� k�k� is called a Banach space if it
is complete under the metric ��x� y� � kx� yk� induced by the norm k�k� A
linear operator h � E � B between Banach spaces �E� k�kE� and �B� k�kB� is
continuous if and only if

khk � supfkh�x�kB
��� kxkE � �g �� �

Clearly� kh�x�kB 	 khkkxkE and kh�x� � h�y�kB 	 khkkx � ykE because of
the linearity of h� The space L�E�B� of all continuous linear operators from
E into B is a Banach space for the above norm� A continuous linear operator
p � B � B is called a projection �or� projector� if P � � P � In this case there
exists an isomorphism between B and the direct sum KerP � ImP � A closed

��
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subspace L of a Banach space B is said to be complementable if L � ImP
for some projection P � B � B�

For Banach spaces E and B the Banach�Steinhaus uniform boundedness
principle can be stated as follows�

Theorem ������ Let E and B be Banach spaces and let hn � L�E�B�

have the property that supfkhn�x�k
��� n � INg � �
 for every x � X� Then

supfkhnk
��� n � INg ���

As for the Banach open mapping principle� we have the following�

Theorem �������
��� If h � L�E�B� is a continuous linear surjection from a Banach space E

onto a Banach space B then h is open�
��� If under the assumption of ��� h is one�to�one
 then h is an isomorphism

between Banach spaces E and B� Moreover


kh��k�� � kxk 	 kh�x�k 	 khkkxk �
i�e� kh��k � khk���
Every nite�dimensional normed space E is complete� i�e� is a Banach

space� Moreover� if dimE� � dimE� � �� then E� and E� are isomorphic
as Banach spaces� This statement can be reformulated as follows�

Theorem ����	� Every two norms k�k� and k�k� on the space IRn are
equivalent
 i�e� for some C 	 �


C��kxk� 	 kxk� 	 Ckxk� �
for all x � IRn�

Theorem ������ is a corollary of a geometrically obvious fact that every
compact �with respect to the Cartesian product topology in IRn� convex body
V � IRn with O � Int V is an absorbing subset of IRn� If dimE� � dimE� �
� n �� then one can dene a distance between E� and E� by the formula

dist�E�� E�� � inffln�kTk � kT��k�g
where the inmum is taken over all isomorphisms T between E� and E�� This
is the so called Banach�Mazur distance� which is in fact a pseudometric on
the family of all n�dimensional Banach spaces� We say that Banach spaces
E� and E� are isometric if there exists an isomorphism h � E� � E� which
does not change the norms of the vectors� i�e�

kh�x�kE� � kxkE� � for all x � E� �

The Banach�Mazur distance induces a metric on the family of all equiva�
lence classes� under the relation of isometry� With this metric the family of
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all isometry classes constitutes a compactum� called the Banach�Mazur com�
pactum�

Typical examples of norms on IRn are�
�a� kxk� � k�x�� � � � � xn�k� � maxfjxij j � 	 i 	 ng�
�b� jxjp � k�x�� � � � � xn�kp � �Pn

i��jxijp���p� p � �� and
�c� kxkM � k�x�� � � � � xn�kM � infft 	 � j Pn

i��M�jxij�t� 	 �g� where
M � ����� � ����� is an Orlicz function� i�e� a continuous convex
nondecreasing function such that M��� � �� M�t� 	 �� for t 	 � and
M��� � �� in the case M�t� � tp we obtain the norm kxkp above�
p � ��
The space IRn endowed with norms k�k� �k�kp or k�kM � is denoted with

�n� ��np � �
n
M � respectively�� The Banach�Mazur distance between �np and �nr

equals to nj
�
p
� �
r
j� Innite�dimensional versions of these Banach spaces are

the following spaces�
�a�� �� � fx � �xn�

�
n�� j supfjxnj j n � INg � �g� with the norm kxk �

� supfjxnj j n � INg�
�b�� �p � f�xn��n�� j kxkp � �

P�
n��jxnjp���p ��g� p � �� and

�c�� �M � fx � �xn�
�
n�� j

P�
n��M�jxnj�t� � � for some t 	 �g� with the

norm kxkM � infft 	 � jP�
n��M�jxnj�t� 	 �g�

Spaces �p are separable� whereas spaces �M are separable if and only if

lim
t��

M��t��M�t� � �� The space �� is nonseparable because the character�

istic functions of subsets of IN constitute an uncountable subset of ��� with
pairwise distances equal to �� So� the separable analogue of �� is provided
by its closed subspace c� � fx � �xn��n�� j xn � �� n � �g with the norm
kxk� � maxfjxnjg� The spaces c� and �p� p 	 �� are pairwise nonisomorphic�
Moreover� every continuous linear operator h � �p � �r with � 	 r � p ��
is a compact linear operator� i�e� the closure of the image of the unit ball of
�p under h is a compact subset of �r� The same is true for operators from c�
into �p� p � ��

The space �� is couniversal for the class of all separable Banach spaces in
the sense that every separable Banach space B is the image of �� under some
continuous linear surjection h � �� � B� Due to the Banach open mapping
principle this means that B is isomorphic to the quotient space of ��� For the
class of all separable Banach spaces there exists a universal space U � in the
sense that every separable Banach space B is isomorphic to a closed subspace
of U � The best known such universal space is the space C��� �� of all conti�
nuous real�valued functions f on the interval ��� �� with the sup�norm

kfk � maxfjf�t�j j t � ��� ��g �

In general� for every compact space K� the space C�K� of all continuous
real�valued functions on K� endowed with the sup�norm kfk � maxfjf�t�j j
t � Kg� is a Banach space� The space C�K� is separable if and only if K is
a metric compactum� If K is an uncountable compact metric space then the
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Banach spaces C�K� and C��� �� are isomorphic �Milyutin theorem�� For an
arbitrary topological space X� we denote by CB�X� the space of all conti�
nuous bounded real�valued functions on X with the above sup�norm�

Other examples of Banach spaces are provided by the spaces of summable
functions� An analogue of the sequence space �p is given by the space Lp��� ��
of all �equivalence classes� real�valued functions f on ��� �� with

kfkp � �
�Z
�

jf�t�jp dt���p� p � �

In general� let �T�A� �� be a measure space� i�e� a set T with a �algebra
A of its subsets and with a �additive positive measure �� A � ������
Then Lp�T�A� �� � Lp�T � denotes the space of all equivalence classes of
p�integrable ��measurable real�valued functions f � If B is a Banach space�
�T�P� �� is a measure space and s � T � B is a simple mapping� i�e� a
mapping with a nite set fb�� � � � � bng of values� thenZ

T

s d� �
nX
i��

bi��s
���bi�� � B �

A mapping f � T � B is said to be Bochner integrable if f is the pointwise
limit �a�e�� of simple mappings sn withZ

T

kf�t�� sn�t�kB d�� �� n�� �

In this case� we put
R
T f d� � lim

n��

R
T sn d� � B� So� one can dene Banach

spaces Lp�T�B� of equivalence classes of p�integrable mappings from T into B�
To complete our list of typical examples of Banach spaces we note that

the usual sequence spaces c�� ��� �p can be considered as partial cases �A �
� IN� of the following Banach spaces� ���A�� �p�A�� c��A�� where A is a set�
�i� ���A� � fx � A� IR j x is bounded and kxk� � supfjx���j j � � Agg�
�ii� �p�A� � fx � A � IR j f� � A j x��� � �g is at most countable and

kxkp � �P�jx���jp���p ��g� p � �� and
�iii� c��A� � fx � A � IR j x � ���A� and for every � 	 �� the set f� � A j

jx���j � �g is niteg�
Every Banach space B is isomorphic to the quotient space of the space

���A� for some A �Schauder theorem�� More precisely� every Banach space B
is the image of some space ���A� under some continuous linear operator� The
spaces ���A� will be of a special interest to us� We state here the following
property� If � � A and e� � ���A� is dened as e���� � � and e���� �
� �� � � �� then every x � ���A� can be uniquely represented as the sum
of the series

P
i aie�i � for some at most countable set f�ig of indices and for

�	
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some real numbers ai with
P

ijaij ��� Moreover� if � � A then the closed
convex hull Cl�convfe�g���� of the set fe�g��� coincides with the set of all
x � ���A� which are sums of series

P
i aie�i � for some at most countable setf�ig of indices �i � � and for some real numbers ai � � with

P
i ai � �� We

say that Cl�convfe�g���� is the standard basic simplex in the Banach space
������ As a comparison� note that in the space �� � ���IN�� the origin O is an
element of Cl�convfeig�� because in this case the norm k�e� e� � � � en��nk
equals to ��

p
n and converges to zero� when n���

The Cartesian product of a nite number of Banach spaces is also a Ba�
nach space� under a norm dened as in examples �a� or �b� above� However�
the Cartesian product of a countable set of Banach spaces is not a Banach
space � it is only a Fr�echet space�

Theorem ����
�� A topological vector space E is a Fr�echet space if and
only if E is isomorphic to a closed subspace of the Cartesian product of a
countable family of Banach spaces�

De�nition ������� A sequence feng�n�� in a Banach space B is called
a Schauder basis if every x � B has an unique representation as the sum of
the series

P�
n�� anen� an � IR� i�e�

kx�
NX
n��

anenkB � �� N �� �

Let feng�n�� be a sequence of elements of a Banach space B and let the
closure of the spanfen j n � INg coincide with B� Then feng is a Schauder
basis of B if and only if for some C � �

k
nX
i��

aieik 	 Ck
n�mX
i��

aieik

for all n�m � IN and scalars ai� The inmum of all such constants C � � is
called the basis constant for feng�n���

Theorem �������
��� �Banach� Every in�nite�dimensional Banach space B has a closed sub�

space E with a Schauder basis�
��� �Johnson and Rosenthal� �	��� Every separable in�nite�dimensional Ba�

nach space has a quotient space with a Schauder basis�
��� �En!o� �	��� There exists a separable Banach space without a Schauder

basis�
Let B be a Banach space� Then the space B� of all continuous linear

functionals � � B � IR endowed with the norm k�k � supfj��x�j j kxkB � �g
is a Banach space� too� It is called the �rst� conjugate space of the space B�
There exists the canonical embedding of a Banach space B into its second

��
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conjugate space B�� � �B���� For every x � B and for every � � B�� one can
dene

���x����� � ��x� � IR �
It is easy to check that � � B � B�� is a linear isometry from B into B���
A Banach space is said to be re�exive if � is surjection� All nite�dimen�
sional Banach spaces are re!exive� The spaces �p� Lp for � � p � � and

�M for M with the condition lim
t��

M��t���M�t� � � are re!exive� All other

examples above are nonre!exive Banach spaces with innite codimension of
B�����B�� But there exist so�called quasi�re�exive Banach spaces for which
B�� is isomorphic to the direct sum of ��B� with a nite�dimensional space�
The rst example of such a space was constructed by James in �	��� The
James space J is the space of all sequences x � �x�n���n�� of real numbers�
converging to zero with nite ��variation� i�e�

kxk� � supf
mX
i��

�x�ni���� x�ni��
� j m � IN� n� � n� � � � � � nmg �� �

We have that J�� is isomorphic to ��J�� IR�
We conclude by listing some standard facts about Hilbert spaces�

De�nition ������ A Hilbert space H is a Banach space whose norm
k�k is generated by a scalar product� i�e� by a mapping h � i � H 
 H � IR
such that�
�i� hx� yi � hy� xi for all x� y � H�
�ii� h�� yi is a linear mapping on H for each y � H�
�iii� hx� xi 	 � if x � �� and
�iv� kxk� � hx� xi for all x � H�

Examples of Hilbert spaces are the space ���A� with hx� yi � P
��A

x���y���

and the space L��T�A� �� with hf� gi �
R
T f�t� g�t� d��

Theorem ������� Every separable Hilbert space is isometric to the space
��� Every Hilbert space is isometric to the space ���A�
 for some set A�

An exact expression for an isometry between �� and L����� �� is given
by the Riesz�Fischer theorem� the family of functions f�� cos x� cos �x� � � � �
sinx� sin �x� � � �g constitutes an orthogonal Schauder basis for L����� ��� For
a Hilbert space H there exists a canonical identication bijection between H
and its conjugate H�� If x � H then the formula

�x�y� � hx� yi
denes an element �x � H� and the correspondence x � �x is an isometry
between H and H��

One of the typical questions in the theory of Banach spaces is the problem
of characterizing Hilbert spaces among Banach spaces�
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Theorem ������ Let B be an in�nite�dimensional Banach space� Then�
��� B is isometric to a Hilbert space if and only if

kx yk�  kx� yk� � ��kxk�  kyk��
for all x� y � B�

��� B is isometric to a Hilbert space if and only if for every closed subspace
E � B
 there exists a projection P of B into E with kPk � ��

��� B is isometric to a Hilbert space if and only if for every � 	 n ��
 all
n�dimensional subspaces of B are pairwise isometric�

��� B is isomorphic to a Hilbert space if and only if B and its conjugate B�

are isomorphic to a quotient space of a space C�K�
 for some compact
K� and

��� B is isomorphic to a Hilbert space if and only if for every closed subspace
E � B
 there exists a projection P of B onto E�

Here ��� is a result of Jordan and von Neumann ��	���� ��� is due to
Kakutani ��	�	�� ��� is the Dvoretzky theorem ��	�	�� ��� is a result of
Grothendieck ��	�
� and ��� is the Lindenstrauss�Tzafriri theorem ��	���
�for references see the survey ��	
���

�� Extensions of continuous functions

We begin by the following question� Let X be a topological space� What
can one say about the space C�X� of all continuous real�valued functions f �
X � IR" Clearly� every constant mapping f � c � IR is continuous� There
exists a regular space X for which this �minimal� answer is maximal� i�e�
every continuous f � X � IR is constant� The situation is not so degenerate
if we pass to the class of all completely regular and moreover� to the class of
all normal spaces�

So� we say that a mapping �f � X � Y from a set X into a set Y is
an extension of a mapping f � A � Y from a subset A � Y into Y if the
restriction �f jA coincides with f � In this terminology we can reformulate the
notion of a completely regular space as follows� A T��topological space X
is said to be completely regular if for every closed subset A � X and for
every point x �� A� the continuous function f � A � fxg � IR� dened by

f jA � � and f�x� � �� admits a continuous extension �f � X � IR over
X� Analogously� the Urysohn lemma states that for every normal space X
and for every two of its disjoint closed subsets A and B� the continuous
function f � A � B � IR� dened by f jA � � and f jB � �� admits a conti�
nuous extension �f � X � IR over X� Clearly� Urysohn lemma is equivalent
to the normality of X because one can nd disjoint open neighborhoods
�f������ ���� and �f������� �� of the closed disjoint sets A and B� The
Tietze�Urysohn theorem states that such partial result on extensions of con�
tinuous functions in fact� implies existence of continuous extensions in a
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maximal situtation� Namely� for any normal space X� any closed subset
A � X and any continuous function f � A � IR� there exists a continuous
extension �f � X � IR of f over the whole space X� In addition� we can
assume that sup �f � sup f and inf �f � inf f � Moreover� the following holds�

Theorem ������ �Dugundji�Hanner�Urysohn�� The following properties
of a topological space X are equivalent�
��� X is normal� and
��� For every separable Banach space B
 every closed subset A � X and

every continuous mapping f � A� B
 there exists a continuous extension
�f � X � B
 of f over X�

De�nition ������� Let C be a class of topological spaces� A topological
space Y is said to be an absolute extensor for the class C� Y � AE�C�� if
whenever X � C� A is a closed subset of X� and f � A � Y is a continuous
mapping� there exists a continuous extension �f � X � Y of f over X�

X �
�
�
E

�f
� Y
A ��

��

f

In the case when C is the class of all metrizable spaces� Y is simply called an
absolute extensor� Y � AE �

De�nition ������� Under the hypotheses of Deniton ������� Y is said
to be an absolute neighborhood extensor for C if there exists a continuous
extension �f � U � Y of f over some open set U � A�

U �
�
�
E

�f
� Y
A ��

��

f

Notation� Y � ANE�C� and Y � ANE if C is the class of all metrizable
spaces�

Theorem ����	� �Borsuk�Dugundji�� Every convex subset of a locally
convex topological vector space is an AE�

The property that a space is an AE or ANE is preserved under certain
operations� For example� the Cartesian product of an arbitrary family of
AE �s is an AE and the Cartesian product of a nite family of ANE �s is an
ANE� The last assertion is false for products of countable family of ANE �s�
Every open subset of ANE is also an ANE� Every contractible ANE is an
AE �

Let us consider in Denitions ������ and ������ only the case when a
mapping f � A� Y is a homeomorphism and C � fall metrizable spacesg�

De�nition ����
�� A metrizable space Y is said to be an absolute
retract �respectively absolute neighborhood retract� if whenever h � A � Y

��
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is a homeomorphism of a closed subset A of a metrizable space X onto Y �
there exists a continuous extension �h � X � Y �respectively� �h � U � Y for
some open U � A� of h� Notation� Y � AR �respectively� Y � ANR��

Note that the mapping r � h�� � �h � X � A is a continuous mapping
fromX onto its subset A with the property that rjA � id jA� that is� r�r � r�
Recall that such a mapping is called a retraction of X onto A�

X ����E

�h

r � h�� � �h r � � Y

A ��
��
�

h

A more standard denition of an absolute retract Y is that a metrizable
space Y is said to be an AR provided that the homeomorphic image of Y as
a closed subset A of any metrizable space X is necessarily a retract of X�

Clearly� every metrizable AE �resp� ANE � is AR �resp� ANR�� The
converse implication is also true�

Theorem ������� Every AR �respectively
 ANR� is a metrizable AE
�respectively ANE��

Thus� the Cartesian product of a countable family of AR�s �of a nite
family of ANR�s� is an AR �respectively� ANR�� Also� a convex subset of a
locally convex metric space is an AR and an open subset of ANR is also
an ANR� A retract of an AR �resp� ANR� is an AR �resp� ANR� and a
contractible ANR is an AR�

A homotopy between continuous mappings g� � X � Y and g� � X � Y
is an extension of the mapping g � X 
 f�� �g � Y dened by g�x� �� �
� g��x� and g�x� �� � g��x� over the space X 
 ��� ��� Mapping g� is said
to be homotopic to the mapping g� if there exists a homotopy between g�
and g�� The homotopy relation is an equivalence relation on the set of all
continuous mappings from X into Y � We denote by ��X�x��� �Y� y��� the set
of all equivalence classes of mappings g with the property g�x�� � y� under
the homotopy relation� The set ��Sn� ��� �X�x���� where Sn is the n�dimen�
sional sphere with a xed point �� is denoted by �n�X�x��� n � �� �� �� � � �
Note that for a path�connected X the set ���X� is a singleton� For n 	 �� the
set �n�X�x�� admits a natural group structure and is called the n�dimen�
sional homotopy group of the space X� For a path�connected X� the groups
�n�X�x�� and �n�X�x

�
�� are isomorphic� for every pair of points x�� x

�
� � X�

Every continuous mapping g � X � Y with the property g�x�� � y��
induces a homomorphism g��n � �n�X�x��� �n�Y� y��� for every n � IN� For
every homotopy class �f � � �n�X�x��� f � S

n � X with f��� � x�� the
class g��n��f �� is dened as the class of the mapping g � f � Sn � Y � with
�g � f���� � y��

A mapping g � X � Y is said to be a weak homotopy equivalence if
for every n � � and every x� � X� the homomorphism g��n � �n�X�x�� �
�n�Y� g�x��� is a bijection�

��
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A mapping g � X � Y is said to be a homotopy equivalence if for some
f � X � Y � the composition f � g is homotopic to id jX and the composition
g � f is homotopic to id jY �

Theorem ������ �Whitehead�� Every weak homotopy equivalence be�
tween ANR�s is a homotopy equivalence�

Theorem ����� �Borsuk�� Let A be a closed subset of a metric space
X and let Y be an ANR� Let h � A 
 ��� �� � Y be a continuous mapping

and suppose that h� � h��� �� � A
 f�g � Y has a continuous extension �h� �

X 
 f�g � Y � Then there exists a continuous extension �h � X 
 ��� �� � Y

of the mapping h such that �hjX�f�g � �h��
Theorem ������ �Hanner�� Let X be a paracompact space such that

each point of X has a neighborhood which is an ANR� Then X is an ANR�

In the class of all metric compacta we have the following�

Theorem ������� Every compact AR is homeomorphic to a retract of
the Hilbert cube Q � ��� ���� Every compact ANR is homeomorphic to a
retract of an open subset of the Hilbert cube Q�

For nite�dimensional metric compacta there exists more detailed infor�
mation about AR�s and ANR�s� Here� we avoid the exact denition of the
Lebesgue dimension and say that a compact metric space X is �nite�dimen�
sional if it is homeomorphic to a subset of some nite�dimensional Euclidean
space IRn� n ���

Theorem ������� For a �nite�dimensional compact metric space X the
following assertions are equivalent�
��� X is an AR �respectively
 ANR��
��� X is homeomorphic to a retract of the standard simplex #n
 n � �

�respectively
 X is homeomorphic to a retract of some compact �nite
dimensional simplicial complex�� and

��� X is contractible and locally contractible �respectively
 X is locally con�
tractible��

In ��� the contractiblity of a topological space X means that the identity
map idX is homotopic to the constant mapping of X into the point x� � X
and the local contractibility means that for every x � X and for every neigh�
borhood U�x�� there exists a neighborhood V �x� � U�x� such that the
inclusion i � V �� U is homotopic �in the set of all continuous mappings
from V into U� to a constant mapping of V into a point�
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�� Multivalued mappings

A correspondence which associates to every point x � X a nonempty
subset F �x� � Y is called a multivalued mapping F � X � Y from the set X
into the set Y � If all sets F �x�� x � X� are singletons then we can regard F as
a usual singlevalued mapping� Throughout this book we shall use the capital
letters F�G�H� � � � for multivalued and small letters f� g� h� � � � for singlevalued
mappings�

If X and Y are topological spaces then a natural question about dening
a proper notion of continuity of a multivalued mapping F � X � Y arises�
Formally� one can apply �word by word� the denition of continuity of
singlevalued mappings regarding F as �continuous� if the preimage of every
open subset of Y is an open subset of X� However� there are di�erent notions
of a preimage under multivalued mappings�

De�nition ������� Let F � X � Y be a multivalued mapping between
topological spaces X and Y � Then�
��� F is said to be lower semicontinuous if for every open U � Y � the set

F���U� � fx � X j F �x� � U � �g

is open in X�
��� F is said to be upper semicontinuous if for every open subset U � Y � the

set
F���U� � fx � X j F �x� � Ug

is open in X� and
��� F is said to be Vietoris continuous� or simply continuous if it is both

lower semicontinuous and upper semicontinuous�

In fact� there are suitable topologies T��T� on the family �Y of all subsets
of X such that a mapping F � X � ��Y �T�� �respectively� F � X � ��Y �T���
is continuous if and only if F is lower semicontinuous �respectively� upper
semicontinuous�� Unfortunately� T� and T� are not Hausdor� topologies
since they are not even T��topologies� Clearly� F is lower semicontinuous
�respectively� upper semicontinuous� if and only if for every closed set A �
Y � the set F���A� �respectively� the set F

���A�� is closed in X�
A selection of a multivalued mapping F � X � Y is a singlevalued

mapping f � X � Y such that f�x� � F �x�� for every x � X� The Axiom
of choice �see Theorem ������� states that for sets X and Y such a mapping
always exists� But we are interested in nding a continuous selection of a
multivalued mapping between topological spaces� As a rule� we try to solve a
selection problem for lower semicontinuous mappings� A simple explanation
of such a restriction is given by the following theorem�

Theorem ������� Let F � X � Y be a multivalued mapping between
topological spaces X and Y and suppose that for every x � X and for every

��



�� Preliminaries

y � F �x�
 there exist a neighborhood V � V �x� and a continuous selection f
of the restriction F jV 
 with f�x� � y� Then F is lower semicontinuous�

Another explanation of the lower semicontinuity restriction is provided
by the observation that for every closed subset A � X and for every continu�
ous singlevalued mapping f � A � Y � the multivalued mapping F � X � Y
dened by

F �x� �

�
Y� x �� A

ff�x�g� x � A

is lower semicontinuous� Note that a selection of such a mapping F is an
extension of f over the whole space X� Hence� every extension problem is a
partial case of a selection problem�

The main goal of the present book is a detailed exposition of the theory of
continuous selections� Therefore we list some elementary properties of lower
semicontinuous mappings in this introductory paragraph� Their proofs also
illustrate the general style of proofs in the present book� Every theorem will
be proved in two steps� Part I �Construction� and Part II �Verication�� The
�Construction� part consists of the steps ���� ���� ���� � � and �a�� �b�� �c�� � � In
���� ���� ���� � � we outline all steps of the construction and in �a�� �b�� �c�� � �
we state the necessary properties of the construction� In the �Verication�
part II we then verify all statements �a�� �b�� �c�� � � claimed in Part I�

Proof of Theorem �������
I� Construction

Let�
��� U be open in Y and F���U� nonempty�
��� x � F���U� and y � F �x� � U � and
��� f � V � Y be a continuous singlevalued selection of F with f�x� � y

where V � V �x� is a neighborhood of x�
We claim that then�

�a� f���U� is an open subset of V and x � f���U��
�b� f���U� � F���U�� and
�c� F���U� is open in X�

II� Veri�cation

�a� Follows by continuity of f and equality f�x� � y� y � U �

�b� If x� � f���U� then f�x�� � U and f�x�� � F �x�� since f is a selection
of F � Hence f�x�� � F �x�� � U � �� i�e� x� � F���U��

�c� It follows from �a� and �b� that every point of F���U� is an interior
point�

Theorem ����	�� If F � X � Y is lower semicontinuous and
�ClF ��x� � Cl�F �x��
 x � X
 then ClF � X � Y is also lower semicontinu�
ous�
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Proof�
I� Construction

Let�
��� U be open in Y and �ClF ����U� nonempty� and
��� x � �ClF ����U� and y � �ClF ��x� � U �

We claim that then�
�a� F �x� � U is nonempty�
�b� F���U� is a nonempty open neighborhood of x�
�c� F���U� � �ClF ����U�� and
�d� �ClF ����U� is open in X�

II� Veri�cation

�a� Observe that y is the limit point of F �x� and U is open neighborhood of
y� Hence there exists y� � F �x� � U �
�b� Follows from �a� and by lower semicontinuity of F �

�c� Follows since a set is always a subset of its own closure�

�d� Follows from �b� and �c� because x is an arbitrary point of �ClF ����U��

Theorem ����
�� If F � X � E is lower semicontinuous and if E is
a locally convex topological vector space then the mapping conv F � X � E
de�ned by

�conv F ��x� � conv F �x�� x � X

is lower semicontinuous�

Proof�
I� Construction

Let�
��� U be open in E and �conv F ����U� nonempty�
��� x � �conv F ����U� and y � �conv F ��x� � U � �conv F �x�� � U �
��� y �

Pn
i�� 
iyi� where yi � F �x�� 
i � �� Pn

i�� 
i � �� and
��� U � y be the algebraic di�erence of sets U and fyg� i�e� U � y � fz � y j

z � Ug and let W be a convex open neighborhood of the origin O � E�
contained in the neighborhood U�y of the origin O of the locally convex
space E�
We claim that then�

�a� The sets F���yi  W � are nonempty open neighborhoods of x� i �
f�� �� � � � � ng�

�b�
Tn
i�� F

���yi  W � � �conv F ����U�� and
�c� �conv F ����U� is an open subset of X�

II� Veri�cation

�a� Follows since yi � F �x� and F is lower semicontinuous�

��
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�b� If x� � Tn
i�� F

���yi  W � then there exists y�i � F �x�� � �yi  W �� for
every i � f�� �� � � � � ng� Therefore� by convexity of W � we obtain for y� �
�
Pn

i�� 
iy
�
i � convF �x�� that

y� � y �
nX
i��


i�y
�
i � y� �W � U � y �

i�e� y� � U and x� � �conv F ����U��
�c� Follows from �a� and �b� because x is an arbitrary point of �conv F ����U��

Theorem ������� If F � X � Y is lower semicontinuous
 W is open
in Y and the intersections F �x� �W are nonempty
 for all x � X
 then the
mapping G � X � Y 
 de�ned by G�x� � F �x��W 
 is lower semicontinuous�

Proof� Follows directly from the obvious equality G���U� � F���W �
U��

x � G���U� �� G�x� � U � � �� F �x� �W � U � � ��
�� x � F���W � U� �

Theorem ������� Let F � X � �Y� �� be a lower semicontinuous
mapping of X into a metric space Y and let f � X � Y be a singlevalued
continuous mapping such that for some � 	 �
 the intersections of F �x� with
the open ��balls D�f�x�� �� are nonempty
 for all x � X� Then the mapping
G � X � Y 
 de�ned by G�x� � F �x� �D�f�x�� ��
 is lower semicontinuous�

Proof�
I� Construction

Let�

��� U be open in Y and G���U� nonempty�

��� x � G���U� and y � G�x� � U � F �x� �D�f�x�� �� � U �
��� �� 	 � be such that the closed ball ClD�y� ��� is contained in the open

set D�f�x�� �� � U � and
��� D�f�x�� �� be a �small� open ball centered at f�x�� more precisely� let

� � � � �� ���  ��f�x�� y���

We claim that then�

�a� If z � D�f�x�� �� then ClD�y� ��� � D�z� ���

�b� f���D�f�x�� ��� � F���D�y� ��� � G���U��

�c� The intersection from �b� is a nonempty open neighborhood of x� and

�d� G���U� is open in X�

�	
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II� Veri�cation

�a� Clearly� for every y� � Y � ��y�� z� 	 ��y�� y�  ��y� f�x��  ��f�x�� z�� So�
if ��y�� y� 	 �� and ��f�x�� z� � � � �� �� � ��f�x�� y� then ��y�� z� � ��

�b� If x� � f���D�f�x�� ��� then the point z � f�x�� lies in the open
ball D�f�x�� �� and �see �a�� D�y� ��� � D�z� ��� If� in addition� x� �
F���D�y� ���� then the set F �x

�� intersects the ball D�y� ��� � U � So there
exists y� � F �x�� �D�y� ��� � F �x�� �D�f�x��� �� � U � i�e� x� � G���U��

�c� Follows by the continuity of f and lower semicontinuity of F at the
point x�

�d� Follows from �b� and �c� because x is an arbitrary point of G���U��

We conclude this section by formulations of the main selection theorems�
For discussion and exact explanation of terms� see x�� x�� x�� and x�� respec�
tively�

Convex�valued selection theorem� Let X be a paracompact space

B a Banach space and F � X � B a lower semicontinuous mapping with
nonempty closed convex values� Then F admits a continuous singlevalued
selection�

See Theorem ����� in Chapter x����
Zero�dimensional selection theorem� Let X be a zero�dimensional

paracompact space
 M a completely metrizable space and F � X �M a lower
semicontinuous mapping with nonempty closed values� Then F admits a con�
tinuous singlevalued selection�

See Theorem ����� in Chapter x����
Compact�valued selection theorem� Let X be a paracompact space


M a completely metrizable space and F � X � M a lower semicontinuous
mapping with nonempty closed values� Then F admits an upper semiconti�
nuous compact�valued selection H � X � M which in turn
 admits a lower
semicontinuous compact�valued selection G � X � M 
 i�e� G�x� � H�x� �
F �x�
 for all x � X�

See Theorem ����� in Chapter x����
Finite�dimensional selection theorem� Global version� Let X be

an �n ���dimensional paracompact space
 Y a completely metrizable space
and F � X � Y a lower semicontinuous mapping with nonempty closed
n�connected values and let the family fF �x�gx�X of values be an equi�locally
n�connected family of subsets of Y � Then F admits a singlevalued continuous
selection�

See Theorem ����� in Chapter x����

��



�� Preliminaries

Finite�dimensional selection theorem� Relative version� Let X
be a paracompact space and A be its closed subset with dimX�XnA� 	 n  
 �� Let Y be a completely metrizable space and F � X � Y a lower semi�
continuous mapping with nonempty closed values� Then every continuous
singlevalued selection g of the restriction F jA can be continuously extended
to a singlevalued selection f of F jU for some open U � A
 whenever the
family fF �x�gx�X is equi�locally n�connected� If
 in addition
 all values F �x�
are n�connected
 then one can take U � X�

See Theorem ������ in Chapter x����

��



x�� CONVEX�VALUED SELECTION THEOREM

This chapter deals more or less with a single theorem � the one stated
in the title� This theorem gives su�cient conditions for the solvability of
the continuous selection problem for a paracompact domain� But in order
to introduce paracompactness from a selection point of view we start by
searching for the necessary condition for the existence of such a solution�
In Section � we prove that the existence of continuous selections of lower
semicontinuous mappings with closed convex values implies the existence of
locally nite renements and locally nite partitions of unity� In Sections
� and � we present two approaches to proving the Convex�valued selection
theorem� In Section � the answer is given as a uniform limit of continuous
�n�selections� whereas in Section �� it is given as a uniform limit of �n�continu�
ous selections� In �auxiliary� Section � we prove the equivalence of denitions
of paracompact spaces via coverings and via partitions of unity� Also� we
collect there the material concerning the properties of paracompact spaces�
nerves of coverings and some facts about dimension theory�

All material of this chapter is classical and well�known� In the proof
of Theorem ����� we follow ����� with a supplement as in �����$� Proof of
Theorem ������ given in Section �� rst appeared in ���������� This approach
was repeated in several textbooks and monographs� On the other hand� the
second proof of Theorem ������ given in Section �� is practically unknown�
We know of only one article ��
�� where such an idea was realized� however�
in a much more abstract situation� So� perhaps this proof of Theorem ����� is
new� We omit all references in Section �� They can be found in any standard
book on general topology� e�g� in ����������

�� Paracompactness of the domain as a necessary condition

Theorem ������ Let X be a topological space such that each lower semi�
continuous map from X into any Banach space with closed convex values
admits a continuous singlevalued selection� Then every open covering of X
admits a locally �nite open re�nement�

Proof�
I� Construction

Let�
��� � � fG�g��A be an open covering of the space X�
��� B � l��A� be the Banach space of all summable functions s � A � IR

over the index set A �see x����� and
��� For every x � X� let

F �x� � fs � B j s � �� ksk � � and s��� � �� whenever x �� G�g �

��



�� Convex�valued selection theorem

We claim that then�
�a� F �x� is a nonempty convex closed subset of the Banach space B� for

every x � X� and
�b� The map F � X � B is lower semicontinuous� i�e� for every x � X� every

s � F �x� and every � 	 �� the preimage F���D�s� ��� contains an open
neighborhood of x�
It follows by the hypotheses of the theorem that there exists a continuous

selection for F � say f � Let�
��� e��x� � �f�x������
��� e�x� � supfe��x� j � � Ag� and
�
� V� � fx � X j e��x� 	 e�x���g�

We claim that then�
�c� e� is a continuous function from X into ��� �� and

P
��A e��x� � �� for

every x � X�
�d� e is a continuous positive function�
�e� If e��x� 	 � then x � G�� for all � � A�
�f� V� � G�� for all � � A�
�g� fV�g is a locally nite family of open subsets of the space X� and
�h� The family fV�g��A� is a cover of the space X�
II� Veri�cation

�a� Let A�x� � f� � A j x � G�g� It is easy to see that F �x� is the standard
basic simplex in the Banach space l��A�x��� see x����
�b� For x � X� s � F �x� and � 	 �� let us rst consider the case when
supp�s� � f� � A j s��� 	 �g � f��� ��� � � � � �Ng is a �nite subset of A�
Then due to the construction of the mapping F � the point s belongs to F �x���
for every x� from the neighborhood G�x� �

T
i�N G�i of the point x� Hence

G�x� � F���fsg� � F���D�s� ���� i�e� F is lower semicontinuous at x� The
second case of countable supp�s� follows from the rst case and from the
obvious fact that in the standard simplex of the space �� the subset of points
with nite supports constitutes a dense subset�

�c� The function e� � X � ��� �� is a composition of the continuous selection
f and the ���th coordinate� projection p� of the entire Banach space l��A��
The equality

P
��A e��x� � � follows by ��� and since f�x� � F �x��

�d� For an arbitrary x � X� we pick an index � � ��x� such that e��x� 	 ��
Then for some nite set of indices ��x� � A we have that

��
X

����x	

e��x� � e��x��� �

On the left side is the sum of a nite number of continuous functions� Hence�
the inequality X

�����x	

e��z� � ��
X

����x	

e��z� � e��z���

��



Paracompactness of the domain as a necessary condition �

holds for every z from some open neighborhood W �x� of the point x� But
then e��z� � e��z�� for all � �� ��x�� So we have proved that the function
e��� is in fact the maximum of a nite number of continuous functions in the
neighborhood W �x�� Therefore e��� is continuous� Finally� positivity of e� � �
follows from �c��

�e� If x �� G� then for every s � F �x�� we have that s��� � �� �see ����� So
by f�x� � F �x�� we get e��x� � �f�x����� � ��

�f� This follows from e��x� 	 e�x��� � e��x���� from �e�� and from e��x� 	
	 � �see the proof of �d���

�g� It follows by �
� and by continuity of functions e� and e that V� is an
open set� As in the proof of �d� we nd for an arbitrary x� some nite set
��x� � A and some neighborhoodW �x� of the point x� Then W �x��V� � �
holds only for � � ��x�� Indeed� if z � V� �W �x� then

e��z� 	 e�z��� � e��z��� 	 ��
X

����x	

e��z� �
X

�����x	

e��z� �

Hence e��z� 	 e��z�� for every � �� ��x�� i�e� � � ��x��
�h� Follows by contradiction� if x �� SV�� � � A� then e��x� 	 e�x��� and
� � e�x� � suppfe��x� j � � Ag 	 e�x����

De�nition ������ A Hausdor� space X is said to be paracompact if
every open covering of X admits a locally nite open renement�

We can now reformulate Theorem ����� in the following manner� Para�
compactness of the domain is a necessary condition for existence of contin�
uous selections of lower semicontinuous mappings into Banach spaces with
convex closed values�

Our rst goal is to prove that paracompactness of the domain is also a
su�cient condition for such an existence �Sect ��� But here we continue by
an analogue of Theorem ����� for existence of locally nite partitions of unity�

De�nition ������

�a� A family fe�g��A of nonnegative continuous functions on a topological
space X is said to be a locally �nite partition of unity if for every x � X�
there exists a neighborhood W �x� and a nite subset A�x� � A such thatP

��A�x	 e��y� � �� for all y � W �x� and e��y� � �� for y �� W �x� and

� � A�x��

�b� A locally nite partition of unity fe�g��A is said to be inscribed into an
open covering fG�g��� of a topological space X if for any � � A� there exists
� � � such that

supp�e�� � Clfx � X j e��x� 	 �g � G� �

It is easy to see that for a locally nite partition of unity fe�g��A
inscribed into a covering fG�g��G� the family of open sets fe��� ���� ���g��A
gives a locally nite renement of the covering fG�g����

��



�� Convex�valued selection theorem

From this point of view� Theorem ����� gives an �almost� locally nite
partition of unity� More precisely� the family fe�g��A constructed in this
theorem� is a continuous partition of unity inscribed into fG�g��A� but in
general� countably many e��x� are positive at a point x � X� In the following
theorem we give an improvement of the construction above�

Theorem ������� Let X be a topological space such that each lower
semicontinuous map from X into any Banach space
 with closed convex
values
 admits a continuous singlevalued selection� Then every open covering
of X admits a locally �nite partition of unity inscribed into this covering�

Proof�
I� Construction

We repeat the steps �����
� from the proof of Theorem ������ In addition�
let�
��� v��x� � maxfe��x�� �����e�x�� �g�
��� v�x� �

P
��A v��x�� and

�	� u��x� � v��x��v�x��
We claim that then�

�a� v� is a continuous function�

�b� supp�v�� � V��

�c� If V �� � fx � X j e��x� 	 �����e�x�g � fx � X j v��x� 	 �g then the
family fV ��g is a locally nite covering of X� and
�d� v is a strongly positive continuous function and the family fu�g��A is the
desired locally nite partition of unity inscribed into the covering fG�g��A�

II� Veri�cation

�a� Follows since e� and e are continuous functions�

�b� If x �� V� then e��x� 	 �����e�x� � �����e�x�� By continuity we know
that e��z� � �����e�z�� for all z from some neighborhoodW �x� of the point x�
So� the restriction of the function v� onto W �x� is identically equal to zero�
i�e� x �� supp�v���

�c� Analougous to the proof of the points �g� and �h� of Theorem ������

�d� By �c� we know that for a xed x � X the function v is a sum of a nite
number of continuous functions in some neighborhood of this point� So v
is continuous at an arbitrary point x � X� From �c� we have that for each
x � X� there exists � � A such that v��x� 	 �� Hence v�x� �

P
v��x� 	 ��

Finally� from �	� we have v��x� 	 � �� u��x� 	 � and therefore
supp�u�� � supp�v�� � Cl�V ��� � fx � X j e��x� � �����e�x�g � fx � X j
e��x� 	 �����e�x�g � V� � G�� The last inclusion was proved in Theorem
������ property �f��

The statements of Theorems ����� and �����$ are equivalent from the
point of view of the following proposition�

��



The method of outside approximations ��

Proposition ������ A Hausdor� space X is paracompact if and only if
each open covering of X admits a locally �nite partition of unity inscribed
into this covering�

We prove this proposition below� in Section � together with other prop�
erties of paracompacta� Here we only remark that the statement of Theorem
�����$ is more useful for constructing certain continuous mappings� More
precisely� we will often use the following statement�

Let fe�g��A be a locally �nite partition of unity on a topological space X
and let fy�g��A be arbitrary points from a topological vector space Y � Then
the map f � X � Y de�ned by

f�x� �
X
��A

e��x� � y�

is continuous�
In order to prove this statement it su�ces to remark that for a xed

x � X� the mapping f is a sum of a nite number of continuous mappings
f��x� � e��x� � y� in some suitable neighborhood of this point�

Now we pass to the proof of the Convex�valued selection theorem�

�� The method of outside approximations

Theorem ���	�� Let X be a paracompact space
 B a Banach space and
F � X � B a lower semicontinuous map with nonempty closed convex values�
Then F admits a continuous singlevalued selection�

We obtain Theorem ����� as a corollary of the following two propositions�
The rst one establishes the existence of some ��selection� The second one
provides the existence of a uniformly convergent sequence ffng of �n�selec�
tions of a given multivalued mapping�

De�nition ���
�� Let F � X � Y be a multivalued mapping of a
topological space X into a metric space �Y� ��� Then a singlevalued mapping
f � X � Y is said to be an ��selection of F if dist�f�x�� F �x�� � �� for all
x � X� where dist�f�x�� F �x�� � inff��f�x�� y� j y � F �x�g�

The fact that f is an ��selection of F geometrically means that every
open ball D�f�x�� �� intersects the set F �x�� for every x � X�

Proposition ������ Let X be a paracompact space
 B a normed space
and F � X � B a convex�valued lower semicontinuous map� Then for every
� 	 �
 there exists a continuous singlevalued ��selection f� � X � B of the
map F �

��



�� Convex�valued selection theorem

Proposition ������ Let X be a paracompact space
 B a normed space
and F � X � B a convex�valued lower semicontinuous map� Then for
every sequence f�ngn�IN of positive numbers
 converging to zero
 there exists
a uniformly Cauchy sequence ffng of continuous singlevalued �n�selections
fn � X � B of the map F �

Proof of Theorem ������ Choose a converging sequence �n � �� �n 	 �
and let ffngn�IN be a Cauchy sequence of continuous singlevalued �n�selec�
tions fn � X � B of the map F constructed in Proposition ������

Pick � 	 � and N � IN such that �n � ��� and kfn�x�� fn�p�x�k � ����
for all n 	 N � p � IN� and x � X� For each x � X and for each n � IN� we
can nd an element zn�x� � F �x� such that

kzn�x�� fn�x�k � �n �

Hence

kzn�x�� zn�p�x�k 	 kzn�x�� fn�x�k kfn�x�� fn�p�x�k 
 kfn�p�x�� zn�p�x�k �

� �n  ���  �n�p � � �

Therefore fzn�x�gn�IN is a Cauchy sequence in the complete subspace F �x� �
B of the metric space B and there exists lim

n��
zn�x� � z�x� � F �x��

Finally� the equality lim
n��

kzn�x� � fn�x�k � � implies that there exists
lim
n��

fn�x� � f�x� and that z�x� � f�x�� Hence f�x� � F �x� and the map f

is continuous as the pointwise limit of a uniformly Cauchy sequence ffngn�IN
of continuous functions�

Proof of Proposition ������
I� Construction

For a given � 	 � and for every y � B let�
��� D�y� �� � fz � B j kz � yk � �g be an open ball in B with the radius �

centered at y� and
��� U�y� �� � F���D�y� ��� � fx � X j F �x� �D�y� �� � �g�

We claim that then�

�a� fU�y� ��gy�B � is an open covering of the space X� and
�b� There exists a locally nite partition of unity fe�g��A inscribed into the
covering fU�y� ��gy�B �

Let�
��� y� be an arbitrary element of B such that supp�e�� � U�y�� ��� and
��� Let

f��x� �
X
��A

e��x� � y� �

��



The method of outside approximations ��

We claim that then�

�c� f� is a well�dened continuous mapping� and

�d� dist�f��x�� F �x�� � �� for all x � X�

II� Veri�cation

�a� Follows by the denition of the lower semicontinuity of map F �

�b� Follows by the paracompactness of the space X�

�c� Follows by the statement from the end of the previous section� and

�d� For a given x � X� let f� � A j x � supp�e��g � f��� �� � � � � �ng� Then
x � supp�e�i� � U�y�i � ��� i�e� F �x��D�y�i � �� � �� Hence kzi�y�ik � �� for
some zi � F �x�� i � f�� �� � � � ng� Let z � Pn

i�� e�i�x� � zi� By the convexity
of the set F �x� we have z � F �x� and by the convexity of open balls in a
normed space we have

dist�f��x�� F �x�� 	 kf��x�� zk � k
nX
i��

e�i�x� � �y�i � zi�k 	

	
nX
i��

e�i�x�ky�i � zik � � �
nX
i��

e�i�x� � � �

Proof of Proposition ������
I� Construction

We shall construct by induction a sequence of convex�valued lower semi�
continuous mappings fFn � X � Bgn�IN and a sequence of continuous singl�
evalued mappings ffn � X � Bgn�IN such that�
�i� F �x� � F��x� � F��x� � � � � � Fn�x� � Fn���x� � � � �� for all x � X�
�ii� diamFn�x� 	 � � �n� and
�iii� fn is an �n�selection of the mapping Fn��� for every n � f�� �� � � �g�

Base of induction� We apply Proposition ����� for the spaces X and B�
the mapping F � F�� and for the number � � ��� In such a way we nd a
continuous ���selection f� of the map F�� Let

F��x� � F��x� �D�f��x�� ��� �
where D�f��x�� ��� is the open ball in B of radius ��� centered at the point
f��x�� We claim that then�

�a��F��x� is a nonempty convex subset of F��x��

�b��diamF��x� 	 � � ��� and
�c�� The mapping F� � X � B is lower semicontinuous�

Inductive step� Suppose that the mappingsF�� F�� � � � � Fm��� f�� � � � � fm��
with properties �i���iii� have already been constructed� We apply Proposi�
tion ����� for spaces X and B� mapping Fm�� and for the number �m 	 �
and we nd a continuous �m�selection fm of the map Fm��� Let

Fm�x� � Fm���x� �D�fm�x�� �m� �

��



�� Convex�valued selection theorem

We claim that then�

�am� Fm�x� is a nonempty convex subset of Fm���x��

�bm� diamFm�x� 	 � � �m� and
�cm� The mapping Fm � X � B is lower semicontinuous�

Next� we claim that then�

�d� The sequence ffngn�IN is a uniformly Cauchy sequence of continuous
singlevalued �n�selections fn � X � B of the map F �

II� Veri�cation

�a��Follows since f� is an ���selection of F� and because the intersection of
convex sets is again a convex set�

�b��Follows since F��x� is a subset of a ball of radius ��� and

�c�� Follows by Theorem �������

�am���cm� can be proved similarly as �a����c���

�d� fn is a continuous �n�selection of the mapping Fn�� and Fn���x� �
F �x�� Hence fn is a continuous �n�selection of F � From the inclusion
Fn�p�x� � Fn�x� and by condition �ii� we have that for every n� p � IN and
x � X�

kfn�x�� fn�p�x�k 	 dist�fn�x�� Fn�x��  diamFn�x�  

 dist�fn�p�x�� Fn�p�x�� � � � �n  �n�p �

Since �n � � we thus obtain �d��

Remarks

��� An analogue of Proposition ����� can be proved for arbitrary locally con�
vex topological vector spaces B �not necessarily normed or metrizable��
It su�ces to replace � 	 � by a convex neighborhood V of the origin
O � B� Correspondingly� the notion of ��selection should be replaced by
the notion of a V �selection�

��� An analogue of Proposition ����� can be proved for arbitrary locally con�
vex metrizable �not necessarily normed� spaces B� It su�ces to replace
the sequence of positive numbers converging to zero by a countable basis
of convex neighborhoods of the origin O � B�

��� Theorem ����� holds correspondingly� for any completely metrizable�
locally convex space� i�e� for Fr�echet spaces B�

��� It is clear from the proof of Theorem ������ that the completeness of the
entire space B is not really necessary� for we in fact applied only the
completeness of the values F �x� of the multivalued map F � This remark
enables us to formulate the following version of Theorem ������

�	



The method of inside approximations ��

Theorem ���	��� Let X be a paracompact space
 �B� �� a locally convex
metric vector space and F � X � B a lower semicontinuous map with
complete convex values� Then F admits a continuous singlevalued selection�

��� We emphasize that the statement �c�� from the proof of Proposition �����
is a special case of Theorem ������ from x����

�
� Sometimes the following version of Theorem ����� is more useful�

Theorem ���	���� Let X be a paracompact space
 �B� �� a locally
convex metric vector space and F � X � B a lower semicontinuous mapping
with complete convex values� Then for every � 	 � and for every continu�
ous singlevalued ��selection f� of F 
 there exists a continuous singlevalued
selection f of F such that ��f��x�� f�x�� 	 �
 for every x � X�

�� The method of inside approximations

In the previous section we constructed a selection as a uniform limit of
the sequence ffngn�IN of continuous �n�selections of a given lower semicon�
tinuous mapping F � i�e� fn�x� all lie near the set F �x� and all functions fn
are continuous� Here� we shall construct a selection as a uniform limit of the
sequence ffngn�IN of �n�continuous selections of a given lower semicontinuous
mapping F � i�e� fn�x� all lie in the set F �x� but in general not all functions
fn are continuous� In addition to the formal di�erence which we have already
pointed out� let us remark that the method described here allows for a
construction of a continuous selection� starting from an arbitrary selection�
which exists simply due to the Axiom of Choice and that this method uses
the convexity structure only for the values F �x� of a lower semicontinuous
map F �

De�nition ����� If X is a topological space� �Y� �� a metric space and
� � �� then a map f � X � Y is said to be ��continuous at a point x � X if
for each � 	 �� there exists a neighborhoodW of x such that ��f�x�� f�x��� �
� � �� for all x� �W � Consequently� a map f is said to be ��continuous if
it is ��continuous at every point of its domain�

It is clear that ��continuity coincides with the usual continuity and that
for every � � �� ��continuity implies ��continuity�

Proposition ������� Let X be a paracompact space
 B a normed space
and F � X � B a convex�valued lower semicontinuous map� Then for every
� 	 �
 there exists an ��continuous singlevalued selection f� � X � B of F �

Proposition ������� Let X be a paracompact space
 B a normed space
and F � X � B a convex�valued lower semicontinuous map� Then for
every sequence of positive numbers f�ngn�IN converging to zero
 there exists a
uniform Cauchy sequence ffng of �n�continuous singlevalued selections fn �
X � B of the map F �

��
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Second proof of Theorem ������ Choose an arbitrary sequence of positive
numbers f�ngn�IN converging to zero� and using Proposition ������� nd a
Cauchy sequence of �n�continuous singlevalued selections fn � X � B of the
map F � fn�x� � F �x�� Closedness of values F �x� implies the existence of the
pointwise limit f � lim

n��
fn� f�x� � F �x��

Let us verify the continuity of such a limit f � X � B� Let � 	 � and
suppose that for all n 	 N�� we have kfn�x� � f�x�k � ���� for all x � X�
Pick any x � X and for each n � IN� pick a neighborhood Gn�x� such that
kfn�x�� � fn�x�k � ���  �n� for all x

� � Gn�x�� We may also assume that
���  �n � ���� for all n 	 N�� So we have

kf�x��� f�x�k 	 kf�x��� fn�x
��k kfn�x��� fn�x�k  kfn�x�� f�x�k � �

for n 	 N� and x
� � Gn�x��

Before proceeding with the proofs of Propositions ������ and ������ we
state the following lemma �its proof is a straightforward verication��

Lemma ������� Let fe�g��A be a locally �nite partition of unity on a
paracompact space X and let A�x� � f� � A j e��x� 	 �g and B�x� � f� �
A j x � supp�e��g� Then A�x� � A�x�� � B�x�� � B�x�
 for all x� which lie
in the following neighborhood W �x� of the point x�

W �x� � �
�
fInt�supp�e�� j � � A�x�g�n�

�
fsupp�e�� j � �� B�x�g� �

Proof of Proposition �������
I� Construction

For a xed � 	 � let�
��� f� be an arbitrary selection of a given lower semicontinuous map F �
��� D�f��x�� � fy � B j ky � f��x�k � ���g be an open ball in B�
��� U�x� � F���D�f��x�� � fx � X j F �x� �D�f��x�� � �g be an open set

in X� x � X�
��� fe�g��A be a locally nite partition of unity inscribed into the open

covering fU�x�gx�X of X�
��� S� � supp�e�� and A�x� � f� � A j e��x� 	 �g� B�x� � f� � A � x �

S�g be nite subsets of indices�
�
� x� be a point of X such that S� � U�x��� and
��� y� be a selection �not necessarily continuous� of the map x �� F �x� �

D�f��x���� dened for x � S��
We claim that then�

�a� y� is a well�dened singlevalued map on the set S�� and

�b� If x � S� and x
� � S� then ky��x�� y��x

��k � ��
Finally� let�

��



The method of inside approximations ��

��� f�x� �
X

��A�x	

e��x� � y��x��

We claim that then�

�c� f is a selection of F � and

�d� f � X � B is an ��continuous map�

II� Veri�cation

�a� The inclusion x � S� � U�x�� � F���D�f��x��� implies that the
intersection F �x� � D�f��x��� is nonempty� So by the Axiom of Choice we
can take y��x� to be an arbitrary element of the set F �x� �D�f��x����
�b� Follows since y��x� and y��x

�� lie in the open ball D�f��x��� of radius
����

�c� Follows since y��x� � F �x��
P

��A�x	 e��x� � �� and because F �x� is a
convex set� and

�d� If W �x� is a neighborhood of a xed point x � X� constructed in
Lemma ������ and if x� �W �x� then

f�x��� f�x� �
X

��A�x�	

e��x
�� � y��x���

X
��A�x	

e��x� � y��x� �

�
X

��A�x	

�e��x
��� e��x�� � y��x�  

 
X

��A�x	

e��x
�� � �y��x��� y��x��  

X
��A�x�	nA�x	

e��x
�� � y��x�� �

The rst term above is the sum of a xed nite set of continuous maps
from W �x� into B which are equal to zero at the point x� Hence the norm
of this term can be arbitrarily small in some neighborhood of x� The norm
of the second term is less than or equal toX

��A�x	

e��x
�� � ky��x��� y��x�k � � �

X
��A�x�	

e��x
�� � �

because for x� �W �x� and � � A�x� we have x � S�� x
� � S� and ky��x���

� y��x�k � � �see �b�� and recall that A�x� � A�x��� Finally� the norm of
the third term is less than or equal to the sumX

��B�x	nA�x	

e��x
�� � ky��x��k

because A�x�� � B�x�� The last sum is the sum of a xed nite set of
continuous maps from W �x� into B which are equal to zero at the point x�
Hence the norm of this term �as well as the norm of the rst summand� can

��
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be arbitrarily small in some neighborhood of the point x� Therefore f is
��continuous at x�

Proof of Proposition ������

Let f�ngn�IN be a monotone decreasing sequence of positive numbers�
converging to zero� such that �n � �n� for all n � IN and such thatP�

n�� �n �
� �� By induction we shall construct a sequence ffngn�IN of selections of
the map F � X � B such that�
�i� fn is �n�continuous� and
�ii� kfn���x�� fn�x�k � � � �n� for every n � IN and every x � X�

Then we obtain the �n�continuity of fn from �i� and �n � �n and we
conclude from �ii� and

P�
n�� �n � � that ffngn�IN is a uniformly Cauchy

sequence of maps�

I� Construction

Applying Proposition ������ to F � X � B and � � �� we obtain the
selection f� with �i� and� of course� without �ii��

Suppose that f�� f�� � � � � fm with properties �i� and �ii� have already been
constructed� By �m�continuity of fm one can choose for every x � X� a neigh�
borhood Wm�x� such that for all x

� �Wm�x�� we have that�

kfm�x��� fm�x�k � ��m �

As in the proof of Proposition ������ let�
��� D�fm�x�� � fy � B � ky � fm�x�k � �m����g be an open ball in B�
��� U�x� � F���D�fm�x�� � fx � X � F �x� � D�fm�x�� � �g be an open

set in X� x � X�
��� fe�g��A be a locally nite partition of unity inscribed into the open

covering fWm�x� � U�x�gx�X of X�
��� S� � supp�e�� and A�x� � f� � A j e��x� 	 �g� B�x� � f� � A j

x � S�g be nite subsets of indices�
��� x� be a point of X such that S� �Wm�x�� � U�x��� and
�
� y� be a selection of the map x �� F �x��D�fm�x���� dened for x � S��

We claim that then�

�a� y� is a well�dened singlevalued map on the set S�� and

�b� if x � S� and x
� � S� then ky��x�� y��x

��k � �m���
Finally� let

��� fm���x� �
X

��A�x	

e��x� � y��x��

We claim that then�

�c� fm�� is a selection of F �

�d� fm�� is a �m���continuous map� and

�e� kfm�� � fmk � � � �m�

��
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II� Veri�cation

�a���d� follow as �a���d� in the proof of Proposition �������

�e� For a xed x � X we have

fm���x� �
X

��A�x	

e��x� � �fm�x�� fm�x�  fm�x��� fm�x��  y��x�� �

� fm�x�  
X

��A�x	

e��x� � �fm�x��� fm�x��  

 
X

��A�x	

e��x� � �y��x�� fm�x��� �

For every � � A�x�� we have that x � S� �Wm�x�� �see ���� and hence

kfm�x��� fm�x�k � ��m �

Moreover� from ���� ���� �
� we have

ky��x�� fm�x��k � �m���� �

Therefore�

kfm���x�� fm�x�k 	
X

��A�x	

e��x� � �kfm�x��� fm�x�k  

 ky��x�� fm�x��k� � ��m  �m���� � � � �m �

because ��m�m�IN is a monotone decreasing sequence� Proposition ������ is
thus proved�

�� Properties of paracompact spaces

It is well�known that a union of nitely many closed subsets of a topolog�
ical space is again a closed subset of that space� whereas already a countable
union of closed subsets may fail to have this property� it su�ces to consid�
er the union of the closed intervals In � ���n� ��� n � IN� Equivalently� the
formula

Cl�
�
��A

E�� �
�
��A

Cl�E��

is valid for every �nite index set A and in general� invalid for innite sets A� It
is therefore natural to ask� what conditions on the family fE�g��A guarantee
the validity of this equality� It turns out that a su�cient condition is the
local niteness of the family fE�g��A�

��



�� Convex�valued selection theorem

De�nition ������� A family fE�g��A of subsets of a topological space
X is said to be locally �nite if every point x � X has a neighborhood which
intersects at most nitely many elements of the family fE�g��A�

Lemma ������� For every locally �nite family fE�g��A of subsets of a
topological space X the following equality holds�

Cl�
�
��A

E�� �
�
��A

Cl�E�� �

Proof� The inclusion Cl�
S
��AE�� � S

��A Cl�E�� always holds� without
any restrictions on the family fE�g��A� To prove the other inclusion pick
a point x �� S

��A Cl�E�� and let the neighborhood W �x� of x be as in
Denition ������� Let

A�x� � f��� ��� � � � � �ng � f� � A jW �x� �E� � �g
and

V �x� �W �x� � �
�
fXnCl�E�� j � � A�x�g �

Clearly� V �x� is a nonempty neighborhood of the point x which does not
contain elements from

S
��AE�� i�e� x �� Cl�

S
��AE��� Lemma is thus

proved�

Lemma ����	�� Every paracompact space X is regular
 i�e� for every
closed subset F � X and for every point z � XnF 
 there exist disjoint open
sets U and V such that z � U and F � V �

Proof�
I� Construction

Let�
��� U�z� and V �x� be disjoint neighborhoods of points z and x � F �recall

that X is a Hausdor� space��
��� fG�g��A be a locally nite covering of X� inscribed into the covering

fXnF� fV �x� j x � Fgg�
��� V �

SfG� j there exists a point x � F such that G� � V �x�g� and
��� U � XnCl�V ��

We claim that then�

�a� V and U are open and disjoint�

�b� F � V � and

�c� z � U �

II� Veri�cation

�a� Follows by the openness of G� and by ��� and ����

�b� For every y �� V � we have by ��� that y � G� � SfV �x� j x � Fg� for
some � � A� But we obtain from ��� that G� � XnF � Hence y �� F �

��
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�c� By Lemma ������� Cl�V � � Cl�
SfG� j there exists a point x � F such

that G� � V �x�g� � SfCl�G�� j there exists a point x � F such that G� �
V �x�g� From ��� we have that z �� SfCl�G�� j there exists a point x � F
such that G� � V �x�g� Hence z � XnCl�V � � U �

Lemma ����
�� Every paracompact space X is normal
 i�e� for every
pair of disjoint closed subsets F � X and S � X there exist open disjoint
sets U and V such that F � U and S � V �

Proof�
I� Construction

Let�
��� Ux and V �x� be disjoint open sets such that F � Ux and x � V �x�� x � S

�X is a regular space � see Lemma ��������
��� fG�g��A be a locally nite covering of X� inscribed into the covering

fXnS� fV �x� j x � Sgg�
��� V �

SfG� j G� � V �x� for some x � Sg� and
��� U � XnCl�V ��

We claim that then�

�a� V and U are open and disjoint�

�b� S � V � and

�c� F � U �

II� Veri�cation

Analogous to the proof of Lemma �������

Lemma ������� Let A be a closed subset of a paracompact space X and
f � A � IR a continuous function� Then there exists a continuous extension
f� � X � IR of f such that

infff�a� j a � Ag 	 infff��x� j x � Xg 	
	 supff��x� j x � Xg 	 supff�a� j a � Ag �

Proof� From the point of view of Lemma ����
�� this is a direct corollary
of the classical Tietze�Urysohn Lemma� But here we can obtain this lemma
as a corollary of the Selection theorem ������ It su�ces to dene the extension
f� as a selection of the following lower semicontinuous map F � X � IR with
convex closed values�

F �x� �

�ff�x�g if x � A

�infff�a� j a � Ag� supff�a� j a � Ag� if x �� A �

Proof of Proposition ������ It is easy to see that for a locally nite
partition of unity fe�g��A� inscribed into a covering fG�g���� the family

��



�� Convex�valued selection theorem

of open sets fe��� ���� ���g��A gives a locally nite renement of the coveringfG�g���� So we need to check only the reverse implication� i�e� that any open
covering of a paracompact admits a locally nite partition of unity inscribed
into this covering�

We can assume that original open covering fG�g��A of the paracompact
space X is locally nite�

I� Construction

��� By Lemma ������� there exists for each � � A and each x � G�� a neigh�
borhood Ux�� of the point x such that Cl�Ux��� � G��

��� By paracompactness ofX there exists a locally nite renement fW�g���
of the covering fUx��gx�X���A� and

��� Let V� �
SfW� j Cl�W�� � G�g�

We claim that then�

�a� fV�g��A is a locally nite renement of fG�g��A� and
�b� Cl�V�� � G��
��� By applying ������� to the covering fV�g��A above� we construct a

locally nite open renement fS�g��A of the covering fV�g��A such that
Cl�S�� � V� � Cl�V�� � G��

��� By Lemma ������� we can nd a continuous function v� � X � ��� ��
such that Cl�S�� � v��� ��� � v��� ���� ��� � V�� Indeed� dene a conti�
nuous function f�jCl�S�	 � � and f�jXnV� � � on the closed subset A �
� Cl�S�� � �XnV�� and then nd an extension v� � X � ��� �� of f�� see
Lemma ������ �We used Proposition ����� in the proof of Theorem ������
So� only here we must use the �non selection� proof of Lemma ��������

�
� Let e��x� � v��x��
P

��A v��x��
We claim that then�

�c� fe�g is the desired locally nite partition of unity inscribed into the
covering fG�g�

II� Veri�cation

�a� Clearly V� � G�� Let y � X� If y � W� then for some � � A and for
some x � X� we have y � W� � Cl�W�� � Cl�Ux��� � G�� Hence the family
fV�g is a covering of the space X� So� if some neighborhood W intersects
only a nite number of elements of the covering fG�g then W also intersects
only a nite number of elements of the covering fV�g�
�b� Cl�V�� � Cl�

SfW� j Cl�W�� � G�g� � SfClW� j Cl�W�� � G�g � G�

by Lemma �������

�c� By the local niteness we have that
P

��A v��x� is a continuous function
and this function is positive because fS�g is a covering and because Cl�S�� �
v��� ���� So� e� is a continuous function and from supp�e�� � supp�v�� we
obtain the local niteness of fe�g and the inclusions supp�e�� � supp�v�� �
Cl�V�� � G�� The equality

P
��A e��x� � � is thus veried�

��
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�� Nerves of locally �nite coverings

Clearly� every compact space is paracompact� The classical Stone the�
orem ����� states that every metric space is also paracompact� Outside the
class of all compact and metric spaces there is a very important subclass of
the class of all paracompact spaces� Recall the concept of a simplicial com�
plex� Roughly speaking� such spaces consist of simple geometrical objects�
called simplices� segments� triangles� tetrahedrons� etc� A typical application
of simplicial complexes is given by the problem of nding a continuous map�
ping f � X � Y with some prescribed properties from a paracompact space
X into a topological space Y � A solution of this problem usually involves a
factorization via some simplicial complex E � i�e� f � g � p�

Y
f� �g

X �
p

E

where g is a mapping with desired properties from E into Y and p � X � E
is a so�called canonical mapping� To construct g from E one can� as a rule�
dene g inductively� rst over all vertices E � then extend g over all segments�
then over all triangles� etc�

De�nition ������� An abstract simplicial complex on a set A is a
nonempty family A of nite nonempty subsets of A with the following
hereditary property

� � A� � �# � �� �# � A� �
Every singleton f�g � A is called a vertex of A� every two�points

set f�� �g � A is called an edge �segment� of A� every �n ���points set
f��� ��� � � � � �ng � A is called an n�dimensional simplex �n�simplex� of A�
If f��� � � � � �ng is an n�simplex of A then the set f��� � � � � �ngnf�ig is an
�n� ���simplex of A� due to Denition ������� Such an �n� ���simplex is
called a boundary simplex of a given n�simplex f��� � � � � �ng of A� Also�
we dene a boundary of an n�simplex f��� � � � � �ng as the union of all its
�n� ���boundary simplices� i�e�

��f��� � � � � �ng� �
n�
i��

�f��� � � � � �ngnf�ig� �

If A is an abstract simplicial complex and n � IN then the n�skeleton An of
A is dened as the union of all m�simplices of A with m 	 n�

Every abstract simplicial complex A admits a natural geometric inter�
pretation� Let A be a set and IRA be the set �without any topology� of all
mappings from A into IR� For every � � A� let �� be the mapping dened by

����� �

�
�� � � �

�� � � �
� for every � � A �

��
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We say that �� � IRA is a geometric realization of � � A� Clearly� IRA is
a linear vector space under the usual operations of the pointwise sum of
mappings �  � and multiplication by scalars t�� � � A � IR� � � A � IR�
t � IR�

De�nition ������
�a� Let A be a set and let # � f��� � � � � �ng be its �n ���points subset�

The �n ���dimensional simplex

�# �

�
nX
i��


i ��i j 
i � ��
nX
i��


i � �

�
� IRA

is called the geometric realization of #�
�b� Let A be an abstract simplicial complex on a set A� Then the geometric

realization �A of A is the union of all geometric realizations of all �ab�
stract� simplices of A� i�e�

�A �
�
f �# � IRA j # � Ag � IRA �

We shall always assume that every geometric n�simplex  is endowed
with the standard Euclidean topology� One can embed  �� IRn�� in an
a�nely independent fashion and dene a topology on  induced by such
embedding� It is easy to check that such a topology is well�dened� i�e� it does
not depend on the choice of embeddings� So� the topology of simplices induces
a topology on the whole �geometric� simplicial complex in the following well�
�known manner�

De�nition ������� Let A be a simplicial complex over a set A and �A
be its geometric realization� A subset V � �A is said to be closed if for every
simplex �# � �A� the intersection V � �# is closed in �#� Clearly� such a family
of closed subsets of �A constitutes a topology on �A� called the natural �weak�
topology on �A�

It is an easy exercise to check that a mapping g � �A � Y into a topological
space Y is continuous in the topology on �A dened above if and only if the
restrictions gj 
� � �#� Y are continuous� for all simplices �# � �A� Note that
we need only the denition of continuous mappings from �A� and� formally�
we can substitute the continuity of a mapping g � �A � Y from Denition
������ with the one given above�

Theorem ������� Every geometric simplicial complex is a paracompact
space�

For a proof see Applications� x��

�	
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Now we pass to relations between the class of all open coverings of
paracompact spaces and the class of all simplicial complexes�

De�nition ������� Let X be a topological space and let U � fU�g��A
be an open covering of X� The abstract nerve A�U� of the covering U is an
abstract simplicial complex� dened by

f��� � � � � �ng � A�U� �� U�� � U�� � � � � � U�n � � �

If f��� � � � � �mg � f��� � � � � �ng then �U�� � � � ��U�m� � �U�� � � � ��U�n��
Hence Denition ������ is correct� i�e� A�U� is indeed an abstract simplicial
complex�

Observe� that we have some duality for elements U� of U � On one hand�
U� is usually an open subset of the topological space X� On the other hand�
U� can be identied with � � A and hence U� can be regarded as a vertex
of the nerve A�U��

De�nition ������� Let X be a topological space� let U � fU�g��A be
an open covering of X and let A�U� be the abstract nerve of U � Then the
geometric realization �A�U� of the abstract complex A�U� endowed with the
natural �weak� topology is called a nerve of the covering U and is denoted
by N �U��

We remark that Denitions ������ and ������ make sense for every set
�not necessarily a topological space� X and for every family �not necessarily
a covering� U of its subsets� But for topological spaces and their locally
nite open coverings there exist intimate relations between topologies on the
original space and those on the nerve of a covering�

Theorem ������� For every topological space X
 every open covering
U � fU�g��A of X
 and every locally �nite partition of unity fe�g��A
inscribed into U 
 there exists a continuous mapping p � X � N �U� with the
property that if p�x� � �n��
 for some simplex  of N �U� with vertices
U�� � � � � � U�n 
 then x � U�� � � � � � U�n �

Proof� Let p�x� �
Pn

i�� e�i�x���i � N �U�� x � X �for details see
����� VII�������

A mapping p � p�U � fe�g� dened in the proof above is called a canonical
mapping from a space into the nerve of a covering� Clearly� the class of all
paracompact spaces is a natural class of topological spaces where Theorem
������ really works�

Suppose that an open covering V � fV�g��B is a renement of an open
covering U � fU�g��A of a topological space X� Then there exists a re�ning
map r � V � U � i�e� a map such that V � r�V �� for every V � V� Moreover�
to every rening map r � V � U one can associate a mapping rN � N �V� �
N �U�� by setting

rN �

	
nX
i��


iV�i



�

nX
i��


ir�V�i��

��



� Convex�valued selection theorem

In other words� rN is a simplicial extension of r from the ��skeleton N ��V� �
� V to the entire nerve N �V��

�� Some properties of paracompact spaces

I� Examples of paracompact spaces�

�a� All compact spaces�
�b� All metrizable spaces �A� H� Stone theorem��
�c� All CW�complexes and simplicial complexes� and
�d� All weakly compactly generated Banach spaces� i�e� Banach spaces which

can be represented as a closed linear hull of some of their weak subcom�
pacta �subsets which are compact in the weak topology of the space��

II� Paracompactness and metrizability�

�a� A paracompact space is metrizable if and only if it has a basis of countable
order� i�e� a basis of topology such that every decreasing sequence of its
elements which contain a xed point x� is a local basis of the topology
at this point�

�b� A locally �completely� metrizable paracompact is �completely� metriz�
able�

III� Paracompactness criteria�

The following statements are equivalent�
�a� X is paracompact�
�b� Every open covering of X has a �locally nite open renement� i�e� a

covering which can be decomposed into a countable collection of locally
nite families of sets�

�c� Every open covering of X has a locally nite �not necessarily open�
renement�

�d� Every open covering U of X has a star�re�nement� i�e� a renement V of
U such that for every x � X� the star St�x�V� � SfV � V j x � V g of x
in V lies in some U � U �

�e� Every open covering U ofX has a strong star�re�nement� i�e� a renement
V of U such that for every V � V� the star St�V �V� � SfV � � V j
V � V � � �g of V in V lies in some U � U �
IV� Paracompactness and regularity�

A regular space is paracompact if and only if every open covering of the
space has a �discrete open renement�

V� Paracompactness and countable covers�

Every countable open covering of a paracompact space admits a count�
able open star�nite renement�

��



Some properties of paracompact spaces �

VI� Lebesgue dimension of paracompact spaces�

De�nition ����	��
�a� Let X be a topological space� let U be a locally nite open covering of

X and let x � X� Then the integer equal to the number of all elements
of U � containing the point x� is called the order of x relU and is denoted
by ordx�U��

�b� Let X be a topological space and let U be its locally nite open covering�
Then supfordx U j x � Xg � IN � f �g is called the order of U and is
denoted by ordU �
De�nition ����
�� Let n � f�g � IN�

�a� We say that the Lebesgue dimension dimX of a topological space X is
at most n if for every nite open covering U of X there exists its open
nite renement V with ordV 	 n �� Notation� dimX 	 n�

�b� The equality dimX � n means that dimX 	 n and dimX 	 n� ��
If in Denition ����
� we consider locally nite open coverings U of X

instead of nite open coverings� then we obtain the denition of inequality
dim�X 	 n and respectively� of equality dim�X � n�

Dowker theorem ������� For every normal space �hence for every
paracompact space� X
 dimX � dim�X�

This theorem shows that in Denition ����
� one can consider arbitrary
open coverings for the class of paracompact spaces� In the class of all normal
spaces there are two �mapping� characterizations of the inequality dimX 	
	 n� Both are due to P� S� Aleksandrov�

Theorem ������� For every normal space X
 the inequality dimX 	
	 n holds if and only if for every closed subset A of X and every continuous
mapping f � A� Sn into n�dimensional sphere Sn
 there exists a continuous
extension �f � X � Sn of f onto X�

Theorem ������ For every normal space X
 the inequality dimX 	
	 n holds if and only if for every �nite open covering U of X
 there exists
a U�mapping f of X onto an n�dimensional polyhedron P 
 i�e� a mapping
f � X � P such that the covering ff���p�gp�P of X is a re�nement of U �

��



x�� ZERO�DIMENSIONAL SELECTION

THEOREM

In this chapter �the shortest one in the book� we prove the simplest
selection theorem� stated in the title� The proof �see Section �� remains
the proof of Convex�valued theorem� but without any partitions of unity�
As in the previous paragraph we begin �see Section �� by the necessity
conditions for solvability of the selection problem for an arbitrary closed�
�valued mapping� Our proof of Theorem ����� follows the original one ������
The converse theorem ����� is a well�known folklore result�

�� Zero�dimensionality of the domain as a necessary condition

In comparison with the previous chapter we shall considerably weaken
the hypotheses on the sets of values of a lower semicontinuous multivalued
map� Instead of closed convex subsets of arbitrary Banach spaces we shall
consider closed subsets of arbitrary completely metrizable spaces� Solvability
of the selection problem in this case yields a substantial strengthening of the
condition on the domain of such a map� As in the preceding chapter� we shall
begin by necessary conditions�

Theorem ������ Let X be a topological space such that each closed�
�valued lower semicontinuous map from X into any completely metrizable
space M admits a continuous singlevalued selection� Then every open cov�
ering of the space X admits an open disjoint re�nement
 i�e�
 a re�nement
such that the intersection of any two of its di�erent members is empty�

Proof�
I� Construction

Let�
��� � � fG�g��A be an open covering of the space X�
��� M be the index set A� equipped with the discrete topology� generated by

the complete metric dened by ���� �� � �� for all � � � and ���� �� �
� �� and

��� F �x� � f� �M j x � G�g� for any x � X�
We claim that then�

�a� The set F �x� is a nonempty closed subset of the space M �

�b� The map F � X �M is lower semicontinuous�
It follows by the hypotheses of the theorem that there exists a continuous

selection for F � say f � Let�
��� Vx � f���ff�x�g�

We claim that then�

�c� The family fVxg of the sets Vx without repetition is the desired open
disjoint renement of the covering ��

��
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II� Veri�cation

�a� Each subset of the metric space �M��� is closed and F �x� � � because
� is a covering of the space X�

�b� Let � � F �x�� i�e� x � G�� Then for any y � G�� we have that � � F �y��
i�e� the value F �y� intersects with the neighborhood f�g of the point � �M �

�c� Vx is open because the singleton ff�x�g is open in M and because of
the continuity of the selection f � X � M � If y � Vx� i�e� if f�y� � f�x�
then y � Gf�y	 � Gf�x	� Hence Vx � Gf�x	� i�e� fVxg is a renement of the
covering �� Finally� if z � Vx�Vy then f�z� � f�x� and f�z� � f�y�� i�e� Vx �
� f���ff�x�g� � f���ff�y�g� � Vy� Note that in fact� we have additionally
proved that�

�d� The cardinality of the set of elements of the constructed renement is
less than or equal to the cardinality of the index set A of the given covering
� of the space X� Theorem is thus proved�

De�nition ������ A topological space X is said to be zero�dimensional
�with respect to the Lebesgue dimension�� dimX � �� if every nite open
covering of X admits a disjoint nite open renement�

Clearly� the hypotheses of Theorem ����� imply the hypotheses of Theo�
rem ������ So� under the assumptions of Theorem ������ the space X is para�
compact� For paracompact spaces we can give the following form of Deni�
tion ������

Proposition ������ The following properties of a paracompact space X
are equivalent�
��� dimX � �� and
��� Every open covering of X admits a disjoint open re�nement�

Proof� The implication ��� � ��� is obvious� To prove the reverse
implication we can assume that the original covering � � fG�g��A of X is
locally nite� By Proposition ����� we can nd an open covering fV�g��A
of X such that Cl�V�� � G�� � � A �see points �a�� �b� in the proof of
this proposition�� For each � � A� the family fG�� XnV�g is a nite open
covering of X� By ���� there exists its open nite disjoint renement �����
Let W� be the union of all elements of ���� which are subsets of G�� Then
W� is an open and closed subset of X such that

Cl�V�� �W� � G� �

Pick now an arbitrary well�ordering ��� on the index set A and put

U� �W�n
�
fW� j � � �g� � � A �

The union
SfW� j � � �g is a union of a locally nite family of closed

subsets and� by Lemma ������� is also closed� Therefore U� is open and by

��



� Zero�dimensional selection theorem

the construction U� � W� � G�� Hence the family fU�g��A is a disjoint
open renement of the covering �� Proposition ����� is thus proved�

Note� that Proposition ����� is a special case of the Dowker theorem
������� We can now reformulate Theorem ����� in the following manner�

Paracompactness and zero�dimensionality of the domain are necessary con�
ditions for the existence of continuous selections of closed�valued lower semi�
continuous mappings into completely metrizable spaces�

Next we pass to su�cient conditions�

�� Proof of Zero�dimensional selection theorem

Theorem ������ Let X be a zero�dimensional paracompact space
 M a
completely metrizable space and F � X � M a lower semicontinuous map
with closed values� Then F admits a continuous singlevalued selection�

As in the previous chapter� we shall derive Theorem ����� as a corollary
of the following two propositions� The rst one is in fact the base of the proof
by induction of the second one�

Proposition ���	�� Let X be a zero�dimensional paracompact space
 M
a metric space and F � X �M a lower semicontinuous map� Then for every
� 	 � there exists a continuous singlevalued ��selection f � X � M of the
map F �

Proposition ���
�� Let X be a zero�dimensional paracompact space
 M
a metric space and F � X �M a lower semicontinuous map� Then for every
sequence f�ng of positive numbers converging to zero
 there exists a uniformly
Cauchy sequence of continuous singlevalued �n�selections fn � X �M of the
map F �

Proof of Theorem ������ Fix a complete metric � on M � choose a
sequence �n � �� �n 	 � and let ffng be a uniformly Cauchy sequence of
continuous singlevalued �n�selections fn � X � B of the map F constructed
in Proposition ���
��

Pick � 	 � and nd N � IN such that �n � ��� and ��fn�x�� fn�p�x�� �
� ���� for all n 	 IN� p � IN� x � X� For each x � X and for each n � IN� we
can nd an element zn�x� � F �x� such that

��zn�x�� fn�x�� � �n �

Hence

��zn�x�� zn�p�x�� 	 ��zn�x�� fn�x��  ��fn�x�� fn�p�x��  

 ��fn�p�x�� zn�p�x�� � �n  ���  �n�p � � �

��



Proof of Zero�dimensional selection theorem �

Therefore fzn�x�g is a Cauchy sequence in the closed subset F �x� of the
complete metric space M and hence there exists lim

n��
zn�x� � z�x� � F �x��

Finally� the equality lim
n��

��zn�x�� fn�x�� � � implies that there exists

lim
n��

fn�x� � f�x� and that z�x� � f�x�� Hence f�x� � F �x� and the map f

is continuous as the pointwise limit of the uniformly Cauchy sequence ffng
of continuous mappings� Theorem ����� is proved�

Proof of Proposition ������
I� Construction

For a given � 	 � and for any y �M let�
��� D�y� �� � fz � B j ��z� y� � �g be the open ball in the space M with the

radius �� centered at the point y� and
��� U�y� �� � F���D�y� ��� � fx � X j F �x� �D�y� �� � �g

We claim that then�

�a� fU�y� ��gy�M is an open covering of the space M � and

�b� there exists an open disjoint renement � � fG�g��A inscribed into the
covering fU�y� ��gy�M �

Let�
��� For each � � A� the point y� �M be such that G� � U�y�� ��� and
��� f��x� � y�� for all x � G��

We claim that then�

�c� f� is a well�dened continuous mapping� and

�d� dist�f��x�� F �x�� � �� for all x � X�

II� Veri�cation

�a� Follows by the denition of lower semicontinuity of the map F �

�b� Follows because X is zero�dimensional and paracompact�

�c� Follows because � is an open disjoint covering�

�d� For a given x � X� let � � ��x� � A be the unique index such that x �
G�� Then x � U�y�� �� � F���D�y�� ��� � fx� � X j F �x�� �D�y�� �� � �g�
Hence dist�f��x�� F �x�� � dist�y�� F �x�� � ��

Proposition ����� is thus proved�

Proof of Proposition ������
I� Construction

By induction� we shall construct a sequence of nonempty lower semicon�
tinuous mappings Fn � X � M and a sequence of continuous singlevalued
mappings fn � X �M such that�
�i� F �x� � F��x� � F��x� � � � � � Fn�x� � Fn���x� � � � �� for all x � X�
�ii� diamFn�x� 	 � � �n� and
�iii� fn is an �n�selection of the mapping Fn��� n � IN�

��



� Zero�dimensional selection theorem

Base of induction� We apply Proposition ����� for the spaces X and
M � the mapping F � F� and the number � � ��� So� we nd a continuous
��selection f� of the map F�� Let

F��x� � F��x� �D�f��x�� ��� �

We claim that then�

�a��F��x� is a nonempty subset of F��x��

�b��diamF��x� 	 � � ��� and
�c�� The mapping F� � X �M is lower semicontinuous�

Inductive step� Suppose that the mappings F�� F�� � � � � Fm���
f�� f�� � � � � fm�� with the properties �i���iii� have already been constructed�
We apply Proposition ����� for the spaces X andM � the mapping Fm��� and
the number �m 	 �� Thus we nd a continuous �m�selection fm of the map
Fm��� Let

Fm�x� � Fm���x� �D�fm�x�� �m�
We claim that then�

�am�Fm�x� is a nonempty subset of Fm���x��

�bm�diamFm�x� 	 � � �m� and
�cm�The mapping Fm � X �M is lower semicontinuous�

Next� we claim that then�

�d� The sequence ffng is a uniformly Cauchy sequence of continuous single�
valued �n�selections fn � X � B of the map F �

II� Veri�cation

�a��Follows since f� is an ���selection of F��

�b��Follows since F��x� is subset of a ball with radius ���

�c�� Follows by Theorem ������
�am���cm� can be proved similarly to �a����c���

�d� fn is a continuous �n�selection of the mapping Fn�� and Fn���x� � F �x��
Hence fn is a continuous �n�selection of the mapping F � From the inclusion
Fn�p�x� � Fn�x� and from the condition �ii� we have for any n� p � IN and
x � X� that

��fn�x�� fn�p�x�� 	 dist�fn�x�� Fn�x��  diamFn�x� 

 dist�fn�p�x�� Fn�p�x�� � � � �n  �n�p �

Since �n � �� we obtain �d�� Proposition ���
� is thus proved�

Remarks�

��� As in the previous paragraph we can obtain the following version of
Theorem ������

��



Proof of Zero�dimensional selection theorem �

Theorem ������� Let X be a zero�dimensional paracompact space

�M��� a metric space and F � X � M a lower semicontinuous map with
complete values� Then F admits a continuous singlevalued selection�

��� The present proof of Theorem ����� is based on the method of outside
approximations� As for the method of inside approximations it also can be
applied in the proof of Theorem ������ But here we omit this alternative
proof because it is in fact a special case of the method of coverings �see x��
below��

��� We extract the common part of the proofs of Theorems ����� and �����
into the following simple lemma�

Lemma ������ Let C be a complete subset of a metric space �M���
and fyng a Cauchy sequence of points of M such that dist�yn� C�� �
 when
n��� Then the sequence fyng has a limit which belongs to C�

��



x�� RELATIONS BETWEEN ZERO�DIMENSIONAL

AND CONVEX�VALUED SELECTION

THEOREMS

From the formal point of view� the goal of this paragraph is to derive
Convex�valued selection theorem ����� from the ��dimensional selection the�
orem ������ The value of a continuous singlevalued selection of a given co�
nvex�valued mapping will be constructed as the value of an integral �or the
barycenter� of a continuous selection of some closed�valued mapping� with re�
spect to a probability measure� dened on some ��dimensional compactum�
This approach is based on the existence of so�called Milyutin mappings� Orig�
inally� such kind of maps were applied in the proof of the following �highly
nontrivial� fact�

Theorem ������ Banach spaces of continuous functions on metrizable
uncountable compacta are pairwise isomorphic� In particular
 each one of
them is isomorphic to the Banach space of continuous functions on the
interval�

This theorem of Milyutin ���
� was based in its original form on a di�cult
proof of the existence of a certain mapping of the Cantor set onto the unit
interval� which averages the values of continuous functions over Cantor set�
The construction of an analogue of such a map for the paracompact case�
given below� arises naturally in the consideration of the family of all locally
nite coverings of a given paracompact space� The material of sections ��
�� � is taken from ������ For di�erent versions of �universality� of Zero�
�dimensional selection theorem see also ��������	������ The best source on
probabilistic measures in topology is ������ see also ������������������
	�� In
the proof of Lemma ����� on the existence of the integral of vector�valued
mappings we follow ��
��� In fact we shall need only product�measures on
Cartesian products of nite sets� So� we shall omit the general construction
and shall give an elementary and direct one for this case� see Sections ��a�
and �b��

�� Preliminaries� Probabilistic measure and integration

�a� Topology of Cartesian products of �nite sets

We will assume that each nite set F is equipped with the discrete
topology� Every subset of such a topological space is open� closed and
compact� In the Cartesian product

QfF� j � � Tg of nite sets F� we shall
always consider the Tihonov topology� Its basis consists of the �rectangle�
sets

V � V �S� fA�g��S� � �
Y
��S

A� �
 �
Y
� ��S

F� � �

�	
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where S is an arbitrary nite subset of the index set T and� for every � � S�
A� is an arbitrary subset of the nite set F� � Of course� the empty set is an
element of the basis� In the case when all the sets A� � � � S� are singletons�
the basic set V �S� fA�g��S� is said to be an elementary set� Clearly� every
basic set is a union of a nite number of elementary sets�

V �S� fA�g��S� �
�

V �S� fx�g��S��

where the union is taken over all choices of the elements x� � A� � � � S�
Therefore� the family El of elementary sets �with the empty set included�
also forms a basis of the Tihonov topology in

QfF� j � � Tg� By the
Tihonov theorem� the product

QfF� j � � Tg� endowed with this topology�
is a compact space and each elementary and each basic set is compact and
open in

QfF� j � � Tg�
Lemma ������ The family El of elementary subsets of

QfF� j � � Tg
forms a semiring of subsets
 i�e� � � El
 for every pair V � El
 W � El
 we
have that V �W � El and if
 additionally
 W � V 
 then the di�erence V nW
equals the union of �nite number of pairwise disjoint elements of El�

Proof� Note rst� that � � El� by denition� If V � V �S� fx� g��S� � El
and W � V �R� fy�g��R� � El then there are exactly two cases to consider�
either V �W � � � El or V �W � �� But the latter is possible only if for
each index � � S �R� we have x� � y�� Hence

V �W � V �S �R� fx�g��S � fy�g��RnS� � El �

Finally� if V � V �S� fx�g��S� � El� W � V �R� fy�g��S� � El and W � V �
then S � R� x� � y� � for all � � S and therefore �we use notation

F
for the

union of pairwise disjoint sets��

V �W
F
�
F
V �R� fx�g��S�� fz�g��RnS���

where the last union is taken over all possible choices z� � F � 
 � RnS with
the single exception when z� � y�� for all 
 � RnS� Lemma is thus proved�
�b� Probabilistic measures in Cartesian products of �nite sets�

If one has a collection of non�negative numbers m����m���� � � � �m�N�

such that
PN

i��m�i� � � then one can dene the measure m�A� of an
arbitrary subset A of a nite set F � fx�� � � � � xNg as follows�

m�A� �
X
xi�A

m�i�� m��� � � �

Clearly� the map m is an additive function on the family of all subsets of F �
i�e� m�A tB� � m�A�  m�B�� for every A � F and B � F �

��
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Suppose that for each index � � T � we have a probabilistic measure
m� on a nite set F� � For any elementary subset V � V �S� fx� g��S� � El
of the Cartesian product

Q
F� � � � T � we set m�V � equal to the productQ

��S
m� �fx�g� of nite numbers of the factors m� �fx�g�� � � S and we set

m��� � ��
Lemma ������ The map m � El � ��� �� constructed above is a �addi�

tive function on the semiring of all elementary sets�

Proof� We use a theorem of Aleksandrov� which states that a function
dened on the semiring of subsets of a compact space is �additive if it is
bounded� additive and regular�

�i� The function m is bounded because m�V � � ��� ���
�ii� First� let us consider the case of a nite index set T � f��� � � � � �kg and
F�i � fxi�� � � � � xisig� For every �x�j� � � � � � xkjk� �

kQ
i��

F�i � F � we dene

��f�x�j� � � � � � xkjk�g� � m���x
�
j�� � � �m�k�x

k
jk
� � ��

Opening brackets in

� � m���F��� � � �m�k�F�k� �

�� s�X
j��

m���x
�
j �

� � � �
�� skX
j��

msk
�k
�xkjk�

�
yields the equality

��A� �
X

m���x
�
j�� � � �m�k�x

k
jk
� �

where sum is taken over all choices �x�j� � � � � � x
k
jk
� � A� which denes a

probabilistic measure � on F � It is easy to see� that in fact� � � m and
hence m is also an additive function�

The case of an arbitrary index set can be reduced to the previous
case� Indeed� the equality V �

Fn
i�� Vi is possible for elementary sets V �

� V �S� fx�g��S� and Vi � V �Si� fxi�g��Si� only if S �
T
Si and x� � xi� � for

� � S and i � f�� �� � � � � ng� So� Q
��S

m� �fx�g� � m�V � is the common factor

for each m�Vi�� i � f�� �� � � � � ng� It now su�ces to consider the nite index
set T � �

S
Si�n�T Si� as above�

�iii� The regularity of the function mmeans that for V � El� we have m�V � �
� inffm�G� j G � El� Int�G� � V g � supfm�W � j W � El� V � Cl�W �g�
Elementary sets are open and compact� So� we can replace Int�G� and Cl�W �
by G and W in the denition of regularity� Therefore we need to check only
that m is a monotone function under the inclusion of elementary sets� As in
Lemma ������ it follows by the inclusion

W � V �R� fy�g��R� � V �S� fx�g��S� � V

��
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that S � R and x� � y� � for � � S� Hence

m�W � �
Y
��S

m� �fy�g� �
Y

��RnS

m��fy�g� 	
Y
��S

m� �fx�g� � m�V �

and Lemma ����� is thus proved�
Now� we can construct by standard methods ��
�� an extension of the

�additive function m � El � ��� �� to some �additive regular measure�
dened on the �algebra of Lebesgue measurable subsets of the Cartesian
product

QfF� j � � Tg� Such extended measure on QfF� j � � Tg� is called
the measure product of measures m� �

�c� Topology on the set of all probabilistic measures

Let X be a completely regular space and P �X� be the set of all prob�
abilistic measures �� i�e� non�negative� countably additive� regular functions
of subsets of X which are dened for all Borel subsets of X and for which
��X� � �� Let C�X� be the Banach space of all continuous� bounded func�
tions with the usual supremum�norm metric kfk � supfjf�x�j j x � Xg� For
each � � P �X� and for each f � C�X�� let

L	�f� �

Z
X

f d� �

It is easy to check that the map L	 � f �� L	�f� is a linear continuous map
�functional� on the Banach space C�X�� i�e� L	 is an element of the conjugate
Banach space C�X��� Moreover� the correspondence � �� L	 is a bijection of
P �X� with its image under this correspondence� So� if we identify � and L	
we obtain two points of view for the notion of measure� By the rst one� the
measure on X is a function of subsets of X� By the other a measure on X
is an element of C�X��� i�e� a functional over the set of continuous functions
from X to IR� We shall use both of these approaches� However� for dening
a topology in P �X� the second approach is more suitable�

For simplicity we start with the case when X is a separable metrizable
space� Then by the Urysohn theorem we can assume that X is a subset of the
Hilbert cube Q� Let �X be a completion of X in Q� It is easy to verify that
the space C� �X� of all continuous functions on the compactum �X coincide
with the space Cu�X� of all bounded uniformly continuous functions on X�

Cu�X� � C�X�� So Cu�X� is separable because of separability of C� �X��
Make an arbitrary choice of a dense subset fg�� g�� � � �g in Cu�X� and for
every � � P �X�� dene the map

� �� f
Z
X

g� d��

Z
X

g� d�� � � �g � IR� �

It is a one�to�one map and we can �take� a metrizable topology from IR�

to dene a �metrizable� topology on P �X�� i�e� we use here an embedding of
P �X� into IR��

��
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In the case of a compact space X we shall use an embedding of P �X�
into some IR� � � � IN� Topology in IR� is always the Tihonov topology on
the Cartesian product of � copies of the real line IR� Note that IR� can be
considered as the set of all functions from A to IR� where card�A� � � � Dene

a map T of P �X� into IRC�X	 as follows� For each � � P �X� and for each
f � C�X�� let

�T �����f� �

Z
X

f d� � IR �

Clearly� the map T � P �X� � IRC�X	 is one�to�one� So� we identify P �X�
with T �P �X�� and dene the topology in P �X� as the topology induced from

IRC�X	� This is the general topology way of introducing a topology in P �X��
The probability theory approach is more practical� The basis of a topology
at a point � � P �X� is given by the sets

G	�g�� g�� � � � � gn� �� � f� � P �X�
��� jZ

X

gi d��
Z
X

gi d�j � �� i � f�� �� � � � � ngg �

where n � IN� g�� g�� � � � � gn are arbitrary elements of C�X� and � is an
arbitrary positive number�

Such a topology is called the weak topology in P �X�� Finally� the func�
tional analysis way to dene such a topology is to consider in the conjugate
space C�X�� the weak topology which is dened by elements of C�X�� con�
sidered as elements of the second conjugate C�X��� under the natural em�
bedding C�X� � C�X���� i�e� � such a topology is the star�weak ���weak�
topology in conjugate space�

In fact� there is no di�erence between these three approaches to intro�
ducing a topology in P �X��

Lemma ������ P �X� is a convex compactum�

Proof� It is clear that �� � t�� t� � P �X�� for every pair �� � � P �X�
and every t � ��� ��� Of course� by denition� for any Borel set V � X�

���� t�� t���B� � ��� t���B�  t��B� �

Let us note that under the embedding T � P �X�� IRC�X	� the image P �X�
lies in the Cartesian product of the intervalsY

f��kfk� kfk� j f � C�X�g �

because of the inequality

�kfk 	 infff�x� j x � Xg 	
Z
X

f d� � �T �����f� 	 supff�x� j x � Xg 	 kfk �

��
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Hence T �P �X�� is a subset of the compactum
Qf��kfk� kfk� j f �

C�X�g� It now su�ces to show that T �P �X�� is a closed subset of IRC�X	�

If L � C�X�� IR lies in the closure of T �P �X�� in IRC�X	 then it is easy
to check that �a� L is a linear function� �b� L is a continuous function� �c� L is
positive� i�e� L�f� � �� whereas f � �� and �d� L is normed� i�e� L�id jX� � ��
Then we can nd a probability measure m � P �X�� invoking the well�known
Riesz Representation theorem� such that

L�f� �

Z
X

f dm� for all f � C�X� �

For completely regular �noncompact� spaces X we shall in fact use
only the measures with compact supports� Here� the support supp � of the
measure � is dened as the intersection of all closed subsets F � X such
that ��B� � � for every Borel set B � XnF � Every probability measure � �
P �X� with a compact support can be considered as a probability measure on
the Stone��Cech compactication �X of the space X� So� we denote

P��X� � f� � P ��X� j supp � � Xg
and consider P��X� endowed with topology induced from P ��X��

�d� Integrals of vector�valued mappings

We assume that the reader is familiar with the standard construction
and properties of

R
X f d�� for a compact topological space X� continuous

real�valued function f � X � IR� and for a probability measure � � P �X��
Here we will show a natural way to extend this notion by replacing the reals
IR with a Banach space B�

Lemma ���	�� Let X be a compactum endowed with a probability mea�
sure � � P �X� and f � X � B a continuous mapping from X to a Ba�
nach space B� Then in the closed convex hull conv�f�X�� of the compactum
f�X� � B there exists a unique element y � B such that

L�y� �

Z
X

�L � f�d�

for every linear continuous functional L � B � IR� Such y � B is called the
integral of f over X� y �

R
X f d��

Proof� By the Hahn�Banach theorem� we can nd for an arbitrary
y� � y�� a continuous linear functional L � B � IR� such that L�y�� � L�y���
Then the equality L�y� �

R
X�L � f� d� fails to hold for y� and y� simultane�

ously� i�e� the uniqueness of such y � conv�f�X�� � B is thus proved�
In order to prove the existence of such y � conv�f�X�� we will construct

the family of some subcompacta in the compactum Z � conv�f�X�� and

��
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show that it is a centered family of sets� i�e� the intersection of any nite
number of elements of this family is always nonempty� Next we dene the
desired y as a common point of such a family of subcompacta�

So� for every linear continuous functional L � B � IR� we put�

Z�L� � Z � L���
Z
X

�L � f�d��

and let
Z�L�� L�� � � � � Ln� � Z�L�� � Z�L�� � � � � � Z�Ln� �

for every nite set of linear continuous functionals Li � B � IR�
Now we x a nite set of linear continuous functionals Li � B � IR� i �

f�� �� � � � � ng and our aim is to prove that Z�L�� L�� � � � � Ln� � �� To do this�
we dene a linear continuous mappingM � B � IRn by the equality

M�y� � �L��y�� L��y�� � � � � Ln�y��� y � B

and prove that the convex compactumM�Z� � IRn contains the point

m � �

Z
X

�L� � f�d��
Z
X

�L� � f�d�� � � � �
Z
X

�Ln � f�d�� �

Clearly� this inclusion implies that Z�L�� L�� � � � � Lm� � �� For� if m ��M�Z��
then we can separate the point m and the convex compact M�Z� by some
hyperspace or� in algebraic terms� there exist a linear functional h � IRn � IR
and a number c � IR such that h�m� � c and h�M�Z�� 	 c� Then

c 	 h�m� � h�

Z
X

�L� � f�d�� � � � �
Z
X

�Ln � f�d�� �

�

Z
X

h�L� � f� L� � f� � � � � Ln � f�d� �

�

Z
X

�h �M � f�d� 	 c � ��X� � c �

This is a contradiction�
Note that we used implicitely the representation of the linear map h �

IRn � IR in the form

h�t�� t�� � � � � tn� � t�
�  t�
�  � � �  tn
n

for some xed �
�� 
�� � � � � 
n� � IRn� Lemma ����� is thus proved�

��
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�� Milyutin mappings� Convex�valued selection theorem via
Zero�dimensional theorem

De�nition ���
�� A continuous surjection p � X � Y between com�
pletely regular spaces X and Y is called a Milyutin mapping if there exists
a continuous mapping � � Y � P��X� such that supp���y�� � p���y�� for
all y � Y � Such a mapping � � Y � P��X� is usually said to be associated
with p�

For the next result recall that C�X� and C�Y � are spaces of all real�
�valued bounded continuous bounded mappings�

Proposition ������ Let p � X � Y be a Milyutin mapping� Then there
exists a continuous linear operator A�p� � C�X�� C�Y � between the Banach
spaces C�X� and C�Y � such that for every g � C�Y �


�A�p���g � p� � g �

Proof� We dene A�p� by letting

�A�p���f� � y �� ���y���f��

where f � C�X�� y � Y and � is a mapping associated with p� Recall� that
��y� � P��X� � P ��X� � C��X�� � C�X��� For a xed f � C�X�� the
function �A�p���f� is continuous and bounded because of the continuity of ��
Hence �A�p���f� � C�Y �� Linearity of the operator A�p� � C�X� � C�Y �
follows by linearity of the functionals ��y� � C�X��� for all y � Y � From

k�A�p���f�k � supfj���y���f�j j y � Y g 	 supfk��y�k � kfk j y � Y g � kfk
we conclude that A�p� is bounded� i�e� it is a continuous operator� Finally�
for g � C�Y � and y � Y � the inclusion supp ��y� � p���y� implies

�A�p���g � p� � y �� ���y���g � p� �
�

Z
supp 
�y	

�g � p�d��y� �
Z

p���y	

�g � p�d��y� � g�y�

because g�p�x�� � g�y�� for all x � p���y� and because
R
p���y	� � d��y� �

� �� Proposition is thus proved� Such a linear operator A�p� will be called a
regular averaging operator�

Corollary ������ Under the hypotheses of Proposition �����
 the Banach
space C�X� is isomorphic to the Cartesian product C�Y � with the kernel of
the averaging operator A�p��

Proof� For f � C�X� and A � A�p� it su�ces to put

f �� �A�f�� f � �A�f�� � p� � C�Y ��KerA �

��
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It is a well�known fact that every metric compactum X is a continu�
ous image of the Cantor set K� As it was discovered in ���
�� every metric
compactum is in fact the image of the Cantor set K under some Milyutin
mapping p� So C�K� is isomorphic to C�X��Ker�A�p��� If X is uncountable
then X contains a closed copy of K and by the Dugundji extension formula
we obtain that C�X� is isomorphic to C�K�� Y � for some Banach space Y �
Now� using a decomposition method one can easily prove that Banach spaces
C�K� and C�X� are isomorphic� For details see Applications� x��

The main result of this chapter states that Milyutin mappings exist in
very general situations�

Theorem ����� For each paracompact space X there exist a zero�
�dimensional paracompact space X� and a continuous surjection p � X� � X
such that
��� p is a Milyutin mapping�
��� p is perfect� and
��� p is inductively open�

Here� ��� means that the images of closed sets under p are closed and
that point�preimages of p are compacta� and ��� means that the multivalued
mapping p�� � X � X� admits a lower semicontinuous selection� In Section �
below we shall describe a construction of Theorem ���	� and Section � will
present a detailed proof of this theorem�

However� rst we show that Convex�valued selection theorem can be
derived from Zero�dimensional selection theorem�

Third proof of Convex�valued selection theorem ���	�

Consider the following diagram

B

F g is a selection of F � p
P �X����



X

�
��
p

�
X�

where F � X � B is a given lower semicontinuous map from a paracompact
space X into a Banach space B with convex closed values� p � X� � X is a
Milyutin mapping from Theorem ���	� and � is a mapping associated with
p� Then F � p � X� � B is a lower semicontinuous mapping from the zero�
�dimensional paracompact space X� into a complete metric space B with
closed values F �p�z��� z � X�� So� by the Zero�dimensional theorem ����� we
can nd a continuous selection g of F � p� g�z� � F �p�z��� z � X�� Finally�
we put

f�x� �

Z
p���x	

g d��x��

��



Existence of Milyutin mappings on the class of paracompact spaces ��

By Lemma ������ such an integral exists and f�x� � Cl�convfg�z� j z �
p���x�g� � Cl�convfF �p�z�� j z � p���x�g� � Cl�convF �x�� � F �x�� Hence
f is a selection of F �

Some problems arise with a proof of continuity of such a selection�
Indeed� if� for example� B � IR then the continuity of f follows directly from
another description of the above integral� Namely�

f�x� � ���x���g� �

But in the case g � X� � B the right side of the last equality is meaningless
because the measure ��x� as an element of C�X��

� acts only on mappings g �
C�X�� � C�X�� IR�� So� we shall return to the proof of continuity of f after
presenting some additional information concerning the Milyutin mapping p�

�� Existence of Milyutin mappings on the class of paracom�
pact spaces

I� Construction

Pick a locally nite open covering � � fG�g��A��	 of a given paracom�
pact space X and pick a locally nite partition of unity e � fe�g��A��	 in�
scribed into the covering �� where A��� is a discrete index set�

Let
X��e � f�x� �� � X 
A��� j x � supp�e��g

and
p��e � X��e � X

be the restriction over X��e of the projection onto the rst factor�
We claim that then�

�a� p��e is a Milyutin mapping�
�b� p��e is perfect� and
�c� X��e is paracompact�

Now� we collect all mappings p��e over all possible pairs ��� e�� Let � be
a discrete index set for all locally nite open coverings � of the paracompact
space X� For each � � �� we x some locally nite partition of unity e�
inscribed into the covering �� Below we shall use the symbol p� instead of
p��e�

Let

X� � f�x� f����g���� � X 

Y
���

A��� j x � supp�e���	� for all � � �g

and
p � X� � X

��
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be the restriction of the projection onto the rst factor� Such a construction
of �X�� p� is often called a �pull�back� of the mappings p� � � � ��

We claim that then�

�d� p is a Milyutin mapping�

�e� p is a perfect mapping�

�f� X� is paracompact�

�g� dimX� � �� and

�h� The selection f � constructed in the third proof of Convex�valued theorem
�see Section � above� is continuous�

II� Veri�cation

�a� Let p��� �x� � f�x� ���� � � � � �x� �n�g� Then it su�ces to put

����x���f�x� �i�g� � e�i�x� �

So� we simply have a probability distribution on the nite set p��� �x�� The
continuity of the associated map �� � X � P �X�� follows immediately from
the local niteness of the partition of unity e � fe�g��A��	�
�b� The map p� is closed because the sets supp�e�� are closed and e is locally
nite� Point�preimages p��� �x� are nite and hence compact�

�c� It is a standard fact that every preimage of a paracompact space under
a perfect map is also a paracompact space�

�d� Let F��x� � p��� �x�� see proof of �a�� Then

p���x� � fxg 

Y
���

F��x� �

By �a�� we have in each nite set F��x� a probability measure� So� using
Section ���b� we dene in

Q
��� F��x� some probability measure ��x�� more

precisely� measure�product ��x� of the probability measures ���x�� � � ��
�e� The point�preimages under p are homeomorphic to the Cartesian product
of nite sets �see �d��� and hence compact� Any pull�back of a perfect
mapping is also perfect �we leave this as an exercise�� Note� that for closed
mappings analoguous claim is false�

�f� Proceed as in �c��

�	
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�� Zero�dimensionality of X	 and continuity of f

Recall� how the basis of open sets for the Cartesian product X 
Q
���A���� was constructed� For this purpose take an open set U in X� a �

nite collection ��� ��� � � � � �k of coverings of paracompact space X� and choose
in every set of indices A��i� an arbitrary subset of indices B��i� � A��i��
Therefore a basic open set W in the paracompact space X� is of the form�

W � X� � �U 
 �
Y
��F

B����
 �
Y

���nF

A����� ���

for some open subset U � X� some nite subset F � �� and some subfamily
B��� � A���� � � F �

Let now � � fW�g be an arbitrary covering of the paracompact space
X� consisting of basic open sets� We shall construct a very �ne� covering
of X corresponding to �� Fix a point x � X and choose a nite number of
sets W�j which cover the compactum p���x�� j � f�� �� � � � �mg� Using the
representation ���� we nd open sets Uj � X� nite sets of indices Fj � � and
some sets B��� j� � A���� � � Fj � Note that every element � � � is a locally
nite covering of X� and every element � � A��� can be identied with some
open set G� from this covering� Due to local niteness of the coverings� it
follows that for every j � f�� �� � � � �mg and every element � of the nite set
Fj � the set B��� j� contains only �nitely many indices for which the point x
belongs to the corresponding open set G�� For every � � Fj � let

C��� j� � f� � B��� j� j x � G�g �
Finally� let us dene the neighborhood W��x� of x as the intersection of a
nite number of the folowing open sets�

W��x� �
� m�
j��

Uj
�
�
��

fG� j � � C��� j�� j � f�� �� � � � �mg� � � Fjg
�
�

We now begin a �dispersion� operation with open sets fW�g of the original
open covering � of X��

Again� let us x x � X and an open set W�j from the former collection

W�� �W�� � � � � �W�m of open sets which cover the preimage p
���x�� The nite

sets C��� j� � B��� j� � A��� constructed above can be considered as the
values of some nite�valued mapping C � Fj � SfA��� j � � Fjg with a
nite domain Fj � For every singlevalued selection 
 of this multivalued map�
we dene an open set in X� as follows�

V �x�W�j � 
� � X� � �W��x�
 f
���g��Fj 
 �
Y
� ��Fj

A����� �

Clearly� the sets V �x�W�j � 
� are open� they lie in W�j � they are pairwise
disjoint �di�erent 
 will avoid each other at some ��coordinate� for � � Fj��

��
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and their number is nite �the set of all these 
 is nite�� Also� it follows by
construction that

p���x� �W�j � p���x� �
��

fV �x�W�j � 
� j 
 is a selection of Cg
�
�

In other words� we have done a �dispersion� operation on the open set W�j

over the ber p���x�� We make such an operation for every j � f�� �� � � � �mg�
It should be observed that if for di�erent j� the sets Fj intersected in
element �� then the corresponding sets C��� j� simply agree since these
sets are uniquely determined by the element �� a locally nite cover of the
paracompactum X�

Consequently� we will have the union of new W�j over the ber p
���x��SfW�j � j � f�� �� � � � �mgg� Recall� how we constructed the neighborhoods

W��x� �the �rst� coordinate of the set V �x�W�j � 
��� We also conclude that

in the preimage p���W��x�� the sets V �x�W�j � 
� give a disjoint subcovering
of the given covering fW�g�

For the nal operation it now remains to consider the ���coordinate�
where �� is a locally nite cover of X� inscribed in the constructed �very
ne� cover fW��x�g� x � X� We note that �� � �� More precisely� every one
of the open sets

V �x�W�j � 
� � X� � �W��x�
 f
���g��Fj 

Y
� ��Fj

A����

should be split into a disjoint union of its open subsets in everyone of which
the ���coordinate is xed and equal to one of the elements � � A����� for
which x � G�� The set of such ��s is nite� Note that we are identifying the
index � with the open set from the covering which has this index�

In this way we have inscribed some disjoint subcoverings into an arbitrary
covering with basic sets ofX�� Hence� we have proved the zero�dimensionality
of X��

We remark that for the proof of the assertion �iii� of theorem we can
consider �by analogy with the pull�back of the maps p�� the pull�back of the
maps q� dened below�

Q��e � f�x� �� � X 
A��� j x � Int�supp�e���g
and let q� � Q��e � X be the projections onto the rst factor� It is easy
to check that the mappings q� are open and hence their pull�back q is an
open mapping of some subset of X� onto X� Clearly� q

���x� � p���x� and
the existence of such a lower semicontinuous selection q�� of the constructed
map p�� exactly means the inductive openess of the map p� Theorem ���	�
is thus proved�

It remains to check that the singlevalued map f � X � Y given by the
following equality

f�x� �

Z
g�z� d��x�� z � p���x�

��
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is continuous� To this end� we x a point x� � X and a convex ball neigh�
borhoodW of the origin in the space Y � For every point z of the compactum
p���x�� we choose a neighborhood in which the oscillation of the continuous
function g lies in the neighborhoodW��� i�e� g�z���g�z��� �W��� for every z�

and z�� from this neighborhood of the point z� Choose a nite subcover and
make the operation described above in the proof of Theorem ���	�� We obtain
a nite number ��� ��� � � � � �M of locally nite coverings of the paracompact
space X� in everyone of which a nite set of indices �or elements of the
covering� Cj� j � f�� �� � � � �Mg� containing the point x�� is chosen� The new
disjoint covering consists of the set of the type

V� � X� � �W��x��
 f
�j�gMj�� 
 �
Y

� ��f�jg

A����� �

where 
 runs through all singlevalued selections of maps under which j goes
to the set Cj � j � f�� �� � � � �Mg� By the denition of the map �� associated
to the map p it follows that

���x���V�� � ���x���V� � p���x�� �
MY
j��

ej��j	�x�� ���

where ej��j	 is the element with index 
�j� of the corresponding partition of

unity� inscribed into the cover �j �

Let x �W��x��� K be the compactum p���x� and K� be the compactum
K � V�� We note that by ��� the measure ��x� of the compactum K� �
� K��x� is positive if x is chosen from the neighborhood of the point x��
which is contained in the intersection of the interiors of the supports of all

functions ej��j	� j � f�� �� � � � �Mg� 
�j� � C�j��

Pick any z� � K� and take the sum over 
 to obtain that�Z
K

g�z� d��x� �
X
�

g�z�� � ���x���K�� �

�
X
�

��K�� �
�Z
K�

g�z� df����K��g � g�z��
�
�

���

By the denition of the integral over the probability measure�R
K�

g�z�df����K��g lies in the compactum Cl�conv�g�K���� and by the

choice of compactaK� we conclude that the di�erence
R
K�

g�z�df����K��g�
� g�z�� lies in the closure of the neighborhoodW��� Due to the convexity of
the neighborhood W we obtain that the whole di�erence from ��� lies in the
closure of the neighborhood W��� For an estimate of the di�erence

f�x�� f�x�� �

Z
K
g�z�d��x� �

Z
K�

g�z�d��x��

��



�� Relations between Zero�dimensional and Convex�valued selection theorems

it remains to compare
P

� g�z�� � ���x���K�� and
P

� g�z
�
�� � ���x����K�

��� where
K� � p���x�� and z

�
� are arbitrary elements fromK�

� � K��V�� However� by
construction� g�z��� g�z��� �W�� and by ���� the value of ��x� on compacta
K��x� � p���x��V� in the neighborhoodW� is the product of a nite number
of continuous functions�

Consequently� in some smaller neighborhood of the point x� these mea�
sures can be considered to be close enough to satisfy the following require�
ment X

�

g�z�� � ���x���K���
X
�

g�z��� � ���x����K�
�� � �W�� �

Therefore� in this smaller neighborhood of the point x�� the di�erence
f�x�� f�x�� lies in the neighborhood W �

��



x�� COMPACT�VALUED SELECTION THEOREM

Chapters x��x� dealt with two selection theorems� The rst one� Con�
vex�valued theorem ������ works for an arbitrary paracompact domain of a
multivalued mapping and for a range with some special restrictions� namely�
Banach spaces or� in other words� spaces with a �good� combination of met�
ric and convex structures� The second one� Zero�dimensional theorem ������
works for an arbitrary completely metrizable range and for a zero�dimension�
al paracompact domain� Here� we will consider arbitrary paracompact do�
mains �as in ������ and arbitrary completely metrizable ranges �as in ����� of
multivalued mappings� Such a combination �domains from one theorem and
ranges from the other� cannot� of course� give results as Theorems ����� and
������ i�e� the existence of a continuous singlevalued selection� In this new
situation there exists a compact�valued �not singlevalued� selection� More�
over� one of the selections is upper semicontinuous and the other one is lower
semicontinuous�

Theorem ������ Let X be a paracompact space
 M a complete metric
space and F � X � M a closed�valued lower semicontinuous map� Then F
admits selections G and H such that�

�i� G�x� and H�x� are subcompacta in F �x� and G�x� � H�x�
 for every
x � X�

�ii� G � X �M is lower semicontinuous� and

�iii� H � X �M is upper semicontinuous�

Our plan for this chapter is as follows� In the rest of the Section � we
shall show that Theorem ����� can be obtained as a corollary of Theorem
���	� �existence of Milyutin mappings�� In Section � we shall reproduce the
original proof ��
�� of Theorem ������ Section � deals with the methods of
coverings� due to �Coban ��	�� which is in fact an axiomatic version of the
original proof of Michael ��
��� Such an axiomatic approach gives a general
view of several other compact�valued selection theorems for di�erent �non�
paracompact� domains and for di�erent kinds of continuity of multivalued
mappings� For details� see Results� x� and x��

��



�� Compact�valued selection theorem

�� Approach via Zero�dimensional theorem

Recall the diagram from the third proof of Convex�valued selection the�
orem �see x���� above��

M
F�� g is a selection of F � p

P �X��

�� X

p�� X�

where F � X �M is a given lower semicontinuous map from a paracompact
space X into a completely metrizable space M with closed values� p � X� �
X is a perfect� inductively open� Milyutin surjection of a zero�dimensional
paracompact space X� onto X� and � is a mapping associated with p�

Next� we set H�x� � g�p���x��� x � X� The mapH is then a selection of
F because g is a selection of F � p� Such a continuous singlevalued selection
g exists by Zero�dimensional selection theorem ������ The map p is closed�
hence its inverse p�� is an upper semicontinuous mapping� The preimages
p���x� are compact because of the perfectness of p� Therefore H�x� are
compact� because of the continuity of a selection g� Finally� the upper semi�
continuous mapping p�� � X � X� admits a lower semicontinuous selection
Q � X � X� with closed values� since p is inductively open� Hence� in order
to nish the proof of Theorem ����� it su�ces to let G�x� � g�Q�x��� x � X�

�� Proof via inside approximations

A common technical detail in the proofs of convex�valued and zero�
�dimensional theorems is that the family of open sets fF���D�y� ��� j y �
Mg is a covering of a given paracompact space X� But to make the family
fF���D�y� ��� j y � Mg into a covering of X it su�ces to consider only
some �arbitrary� points y � F �x�� x � X� In other words� we can begin by
an arbitrary �noncontinuous� singlevalued selection of a given lower semicon�
tinuous mapping F and then use an approximation procedure in order to
achieve a �maximal possible� continuity properties� In fact� the construction
in the following proof is similar to the method of inside approximation �see
x�� above��

Proposition ������ Let F � X �M be a lower semicontinuous mapping
of a paracompact space X into a metric space �M���� Then there exist�
��� A sequence fAng
 n � IN
 of pairwise disjoint �discrete� index sets An�
��� A sequence fpng
 n � IN
 of surjections pn � An�� � An�
��� A sequence f�ng
 n � IN
 of locally �nite open coverings �n � fV� j � �

Ang of X� and
��� A family ff� j � � Ang of singlevalued �not necessarily continuous�

selections of restrictions F jCl�V�	


��



Proof via inside approximations ��

such that the following assertions hold for each n � IN�
�in� If � � An and x� z � Cl�V�� then ��f��x�� f��z�� � �

�n������
�iin� If � � An then V� �

SfV� j � � p��n ���g� and
�iiin� If � � An
 � � p��n ��� and x � Cl�V�� then ��f��x�� f��x�� �

� ��n������  ������ � ��n�

Proof of Proposition �����
I� Construction

We put A� � f�g and V� � X� Let�
��� f� � V� � M be a singlevalued selection of F �we use the Axiom of

choice��
��� U��x� � F���D�f��x�� �

������ � fz � X j dist�f��x�� F �z�� � �����g�
x � V��

��� fW�g��A� be a locally nite open renement of the open coveringfU��x�gx�V� of paracompact space V��
��� fW �

�g��A� be a locally nite open renement of the open coveringfU��x�gx�V� of paracompact V�� such that Cl�W �
�� �W��

��� For every � � A�� we set V� �W �
� � V� and pick any point x� � V� such

that Cl�V�� � U��x���

We claim that then�
�a�� There exists a �not necessarily continuous� selection f� of the re�

striction F jCl�V�	� � � A�� such that

��f��x�� f��x��� � �
����� x � Cl�V�� �

�b�� For the mapping p� � A� � A� � f�g� the sets V�� and the selections
ff� j � � A�g� the assertions �i����iii�� hold�

In order to make the inductive step from n to n  � we �practically�
repeat all the points ������� above� More precisely� let for each index � �
An�
�
� f� � Cl�V�� � M be a singlevalued selection of F jCl�V�	 which was

constructed in the previous n�th step�
��� U��x� � F���D�f��x�� �

�n������� x � V��
��� fW�g��B��	 be a locally nite open renement of the open covering

fU��x�gx�Cl�V�	 of the paracompact space Cl�V���
�	� fW �

�g��B��	 be a locally nite open renement of the open covering
fU��x�gx�Cl�V�	� such that Cl�W �

�� �W��

���� For each � � B���� we set V� � W �
� � V� and choose a point x� � V�

such that Cl�V�� � U��x��� and
���� The index set An�� be the disjoint union of index sets B���� � � An

and the mapping pn�� � An�� � An be dened by letting pn����� � ��
whenever � � B��� � An���

��



�� Compact�valued selection theorem

We claim that then�
�an��� There exists a �not necessarily continuous� selection f� of the re�

striction F jCl�V�	� � � B��� � An��� such that

��f��x�� f��x��� � �
�n����� x � Cl�V�� �

�bn��� For the mapping pn�� � An�� � An� for the sets V� and for the
selections f�� � � An��� the assertions �in�����iiin��� hold�

II� Veri�cation

�a�� From the inclusion Cl�V�� � U��x�� � fz � X j dist�f��x��� F �z�� �
� �����g we obtain that F �x� � D�f��x��� �

����� � �� x � Cl�V��� Hence
we can use the Axiom of choice to dene f��x� as an arbitrary element of
the nonempty set F �x� �D�f��x��� �������
�b�� The inequality ��f��x�� f��z�� � ��� � ������ for x� z � Cl�V���
follows from the Triangle inequality� Condition �ii�� means that fV�g��A�

is a covering of X � V�� Condition �iii�� is also a corollary of the Triangle
inequality� because

��f��x�� f��x�� 	 ��f��x�� f��x���  ��f��x��� f��x�� �

� ���������  ������ � ��� �

�an��� From the inclusion Cl�V�� � U��x�� � fz � X j dist�f��x��� F �z�� �
� ��n����g we obtain that F �x� � D�f��x��� �

����� � �� x � Cl�V��� � �
An� � � B���� Hence we can use the Axiom of choice to dene f��x� �
F �x� �D�f��x��� ��n������
�bn��� The inequality ��f��x�� f��z�� � ��n�� � ����� for x� z � Cl�V���
follows from the triangle inequality� Condition �iin��� exactly means that
fV�g��B��	� ��An�� forms the covering of V�� Condition �iiin��� is also a
corollary of triangle inequality� because

��f��x�� f��x�� 	 ��f��x�� f��x���  ��f��x��� f��x�� �

� ��n��������  ������ � ��n�� �

Proposition ����� is thus proved�

Proof of Theorem �����
I� Construction

Let�
��� A be the inverse limit of the sequence of the mappings pn� which were

constructed in Proposition �����

f�g � A��
p�
A��

p�
� � ��An�

pn
An���� � �

��



Proof via inside approximations ��

i�e�� A � f� � f�ng j �n � An and pn��n��� � �n� for all ng�
��� For x � X� G��x� � f lim

n��
f�n�x� j f�ng � A and x � V�n � for all ng and

G�x� � Cl�G��x��� and

��� For x � X� H��x� � f lim
n��

f�n�x� j f�ng � A and x � Cl�V�n�� for all ng
and H�x� � Cl�H��x���

We claim that then�

�a� lim
n��

f�n always exists� if f�ng � A and x � V�n or x � Cl�V�n�� for all
n�

�b� G��x� � H��x� are nonempty subsets of F �x��

�c� G�x� � H�x� are compact subsets of F �x��

�d� The selection G � X �M is lower semicontinuous� and

�e� The selection H � X �M is upper semicontinuous�

II� Veri�cation

�a� From �iiin�� Proposition ������ we can see that ff�n�x�gn�IN is a Cauchy
sequence in the closed subset F �x� of the complete metric space M �
Hence lim

n��
f�n�x� � F �x� always exists�

�b� From �iin�� Proposition ������ we can see that for each x � X� there exist
elements f�ng � A such that x � V�n � for all n� Hence limn��

f�n�x� �
G��x�� i�e� � � G��x� � H��x��

�c� From �iiin�� Proposition ������ we can see that

�� lim
k��

f�k�x�� f�n�x�� � �
�n�� �

For a xed � 	 �� we choose n � IN such that ��n�� � �� From the local
niteness of the covering fCl�V�n� j �n � Ang of paracompact space X�
we conclude that there exists only a nite number of indices �n � An such
that x � Cl�V�n�� Hence the nite set of all points f�n�x� over all such
�n forms a nite ��net for the set H��x�� Therefore H��x� is a totally
bounded subset of F �x� and henceH�x� � Cl�H��x�� is a compact subset
of F �x�� Finally� G�x� is a closed subset of the compactum H�x��

�d�� �e� We will give these proofs in Section �� in a more general situation�
Theorem ����� is thus proved�

��



�� Compact�valued selection theorem

�� Method of coverings

Let X be a topological space� �M��� a metric space and let F � X �
M be a multivalued mapping� Suppose� in addition� that we have a triple
�p� �� �� of the following three objects�
�a� A countable spectrum p � f�pn� An�g of discrete� pairwise disjoint index

sets An and bonding maps pn

f�g � A��
p�
A��

p�
� � ��An�

pn
An��� � � �

Denote the limit of this spectrum by A � f��n��n�� j �n � An�
pn��n��� � �ng�

�b� A sequence � � ��n� of coverings �not necessarily open� of X� which are
indexed by the sets fAngn�IN� i�e� �n � fVn�� j � � Ang� and

�c� A sequence � � ��n� of collections of open subsets �not necessarily
coverings� of M � which are also indexed by the sets fAngn�IN� i�e� �n �
� fWn�� j � � Ang�
Suppose that the following properties hold for the triple �p� �� ���

�MC�� For every n � IN and for every � � An� diamWn�� � �
�n�

�MC��
SfCl�Wn����� j � � p��n ���g �Wn���

�MC�� Vn�� �
SfVn���� j � � p��n ���g�

�MC�� Cl�Vn��� � F���Wn���� and
�MC�� If �

� � ��n� � A� then the intersection D���� �
T
Wn��n is nonemp�

ty�
Note that D���� is a singleton� for every �� � ��n� � A and that

�MC�� is a corollary of �MC�� and �MC�� whenever the metric space �M���
is complete�

As in the previous section we can dene some natural multivalued selec�
tions G and H of a given multivalued mapping F �

G�x� �
�
fD���� j �� � ��n� � A� x �

�
Vn��ng

and
H�x� �

�
fD���� j �� � ��n� � A� x �

�
Cl�Vn��n�g �

Clearly� G�x� � H�x�� Moreover� let y � H�x�� i�e� y � T
Wn��n � for some

��n� � A� with x � TCl�Vn� �n�� From �MC�� we immediately obtain that
the set F �x� intersects with each open set Wn��n � n � IN�

It follows from �MC�� and y � Wn��n that y � ClF �x�� Hence H is a
multivalued selection of the map ClF and G is a multivalued selection of the
map H�

Theorem ������ With the same notations as above and if all coverings
�n are pointwise �nite
 i�e� each point x � X belongs to at most �nitely many
elements of covering �n
 it follows that G�x� are subcompacta of F �x�
 x �
X�

�	



Method of coverings ��

Theorem ������ With the same notations as above and if all coverings
�n are open
 it follows that G � X �M is lower semicontinuous�

Theorem ���	�� With the same notations as above and if all coverings
�n are locally �nite
 it follows that H � X �M is upper semicontinuous and
H�x� are subcompacta of F �x�
 x � X�

Before proving these theorems let us describe the standard way of metriz�
ing a countable spectrum A � lim

	�
An� The metric on A is induced by the

metric on the Cartesian product
Q�
n��An of the discrete pairwise disjoint

index sets An�

d���n�� ��n�� �
X

fnj�n ���ng

��n and d���n�� ��n�� � � �

The distance d between ��n� and ��n� is �small� if ��n� and ��n� coincide
for �large� family of indices� More precisely� d���n�� ��n�� � �

�m means that
�� � ��� �� � ��� � � � � �m � �m�

Proof of Theorem �����
I� Construction

Let for a xed x � X�
��� An�x� � f�n � An j x � Vn��ng�
��� A�x� � A � �Q�

n��An�x��� and
��� ����� � D���� � G�x�� for every �� � A�x��

We claim that then�
�a� An�x� is a nite set�
�b� A�x� is a compact space�
�c� � is a continuous map of the compact A�x� onto G�x�� and
�d� G�x� is compact�

II� Veri�cation

�a� This assertion means precisely that the covering �n is pointwisely nite�

�b� An�x� is a nite and hence a compact� closed subset of An� Therefore�Q�
n��An�x� is a compact subset of

Q�
n��An� So� we only need to check that

A is a closed subset of
Q�
n��An� To this end� let ��n� � �Q�

n��An�nA� This
means that pm��m��� � �m� for some m � IN�

Let U be the ���m����neighborhood of the point ��n� in the metric
d� Then ��n� � U implies that �� � ��� �� � ��� � � � � �m�� � �m���
i�e� pm��m��� � �m� Hence ��n� is an interior point of the di�erence
�
Q�
n��An�nA� i�e� A is closed�

�c� By the denition of the sets G�x�� we know that ��A�x�� � G�x�� We
show that � is uniformly continuous� To this end� let �� � ��n� � A�x��
�� � ��n� � A�x� and d���� ��� � ��m� i�e� �� � ��� � � � � �m � �m�
Then D���� � Wm��m � Wm��m � D����� From �MC�� we have that

��



�� Compact�valued selection theorem

��D����� D����� � ��m� i�e� �������� ������ � ��m� Theorem is thus proved�

Proof of Theorem �����
I� Construction

Let�
��� U be an open subset of the metric space �M���� and
��� x � G���U�� i�e� the set G�x� intersects with U �

We claim that then�
�a� There exists �� � ��n� � A�x� such that D���� � U �
�b� There exists an index N � IN such that WN��N � U �

�c� V � VN��N is a neighborhood of the point x such that V � G���U�� and
�d� G is lower semicontinuous at the point x�

II� Veri�cation

�a� Coincides with ��� from the Construction�

�b� Holds because the point y � D���� �
T
Wn��n is an interior point of U �

and due to �MC���

�c� �n are open coverings and hence VN��N is open neighborhood of x� From
the obvious inclusion VN��N � G���WN��N � we conclude that V � VN��N �
G���WN��N � � G���U��

Proof of Theorem �����

First� we observe that compactness of H�x� follows directly from the
fact that all coverings �n are locally nite� due to the way of proving the
compactness of G�x� in Theorem ������

I� Construction

Let�
��� S be a closed subset of the metric space �M���� and
��� x �� H���S��

We claim that then�
�a� There exists N � IN such that

inff��y� z� j y � H�x�� z � Sg 	 ��N �

�b� The set T �
SfCl�VN��N � j �N � AN and x �� ClVN��N g is closed in X�

�c� H���S� � T �
�d� x is an interior point of XnH���S�� and
�e� H���S� is closed in X� i�e� H is upper semicontinuous�

II� Veri�cation

�a� Holds because H�x�� S � �� see ���� and because of the compactness of
H�x��

��



Method of coverings ��

�b� All coverings �n � fVn��n j � � Ang are locally nite and therefore all
coverings fCl�Vn��n� j � � Ang are also locally nite� Hence T is a union of
locally nite family of closed sets and so �by Lemma ������ from x�� is closed�
�c� For every x� � H���S�� one can nd �� � ��n� � A such that x� �T
Cl�Vn��n� and D��

�� � S� Hence x� � Cl�VN��N � and WN��N �H�x� � ��
by �a� and the estimate diamWN��N � ��N � So� x �� Cl�VN��N �� i�e� x� � T �

�d� x � XnT � XnH���S�� Theorem is thus proved�
Third proof of Compact�valued selection theorem� Because of Theorems

������ ������ and ����� we only need to check that for a closed lower semi�
continuous mapping F � X �M of a paracompact space X into a complete
metric space M � the properties �MC����MC�� hold� Then the method of
coverings provides a solution�

However� the conditions �MC����MC�� have practically already been
veried for such a situation in the previous section �see Proposition �������
In fact� �i�� �ii�� �iii� of the conclusion of Proposition ����� give the an�
swer for a countable spectrum p � f�pn� An�g and for a sequence � � ��n�
of �locally nite open� coverings of the domain of F � Also� by the con�
struction in the proof of Proposition ����� �see ��� and ������ one can put
W n��

�n�� � D�f�n�x�n���� �
�n������ where �n � An� pn��n��� � �n� Hence�

diamW n��
�n�� 	 ��n������� � ���n��	�
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x�� FINITE�DIMENSIONAL SELECTION

THEOREM

�� Cn and LCn subsets of topological spaces

In Chapters x� and x� the selection problem was resolved for the zero�
�dimensional paracompact domain �x�� and for the paracompact domain �x��
of a lower semicontinuous mapping� The aim of the present chapter is to
nd a solution for at most �n ���dimensional paracompact domains� n �
f��� �� �� �� � � �g� More precisely� we shall give an answer to the following
question�

Question �	���� What conditions for a family LY of subsets of a
topological space Y are su�cient �and necessary� for every lower semiconti�
nuous mapping F of an arbitrary �n ���dimensional paracompact space X
into Y with values F �x� � LY to admit a continuous singlevalued selection�

A very natural restriction is that the answer to this question in the case
n � �� coincides with the results for the zero�dimensional domain �x���
Hence� we may assume that the range Y is completely metrizable and all
elements of the family LY are closed subsets of Y � Moreover� if we nd a
singlevalued selection f of F with F �x� � LY � then we cannot� in general�
expect that the values of selection f are also members of LY because the
implication �L � LY � y � L� � fyg � LY is in general� false� In order to
avoid such problems we shall assume in the sequel that the implication �L �
LY � y � L�� fyg � LY holds�

In order to shorten some formulations we introduce new terminology�

De�nition �	���� Let X be a class of topological spaces� Y a topological
space and LY a family of nonempty subsets of Y � We say that a selection
problem is solvable for the triple �X � Y�LY � if every lower semicontinuous
mapping F � X � Y � dened on an element X � X � with F �x� � LY � for
all x � X� admits a singlevalued continuous selection� We shall say that the
property Sel�X � Y�LY � holds�

For example� denote for every Banach space Y � the family of all its
nonempty closed convex subsets by LY � Then we can reformulate the results
of x� as follows�
�X is a paracompact space� �� �for every Banach space Y � the property

Sel�X�Y�LY � holds�
or shorter� if we denote by B the class of all Banach spaces�

Sel�X �B�L� �� X � P�
where P is the class of all paracompact spaces �recall that we consider only
T��spaces� and L associates the family LY to every Y � B�
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In a similar manner results of x� can be expressed as follows�
Sel�X � C�L� �� X � P��

where P� is the class of all zero�dimensional paracompact spaces� C is the
class of all complete metric spaces and L associates the family LY of all its
nonempty closed subsets to every Y � C�

So� if we denote by Pn�� the class of all at most �n  ���dimensional
paracompacta� then the main goal of this chapter is to nd an answer to the
following question

Sel�X � C� "� �� X � Pn�� �
For this purpose we continue by some more terminology�

De�nition �	���� A topological space Y is said to be n�connected� n �
f�g� IN� if every continuous mapping f of the m�dimensional �m 	 n� sphere
Sm into X is null�homotopic in Y � i�e� there exists a continuous mapping�
called a homotopy � h � Sm 
 ��� �� � X such that h�s� �� � f�s�� for all s �
Sm� and h�Sm 
 f�g� is a singleton� Notation� Y � Cn�

Here we denote the standard m�sphere in IRm��� centered at the origin
� � IRm�� by Sm� If we denote the closed ball in IRm�� with boundary Sm

by Dm��� then Denition ����� can be restated as follows� Y � Cn if every
continuous mapping from Sm into Y can be continuously extended to a map
from Dm�� into Y � m 	 n�

De�nition �	���� A topological space Y is said to be locally n�connected
if for every point y � Y and for every neighborhood W �y� of y� there exists
a neighborhood V �y� such that V �y� �W �y� and every continuous mapping
of the m�sphere Sm into V �y� is null�homotopic in W �y�� m 	 n� Notation�
Y � LCn�

The following agreement is useful� Every nonempty topological space is
�����connected and locally �����connected�

The classical Kuratowski�Dugundji extension theorem �see ����� shows
that the properties Y � LCn and Y � Cn of a space Y are directly related
to the existence of a solution of the problem of continuous extensions of
mappings into the metric space Y �

Theorem �	�	�� For every n � f��� �g � IN and every metric space Y 

the folowing assertions are equivalent�
��� Y � LCn �respectively
 Y � LCn and Y � Cn�� and
��� Every continuous mapping g � A � Y of a closed subset A of a metric

space X with dimX�XnA� 	 n �
 has a continuous extension f � U �
Y over some open neighborhood U of A �respectively
 has a continuous
extension f � X � Y over X��

Here� the inequality dimX�XnA� 	 n  � means that for every closed
�in X� subset B of XnA� the inequality dimB 	 n � holds� Having in mind

��
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that each extension problem is a special case of some selection problem� we
can also say that the purpose of this chapter is to nd a suitable �selection�
analogue of the Kuratowski�Dugundji extension theorem�

We now introduce a new notion which describes the fact that the mem�
bers of a family L of subsets Y are locally n�connected with the same local
�degree� of n�connectedness�

De�nition �	�
�� A family L of subsets of a topological space Y is said
to be equi�locally n�connected if for every L � L� every point y � L and every
neighborhood W �y� of y� there exists a neighborhood V �y� of y such that
V �y� � W �y�� and for every member L� � L intersecting with V �y�� every
continuous mapping of the m�sphere Sm into L� � V �y� is null�homotopic in
L� �W �y�� m 	 n� Notation� L � ELCn�

Clearly� for L � fLg� Denition ���
� yields Denition ������ Sometimes
the notation V �y�

n
��W �y� is useful for a pair �V �y��W �y�� from Denition

���
�� We also dene that every family L is equi�locally �����connected�
Theorem �	���� Let Y be a metric space
 L a family of its nonempty

subsets such that �L � L� y � L� � �fyg � L� and suppose that the property
Sel�Pn��� Y�L� holds� Then�
�A� Every member L of L is n�connected
 L � Cn� and
�B� L is an equi�locally n�connected family
 L � ELCn�

Proof of �A��
I� Construction

Let�
��� g � Sm � L� m 	 n� be a continuous mapping and let y � L� and
��� Dene a multivalued mapping F � Dm�� � Y by

F �tx� �

�������
fg�x�g� t � �

fyg� t � �

L� � � t � �

� x � Sm

We claim that then�
�a� F is a lower semicontinuous mapping from the paracompact space X �

� Dm�� with dimX 	 n � and with values F �x� from L� and
�b� There exists a continuous selection f of F and f is the desired extension

of g�

II� Veri�cation

�a� Holds because of continuity of g and closedness of Sm�f�g in Dm���
and

�b� Holds because of the property Sel�Pn��� Y�L��

��
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Proof of �B��
I� Construction

Suppose� to the contrary� that L �� ELCn� i�e� suppose that there exists
�see the negation of Denition ���
���
��� L � L� y � L� W �y� a neighborhood of y�
��� Vi � D�y� ri� �W �y�� with ri � �� i � IN�
��� Li � L with Li � Vi � �� and
��� fi � S

mi � Li � Vi� mi 	 n� such that fi is not null�homotopic in Li �
W �y��
Now� let�

��� X be the union in IRn�� of the singleton f�g and a sequence fDig of
pairwise disjoint closed balls� dimDi � mi � with � �� Di� with centers
converging to the origin � � IRn�� and with radii converging to zero�

�
� A be the closed subset of X equal to the union of f�g and the boundaries
Si of balls Di �one can consider fi in ��� as a mapping from Si into Li �
Vi�� and

��� F � X � Y be a multivalued mapping dened by

F �x� �

�������
fyg� x � �

ffi�x�g� x � Si

Li� x � DinSi
We claim that then�

�a� F �x� � L� for x � X�
�b� A is a closed subset of X with dimX 	 n ��
�c� F is lower semicontinuous�
�d� The restriction F jA has a selection g�
�e� There exists a selection f of F which extends g �see �d��� and
�f� There exists i � IN such that f�Di� � Li �W �y�� where f is from �e��

It remains to observe that �f� contradicts ��� because f jDi
extends fi

from the sphere Si onto the ball Di�

II� Veri�cation

�a� Follows by the property �L � L� y � L�� �fyg � L��
�b� Is obvious since A is closed in X� the inequality dimX 	 n  � is also
evident since dimDk � k� k � IN�
�c� Follows because A is closed in X� fi are continuous and because fVig is
a local countable basis at the point y � Y �

�d� Is trivial� because F jA is singlevalued� by ����
�e� Follows because Sel�Pn��� Y�L� holds�
�f� Follows due to the continuity of f there exists a neighborhood G of the
origin � such that f�G� �W �y�� So� it su�ces to nd i � IN such that Di �
G� Theorem ����� is thus proved�
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Two remarks are in order� First� note that we have used a very �small�
subclass of the class Pn��� namely� the subclass of all balls� spheres and all
convergent sequences of balls and spheres� Therefore� the conclusion that
�for every L � L� L � Cn� and that �L � ELCn� can really be derived from
the assumption that the property Sel�Compn��� Y�L� holds� where Compn��
is the class of all compact metric spaces with dim 	 n �� Second� note that
in the proof of part �B� of Theorem ����� it su�ces to extend g � F jA only
over some open set U � A in order to obtain a contradiction� Indeed� in such
case change is needed only in the proof of point �f��
�f�� �� � � nd i � IN such that Di � U �G��

The last remark gives a way to set apart the properties �for every L � L�
L � Cn� and �L � ELCn� as necessary conditions for a solution of selection
problems� Roughly speaking� the property �L � ELCn� is necessary for the
existence of local selections whereas the properties �for every L � L� L � Cn�
and �L � ELCn� are together necessary for the existence of global selections�

The main result of this chapter states that the properties �L � ELCn�
and �for every L � L� L � Cn� are not only necessary but also su�cient for
solvability of selection problems�

Theorem �	��� �Finite dimensional selection theorem� Global version��
Let Y be a completely metrizable space
 L a family of its nonempty closed
subsets
 and n � f��� �g � IN� Suppose that L is an equi�locally n�connected
family and that each member of L is n�connected� Then the selection problem
is solvable for every triple �Pn��� Y�L��

�L � ELCn� � ��L � L� L � Cn�� Sel�Pn��� Y�L� �

The proof of this theorem is very di�cult� We have divided it into six
steps� Every detail of every step can be made su�ciently elementary� But
to collect all details and obtain the result we must traverse a very long road�
The next section is devoted to the description of the plan of the proof� Then
we realize this plan� step by step in Sections ���� Before that we discuss a
metric approach to the notion of equi�locally n�connectedness�

Theorem �	��� For every n � IN and every metric space �Y� ��
 the
following assertions about a family L of its nonempty subsets are equivalent�
�A� There exists a function � � ������ ����� such that for every � 	 � and

for every member L � L
 each continuous mapping f � Sm � L of the
m�sphere Sm
 m 	 n
 of diameter diamf�Sm� less than ����
 is null�
�homotopic in L
 with respect to a homotopy h � Sm 
 ��� �� � L having
the diameter diamh�Sm 
 ��� ��� less than ��

�B� There exists a nondecreasing function �� � ����� � ����� such that
����� 	 �
 for all � 	 �
 and such that for �� the conclusion of �A� holds�
and

��
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�C� There exists a continuous strongly increasing function �� � ����� �
����� such that ����� 	 �
 for all � 	 �
 and such that for �� the
conlusion of �A� holds�

Proof� The implication �C�� �A� is evidently true� To prove �A�� �B�
we dene ����� � supfminft� ��t�g j � � t 	 �g� Clearly� ����� 	 � and �� �
����� � ����� is a nondecreasing function� Furthermore� if g � Sm � L�
L � L� with diamg�Sm� � ����� then diamg�Sm� � ��t�� for some � � t 	 ��
Due to �A�� g�Sm� is null�homotopic in L on a subset of diameter � � t 	 ��
So� �B� is proved�

To prove �B�� �C� it su�ces to show that every nondecreasing function
�� � ����� � ����� admits a continuous strongly increasing minorant �� �
������ ������ �� 	 ��� To this end� let � � � � a�� � a�� � a� � a� � a� �
� � � be a monotone increasing �two�sided� sequence of positive numbers with
a�n � � and an ��� n�� and let bn � ���an�� n � ZZ� Then fbngn�ZZ is
a nondecreasing sequence of positive numbers�

Let us consider the case when both sets fbngn�� and fbngn
� are innite�
Then� passing to subsequences and using a reindexation� we can assume that
fbngn�ZZ is an increasing sequence� So� it su�ces to put ���an� � bn�� and
dene �� over �an� an��� in the linear fashion� If in the opposite case� fbngn��
or fbngn
� are nite� then for some N � IN�
� � � � b�N�� � b�N�� � b�N � b�N�� or b�N�� � bN � bN�� � bN�� � � � �

In both of these cases� a function �� can be constructed directly in a similar
manner� Theorem ���	� is thus proved�

De�nition �	����� A family L of subsets of a metric space �Y� �� is
said to be uniformly equi�LCn if for L� the assertion �A� �or �B�� or �C�� of
Theorem ���	� hold� Notation� L � UELC n�

If we want to emphasise that L is a UELCn family for a given function
� � ����� � ����� then we use the notation L � ���UELC n� As a rule� we
will always assume that � is a continuous and strongly increasing function
with ���� 	 � �see Theorem ���	��C��� Note also� that if all members of the
���UELC n family L are n�connected then one can assume that ���� � ��
i�e� one can consider the function � as a function � � ������ ����� over the
extended ray ����� � f�g�

Clearly� the property �L � UELCn� implies the property �L � ELCn�
but the converse is not necessary true� it su�ces to consider an example of
a LC��space Y � IRnf�g which is not a uniformly LC��space�

However� for a real proof the notion of a UELC n family is more conve�
nient than the notion of an ELCn family since it uses the standard Cauchy
��� techniques for continuous mappings� So� we in fact derive Theorem �����
from the following selection theorem with stronger �uniform� assumptions�

However� the assertion of Theorem ������ is also stronger� It gives an
improvement of ��selections of multivalued mappings� Roughly speaking� it
says that from every ��selection f� of a given multivalued mapping F one can
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obtain an exact selection f of F � with some controlled estimate for distance
between f� and f �

We recall that a continuous singlevalued mapping f� � X � Y into a
metric space Y is said to be an ��selection of a given multivalued mapping
F � X � Y if dist�f��x�� F �x�� � � for all x � X� Sometimes we also use the
term �f� is ��close to F��

Theorem �	���� �Shift selection theorem�� For every mapping
� � ����� � ����� and for every n � f��� �g � IN
 there exists a mapping
� � ������ ����� with the following property�
If F � X � B is a closed�valued lower semicontinuous mapping of a paracom�
pactum X with dimX 	 n � into a Banach space B
 the family fF �x�gx�X
is ���UELC n and g is continuous �����selection of F for some � 	 �
 then
there exists a continuous selection f of F which is ��close to g�

Sometimes� we shall use the notation f��
�
F for the fact that f� is an

��selection of F � Also� we sometimes use a nonstandard notation �f � F�
for the fact that f is a continuous singlevalued selection of F � Hence� we can
summarize the statement of Theorem ������ as follows�

�� � ������ �������g �
���	

F �� �f �f � F � f �
�
g�� �

Note� that for a convex�valued mapping F one can simply put ���� � � �see
Theorem �����$$��

We derive from Theorem ������ not only the global version of the nite�
�dimensional selection theorem �see Theorem ������ but also its local and
relative versions�

Theorem �	���� �Finite�dimensional selection theorem� Local version��
Let Y be a completely metrizable space and L an equi�locally n�connected
family of its nonempty closed subsets� Then for every lower semicontinuous
mapping F from at most �n ���dimensional paracompact space X into Y 

with F �x� � L
 x � X
 every closed subset A � X
 and every continuous
selection g of F jA
 there exist an open neighborhood U of A and a continuous
selection f of F jU which extends g�

Theorem �	���� �Finite�dimensional selection theorem� Relative ver�
sion�� Let Y be a completely metrizable space and L an equi�locally n�con�
nected family of its nonempty closed subsets� Then for every lower semi�
continuous mapping F from a paracompact space X into Y 
 with F �x� � L

x � X
 every closed subset A � X with dimX�XnA� 	 n �
 and every con�
tinuous selection g of F jA
 there exist an open neighborhood U of A and a
continuous selection f of F jU which extends g� Moreover
 if in addition all
values of F �x� are n�connected
 then one can take U � X�

In this theorem� as in the Kuratowski�Dugundji theorem� the inequality
dimX�XnA� 	 n  �� means that dimB 	 n  �� for every closed �in X�
subset B � XnA� Observe� that as a special case of Theorem ������� we
obtain the Kuratowski�Dugundji theorem for the complete range� it su�ces
to put F �x� � Y � x � X�
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�� Shift selection theorem� Sketch of the proof

In Sections ��
� we x a strongly increasing continuous function � �
����� � ����� with ���� 	 �� � 	 �� and x an integer n � f��� �g � IN�
Also� all singlevalued mappings will be assumed to be continuous�

First� we formulate a weak version of Shift selection theorem �������
which is obtained by a replacement of an exact selection f of F by a
��selection of F with an arbitrary precision � 	 ��

Theorem �	���� �Weak shift selection theorem�� There exists a map�
ping � � ������ ����� with the following property�
If F � X � B is a closed lower semicontinuous mapping of a paracompact
space X with dimX 	 n  � into a Banach space B
 family fF �x�gx�X is
���UELC n and g is a �����selection of F 
 then for every � 	 �
 there exists
a ��selection f of F which is ��close to g�

�� � ������ ������� 	 � ��g �
���	

F �� �f ��f �
	
F � � �f �

�
g����

Our rst step of the reduction is to show that Theorem ������ is a
corollary of Theorem ������� The second step of the reduction states that
a ��selection f of F in Theorem ������ can be obtained as a composition of a
canonical mapping p from X into the nerve N �U� of a locally nite covering
U of X and a suitable continuous mapping u � N �U�� B�

X
f� B

p � � u
N �U�

f � u � p

See x��� for the denition of a canonical mapping�
For a simplex  of the nerve N �U�� the notation T

 is frequently

used for the set
Tk
i�� Ui � X� where U�� U�� � � � � Uk are all vertices of �

i�e� U�� U�� � � � � Uk are elements of the covering U with nonempty common
intersection�

Theorem �	��	� �Nerve�weak shift selection theorem�� There exists a
mapping � � ������ ����� with the following property�
If F � X � B is a closed�valued lower semicontinuous mapping of a paracom�
pact space X with dimX 	 n � into a Banach space B
 family fF �x�gx�X
is ���UELC n and g is a �����selection of F 
 then for every � 	 �
 there ex�
ist a locally �nite open covering U of X of order 	 n � and a continuous
mapping u � N �U� � Y 
 such that for every simplex  � N �U�
 with ver�
tices U�� � � � � Uk
 the set u�� is ��close to the point g�x� and is ��close to the

set F �x�
 whenever x � Tk
i�� Ui
 i�e� the set u�� lies in the intersection of

D�g�x�� �� �D�F �x�� ���

�� � ������ ������� 	 �
�
�g �

���	
F �� ��U � u� ��u�

	
F � � �u�

�
g��
�
�

��
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A mapping u � N �U� � B will be constructed as a nal result of some
nite sequence of extensions�
u� � N ��U��� B� N ��U�� is ��skeleton of N �U��
u� � N ��U�� � B� N ��U�� is ��skeleton of N �U��� u� is an extension of u�
and U� is a renement of U�

���
u � un�� � N �U� � N n���Un��� � B� un�� is an extension of un and Un��
is a renement of Un�

The inductive step in nding such a sequence u�� u�� � � � � un�� of exten�
sions is based on Controlled extension theorem ������� Before its formula�
tion� let us note that in Nerve�weak shift selection theorem ������ we state
a control for images u�� of simplices  of N �U�� via two parameters� First�
we estimate the sizes of u�� by a number � 	 � and� second� we estimate
the nearness of u�� to a suitable value F �x� by a number � 	 ��

A natural question arises� If we know a similar �two parametric� control
at the i�th step of the construction of u� i�e� for a mapping ui � N i�Ui� �
B� what can we then say about the �i ���th step" Roughly speaking�
Controlled extension theorem ������ states that for a xed �two parametric�
control at the �i ���th step one can always nd a su�cienly small �two
parametric� control at the i�th step� which guarantees the xed control at
the �i ���th step�

De�nition �	��
�� Let F � X � Y be a multivalued mapping into a
metric space Y � U a locally nite covering of X and u � N i�U� � Y a con�
tinuous mapping of the i�th skeleton of the nerve of the covering U into Y �
We say that the pair �U � u� is F �controlled in dimension i by a pair �c� d�
of positive numbers c and d if for every simplex  of N �U� and for every
x � T�

�i� diamu� �N i�U�� � c� and

�ii� uj��N i�U	�
d
F �x�� i�e� u� �N i�U�� � D�F �x�� d��

Notation� �U � u� i��
F
�c� d�� Of course� for a xed multivalued F we�

as a rule� omit index F under the sign ���� Originally� Michael used the
term �� � � �U � u� is the couple of type hc� di � � �� with implicit parameters i
and F � In ����� a logically stricter expression �� � � condition hU � u� i� c� di� � � �
was chosen �also with an implicit parameter F �� The common point here is
that Denition ����
� deals with the predicate over six variables F � U � u� i� c�
and d� We choose the form �� � �F �controlled by� � � � as more expressive and
less formal�

De�nition �	����� Let �U � u� and �V� v� be two pairs of locally nite
open coverings U and V of a topological space X and continuous mappings
u and v of their nerves N �U� and N �V� into a topological space Y � We say
that �V� v� is a re�nement of �U � u� if for every V � V� there is U � U such
that U � V and u�U� � v�V �� Notation� �U � u� � �V� v��

��



Shift selection theorem� Sketch of the proof ��

Theorem �	���� �Controlled extension theorem�� There exist mappings
� � ����� � ����� and 
 � ����� 
 ����� � ����� with the following
property�
If � 	 i 	 n  � and X�B�F 
 fF �x�gx�X are as in Theorem ������ and a
pair �U � u� is F �controlled by a pair ������ 
��� ��� in dimension i
 then there
exists a re�nement �V� v� of the pair �U � u� which is F �controlled by the pair
��� �� in dimension i ��

As a special case of Denition ����
�� one can consider a case when F �x�
is identically equal to a subset E of a metric space Y � In this situation we
can talk about E�control by two parameters�

De�nition �	���� Let E be a subset of a metric space Y and f � X �
Y a singlevalued mapping� We say that the pair �X� f� is E�controlled by
a pair �c� d� of positive numbers if diamf�X� � c and f �

d
E� i�e� f�X� �

D�E� d��
Notation� �X� f��

E
�c� d��

So Controlled extension theorem ������ is based on the following special
case�

Theorem �	���� �Controlled contractibility theorem�� Let E be a
nonempty ���ULCn subset of a Banach space B� Then there exist mappings
� � ����� � ����� and � � ������ � ����� such that for every i 	 n
and every mapping g � Si � B of the i�dimensional sphere Si into B
 the
E�control of the pair �Si� g� by the pair ������ ���� ��� for some positive � and
�
 implies the existence of an extension f � Di�� � B of g onto the closed
�n ���dimensional ball Di�� such that the pair �Di��� f� is E�controlled by
the pair ��� ���

��Si� g��
E
������ ���� ���� � �f �f � ext�g� � �Di��� f��

E
��� ��� �

Controlled contractibility theorem ������ follows from two lemmas� The
rst one� called Shift lemma ������� is exactly Shift selection theorem ������
with the mapping F � X � B identically equal to a ���ULCn subset E of B�
Simplicial extension lemma ������ states that for every simplicial complex S
with dimS 	 n �� a su�ciently small control for diameters of images u��
S���  a simplex in S� implies a xed control for images v��� under some
extension v � S � E of u � S� � E� Finally� we remark that in the proof of
Theorem ������ two additional technical lemmas are used besides Theorem
������� Compact lemma ����	� and Marked renement lemma ������� We
present the sketch of the proof of Shift Selection Theorem ������ in the
diagram below�

In this diagram the main di�culties are in the passing from level � to
level I� i�e� to the proof of Controlled extension theorem ������ which forms
�� � � the hard core of the whole proceedings� ���	��

��
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IV Shift selection theorem �������

�� � ������ �����
�g �

���	
F �� �f ��f � F � � �f �

�
g���ww

III Weak shift selection theorem �������

�� � ������ ����� �� 	 �
�g �

���	
F �� �f ��f �

	
F � � �f �

�
g���ww

II Nerve�weak shift selection theorem �������

�� � ������ ����� �� 	 �
�g �

���	
F �� ��U � u���u�

	
F � � �u�

�
g���ww

I Controlled extension theorem �������

�� � ������ ����� �
 � ������ � ����� �i 	 n �
��U � u� i��

F
������ 
��� ��� �

� ��V� v���V� v� i  ���
F
��� �� � �U � u� � �V� v���ww

� Controlled contractibility theorem �������

�� � ������ ����� �� � ������ � ����� �i 	 n �
��Si� g��

E
������ ���� ��� � �f �f � ext�g� � �Di��� f��

E
��� ����ww

Shift lemma ������ �� Shift selection theorem with constant map�
ping�

F � X � B� F �x� � E� �ww
Simplicial extension lemma �������

�� � ������ ����� �S� dimS 	 n �
��S� u� �� � ������ �v��v � ext�u�� � �S� v� � ��

��



Proofs of main lemmas and Controlled contractibility theorem �

�� Proofs of main lemmas and Controlled contractibility
theorem

Our rst lemma shows that in order to reach some control � 	 � of the
sizes of the images of simplices� it su�ces to establish a suitable control in
dimension �� As before� for every simplicial complex S we denote by S�i	 its
i�skeleton�

Lemma �	���� �Simplicial extension lemma�� Let E be a nonempty
���ULCn space� Then there exists a continuous strongly increasing function
� � ������ ����� such that for every � 	 �
 every simplicial complex S of

dimension 	 n �
 and every mapping u � S��	 � E with diam� � S��	� �
� ����
 whenever  is a simplex of S
 there exists a continuous extension
v � S � E of u such that diamv�� � �
 whenever  is a simplex of S�

��S� u� �� � ������ �v ��v � ext�u�� � �S� v� � �� �

The inductive step of the proof involves the following sublemma� in which
inequality �S� uk� k� � s means that uk maps S�k	 into E in such way that

diamuk� � S�k	� � s� whenever  is simplex of S�
Sublemma �	����� Under the above assumptions
 the following impli�

cation holds
 for every t 	 � and every i 	 n ��

��S� ui� i� � ��t���� � �ui�� ��ui�� � ext�ui�� � �S� ui��� i �� � t� �

Proof�
I� Construction

Let�
��� # be an �i ���dimensional simplex of S�

We claim that then�
�a� The image of the restriction uij�� has the diameter less than ��t���� and
�b� There exists a continuous extension ui��� � #� E of the mapping uij�� �

�#� E such that diamui��� �#� � t���
Let�

��� A map ui�� � S�i��	 � E be dened as a �union� of all extensions ui���

over all �i ���dimensional simplices #� i�e� ui��j� � ui��� �
We claim that then�

�c� ui�� is well�dened continuous extension of ui � S�i	 � E� and

�d� For every simplex  � S� the estimate diamui��� � S�i��	� � t holds�

II� Veri�cation

�a� Holds� because �# � # � S�i	 and �S� ui� i� � ��t����

��



�� Finite�dimensional selection theorem

�b� Is a direct corollary of the fact that E is a ���ULCn�space�

�c� For two di�erent �i  ���dimensional simplices # and r we have that
# � r � S�i	 and hence both continuous extensions ui��� and ui��r coincide
with the continuous mapping ui over the intersection # �r�
�d� Let �S�i��	 � #��#��� � ��#m� for some �i ���dimensional simplices
#j� If x� y �  � S�i��	 then x � #k and y � #� for some � 	 k� � 	 m�
Therefore ui���x� � ui���#k� and ui���y� � ui���#�� But u

i���#k� �
� t�� and ui���#� � t��� see �b�� Having that diam�ui���#k � #�� 	
	 diam�ui� � S�i	�� � ��t��� 	 t�� we obtain that dist�ui���x�� ui���y�� �

� t��  t��  t�� � t� Hence diamui��� � S�i��	� is less than t� due to the
compactness of  � S�i��	�
Proof of Simplicial extension lemma ������

It su�ces to put

���� � ��� � � ��������������� � � ��� �z �
n�� times

and use Sublemma ������� starting from i � n� t � � and descending to i � ��
Note that ���� 	 � and that � is a continuous strongly increasing function
because we assumed that such is � �see beginning of Section ���

In the following lemma we replace an ��approximation of a given ULCn

set by some mapping into this set and additionally� estimate the distance
between the initial data and the result� We emphasize that this is a special
case of Shift selection theorem ������� for a constant mapping F �x� � E�
x � X�

Lemma �	���� �Shift lemma�� Let E be a nonempty ���ULCn subset of
a Banach space B� Then there exists a map � � ����� � ����� such that
for every �n ���dimensional paracompact space X and every g � X � B
with dist�g�x�� E� � ����
 x � X
 there exists a mapping f � X � E which
is ��close to g�

�� � ������ �������g �
���	

E�� �f ��f � E� � �f �
�
g����

Here we temporarily use a nonstandard abbreviation f � E for a mapping
f � X � E� E � B�

Proof� In fact we shall prove that for every t 	 ��

�g�
t
E�� �f ��f � E� � �f �

��t	
g��

for some continuous strongly increasing function � � ����� � ����� and
then we shall let � � ����

��



Proofs of main lemmas and Controlled contractibility theorem ��

I� Construction

Let�
��� g�

t
E�

��� fG�g��A be a covering of B by open �t����balls�
��� U be a locally nite open renement of order 	 n � of the covering

fg���G��g��A of X� and
��� p � X � N �U� be a canonical map associated with the covering U �

We shall construct f as a composition v�p� for some continuous mapping
v � N �U�� Y � To do this� let�
��� xU be an arbitrary point from U � U � U � and
�
� u�U� be an arbitrary point from E such that

g�xU ��
t
u�U��

We claim that then�
�a� u�U� exists and diamg�U� � t� for every U � U �
�b� The pair �N �U�� u� is controlled by �t in dimension �� i�e� ��u�U�� u�U ��� �

�t if U � U � � ��
�c� There exists a continuous extension v � N �U� � E of the map u such

that the pair �N �U�� v� is controlled by �����t�� i�e� diamv�� � �����t�
for every simplex  � N �U�� where � is from Lemma ������� and

�d� The values of the composition f � v � p lie in E and f �
��t	

g with ��t� �

� ������t�� i�e� to complete the proof one can put ���� � t � ������ �
� �

���
�
���� � 	 ��

II� Veri�cation

�a� Follows because g�
t
E and since diamg�U� 	 diamG� � t� for some � �

A �see �����

�b� Follows because u�U��
t
g�xU � � g�U�� u�U ���

t
g�xU �� � g�U �� and since

g�U� and g�U �� are two intersecting subsets of B with diameter � t�
�c� Is a direct corollary of �b� and Simplicial extension lemma �������
�d� Note that f�x� � E� because v�p�x�� � E� To estimate ��f�x�� g�x�� we

note that t � �t 	 �����t� and so for x� xU � U we have

��f�x�� g�x�� 	 ��f�x� u�U��  ��u�U�� g�xU ��  ��g�xU �� g�x�� �

� �����t�  t t � ������t� �

Lemma ������ is thus proved� Note that � is also a continuous strongly
increasing function�

Notice that in Shift lemma ������ an initial �����approximation g � X �
B of the set E � B and the shift f of g into the set E are ��close� but we

��
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made no move of g into f � In the following theorem we use a fact that in a
Banach space B� values f�x� and g�x� can be connected by a segment�

Roughly speaking� this theorem states that �small� spheres are con�
tractible not only in a given ULCn subset E of a Banach space B but such
a contractibility can be made �near� the subset E �see Theorem ��������

Controlled contractibility theorem �	����� Let E be a nonempty
���ULCn subset of a Banach space B� Then there exist mappings � �
������ ����� and � � ������ � ����� such that for every i 	 n�

��Si� g��
E
������ ���� ���� � �f �f � ext�g� � �Di��� f��

E
��� ��� �

Proof� By Lemma ������� we nd a shift %g of g into E� Such a shift can be
shrunk into a point� because E is ULCn set� Next� we linearly connect g with
%g and thus obtain a map f � Di�� � B� We must be careful however� with
controlled estimates� Let � be the strongly increasing continuous function
from the Shift lemma �������

So� let �Si� g��
E
�t� s�� i�e� g � Si � B with diamg�Si� � t and g�

s
E�

E � B� First� we choose s small enough� so that ����s� is dened� i�e� s �
��� sup��� Then there exists h � Si � E with h �

����s	
g� by Lemma �������

Clearly� diamh�Si� � t �����s�� Next� we choose t and s so small that
��� is dened at the point t �����s�� i�e� t �����s� � ��� sup ��� Then� by
the ���ULCn property of the set E� there exists an extension �h � Di�� � E

of the mapping h with diam�h�Di��� � ����t �����s���

One can also dene the linear homotopy �h�z� r� � �� � r�g�z�  rh�z��

z � Si� � 	 r 	 �� Then the composition f of the homotopies �h and �h
gives a contraction of the set g�Si� into a point in ����s��neighborhood of
the set E� For the diameter of such homotopy we have the obvious upper
estimate� diam�h�Di��� �����s�� So� we nd a control for the pair �Di��� f�
by letting� �������

t �����s� 	 ������ � diam�h�Di��� � ���

���  �����s� 	 �

����s� 	 �

Hence� if we simply choose t � ��������� then it su�ces to have��������
�����s� 	 ��������

�����s� 	 ���

s 	 ����

or

�������
s 	 �����������

s 	 ������

s 	 ����

��



From Nerve�weak shift selection theorem to Shift selection theorem ��

In order to get an answer we set s � ���� �� to be an arbitrary positive
number such that

����s� 	 minf�� ���� ��������g � minf�� ��������g
and we let t � ���� � ��������� Note� that the formula implies that � is
also a continuous and strongly increasing function� Theorem ������ is thus
proved�

In the sequel we shall change the linear order of the strategy ���� �I��
� � �� �IV� above�

�� From Nerve�weak shift selection theorem to Shift selection
theorem

If in Shift selection theorem ������ we replace the exact inclusion f�x� �
F �x�� i�e� the fact that f is a selection of F � by the approximative inclusion
f �

	
F � i�e� f is a ��selection of F with an arbitrary precision � 	 �� then

we obtain Weak shift selection theorem ������� Such a replacement of some
exact statement by its approximate version is frequently used in geometric
topology�

Proposition �	��	�� Theorem ������ is a corollary of Theorem �������

Before a formal proof� we reproduce a part of the main diagram �see the
end of Section ��� We have that

�� � ������ ����� �� 	 �
�g �

���	
F �� �f ��f �

	
F � � �f �

�
g��

and we want to show that

�� � ������ �����
�g �

���	
F �� �f ��f � F � � �f �

�
g�� �

I� Construction

Let�
��� � 	 � be a xed number and f�ig a sequence of positive numbers such

that
P

i �i � ����
��� � � ����� � ����� be as in the hypotheses and with ��t� 	 t� t 	 ��

and
��� f� � g be a ������selection of F and ���� � ������

We claim that then�
�a� There exists a ������selection f� of F which is ���close to g�

��
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�b� If fi is a ���i����selection of F which is �i�close to fi��� then there exists
a ���i����selection fi�� of F which is �i���close to fi�

�c� The functional sequence f�� f�� f�� � � � dened by �a� and �b� is a uniformly
Cauchy sequence and hence we can pointwisely dene a mapping f�x� �
� lim

i��
fi�x�� and

�d� The mapping f from �c� is the desired selection of F which is ��close
to g�

II� Veri�cation

�a� Is due to Theorem ������ with � � ����� and � � ���

�b� Is due to Theorem ������ with � � ���i��� and � � �i���

�c� Follows because dist�fi�x�� fi���x�� � �i���
P

i �i � � and by the
completeness of B�

�d� Clearly� dist�f�x�� g�x�� � dist�f�x�� f��x�� 	P
i �i � ��� � ��

To see that f�x� � F �x�� it su�ces to pick gi�x� � F �x� with
dist�fi�x�� gi�x�� � ���i� 	 �i� Then dist�gi�x�� gi���x�� � �i  ��i�� and
hence fgi�x�g is a Cauchy sequence in a closed subset F �x� of a Banach
space B� Hence gi�x� � h�x� � F �x�� Proposition ������ is thus proved�
Note that� more specically� one can put �i � ���i�� and ���� � ����� �
� �������

We now pass to nerves of open coverings of paracompact spaces� A con�
struction of a mapping f with some suitable properties over a paracompact
space X is a di�cult task� A standard way to avoid this obstacle is to con�
sider appropriate covering U of X and to pass to a construction of a map�
ping g of the nerve N �U� of the covering U � This construction looks more
approachable since one can construct g as a result of extensions from N ��U�
onto N ��U�� then to N ��U�� etc� The nal step is to put f � g � p� where
p � X � N �U� is a canonical mapping from X into the nerve N �U�� For a
denition of nerve N �U� and p see x���� Let us demonstrate this method�

Proposition �	��
�� Weak shift selection theorem ������ is a corollary
of Nerve�weak shift selection theorem �������

Proof� We have that �see Theorem �������

�� � ������ ����� �� 	 �
�g �

���	
F �� ��U � u���u�

	
F � � �u�

�
g��

and we want to show that �see Theorem �������

�� � ������ ����� �� 	 �
�g �

���	
F �� �f ��f �

	
F � � �f �

�
g�� �

So� we claim that � for Theorem ������ can be chosen exactly the same as �
in Theorem ������� In fact� x numbers � 	 �� � 	 � and a �����selection g

�		



From Controlled extension theorem to Nerve�weak shift selection�� theorem ���

of F � By Theorem ������� we nd a locally nite covering U of order 	 n �
of X and a continuous mapping u � N �U�� B such that u�� � D�g�x�� ���
D�F �x�� ��� whenever x � T � Let f � X � B be dened as the composition
u � p with the canonical mapping p � X � N �U�� Then for every x � X� we
have that f�x� � D�g�x�� �� �D�F �x�� ��� In fact� let x � X and U�� � � � � Uk
be all elements of U which contain the point x� Then p�x� is a point of the
simplex  � N �U� with vertices U�� � � � � Uk and x � Tk

i�� Ui �
T
� Hence

f�x� � u�p�x�� � u�� � D�g�x�� �� �D�F �x�� �� �
Proposition ����
� is thus proved�

�� From Controlled extension theorem to Nerve�weak shift
selection theorem

As explained above� a desired selection f of F will be constructed as a
composition u � p for some suitable mapping u � N �U�� B� We construct a
mapping u as the nal result of some nite sequence of extensions

u� � N ��U��� B

u� � N ��U��� B� u� � ext�u��

���
���

u � un�� � N n���Un���� B� un�� � ext�un�� N n���Un��� � N �Un���
The inductive step in nding such a sequence u�� u�� � � � � un�� of extensions
is based on Controlled extension theorem ������� i�e� �we use the short
formulation� based on the fact that

�� � ������ ����� �
 � ������ � ����� �i 	 n �

��U � u� i��
F
������ 
��� ���� � ��V� v���V� v� i  ���

F
��� �� � �V� v� � �U � u��

For the base of induction we need the following lemma�

Lemma �	����� Let X�B�F 
 fF �x�gx�X 
 be as in Theorems ������

������
 let t and s be positive numbers and g any t�selection of F 
 i�e� g�

t
F �

Then there exists a covering U� of X of order 	 n  � and a mapping u� �
N ��U�� � B
 such that u��U��

t
g�x� and u��U��

s
F �x�
 whenever x � U 


U � N ��U�� � U��
In other words� the pair �U�� u�� is F �controlled by the pair �t� s�

in dimension � with the following specication� The control assumption
diamu��U� � t is meaningless in dimension � and is replaced by the assump�
tion u��U��

t
g�x��

�	�
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Proof�
I� Construction

Let for every x � X�

��� yx � D�g�x�� t� � F �x�� and
��� Wx � g���D�yx� t�� � F���D�yx� s���

We claim that then�

�a� D�g�x�� t� � F �x� � �� i�e� yx in fact exists� and
�b� fWxgx�X is an open covering of X�

Let�

��� U� be an open locally nite covering of order 	 n  � which renes
fWxgx�X � and

��� For every U � U�� the point x�U� be an arbitrary element of X such that
U �Wx�U	 and let u��U� � yx�U	�

We claim that for every x � U � U � U��
�c� u��U��

t
g�x�� and

�d� u��U��
s
F �x��

II� Veri�cation

�a� Follows because g�x��
t
F �x��

�b� Follows by continuity of g and lower semicontinuity of F and since
x �Wx�

�c� g�x� � g�U� � g�Wx�U	� � D�yx�U	� t� � D�u��U�� t�� and

�d� x � U �Wx�U	 � F���D�yx�U	� s��� i�e� u��U� � yx�U	�s F �x��

Proposition �	����� Nerve�weak shift selection theorem ������ is a
corollary of Controlled extension theorem ������ and Lemma �������

Proof� Using the short formulation of Controlled extension theorem
������ we can write�

�	�



From Controlled extension theorem to Nerve�weak shift selection�� theorem ���

��Un��� un��� n �� � ��n��� �n���� ��ww ������ with � � �n��� � � �n��

��Un� un� n� � ����n���� 
��n��� �n������ww ������ with � � ���n��� � �n� � � 
��n��� �n��� � �n

��Un��� un��� n� �� � ����n�� 
��n� �n���ww ������ with � � ���n� � �n��� � � 
��n� �n� � �n��

���
���

����ww ������ with � � ������ � � 
���� ��� � ��

��U�� u�� �� � ���� ���� �

So� to reach the desired control at the last level one can substitute it�
instead of ��n��� �n��� nd the control ���� ��� at the zero level and then
begin the lifting� using Lemma ������ with t � ��� s � ���

Now� let us explain the role of the assumptions

�U�� u�� � �U�� u�� � � � � � �Un��� un���

which were omitted at the lifting procedure above� At the zero level our
control gives the approximation u��U��

��
g�x�� for every x � U � U�� Now�

pick x� � X� let U�� � � � � Uk be all elements of the covering Un�� of X which
contain x� and let  � N �Un��� be a simplex with vertices U�� � � � � Uk� We
want to nd an estimate for approximation un���� � g�x���

By hypothesis� �Ui� ui� � �Ui��� ui���� � 	 i 	 n� one can nd ele�
ments U�

� � � � � � U
�
k of U� such that U�

j � Uj and u��U
�
j � � un���Uj�� j �

f�� �� � � � � kg� Hence un���Uj��
��
g�x��� j � f�� �� � � � � kg� But from the con�

trol �Un��� un��� n �� � ��n��� �n��� we see that diamun���� � �n��� So�
un���� � g�x�� with precision ��  �n��� by the Triangle inequality�

The proof of the proposition is thus nished� because it su�ces to put
� � ��  �n�� and � � �n�� and then u � un�� is ��close to g and ��close
to F � One can give an explicit expression of ���� via �� For example�

�	�



��� Finite�dimensional selection theorem

�n�� � ���� �n�� � �

�n � ���n���� �n � 
��n��� �n���

���
���

���� � �� � ������ �� � 
���� ���

�� � ���� �� � 
���� ���

Finally� ���� � ����� � ������� � � ���� �z �
n times

�� Controlled extension theorem

We arrive to Controlled extension theorem ������ from both sides� from
below �see Section �� and from above �Sections � and ��� We need two
additional lemmas�

Compactness lemma �	���� Let K be a compact subset of a metric
space Y and F � X � Y a lower semicontinuous mapping from a topological
space X� Then for every t 	 �
 the set fx � X j K � D�F �x�� t�g is open in
X�

Proof� First� note that for the case K � fyg� the assertion directly
follows from the denition of lower semicontinuity� fx � X j y�

t
F �x�g �

� F���D�y� t��� Using the fact that the intersection of a nite number of
open sets is also open� one can obtain the lemma for any nite set K� Using
the standard ��net techniques one can pass to an arbitrary compact K�

We call an open covering U � fUxgx�X of a space X marked if x � Ux
for every x � X� We also call a covering W � fWxgx�X a marked star�
�re�nement of a marked covering U if x � Wx � Ux� for every x � X and if
there exists a map m � X � X such that �

S
�Wx� � �

T
��Um�x� 	�� whenever

x� � X� � � �� and T� Wx� � ��
Marked re�nement lemma �	����� For every marked open covering

U of a paracompact space X
 there exists its marked star�re�nement W�

Proof�
I� Construction

Let�
��� V be a strong star�renement of U � i�e� for every V � V� St�V�V� �

�
SfV � � V j V � V � � �g � U � for some U � U �see x�� Section � on

existence of V��
��� For every x � X� let Vx be an element of V with x � Vx and set Wx �

� Vx � Ux�

�	�



Controlled extension theorem ��

��� For every x � X� let m�x� be dened as an arbitrary point from X such
that St�Vx�V� � Um�x	�

��� For some index set � and for some points x� � X� we have that
T
�Wx� �

� �� � � �� and
��� � be an element of the index set � from ����

We claim that then�
�a�

S
� Wx� � St�Wx� �V�� � � ��

�b� St�Wx� �V� � Um�x�	� and

�c� �
S
�Wx� � � �

T
� Um�x�	�� i�e� W � fWxgx�X is the desired renement of

U �
II� Veri�cation

�a� Follows because Wx� �Wx� � � by ��� and because Wx� � Vx� �

�b� Follows because St�Wx� �V� � St�Vx� �V� � Um�x�	� see ����

�c� From �a� and �b� follows that
S
�Wx� � Um�x�	� for every � � �� Hence

�c� holds�

Proof of Controlled extension theorem ������� First� we repeat a �short�
formulation of this theorem�
�� � ������ ����� �
 � ������ � ����� �i 	 n �
��U � u� i� � ������ 
��� ��� � ��V� v���V� v� i  �� � ��� �� � �U � u� � �V� v���

Brie!y� Controlled extension theorem ������ states the existence of �glob�
al� control ��� 
� which gives a way to nd estimates for a control on i�th
step in order to obtain the prescribed control at the �i ���st step�

For every locally nite covering W of X� we denote by x�W� the �single�
simplex of the nerve N �W� in the interior of which the image of the point
x lies under the canonical map p � X � N �W�� and xj�W� denotes the
j�skeleton of x�W�� In other words� xj�W� is the union of all simplices  of
N j�W� such that x � T � Note that x�W� and xj�W� are subcompacta of
the nerve N �W� and� respectively� of its j�skeleton N j�W��

Recall that to every renementW � of a covering W and to every re�ning
map r � W � � W with W � � r�W ��� W � � W �� one can associate a natural
simplicial mapping rN � N �W ��� N �W�� which extends r by setting

rN �
X


iW
�
i � �

X

ir�W

�
i � �

We also denote by riN the restriction of rN over the i�skeleton of N �W ���
Roughly speaking� the proof of Controlled extension theorem ������ is

based on a repeated application of Controlled contractibility theorem ������
or Theorem ������ from Section �� We use this theorem at each point x � X
of the given mapping u � N i�U� � Y � More precisely� we use this theorem
in order to extend u from the compactum xi�U� to the compactum xi���U��

Recall that for a xed x � X� Theorem ������ states that for a mapping
g � Si � B of the i�dimensional sphere Si with the control diamg�Si� � ����
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��� Finite�dimensional selection theorem

and g�Si� � D�F �x�� ���� ���� there exists an extension f � Di�� � B of g�
with the control diamf�Di��� � � and f�Di��� � D�F �x�� ��� That is� we
have �small� contractions of �small� sets in �small� neighborhoods�

We now pass to the construction�

I� Construction

Let�
��� ���� � ������ and 
��� �� � ���� ��� where � and � are mappings from

Controlled contractibility theorem ������ and let us consider a pair �U � u�
which is F �controlled by the pair ������ 
��� ��� in the dimension i�

��� For every x � X� the compactum xi���U� be equal to the union of the
compactum xi�U� with nite number of �i ���dimensional simplices
i��� � � � � � i��M � and

��� ux be an extension of ujxi�U	 which is a result of applying M �times

Controlled contractibility theorem ������ to simplices i��� � � � � � i��M � i�e�
let ux be an extension of ujxi�U	 onto xi���U��
We claim that then�

�a� diamux�
i��
j � � ���� j � f�� �� � � � �Mg and ux�xi���U���

	
F �x�� and

�b� U �x � fx� � X j ux�xi���U���
	
F �x��g is an open neighborhood of x�

Let�
��� U ��x � U �x � �

TfU � U j x � Ug�� x � X�
�
� U ��� � fU ���x gx�X be a marked star�renement of marked covering U �� �

� fU ��xgx�X � under some mark map m � X � X �see Lemma ��������
��� V be a covering of X with order 	 n � which renes fU ���x gx�X � and
��� For every V � V� a point x�V � be dened such that V � U ���x�V 	 and

a rening mapping r � V � U be dened� by letting r�V � equal to an
arbitrary element U of U � which covers the point m�x�V ��� Also let rN �
N �V�� N �U� be the simplicial extension of r�

B

F � u
ux
V �

X �
p

N i�U� v � � N i���U�

� riN � ri��N

N i�V� � N i���V� � �

�	� vjN i�V	 � u � riN �
We claim that then�

�c� U ��� and V �see 
��� exist and r is a rening mapping �see ��� and
�d� vjN i�V	 is continuous and �V� v� i� is F �controlled by ������ 
��� ����

So� in order to extend v over an arbitrary �i ���dimensional simplex
# � N i���V�nN i�V�� let�

�	�



Controlled extension theorem ���

���� V be a chosen vertex of # �V � V� and  � ri��N �#�� and

���� vj� � ux�V 	j� � ri��N j�� where ux is dened in ���� for every x � X and
x�V � is dened in ����
We claim that then�

�e� x�V � � T �
T
ri��N �#� and hence ux�U	 is dened on �

�f� The pair �V� v� is a renement of the pair �U � u��
�g� diamv�r �N i���V�� � � for every simplex r of N �V�� and
�h� vjr�N i���V	�	 F �x�� for every simplex r of N �V� and for every x �

Tr�
Hence �f���h� imply that �V� v� is a renement of �U � u� with the desired
estimate �V� v� i  ���

F
��� �� in the dimension i ��

II� Veri�cation

�a� For every � 	 j 	M � it follows by the control assumption in dimension i
that diamu��i��j � � diamu�i��j � N i�U�� � ���� � ������� Hence�

by Controlled contractibility theorem ������ for the diameter of extension
of uj��i��

j
we have the estimate diamux�

i��
j � � ���� Analogously� by

the assumption on u� we have that u��i��j � � D�F �x�� 
��� ��� and the

Controlled contractibility theorem ������ gives that ux�
i��
j � � D�F �x�� ���

�b� Follows because of compactness ofK � ux�xi���U�� and by Compactness
lemma ����	��

�c� U ��� exists due to Marked renement lemma ������� V exists due to the
paracompactness of X and since dimX 	 n  �� In order to check that r
is in fact a rening mapping� i�e� that V � r�V �� note that V � U ���x�V 	 by

construction� U ���x�V 	 � U ��m�x�V 		 by �
� and U ��m�x�V 		 � r�V � � U � because
U ��m�x�V 		 is subset of each element of U which contains the point m�x�V ���
see ����

�d� v is continuous as the composition of continuous mappings� Moreover�
the map riN does not increase dimension of simplices� Hence� control for
�V� v� i� is the same as for �U � u� i��
�e� If V�� � � � � Vi�� are all vertices of #� then � � TfVj j j � f�� �� � � � � i  
 �gg� So� by ���� Vj � U ���x�Vj	� j � �� �� � � � � i  �� i�e� by �
�� and recalling
that V � fV�� V�� � � � � Vi��g we have that

x�V � �
�
fU ���x�Vj	 j � 	 j 	 i �g �

�
fU ��m�x�Vj 		

j � 	 j 	 i �g �

But U ��m�x�Vj		
� r�Vj�� see proof of �c�� Hence x�V � � Tfr�Vj� j � 	 j 	

	 i �g � T�

�f� Clearly� V is a renement of U and for every V � V�

v�V � � �u � r��V � � u�r�V ��

�	�



��� Finite�dimensional selection theorem

where r�V � � U with V � r�V ��

�g� The intersection r � N i���V� is an �i ���skeleton of r and hence
consists of a set of pairwise intersecting �i ���dimensional simplices� i  
 � � �� The image of each of these simplices under the simplicial map rN
is a simplex from some compactum xi���U�� x � x�V � �see �e��� By �a�� we
may conclude that the diameter of the image of each simplex from xi���U�
under the mapping Ux is less than ���� Since v � ux � r� we conclude that
v�r�N i���V�� is a union of pairwise intersecting subsets of Y with diameter
� ���� i�e� its own diameter � ��

�h� Here we use �b� and the property �see �
�� that U ���x � U ��x � x � X� So� let
# be an �i ���dimensional simplex of N �V� and x � T#� Then for chosen
vertex V of # above �see ������

v�#� � ux�V 	�r�#�� � ux�V 	�x�V �i���U���	 F �x
��

for every x� � U �x�V 	� But x �
T
# � V � U ���x�V 	 � U ��x�V 	 � U �x�V 	 and hence

v�#��
	
F �x�� Theorem ������ is thus proved�

Hence we have also nished the proof of Shift selection theorem �������

	� Finite�dimensional selection theorem� Uniform relative
version

In this section we derive the following theorem from Shift selection
theorem �������

Theorem �	����� Let B be a Banach space and L a UELCn family of
its nonempty closed subsets� Then for every lower semicontinuous mapping
F from a paracompact space X into B
 with F �x� � L
 x � X
 every closed
subset A � X with dimX�XnA� 	 n  �
 and every continuous selection
h � A � B of F jA
 there exists an open neighborhood U � A such that F jU
admits a continuous selection f which extends h� Moreover
 if all members
of L are n�connected
 then one can take U � X�

Note that in Theorem ������ we have a pair �X�A�� but in Theorem
������ we deal only with X� This means that in the proof of the implication
we must apply ������ to not exactly the same X�

In fact� in this proof we use Theorem ������ for some countable set of
concentric �annuli� which contain the subset A�

Proof of Theorem ������� Local part�
I� Construction

Let�
��� � � ����� � ����� be a continuous strongly increasing function such

that L is a ���UELC n family�

�	�



Finite�dimensional selection theorem� Uniform relative version ���

��� � � ����� � ����� be a map� the existence of which is guaranteed by
Shift selection theorem �������

��� h � A � B be a selection of F jA and �h � X � B be its extension ��h is
not generally a selection of F �� and

��� �i � ������i�� and Ui � fx � X j �h�x��
�i
F �x�g� i � f�� �� �� � � �g� Note

that �� � ���� ����
We claim that then�

�a� �h exists�
�b� Ui are open sets which contain A� i � �� �� �� � � �� and
�c� There exists a decreasing sequence V� � V� � V� � � � � of open sets such

that Ui � Cl Vi � Vi � ClVi��� and Vi � A�
Let�

��� Xi � �ClVi�nVi��� we say that Xi is an �annulus� around A� and
�
� Ci � �Cl Vi�nVi� we say that Ci is a �circle� around A�

We claim that then�
�d� Boundary of an �annulus� Xi equals to the disjoint union of the �circles�

Ci and Ci���

�e� For every �circle� Ci� there exists a selection hi of F jCi with hi �
����i	

�h�

and
�f� For every �annulus� Xi� there exists a continuous selection fi of F jXi

with fi �
��i

�h and with fijCi � hi� fijCi�� � hi���

Let�
��� f � U� � Y be a mapping dened by f jXi

� fi and f jTVi
� �h�

We claim that then�
�g� f is a well�dened continuous selection of F jU which extends h� U � U��

II� Veri�cation

�a� The mapping

H�x� �

�
fh�x�g� x � A

B� x �� A

is a closed convex lower semicontinuous mapping from a paracompact space
X into the Banach space B� By Convex�valued selection theorem� H admits
a selection �h which clearly will be an extension of h�

�b� Let x � Ui and hence d � �i � dist��h�x�� F �x�� 	 � and let yi be a point
from F �x� with dist��h�x�� F �x�� 	 ���h�x�� yi� � �i � �d

� � Then the open set
�h���D��h�x�� d����F���D�yi� d� �� contains the point x and is contained in Ui�
�c� Left as an exercise�

�d� Follows from ��� because of openness of Vi� Vi�� and inclusion Vi �
ClVi���
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�e� The �circle� Ci is a paracompact space with dimCi 	 n  � �because
Ci � XnA and Ci is closed in X� and Hi � F jCi is a lower semicontinuous
mapping� Moreover� fHi�x�gx�Ci � fF �x�gx�Ci and hence fHi�x�gx�Ci is
���UELC n family� So� it su�ces to use Shift selection theorem ������� with

F � Hi� X � Ci and g � �hjCi � recall that Ci � Ui � fx j �h�x��
�i
F �x�g and

�i � ������i���

�f� Let

Gi�x� �

�������
fhi�x�g� x � Ci

fhi���x�g� x � Ci��

F �x�� x � XinCi � Ci��
Then Gi � X � Y is a lower semicontinuous mapping from the paracompact
space Xi� with dimXi 	 n  �� into B� Moreover� fGi�x�gx�Ci consists
of some elements of ���UELC n family L and of some singletons� So� Shift
selection theorem ������ is applicable� with F � Gi� X � Xi and g �

� �hjXi
�

����i	
hi� see �e�� and �hjXinCi �

������i		
F � hence �hjXinCi �

����i	
F due to

the inequality ��t� 	 t�

�g� ClU � ClV� � �SiXi� � �Ti Vi� and f is well�dened over ClU because
fijCi�� � fi��jCi�� � due to �f�� Note that

T
iClVi �

T
i Vi �

T
i ClVi�� and

hence we not only have inclusions� but equality�
The mapping f is an extension of h� because f jA � f jA��TVi	

�

�hjA��T Vi	
� hjA and the continuity of f outside Ti Vi follows by the co�

ntinuity of fi� Finally� let x� � TVi and x � x�� Then f�x�� � �h�x�� and
hence

��f�x�� �h�x��  ���h�x�� �h�x��� � ��f�x�� f�x���� � �

because ���h�x�� �h�x���� �� due to the continuity of �h at x�� and

��f�x�� �h�x��� � �

when x � x�� because over Xi we have f � fi �
��i

�h� Hence� we have proved

the local part of Theorem �������

Proof of Theorem ������� Global part� Let us check that the construction
of extension of a selection from a closed subset A � X� with dimX�XnA� 	
	 n  � over some open set U � A� really gives the answer U � X� in the
case when all members of L are n�connected� So� we assemble all answers for
functions �� �� �� �� �� and �� Recall that in this part of Theorem ������ we
assume that L is a ���UELC n family of closed subsets of Y under some xed
continuous� strongly increasing function � � ����� � ����� with ���� 	 �
and ���� ���

��	
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Simplicial extension lemma �������

���� � ��� � � ���������� � � ��� �z �
n�� times

Shift lemma �������
���� � �

���
�
���

Controlled contractibility theorem �������

���� � ��������� ���� �� � ����minf�� ��������g�

Controlled extension theorem �������

���� � ������� 
��� �� � ���� ��

Nerve�weak shift selection theorem �������

���� � ��� � � ������� � � ��� �z �
n times

Weak shift selection theorem �������

� is the same as in Theorem �������

Shift selection theorem �������

���� � ������

Uniform relative selection theorem ������� Local part� The given partial
selection g of F jA from A was extended onto an open set U � U� � A� where

U� � fx � X j �h�x��
��
F �x�g and �� � ������� �

Hence� we see that

� � ���� � ���� � ���� � ���� � ���� � ���� � ���� �

Thus U� � X� So� the constructed extension of a partial selection is not only
a local selection� but is a global selection of F as well� Theorem ������ is thus
proved�

���
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� From UELC
n restrictions to ELC n restrictions�

In this section we shall weaken metric conditions UELCn for a family
of values fF �x�gx�X to a purely topological condition of equi�locally n�con�
nectedness �ELCn�� Two results are needed�

Remetrization theorem �	����� For every metric space �Y� �� and
every equi�LCn family L of subsets of �Y� �� with

SfL j L � Lg � Y 
 there
exists a metric d on Y such that� d � �
 d�topology coincides with ��topology
and L is a uniformly equi�LCn family of subsets of �Y� d��

Kuratowski embedding theorem �	����� Every �complete� metric
space �Y� �� is isometric to a �closed� subset of the Banach space CB�Y � of
all continuous bounded real�valued functions on Y �

Proof�
I� Construction

Let�
��� y� be any xed point of Y � and
��� For every y � Y � the function �y � Y � IR be dened by setting �y�y

�� �
� ��y� y��� ��y�� y

��� y� � Y �
We claim that then�

�a� �y � CB�Y ��
�b� k�y � �zk � ��y� z�� and
�c� The mapping � � y �� �y is the desired isometry of Y into CB�Y ��

II� Veri�cation

�a� Continuity �y follows from continuity of the metric � � Y 
 Y � IR�
Boundedness of �y follows by the Triangle inequality� More precisely� for
every y� � Y �

j�y�y��j 	 ��y�� y��

�b� For every y� z � Y and for every y� � Y � we have�

j�y�y��� �z�y
��j � j��y� y��� ��z� y��j 	 ��y� z�

Thus k�y � �zk � supfj�y�y�� � �z�y
��j j y� � Y g 	 ��y� z�� On the other

hand� k�y � �zk � j�y�z�� �z�z�j � ��y� z��

�c� � is an isometry due to �b�� and as an arbitrary isometry� it is an injective
mapping� If �Y� �� is complete then ��Y � is closed in CB�Y �� as the image
of a complete metric space under the isometry �� Theorem ������ is thus
proved�

Proof of Remetrization theorem ������� We dene an ordering � on the
family of all open subsets of �Y� ��� Such an ordering will depend on a given
ELCn�family L� So� we say that V � U if V � U and if for every L � L
with V �L � �� every continuous mapping of the m�sphere Sm� m 	 n� into
V � L is null�homotopic in U � L� Clearly�

���



From UELCn restrictions to ELC n restrictions� ���

�i� �W � V � � �V � U�� �W � U��
�ii� �W � V � � �V � U�� �W � U�� and
�iii� �y � Y �U�y� �V �y�� y � V �y� � U�y��

One can begin by any xed open covering U� of Y with

supfdiam��U� j U � U�g � � �
and by using �i���iii�� inductively� dene a sequence fUng of open coverings
of X such that�

�a� Un�� is a strong star�renement of Un� see x��� for the denition�
�b� For every V � Un��� there exists U � Un such that V � U � and

�c� supfdiam� Un j Un � Ung � ��n��� n � IN�
Now we apply a result of Tukey� �See also similar statements in ����� IX�

Problems in Sect� ��� or ��		� Lemma 
������ More precisely� there exists a
continuous pseudometric d on X such that�

�d� For every � 	 �� there exists n � IN such that the covering Un is
a renement of the covering fDd�y� ��gy�Y by open ��balls in the pseudo�
�metric d� and

�e� For every m � IN� there exists � 	 � such that the open covering
fDd�y� ��gy�Y renes the covering Um�

Here� Dd�y� �� and Dd�y� �� are open pseudo balls� i�e�

Dd�y� �� � fz � Y j d�z� y� � �g�
So� if y� z � Y and y � z then from �c� we have that Um�y� � Um�z� � �� for
some n � IN and for some Um�y�� Um�z� � Um� But using �e� we nd in Um�y�
and Um�z� some open ��balls in the pseudometric d� It now follows from the
Triangle inequality for d that d�x� y� � �� Hence d is indeed a metric�

Now the nal steps�

Proof of Finite�dimensional theorem ������� Relative version�

Let L be an ELCn�family of closed subsets of a complete metric space
�Y� ��� Then L is an ELCn�family in a metric space Z �

SfL j L � Lg
endowed with a restriction of � from Y � Then Remetrization theorem ������
gives a metric d �compatible with the topology� on Z under which L is a
UELC n�family and d � �� Since d � �� every L � L is d�complete in �Z� d��
Hence� under the isometry

� � Z � CB�Z�

from the Kuratowski theorem ������� each L � L passes into a closed subset of
the Banach space CB�Z�� Finally� ��L� � f��L� j L � Lg is a UELCn�fam�
ily in CB�Z�� due to the fact that � is an isometry and ��L� is n�connected
whenever L is n�connected� Thus Theorem ������ works for a paracompact
space X� closed A � X with dimX�XnA� 	 n �� for lower semicontinuous
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��� Finite�dimensional selection theorem

mapping � � F � X � CB�Z� with closed values and for partial selection
� � g of �� � F �jA� Having a continuous selection h for � � F which extends
� � g� it su�ces to set f � ��� � h� Theorem ������ is thus proved�

Proof of Finite�dimensional selection theorem ������� Local version� If
dimX 	 n  � and A is a closed subset of X� then dimX�XnA� 	 dimX�
because the Lebesgue dimension is a monotone function over closed subsets
of X� Hence dimX�XnA� 	 n � and an application of Theorem ������ gives
the required selection� Theorem ������ is thus proved�

Proof of Finite�dimensional selection theorem ������ Global version�
Theorem ������ is a special case of Theorem ������� with A � � and with
n�connected values F �x�� x � X of the mapping F �
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x�� EXAMPLES AND COUNTEREXAMPLES

The aim of this chapter is to show that the principal properties of values
of lower semicontinuous mappings �closedness� convexity� � � � � are essential
in the main selection theorems of x��x�� In Theorems �
���� �
���� �
��� and
�
���� we follow �with modications� ������ Theorem �
��� is taken from �����
�for another proof see ��	��� Example from Theorem �
��� was constructed in
��
��� The remarkable example due to Pixley ����� is the last theorem �
����
of this chapter and of the Theory�

Theorem �
��� For every in�nite dimensional Banach space B
 there
exists a lower semicontinuous mapping F � ��� �� � B with convex �non�
closed� values which admits no continuous singlevalued selection�

Proof�
I� Construction

Let�
��� E be a closed subspace of B with a Schauder basis feng�n�� �see Theorem

��������
��� For every n � IN� let positive numbers tn 	 � be xed so that tnkenkB �

� ��n�
��� fr�� r�� � � �g be a xed numeration of all rational points of the segment

��� ��� and
��� F � ��� ��� E � B be dened by

F �x� �

�S�
N��f

PN
i�� 
iei j 
i � �g� x is irrationalS�

N��f
PN

i�� 
iei j 
i � �� 
n � tng� x � rn

We claim that�
�a� Values F �x� are nonempty convex subsets of B�
�b� F is lower semicontinuous� and
�c� F admits no continuous singlevalued selections�

II� Veri�cation

�a� Each value F �x� is a union of increasing �under inclusion� sequence of
convex sets� Note also� that F �rn� � F �x�� for every irrational x�

�b� Let x� � ��� �� and y� �
PN

i�� 
iei � F �x��� For � 	 �� choose n 	
	 N with ��n � � and remove the points r�� r�� � � � � rn from the segment
��� ��� Let U�x�� be a neighborhood of x� such that ri �� U�x��nfx�g� for
i � f�� �� � � � � ng� Let x � U�x��� If x is irrational then� evidently� F �x� �
D�y�� �� � � because of the inclusion F �x�� � F �x�� If x is rational and x �
x� then x � rk� for some k 	 n� Let y � y� tkek� Then y � F �rk� � F �x��
due to the denition of F � see ���� and ky � y�k � tkkekk � ��k � ��n � �
due to the point ���� Hence U�x�� � F���D�y�� ���� i�e� F is lower semicon�
tinuous at the point x��

���



��� Examples and counterexamples

�c� Suppose� to the contrary� that f � ��� �� � E � B is a continuous
singlevalued selection of F � Then for every n � IN� the n�th coordinate of
the point f�rn� is greater than or equal to tn and hence is greater than tn���
The projection operators

Pm �
�X
i��


iei ��
mX
i��


iei� m � IN

are continuous �see Denition �������� So� the operators �P n �
P�

i�� 
iei �� 
n
are also continuous� n � IN�

Hence� the compositions �P n � f � ��� �� � IR are continuous� due to the
continuity of f � So� for every n � IN� there exists a neighborhood U�rn� of
the point U�rn� such that for every x � Un� the n�th coordinate of the point
f�x� is greater than tn��� We now dene a sequence I� � I� � I� � � � � of
segments� Let I� be a segment such that r� � Int I� � I� � U�r�� and let rn�
be a rational point from Int I� with n� 	 �� Let I� be a segment such that

rn� � Int I� � I� � Int�I� � U�rn��� �
etc� Finally� for a point x � T�m�� Im we see that f�x� has a positive n�th
coordinate for n � f�� n�� n�� � � �g� Hence f�x� �� F �x�� since every element
of F �x� has only a nite number of nonzero coordinates� Contradiction�

The example from Theorem �
��� shows that the closedness assumption
is essential in Convex�valued selection theorem ������ This example shows
that the completeness �of the range� assumption is essential in Theorem ������
In fact� under the notations of Theorem �
���� the vector subspace E� �
� Linfe�� e�� � � � � en� � � �g � E is a normed space and the values F �x� are
nonempty convex and closed �in E�� subsets� And the incompleteness of E�

is the reason of absence of continuous selection for F � However� sometimes
it is possible to avoid the closedness assumption for the values of F � One
possibility is given by a �uniform� weakening of closedness�

Theorem �
���� Let G be a nonempty open subset of a Banach space B�
Then every lower semicontinuous mapping F � X � G from a paracompact
space X with convex
 closed �in G� values F �x�
 x � X
 admits a continuous
singlevalued selection�

Proof� We repeat the proof via Zero�dimensional selection theorem�
Consider the diagram

B

F g is a selection of F � p
P �X����



X

�
��
p

�
X�

where p � X� � X is a Milyutin mapping of a zero�dimensional paracom�
pactum X� onto X and � is a mapping associated with p� Then F �p � X� �
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���

G admits a selection g� due to Zero�dimensional selection theorem� Finally�
we put

f�x� �

Z
p���x	

g d��x�

Note that g�p���x�� is a compact subset of the convex set F �x� and hence
the closed convex hull conv g�p���x�� is also a subset of F �x�� Therefore
f�x� � F �x��

Second proof� Let F� � X � G be a lower semicontinuous compact�
�valued selection of F �see Theorem ������ which is applicable by the complete
metrizability of the open subsetG of B� Then convF� � X � G is also a lower
semicontinuous compact�valued and convex�valued selection of F � Hence� it
su�ces to nd a selection of convF��

In both of these proofs the key point was the following geometrical fact�
If C � K � G � B� where B is a Banach space� G is an open subset of B� K
is convex closed �in G� and C is compact� then convC � K� The problem
of possibility of replacing an open set G � B by a G��set of B in Theorem
�
��� is one of the main open problems in selection theory�

Another possible way of weakening the closedness assumption involves
the notion of convex D�type subsets of a Banach space� If K is a closed
convex subset of a Banach space� then a face of K is a closed convex subset
D � K such that each subsegment of K� which has an interior point in D�
must lie entirely in D� the inside of K is the set of all points in K which do
not lie in any face of K�

De�nition �
���� A convex subset of a Banach space is said to be convex
D�type if it contains the interior of its closure�

Theorem �
���� The following properties of T��space X are equivalent�
�a� X is perfectly normal� and
�b� Every lower semicontinuous mapping F � X � B to a separable Banach

space B with convex D�type values F �x�
 x � X
 admits a singlevalued
continuous selection�

For the proof of Theorem �
��� see Results� x�� Note� that X is said to
be perfectly normal if each its closed subset is its G��subset and that every
metrizable space X is perfectly normal�

The following example shows that separability is an essential assumption
in Theorem �
����

Theorem �
�	�� For every uncountable separable space X there exists a
�non�separable� Banach space B such that there exists a lower semicontinu�
ous mapping F � X � B
 with convex D�type values and without continuous
singlevalued selections�

���



��� Examples and counterexamples

Proof�
I� Construction

Let�

��� B � ���X� � f� � X � IR j fx � X j ��x� � �g is at most countable
and k�k �Pxj��x�j ��g� and

��� F �x�� � f� � ���X� j ��x�� 	 �g� x� � X�

We claim that then�

�a� F �x� are convex D�type subsets of B�

�b� F is lower semicontinuous� and

�c� F admits no selections�

II� Veri�cation

�a� Clearly� ClF �x�� � f� � ���X� j ��x�� � �g and every face of ClF �x��
is a subset of f� � ���X� j ��x�� � �g� So� the inside of ClF �x�� is exactly
F �x��� More precisely� F �x�� is an open convex subset of B�

�b� Let x� � X and �� � F �x��� i�e� ���x�� 	 �� For every � 	 �� the set

fx � X
��� j���x�j � ���g is nite� Hence� there exists a neighborhood U�x��

of x� such that j���x�j � ���� for every x � U�x��nfx�g� So� for every x �
U�x��nfx�g� we dene � � F �x�� by setting � � ��x� � ��� and ��x�� �
� ���x� for x

� � x� Hence k� � ��k � j��x� � ���x�j � �� i�e� � � F �x� �
D���� �� or U�x�� � F������ ���

�c� Suppose� to the contrary� that f � X � ���X� is a continuous selection
of F � Then for every x � X� we have �f�x���x� 	 � and hence there exists a
neighborhood U�x� such that �f�x����x� 	 �� for every x� � U�x�� Let S be a
countable dense subset of X� Then in every neighborhood U�x�� x � X� there
is a point from S and the family fU�x�gx�X is uncountable� Hence there is
an element s � S which lies in some uncountable family fU�x��gx��X � � �
A� jAj 	 ��� But then the function ��s� � F �s� is positive at every point x��
� � A� Therefore ��s� �� ���X�� due to the uncountability of A�

Remark �
�
�� The example of X being the Cantor set in this theorem
shows the essentiality of the closedness of the values of multivalued mapping
in Zero�dimensional selection theorem� Moreover� it is a suitable example for
essentiality of closedness of values in Compact�valued selection theorem� In
fact� if �to the contrary� there exists a lower semicontinuous compact valued
selection G of F then to the mapping convG the convex�valued selection
theorem is applicable and a selection of convG will be automatically a
selection of F because of convG � F � As for the upper semicontinuous
compact�valued selections we have�

Theorem �
���� There exists a lower semicontinuous mapping F �
��� �� � ��� ��� with values equal to segments without single removed point
such that F admits no upper semicontinuous compact�valued selection�

���



���

Proof�
I� Construction

We claim that�
�a� The cardinality of the set C of all subcompactaK of the square ��� ��� with

p��K� � ��� �� equals to continuum and hence� there exists a bijection b �
��� ��� C �it su�ces to consider only surjection�� here p� � ��� ��� � ��� ��
is the projection onto the rst factor�
Let�

��� x � ��� ��� b�x� � C and Ix � p��� �x� be the vertical segment over x� and

��� s � ��� �� � ��� ��� be any singlevalued selection of the multivalued
mapping which assigns to every x � ��� �� the nonempty set b�x� � Ix�
such s exists by the Axiom of Choice�
We claim that then�

�b� The mapping F � ��� �� � ��� ��� dened by letting F �x� � Ixnfs�x�g is
lower semicontinuous� and

�c� F admits no upper semicontinuous compact�valued selection�

II� Veri�cation

�a� Clearly� jCj � c� The inequality jCj 	 c follows directly from the fact
that every open subset of the plane is at most countable union of open balls
with rational radii and with rational coordinates of centers�

�b� Obvious�

�c� Suppose to the contrary� that H is such a selection� Then H���� ��� �
�
SfH�t� j t � ��� ��g is an element of C and H���� ��� � b�x�� for some x �

��� ��� Hence on one hand s�x� � b�x�� Ix � H���� ���� and on the other hand
s�x� �� H���� ���� because s�x� �� F �x� and H���� ��� � Ix � F �x�� Ix � F �x��
Theorem �
��� is thus proved�

One can try to nd an analogue of Examples �
���� �
��� and �
��� for
�simpler� �more precisely� for countable� domains than the segment� But
such attempts are unsuccessful� because on countable domains a selection
always exists without any closedness restrictions on the values of lower semi�
continuous mappings�

Theorem �
���� Every lower semicontinuous mapping from a countable
regular space into a space with �rst countability axiom�
��� Admits a lower semicontinuous selection with closed values� and hence
��� Admits a continuous selection�

Recall� that a space Y is said to satisfy the �rst countability axiom if
at every point y � Y � there exists at most countable local base of neigh�
borhoods� The Ponomarev theorem states that Y is a space with the rst
countability axiom if and only if Y is the image of a metrizable space M
under an open mapping� We rst note that due to this theorem it su�ces to
prove Theorem �
��� only for metrizable ranges�

���



��� Examples and counterexamples

Consider the following diagram�

Y

F �
X ���������

����F
M

whereM is a metrizable space and � is an open surjection� Then ��� is lower
semicontinuous and the composition ��� � F is also lower semicontinuous�
So� if g is a selection of ��� � F then � � g is a selection of F �

Second� we note that ��� is a corollary of ���� Indeed� let M� be the
Hausdor� completion of M � We can consider the mapping F � X �M as a
mapping F � X � M�� because we can assume that M � M�� Let G be a
lower semicontinuous closed �inM�� valued selection for F � X �M�� Then
Zero�dimensional selection theorem is applicable to G� due to the fact that
a countable regular space is a zero�dimensional paracompact space� So� G
admits a selection which will be automatically a selection of F �

Proof of Theorem �������� for the metric range �M����
I� Construction

Let�
��� For every � 	 ��

L � fA �M j x � y � A� ��x� y� � �g� and

��� A� � A� �� A� � A��
We claim that then�

�a� Ordered set fL��g has a maximal element �we name such a maximal
element an ��lattice in M�� and

�b� Any ��lattice is a closed subset of M �
Let�

��� x�� x�� x�� � � � be a xed numeration of all elements of X� and
��� G�xn� be equal to an arbitrary ���n��lattice of F �xn� �M �

We claim that then�
�c� G � X �M is a lower semicontinuous mapping with closed values�

II� Veri�cation

�a� Every chain fL��g is bounded by the union of all subsets of M which
are elements of this chain� So it su�ces to use the Zorn lemma�

�b� Clearly� ��lattice has no limit points� i�e� it is in fact a discrete subset of
M �

�c� Let x � X and y � G�x�� For every � 	 �� choose N such that ��N � �
and consider the open neighborhood V �x� � F���D�y� ��N�� of the point
x� Then we remove from V �x� all points xi with i 	 N and obtain a new

��	



���

neighborhood U�x� of the point x� So� let x� � xn � U�x�� There exists y� �
F �x�� �D�y� ��N�� By the construction� n 	 N and due to the denition of
��lattice� we can nd y�� � G�x�� such that ��y�� y��� � ��n � ��N � But then

��y� y��� � ��y� y��  ��y�� y��� � ��N  ��N � �

Hence� U�x� � G���D�y� ����

Now� let us pass to essentiality of the convexity condition in Convex�
�valued selection theorem�

Theorem �
��� There exists a lower semicontinuous connected� and
compact�valued mapping of the closed unit disk D � IR� into itself without
continuous selections�

Proof�
I� Construction

Let�
��� S be the boundary of D�
���

F �x� �

�
SnD�x�kxk� kxk� x � �
S x � �

��� To the contrary� suppose f � D � D is a selection of F �
We claim that then�

�a� F is lower semicontinuous�
�b� f has a xed point x�� i�e� f�x�� � x�� and
�c� �b� contradicts ����

II� Veri�cation

�a� A direct computation shows that for the polar coordinates ��� �� of the
point x� F �x� is a closed arc on S between angles �  �arcsin �

� and �  
 �� � � arcsin �

� � � 	 �� So� F �x� in fact continuously �with respect to the
Hausdor� metric� depends on ��� ��� i�e� on x�

�b� This is the Brouwer xed point theorem�

�c� We have x� � f�x�� � F �x��� but x �� F �x�� for every x � D due to the
denition of F � see ����

In this example� the values F �x� are contractible for x � �� and F ��� �
� S is connected but non�contractible� In the following so�called sin���x�
example� all values of F are homeomorphic to the segment ��� ���

Theorem �
����� There exists a lower semicontinuous mapping from
an one�dimensional metric compact space into IR�
 with all values homeo�
morphic to the segment and without continuous selections�

���



��� Examples and counterexamples

First proof�

F �x� �

�
f�t� sin ��t� j x�� 	 t 	 xg� � � x 	 �
�������� ��� ���� x � ��

Suppose� to the contrary� that f � ��� �� � IR� is a continuous selection
of F and let f�x� � �f��x�� f��x�� for x � ��� ��� Then due to the inclusion
f�x� � F �x�� we have that x�� 	 f��x� 	 x� for x � ��� ��� The function f� �
��� �� � IR is continuous� since f is continuous� Hence f����� ��� � ��� �����
due to the inequality ��� 	 f�����

Let ftng and fsng be two sequences of positive numbers� converging to
zero� such that tn 	 ���� sn 	 ���� sin���tn� � �� sin���sn� � ��� Then for
some x�n � ��� �� and x��n � ��� ��� tn � f��x

�
n� and sn � f��x

��
n�� for every n �

IN� Hence f�x�n� � �tn� f��x
�
n�� � F �x�n� and f�x��n� � �sn� f��x

��
n�� � F �x�n��

i�e� f��x
��
n� � sin���tn� � � and f��x

��
n� � sin���sn� � ��� Passing to n���

we obtain a contradiction with the continuity of f� at x � ��

Second proof� We consider the example above of a lower semicontinuous
mapping F � ��� �� � IR�� But here explanation of absence of continuous
selections of F is based on Finite�dimensional selection theorem�

More precisely� let L � fF �x�gx����� be the family of all values of F �
Clearly� all members of the family L are C��subsets of the plane� Moreover�
they are homeomorphic to the segment� But L is not an ELC��family of
subsets� To see this� it su�ces to observe that

dist
�� �

�n
� �
�
�
� �

��n ��
� �
��

��
n��

� �

but the diameter of arc� joining the points � �
�n � �� and �

�
��n��	 � �� in any

element of the family L is greater than �� Hence the ELC��condition fails
at the point ��� �� � F ���� Using the necessary condition for Finite�dimen�
sional selection theorem �see Proposition ������� we see that there exists a
lower semicontinuous mapping G � X � IR� with G�x� � L� where X is an
one�dimensional metric compact space and without a continuous selection�

A slight modication of the construction above gives the following�

Theorem �
����� There exists a lower semicontinuous mapping F �
��� �� � IR� whose values F �x� are unions of at most two segments and
without continuous selections�

Proof� Let ftng�n�� and fsng�n�� be two monotone decreasing sequences
of positive numbers� converging to zero� such that sn � tn � sn��� for every
n � IN and t� � �� Dene the mapping F � ��� ��� IR� by setting�

F ��� � �������� ��� ���
F �tn� � ��sn����� �tn� ��� � ��tn� ��� �sn�������
F �sn� � ��sn����� �tn� ��� � ��sn����� �tn��� ���

F ��tn  sn���� � ��sn����� �tn� ��� �
���



���

If x is uniformly increasing from tn to �tn  sn���� then F �x� equals to
the union of F ��tn  sn���� and uniformly shrinking segment starting from
��tn� ��� �sn������� and ending at the point �tn� ��� Similarly� if x is uniformly
increasing from �tn sn��� to sn then F �x� equals to the union of the segments
��tn����� �tn��� ��� and uniformly shrinking segment starting from F ��tn  
sn���� and nishing at the point �sn����� Argument is similar to the proof
of Theorem �
�����

Remark �
����� It is an open question whether by adding the assump�
tion that family fF �x�gx�X �X a paracompact space� is ELC� guarantees
the existence of selections in Theorem �
�����

Let Q denote the Hilbert cube� i�e� the countable Cartesian power ��� ��IN

of the segment I � ��� ��� Q is the compact space under the Cartesian product
topology and the topology is generated by the metric�

dist��xn�� �yn�� �
�X
n��

��njxn � ynj�

The structure of the Hilbert cube Q is very unusual since it has no direct
analogues with nite�dimensional cubes ��� ��n� For example� the �natural�
interior ��� ��IN of Q has no interior �in the metric sense� points and the
�natural� boundary ��� ��INn��� ��IN of Q is the dense subset of Q� Also� Q
has continuum cardinality of the sets f�� �gIN of all its �vertices�� Q is a
homogeneous topological space� i�e� for every x � y � Q� there exists a
homeomorphism h � Q � Q with h�x� � y� For more detailed information
about Q� see ���� or any book on the theory of Q�manifolds� e�g� �
���

Theorem �
����� There exists a lower semicontinuous mapping F �
Q� Q such that�
�a� The family fF �x�gx�Q of values is an ELCn�family of subsets of Q
 for

every n � IN�
�b� All values F �x� of F are homeomorphic either to a point or a �nite�

�dimensional closed ball or to Q� and
�c� For some z � Q
 there is no continuous selection for F restricted to any

neighborhood of z�

Proof�
I� Construction

Let�
��� For every integer k 	 ��

Ek � fx � Q j �

k  �
	 x� 	 �

k
and xi � � for i 	 k  �g �

��� For every integer k 	 ��

Xk � fx � Ek j �x� � �

k  �
�  �x� � �

k
�  �x� � ��  �xi � f�� �g� �

���



��� Examples and counterexamples

for some i with � � i 	 k  �g�
��� X� � fx � Q j x� � �g� and
���

F �x� �

�������
Xk� if x � EknXk

fxg� if x � X� � �Si
�Xi�

Q� otherwise

We claim that then�
�a� Ek is homeomorphic to the cube I

k���
�b� Xk is the boundary of Ek with the removed face EknXk which is homeo�

morphic to the cube Ik�
�c� F is lower semicontinuous�
�d� F admits no continuous selections at an arbitrary neighborhood of the

point z � ��� �� �
�
� �

�
� � � � ��� and

�e� The family of values fF �x�gx�Q is an ELCn�family for any n � IN�
moreover� L � fF �x�gx�Q is uniformly ELC �uniformly equi�locally
contractible� family� i�e� for every � 	 �� there exists � 	 � such that
if L � L and x � L then D�x� �� � L is contractible over a subset of L
having a diameter less than ��

II� Veri�cation

�a� Ek is the Cartesian product

�
�

k  �
�
�

k
�
 ��� �� 
 � � �
 ��� ��� �z �

k times


f�g 
 f�g 
 � � �

�b� The �k  ���dimensional cube Ek has �k  � faces which are dened�
respectively� by the equations x� �

�
k�� � x� �

�
k � x� � �� x� � �� � � � � xk�� �

� �� xk�� � �� So� �boundary Ek�nXk is the face dened by letting x� � ��
i�e� Xk is �rectangular glass� with rst coordinates of the basic face tending
to zero�

�c� The set X� � �Sk��Ek� is closed in Q and F is identically equal to Q
outside this closed set� So� it su�ces to check lower semicontinuity of F at
points of X� � �Sk��Ek�� only� We leave this verication as an exercise�

�d� It su�ces to prove this for some local basis at the point z� So� we x
m 	 � and � � � � ��m and consider the following compact neighborhood
Um of the point z�

Um � fx � Q j x� 	 ��m and jxi � ���j � � for all � � i 	mg �

Now� for every k � m introduce

Bk � fx � Ek j xi � ��� for all � � i 	 mg �

���



��

i�e� Bk is intersection of the cube Ek� dimEk � k �� with the linear subspace
of codimensionm�� passing through the point ��� ���� � � � � ���� �� � � �� parallel
to other coordinate�s lines� Hence Bk is a closed �k �m ���dimensional ball
and clearly Bk � Um�

Suppose to the contrary� that there exists a continuous selection f �
Um � Q of the restriction F jUm � We dene the set

Xkm � fx � Xk j � � xi � � for all � � i 	 mg

and prove that for every k � m� there exists yk � IntBk such that f�yk� ��
Xkm� Then one of the coordinates f�yk��� � � � � f�yk�m equals to � or to �
and hence dist�yk� f�yk�� � ��m � ����� � ��m��� Passing to a convergent
subsequence of the sequence fykgk
m� we nd a point y � Q with

dist�y� f�y�� � ��m�� �

But this is a contradiction� because �yk�� 	 ��k and hence y� � �� i�e� y � X�

and f�y� � F �y� � fyg�
We now return to prove the existence of yk � IntBk with f�yk� �� Xkm�

Once more� suppose to the contrary� that f�IntBk� � Xkm� But there exists
a natural retraction r of Xkm onto Bk� it su�ces to shrink the intervals
��� �� into f���g for every coordinate from � to m without changes of other
coordinates� Now� let us consider the composition r�f jBk � It is a mapping of
Bk onto its boundary �Bk� which is identical on �Bk� This is a contradiction�
Theorem is thus proved �we omit the verication of �e���

���



x	� ADDENDUM
 NEW PROOF OF FINITE�

�DIMENSIONAL SELECTION THEOREM

�� Filtered multivalued mappings� Statements of the results

The main goal of this chapter is to present a new approach to the
proof of the Finite�dimensional selection theorem �see x�� which was recently
proposed by �S�cepin and Brodski&' ������ First� note that there is only one
proof of the Finite�dimensional selection theorem ���	�� �Observe that the
proof ����� is a reformulation of Michael�s proof in terms of coverings and
provides a way to avoid uniform metric considerations�� Second� ����� gives
in fact a generalization of Michael�s theorem� Third� and most important�
this approach is based on the technique� which is widely exploited in other
branches of the theory of multivalued mappings� Namely� in the xed�
point theory� where proofs are often based on UV n�mappings and on �graph�
approximations of such mappings �see ��
���

A general �methodic� point of view here is a consideration of the �graph�
mapping ��F � � X � X 
 Y � dened by ��F � � x �� fxg 
 F �x�� instead of
the mapping F � X � Y � It has some advantages because the values of the
mapping ��F � are always disjoint subsets of the Cartesian product X 
 Y �
Observe that F �x� and ��F ��x� are homeomorphic� The key ingredient of
the present proof is the notion of a �ltration of a multivalued mappings� Two
di�erent kinds of ltrations are used�

De�nition ������ For topological spaces X and Y a nite sequence
fFigni�� of multivalued mappings Fi � X � Y is said to be an L��ltration
�where L stands for lower� if�
��� Fi is a selection of Fi��� � 	 i � n�
��� The identical inclusions Fi�x� � Fi���x� are i�apolyhedral� for all x � X�

i�e� for each polyhedron P with dimP 	 i� every continuous mapping
g � P � Fi�x� is null�homotopic in Fi���x��

��� The families ffxg 
 Fi�x�gx�X are ELCi�� families of subsets of the
Cartesian product X 
 Y � � 	 i 	 n� and

��� For every � 	 i 	 n� there exists a G��subset of X 
 Y such that fxg 

Fi�x� are closed in this G��subset� for every x � X�

Clearly� ��� is a version of n�connectedness of values and ��� is a �graph�
analogue of ELCn restriction in the classical Finite�dimensional selection
theorem� But where is lower semicontinuity" The answer is simple� it su�ces
to consider the denition of ELCn�family in the case n � ��� Then Sn �
� S�� � � and Dn�� � D� � f�g� So� mappings with ELC�� family of
values are exactly the lower semicontinuous mappings�

Theorem ����� �Filtered nite�dimensional selection theorem�� Let X
be a paracompact space with dimX 	 n
 Y a complete metric space and

���



Filtered multivalued mappings� Statements of the results ���

fFigni�� an L��ltration of maps Fi � X � Y � Then the mapping Fn � X � Y
admits a singlevalued continuous selection�

As a special case one can consider a mapping F which satises the usual
hypotheses of Finite�dimensional selection theorem� It is easy to see that for
the constant ltration Fi � F � Theorem ����� applies and hence we obtain
Finite�dimensional selection theorem as a corollary of Filtered theorem ������
Moreover� for a constant ltration Fi � F � with F having the properties
��� and ��� from Denition ������ we obtain the generalization of Finite�
�dimensional selection theorem which was proposed in ������

Now� we introduce another type of ltrations� called U �ltrations �where
U stands for upper��

De�nition ������ For topological spaces X and Y � a nite sequence
fHigni�� of compact�valued upper semicontinuous mappings Hi � X � Y is
said to be a U��ltration if�
��� Hi is a selection of Hi��� � 	 i � n� and
��� The inclusions Hi�x� � Hi���x� are UV

i�aspherical for all x � X� i�e�
for every open U � Hi���x�� there exists a smaller open V � Hi�x� such
that every continuous mapping g � Si � V is null�homotopic in U �here
Si is the standard i�dimensional sphere��

Clearly� condition ��� in Denition ����� looks like an approximate version
of ��� in Denition ����� of L�ltrations� Next� we formulate the notion of
�graph� approximation of a multivalued mapping F � X � Y � Let V �
� fV�g��A be a covering of X and W � fW�g��� a covering of Y � A
singlevalued mapping f � X � Y is said to be an �V 
W��approximation of
F if for every x � X� there exist � � A� � � �� and points x� � X� y� � F �x��
such that x and x� belong to V� and f�x� and y� belong to W� � In other
words� the graph of f lies in a neighborhood of the graph F with respect to
the covering fV� 
W�g��A���� of the Cartesian product X 
 Y �

For metric spaces X and Y and coverings V and W of X and Y by open
����balls� we obtain a more usual notion of �graph� ��approximations ��
��
Namely� a singlevalued mapping f� � X � Y between metric spaces �X� ��
and �Y� d� is said to be an ��approximation of a given multivalued map F �
X � Y if for every x � X� there exist points x� � X and y� � F �x�� such
that ��x� x�� � � and d�y�� f��x�� � ��

We recall the Cellina approximation theorem ��
��

Theorem ������ Let F � X � Y be an upper semicontinuous mapping
from a metric space �X� �� into a normed space �Y� k�k� with convex values
F �x�
 x � X� Then for every � 	 �
 there exists a singlevalued continuous
��approximation of F �

The following theorem is a natural nite�dimensional version of Cellina�s
theorem�

Theorem ���	�� Let X be a paracompact space with dimX 	 n
 Y a
Banach space and fHigni�� a U ��ltration of mappings Hi � X � Y � Then

���



��� Addendum� New proof of Finite�dimensional selection theorem

for every open in X 
 Y neighborhood G of the graph ��Hn� of the mapping
Hn
 there exists a continuous singlevalued mapping h � X � Y 
 such that the
graph ��h� lies in G�

Note� that in Theorem ����� the requirement that Y is a Banach space
can be weakened to the assumption that Y is an ANE for the class of all
paracompact spaces� The following theorem highlights an intrinsic relation
between L�ltrations and U �ltrations� This theorem can also be regarded
as the �ltered analogue of Compact�valued selection theorem�

Theorem ���
�� Let X be a paracompact space
 Y a complete metric
space and fFigni�� an L��ltration of maps Fi � X � Y � Then there exists a
U ��ltration fHigni�� such that Hn is a selection of Fn� Moreover
 each Hi is
a selection of Fi
 � 	 i 	 n
 and the inclusions Hi�x� � Hi���x� are UV i�
apolyhedral�

We emphasize� that we need the UV i�asphericity of the inclusions
Hi�x� � Hi���x� precisely for the proof of Filtered selection theorem ������
However� we cannot derive the UV i�asphericity from the UV i�asphericity of
inclusions Fi�x� � Fi���x�� x � X� of a given L�ltration fFigni��� This is the
reason� why we use in Denition ����� of L�ltration i�apolyhedrality of the
inclusion Fi�x� � Fi���x�� Now� we formulate the crucial technical ingredient
of the whole procedure� The following Theorem ����� provides an existence of
another U �ltration fH �

igni�� associated to a given L�ltration fFigni��� Here�
we remove the conclusions that H��x� � F��x�� � � � �Hn���x� � Fn���x� and
add the property that the sizes of values Hn�x� can be chosen to be less than
any given � 	 ��

Theorem ������ Let X be a paracompact space with dimX 	 n
 Y
a Banach space and � 	 �� Then for every L��ltration fFigni��
 every U �
�ltration fHigni�� with Hn being a selection of Fn
 and every open in X 
 Y
neighborhood G of the graph ��Hn� of the mapping Hn
 there exists another
U ��ltration fH �

igni�� such that
��� H �

n is a selection of Fn�
��� The graph ��H �

n� lies in G� and
��� diamH �

n�x� � �
 for each x � X�

Having Theorems ������������ we are in position to prove Theorem ������
For simplicity we use notation ( � )� whenever ( is a selection of )�
Proof of Theorem ������
I� Construction

Let�
��� F� � F� � � � � � Fn be a given L�ltration of mappings Fi � X � Y and

open subsets E� � E� � � � � of X 
 Y such that the sets fxg
Fn�x� are
closed in the intersection

T
Ek�

��� �� 	 �� 	 �� 	 � � � be a sequence of positive numbers with
P

k �k ���

���



Filtered multivalued mappings� Statements of the results ���

��� H� � H� � � � � � Hn be U �ltration of mappings Hi � X � Y with
Hn � Fn� provided by Theorem ���
�� and

��� H�
n � Hn and G� be an open neighborhood of the graph ��H

�
n� in X
Y

such that the closure of the set G�� �fxg
Y � lies in E�� for each x � X�
We claim that then�

�a� There exists a U �ltration fH�
i gni��� with H�

n � Fn with ��H
�
n� � G�

and diamH�
n�x� � ��� x � X�

�b� There exists an open neighborhood G� of the graph ��H
�
n� in X
Y such

that G� � G�� the closure of G� � �fxg 
 Y � lies in E�� for each x � X�
and such that

�c� diampY �p
��
X �x� � G�� � ���� for each x � X� where pX � X 
 Y � X

and pY � X 
 Y � Y are projections�
Moreover� we claim that then�

�d� There exists a sequence fGkg�k�� of open subsets of X
Y and a sequencen
fHk

i gni��
o�
k��

of U �ltrations such that for every k � IN�
�ak� H

k
n is a selection of Fn� ��H

k
n� � Gk and diamHk

n�x� � �k� for each
x � X�

�bk� Gk � Gk��� closure of Gk � �fxg 
 Y � lies in Ek� for each x � X� and

�ck� diampY �p
��
X �x� �Gk� � ��k� for each x � X�

Finally� we claim that then�
�e� For every m � k � � and for every x � X� Hm

n �x� � D�Hk
n�x�� ��k� and

Hk
n�x� � D�Hm

n �x�� ��k��
�f� For every x � X� there exists a unique point f�x� � Y such that for

every � 	 �� the inclusion Hk
n�x� � D�f�x�� �� holds for all su�ciently

large k� and
�g� The singlevalued mapping f � X � Y � dened in �f�� is the desired con�

tinuous selection of Fn�

II� Veri�cation

�a� This is exactly the statement of Theorem ������ for � � �� and for the
pair of ltrations �fFigni��� fHigni����
�b� and �c� We temporarily denote H�

n � H� For a xed z � X and for an
element y from the compactumH�z� � Y � choose an arbitrary basic open �in
X 
 Y � neighborhood Vz�y 
D�y� ��y�� � G�� such that ��y� � ����� Find a
nite subset fy�� � � � � ylg � H�z� such that

H�z� �
�
fD�yj � ��yj�� j � 	 j 	 lg �W �H�z��

and put

G��z� �

��� l�
j��

Vz�yj

�
�H���W �H�z���

� 
W �H�z���

G� �
�
fG��z� j z � Xg �

���



��� Addendum� New proof of Finite�dimensional selection theorem

If �x� y� � G�� then for some z � X� we have that x � �lj��Vz�yj and
y �W �H�z��� Hence y � D�yjm � ��yjm��� for some � 	 m 	 l and therefore

�x� y� � Vz�ym 
D�ym� ��ym�� � G� �

This is why G� � G��
Let y�� y�� � pY �p

��
X �x� � G��� i�e� �x� y

�� � G��z
�� and �x� y��� � G��z

���
for some z�� z�� � X� Hence for some y�j � H�z�� and y��i � H�z���� we have

y� � D�y�j� ��y
�
j�� and y�� � D�y��i � ��y

��
i ��� But we also know that H�x� �

W �H�z��� and H�x� � W �H�z����� So� the points y� and y�� are �������close
to the compact sets H�z�� and respectively� H�z���� of diameters � �� and
H�x� �W �H�z����W �H�z����� Hence dist�y�� y��� � ����  ��  ��  ���� �
� ����

�ak�The U �ltration fHk
i gni�� is a result of using Theorem ������ for � � �k

and for the pair of ltrations
�
fFigni��� fHk��

i gni��
�
and for an open neigh�

borhood G of the graph of Hk��
n with G � Gk�� and Clos�G� � Ek�

�bk�and �ck� Similar to �b� and �c��

�e� For every m � k� we have that fxg
Hm
n �x� � p��X �x��Gk� Hence each

set Hm
n �x�� m � k� is a compact subset of the xed open set pY �p

��
X �x� �

Gk� � Y of diameter � ��k� Thus for every y
�
j � Hk

n�x� and y
��
i � Hm

n �x�� we

have dist�y�� y��� � ��k� m � k�

�f� Choose points yk � Hk
n�x� � Fn�x�� k � IN� From �e� we see that

dist�yk� yk��� � ��k� Due to the convergence of the series
P
�k� we see

that fykg is a Cauchy sequence in the complete metric space Y � i�e� there
exists f�x� � lim

k��
yk� For another choice y

�
k � Hk

n�x� � Fn�x�� we have

dist�yk� y
�
k� � ��k� Thus the sequence fy�kg has the same limit f�x� � Fn�x��

Moreover� dist�f�x�� y� 	 ��k� for each y � Hk
n�x�� i�e� the compactumHk

n�x�
lies in the closed ��k�neighborhood of the point f�x��

�g� Upper semicontinuity of f � X � Y follows directly from the upper
semicontinuity of the maps Hk

n� k � IN and from the inclusion Hk
n�x� �

D�f�x�� ��� for su�ciently large k� Hence f is continuous� because it is
singlevalued� Finally� we must check that f�x� � F �x�� For each yk from �f��
we have that �x� yk� � fxg 
Hk

n�x� � Clos�Gk � �fxg 
 Fn�x���� Hence� the

limit point �x� f�x�� lies in
��
k��

Clos�Gk � fxg 
 Y � � ��
k��

Ek� The closedness

of fxg
Fn�x� in �Ek implies f�x� � Fn�x�� Theorem ����� is thus proved�

Two remarks are in order� First� in the proof above we �formally� never
used Theorem ����� on existence of singlevalued approximations� Second� we
applied Theorem ����� only for a �xed L�ltration fFigni�� and for a shrinking
sequence of U �ltrations ffHk

i gni��g�k���
In fact� the situation is more delicate� Roughly speaking� the proof of

Theorem ����� is divided into two steps� We begin by an application of

��	



Filtered multivalued mappings� Statements of the results ���

Theorem ����� to the given U �ltration fHigni�� with Hn � Fn� In this
manner we obtain some singlevalued continuous mapping h � X � Y which
is an approximation of Hn� Then we make a �thickening� procedure with h
in order to obtain a new L�ltration fF �igni�� with small sizes of values F �n�x��
x � X� Such an L�ltration fF �igni�� naturally follows from the ELCn��

properties of values of the nal mapping Fn of a given L�ltration fFigni���
Finally� we use the �ltered� Compact valued selection theorem ���
� for
the new L�ltration fF �igni��� The result gives a desired U �ltration fH �

igni��
with small sizes of values H �

n�x�� x � X� This is the strategy of the proof of
Theorem ������

We conclude this section by introducing the following important con�
cepts�

De�nition ������ �a� A space A is said to be k�aspherical �resp�
k�polyhedral
 k�contractible� in the space B if for every sphere S �resp�� every
polyhedron P � every metric compactum K�� with dimS 	 k �resp�� dimP 	
k� dimK 	 k�� every continuous mapping f � S � A �resp�� f � P � A�
f � K � A� is null�homotopic in B�
�b� A pair �A�B� of subspaces of a space Y is said to be UV k�aspherical
�resp�� UV k�apolyhedral� if for every open U � B� there exists a smaller open
V � A such that V is k�aspherical �resp� k�apolyhedral� in U �
�c� For mappings ) � X � Y and ( � X � Y we say that ) is k�
aspherical �resp�� k�apolyhedral
 k�contractible� in ( or that the pair �)�(� is
UV k�aspherical �resp�� UV k�apolyhedral
 k�contractible� if the corresponding
property from �a� or �b� holds for every A � )�x�� B � (�x�� x � X�

In the following lemma we collect the relations among these notions� The
proof requires some extra techniques and we shall omit it �see �������

Lemma �����

�a� If a compact space K is a contractible subset of a compact space K �
 then
the pair �K�K �� is UV k�apolyhedral in any ANR space L
 containing
K ��

�b� If L is an LCk�subset of a Banach space B
 K is a compact subset of L
and the pair �K�L� is UV k�apolyhedral
 then K is k�contractible in L�

�c� If a metric compactum K is k�contractible in a space L
 then there exists
a compactum K � � L for which the pair �K�K �� is UV k�apolyhedral�

���
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�� Singlevalued approximations of upper semicontinuousmap�
pings

In this section we prove Theorem ������ The proof consists of two
inductive procedures� First one is an inductive construction of a �decreasing�
chain of coverings of the domain� It turns out that such coverings are formed
by projections on X of some open neighborhoods of the values ��Hi��xi� �
� fxg 
 Hi�x�� Moreover� these neighborhoods form a chain of sets with
prescribed UV �properties� The second �increasing� induction gives a desired
approximation via factorization through skeletons of the nerve of the nal
�smallest� covering which is obtained as the result of the rst �decreasing�
induction�

We begin by the key observation that the UV i�asphericity of a pair �A�B�
in a space Y practically does not depend on Y � in the class of ANE envelope
spaces�

Lemma ������� Let �A�B� be an UV i�aspherical pair of subcompacta
of a Banach space Y � Let Z be a paracompact ANE space and h � B � Z
be a homeomorphic imbedding� Then the pair �h�A�� h�B�� is UV i�aspherical
in Z�

Proof�
I� Construction

Let�
��� U be an open subset of Z such that U � h�B�� and
��� f be an extension of h onto some open U� � B� such that f�U�� � U �

We claim that then�
�a� Such an extension always exists�
�b� There exists an open V� � A such that the inclusion V� � U� is i�

aspherical�
�c� There exists an extension g of h�� onto some open W � h�B�� U � W �

and
�d� There exists an open V � g���V�� such that h�A� � V and the restriction

of the composition f � g onto V is homotopic to the inclusion V � U �
Let�

��� s be a mapping of the i�dimensional sphere into V �
We claim that then�

�e� s is null�homotopic as a mapping of this sphere into U �

II� Veri�cation

�a� Follows because Z is ANE for the metric spaces and because B is closed
in Y �

�b� Follows because �A�B� is UV i�aspherical in Y �

�c� h�B� is closed subset of the paracompact space Z and any Banach space
is AE for the class of paracompacta�

�d� Follows because open subset of ANE is ANE�

���
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�e� s is homotopic to the composition f�g�s� due to �d�� But the composition
g � s maps the sphere into V� � A� i�e� this composition is null�homotopic as
a mapping into U�� The composition of the last homotopy with f gives the
desired contraction of s inside U � Lemma ������ is thus proved�

In our situation we set Z equal to the Cartesian product of some Tihonov
cube Q � ��� ��� � containing the given paracompact space X and the given
Banach space Y � Any Tihonov cube is ANE as a convex subcompactum
of a locally convex topological vector space� namely the � �power of the real
line� Moreover� the Cartesian product of a nite number of ANE�s is again
an ANE� We apply Lemma ������ for A � Hi�x�� B � Hi���x� and the
homeomorphism h is the shift of B onto fxg 
 B� Brie!y� we have the
same UV �properties for the values of the �graph� mappings ��Hi� as for the
values of the initial mappings Hi� Unfortunately� we must consider these
UV �properties in the Cartesian product Q 
 Y � not in the product X 
 Y �
So� we x throughout this section such X� Y � Q� and Z�

De�nition ������� A mapping C � X � Q 
 Y �resp� T � X � Q 

Y � is said to be a covering �resp�� tubular covering� of a given multivalued
mapping H � X � Y if for every x � X� the value C�x� �resp� T �x�� is a
neighborhood of the set fxg
H�x� in Q
 Y �resp� is a basic neighborhood
V �x�
W �H�x��� with H�V �x� �X� �W �H�x����

Lemma ������� Every covering C of a compact�valued upper semicon�
tinuous mapping H � X � Y admits a tubular subcovering T 
 i�e� T �x� �
C�x�
 for each x � X�

Proof� This is a repetition of the proof of points �b�� and �c�� from the
proof of Theorem ����� � see Chapter ��

The following lemma provides the inductive step in our rst �decreasing�
procedure� For a tubular covering T � X � Q 
 Y of a mapping H �
X � Y � we denote by TQ the family fpQ�T �x��gx�X � TX the covering
fX � pQ�T �x��gx�X and we denote by TY the family fpY �T �x��gx�X of open
subsets of Y �

Lemma ������� Let H � � H be a pair of compact�valued upper semi�
continuous mappings of a paracompact space X into a Banach space Y and
let for some integer i
 the inclusions H ��x� � H�x� be UV i�aspherical
 for
all x � X� Then for every tubular covering T of the mapping H
 there exists
a tubular covering T � of the mapping H � such that T � � T and such that for
every x � X
 there exists z � X with the properties that�

��� St�x� T �X� � TX�z�� and

��� The inclusion T ��St�x� T �X�� � T �z� is i�aspherical�

���
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Proof�
I� Construction

Let�
��� T �x� � pQ�T �x�� 
 TY �x� be the canonical representation of the �tube�

T �x��
��� T � � X � Q
 Y be a tubular covering of the mapping H � such that the

inclusion T ��x� � T �x� is i�aspherical� x � X�
��� W be an open renement of the family T �Q such that the intersections of

members of W with X be a locally nite covering of X� and
��� For every W � W� an element x�W � � X be chosen such that W �

T �Q�x�W ���

��� V be a locally nite star�renement of W� with respect to X� i�e� for
each x � X� there exists W � W such that St�x�V� �W �
We claim that then�

�a� In ��� such tubular covering T � exists�
�b� For each V � V� the intersection�

fT ��x�W �� j W � W� V �Wg � C�V �

is a nonempty tubular �with respect to H �� open subset of Q 
 Y � i�e�
C�V � � CQ�V �
 CY �V � and H

��CQ�V � �X� � CY �V �� and
�c� The mapping T � � X � Q
 Y dened by setting

T ��x� �
�
fC�V � j x � V� V � Vg

is the desired tubular covering of H ��

II� Veri�cation

�a� Lemma ������ shows that the pairs �fxg 
 H ��x�� fxg 
 H�x�� are i�
aspherical in Z � Q
 Y � x � X� The denition of i�asphericity immediately
implies existence of a covering C� of the mapping H � such that the pairs
�C��x�� T �x�� are i�aspherical� So� one can use Lemma ������ and set T � to
be a tubular subcovering of C��

�b� First� we note that the set fW � W j V � Wg is nite� Second� the
intersection of a nite family of tubular �with respect to H �� open subsets
of Q 
 Y is also a tubular �with respect to H �� open subset of Q 
 Y � The
nonemptiness of C�V � follows from the obvious inclusion fxg 
 H ��x� �
C�V �� for each x � V �X�
�c� For each x � X� we have

St�x� T �X� � ��fV � V j x � V g� �X �
�St�x�V� �X �W �X � T �Q�x�W �� �X � T �X�x�W �� �

���
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for some W � W and for some x�W � � X� Let z � x�W �� But T �X�z� �
TX�z�� see ���� Hence we have proved that St�x� T

�
X� � TX�z��

To prove the i�asphericity of the inclusion T ��St�x� T �X�� � T �z� it su�ces
to check that T ��St�x� T �X�� � T ��z� because the inclusion T ��z� � T �z� is i�
aspherical� see ���� So� for a x� � St�x� T �X � we nd V� � V with fx� x�g � V��
Then T ��x�� � C�V�� � T ��x�W �� � T ��z�� Hence T ��St�x� T �X�� � T ��z��
Lemma ������ is proved�

Having proved Lemma ������ we can begin the second ��increasing��
inductive procedure�

Proof of Theorem ������
I� Construction

Let�

��� G� be an open subset of Q
 Y such that the intersection G� � �X 
 Y �
is a given neighborhood G of ��Hn� and T � X � Q 
 Y a tubular
subcovering of the constant covering C�x� � G�� x � X� of the mapping
Hn�

��n� Tn be a tubular subcovering of the tubular covering T of the mappingHn

such that the covering �Tn�X is a star�renement of the covering �T �X
of the paracompact space X�

��n��� We apply Lemma ������ for the mappings H
� � Hn��� H � Hn and for

tubular covering Tn of Hn and we nd a suitable tubular covering Tn�� �
X � Q
 Y of the mapping Hn���

� � �

���� We apply Lemma ������ for the mappings H
� � H�� H � H� and for

tubular covering T� of H� and nd a suitable tubular covering T� � X �
Q
 Y of the mapping H��

��� We temporarily name the family fTi�x�gx�X as the family of the �i�level
tubes��

��� V be a locally nite covering of X with degree 	 n � which renes the
covering �T��X �

��� for every V � V� an element x�V � � X be chosen such that V � X �
pQ�T��x�V ���� and

��� N be the nerve of the covering V of X and p � X � N the canonical
mapping�

We claim that then�

�a� Tubular coverings T � Tn�� � � � T� in points ���� ��n��� � � � ���� exist�

�b� There exists a continuous singular mapping g � N � Q 
 Y such that
the composition g �p � X � Q
Y is a selection of the �biggest� tubular
covering T � X � Q
 Y � and

�c� The composition h � pY � g � p is the desired approximation of Hn with
��h� � G�

���
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II� Veri�cation

�a� Existence of T follows by Lemma ������� Existence of Tn is part ��� of
Lemma ������� For other cases Lemma ������ is directly applicable�

�b� The construction of g can be performed by induction on the skeletons

of the nerve N � For any vertex v � N ��	 i�e� for any v � V � V� we can
simply put g�v� to be an arbitrary element of the ���level tube� T��x�V ���

For any segment �v� w� � N ��	 we have that the open sets v � V and w �
�W meet at some point x � X� Hence the union of these sets is a subset of
St�x� �T��X�� The chain properties ��� and ��� from Lemma ������ give the
possibility to join g�v� and g�w� inside some ���level tube�� The continuation
of this procedure is clear�

�c� If �x� y� � ��h�� then y � �pY � g � p��x� � pY �z� for the z � T �x� �
G� � Q 
 Y � Due to the tubularity of T �x� we see that �x� y� � G�� Thus
�x� y� � G� i�e� ��h� � G�

Theorem ����� is thus proved�

�� Separations of multivalued mappings� Proof of
Theorem �	���

Theorem ���
� is a corollary of Theorem ������ which� roughly speaking�
asserts that for a given suitable pair H � F of mappings from X into Y �
there exists a separation mapping bH� H � bH � F � such that the inclusion
H � bH has a prescribed connectedness�type properties� So Theorem ������
is similar to the Dowker separation theorem ������

Theorem ������ �UV k�separation theorem�� Let F � X � Y be a lower
semicontinuous mapping of a paracompact space X into a Banach space Y �
Suppose that all fxg 
 F �x� are closed in some G� � X 
 Y and the family
ffxg
F �x�gx�X is ELCk in X
Y and let H � X � Y be a compact�valued
upper semicontinuous selection of F such that H is k�contractible in F � Then
there exists a compact�valued upper semicontinuous mapping bH � X � Y
such that H � bH � F and the pair �H� bH� of mappings is UV k�apolyhedral�

Having Theorem ������� we can now present the proof of Filtered com�
pact�valued selection theorem ���
��

Proof of Theorem ������
I� Construction

Let�
��� F� � F� � � � � � Fn be a given L�ltration of mappings Fi � X � Y �

We claim that then�
�a� F� is a lower semicontinuous mapping�
�b� F� admits an upper semicontinuous compact�valued selection H� � X �

Y � and

���
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�c�� Theorem ������ can be applied to the mapping F� and to the selection
H� of F��
Let�

��� H� be the result of using of Theorem ������ in �c��� i�e� H� � H� � F�
and the pair �H��H�� is UV

��apolyhedral�
We claim that then�

�c�� Theorem ������ can be applied to the mapping F� and to the selection
H� of F�� Moreover� for the resulting mapping H� � X � Y we have
H� � H� � H� � F� and �H��H�� is UV

��apolyhedral� and
�d� continuation of construction as in points �c��� �c��� � � � � �cn� gives a

desired U �ltration fHigni���
II� Veri�cation

�a� The �graph��mapping x �� fxg 
 F��x� is lower semicontinuous due to
the restriction that the family ffxg
F��x�gx�X is ELC�� in X
Y � So� F�
is lower semicontinuous as the composition of lower semicontinuous mapping
and continuous singlevalued mapping �pY in this case��

�b� This is a generalization of Compact�valued selection theorem ������
Namely� one must consider a lower semicontinuous mapping F� � X � Y
of a paracompact space X into Y � with values fxg 
 F��x� closed in some
G��subset of X 
 Y � For the proof� see Theorem �B�������

�ci� Application of Lemma ���	��b� for the compact Hi���x� and LC
i�subset

Fi�x� of the Banach space Y shows that Hi���x� is i�contractible in F �x��
Thus Theorem ������ applies�

�d� Evident� Theorem ���
� is thus proved�

Now we explain the idea of the proof of the UV k�separation theorem
������� First� for a metric space �Y� �� we denote by expY the set of all
compact subsets K � Y endowed by the Hausdor� metric H��

H��K
��K ��� � inff� 	 � j K � � D�K ��� �� and K �� � D�K �� ��g

It is well�known fact that �expY�H�� is complete metric space whenever �Y� ��
is complete metric space� Second� for a multivalued mapping ( � X � Y
into a metric space �Y� �� we denote by exp( the mapping fromX into expY
which corresponds to each x � X the subset exp(�x� of expY � Finally� for a
pair of mappings ) � ( fromX into Y we dene the mapping expUV k�)�(�
fromX into expY which associates to each x � X the set of all subcompacta
K of the set (�x� such that the pair �)�x��K� is UV k�apolyhedral in Y �
So� we claim that under the assumptions of Theorem ������ to the mapping
expUV k�H�F � � X � �expY�H�� the generalization �see Theorem �B�������
of the compact�valued selection theorem is applicable as in �b� from the proof
of Theorem ���
�� above� Hence� the mapping expUV k�H�F � has an upper
semicontinuous compact�valued selection� say S � X � expY � Then the
mapping bH � X � Y dened bybH�x� � �

n
K j K � S�x� � expUV k�H�x�� F �x��

o
���
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gives the desired separation mapping�
For every M � X
Y � with pX�M� � X� we deneM�x� � pY �p

��
X �x���M� and set

expX M � f�x�A� � X 
 expY j x � X� A �M�x�g � X 
 expY �

We temporarily denote the mapping expUV k�H�F � by (� So� we need
to check the following three facts�

Proposition ����	�� The values of the mapping ( are nonempty subsets
of expY �

Proposition ����
�� Let E be a G��subset of X
Y such that all fxg

F �x� are closed in E� Then there exists a G��subset E

� of X 
 expY such
that all fxg 
 (�x� are closed in E��

Proposition ������� The mapping ( � X � expY is lower semiconti�
nuous�

Proof of Proposition ������� It su�ces to put for each x � X in
UV k�thickening lemma ���	��c�� K � H�x� and L � F �x��

Proof of Proposition �������
I� Construction

We claim that expX E is a G��subset of X 
 expY � whenever E is a
G��subset of X 
Y � This follows directly from the fact that expX M is open
in X 
 expY whenever M is open in X 
 Y � So� we can simply put E� �
� expX E� Since F �x� is closed in E�x�� it follows that expF �x� is closed in
expE�x� and hence exp��F � is closed in expX E�

It remains to prove that exp��(� is closed in exp��F ��
Let�

��� x be a xed element of X�
��� fKig be a convergent �in Hausdor� metric H�� sequence in the value

(�x� � expUV k�H�F ��x��
��� K � limi��Ki�

We claim that then�
�a� H�x� � K�

�b� The pair �H�x��K� is UV k�apolyhedral�

�c� K � expUV k�H�F ��x��

II� Veri�cation

�a� If to the contrary� there exists a point y � H�x�nK� then the compactness
of K implies that dist�y�K� � �� 	 �� So� if H��K�Ki� � �� then the
di�erence H�x�nKi is nonempty which contradicts the existence of inclusion
H�x� � Ki�

�b� Due to the compactness of K for an arbitrary open U � K� we can nd
� 	 � such that D�K� �� � U � So� the inequality H��K�Ki� � � implies that

���



Separations of multivalued mappings� Proof of Theorem ����	 ���

H�x� � Ki � U � Thus the UV k�apolyhedrality of the pair �H�x��K� proves
�b��

�c� This is exactly �a���b�� Proposition ����
� is thus proved�

Proof of Proposition �������
I� Construction

Let�
��� x � X� K � expUV k�H�F ��x�� and � 	 ��

We claim that then�
�a� There exists � 	 � and a neighborhood O�x� of x such that for ev�

ery x� � O�x� the intersection F �x�� � D�K� �� is nonempty and that
for every polyhedral pair �Q�P � and for every continuous mapping of
pair � � �Q�P � � �F �x�� � D�K� ���D�K� ��� there exists an ��shift

�� � Q � P �k��	 � F �x�� � D�K� �� which extends �jQ� here P �k��	

is �k  ���skeleton of a triangulation of a polyhedral pair �Q�P �� and

dist���p�� ���p�� � �� p � Q � P �k��	� and
�b� There exists  	 � such that D�H�x�� � is k�apolyhedral in D�K� ���

Let�
��� y�� � � � � ym be an ��net in the compact K � (�x��
��� V �x� � O�x� � H���D�H�x�� �� � TfF���D�yi� ��� j � 	 i 	 mg be

open neighborhood of the point x� and
��� x� � V �x��

We claim that then�
�c� The compactum H�x�� is k�contractible in F �x�� �D�K� ��� and
�d� There exists a compactK � � expUV k�H�F ��x�� such thatK � � D�K� ���

Let�
��� y��� � � � � y

�
m be a points in the set F �x

�� with dist�yi� y
�
i� � �� and

�
� K �� � K � � fy��� � � � � y�mg�
We claim that then�

�e� K �� � expUV k�H�F ��x�� and H��K�K
��� � ��� i�e� for each x� � V �x�

the value of the mapping expUV k�H�F � at the point x� is ���close to the
xed element K � expUV k�H�F ��x�� Shortly� expUV k�H�F � is lower
semicontinuous at the point x�

II� Veri�cation

�a� This is a relative version of Shift lemma �������

�b� This is reformulation of the assertion that the pair �H�x��K� is UV k�
�apolyhedral� i�e� that K � expUV k�H�F ��x��

�c� We prove that the pair �H�x��� F �x���D�K� ��� is UV k�apolyhedral and
then Lemma ���	��b� gives the k�contractibility of this pair�

Let U be an open neighborhood of F �x���D�K� ��� By the Shift lemma
������ we have a neighborhood V of H�x�� such that V � U � D�H�x�� �
and for every polyhedron P with dimP 	 k every continuous mapping � �

���
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P � V is homotopic in U to a mapping �� into V � F �x��� Let P be a
polyhedron with dimP 	 k and g � P � V a continuous mapping� Since
V � D�H�x�� �� then there exists an extension gc � conP � D�K� �� of g�

onto the cone of P � From �a� we see that there exists a shift g�c � conP �
F �x�� of gc inside the neighborhood D�K� �� and� moreover� such a shift g

�
c

is also an extension of g�� Since g is homotopic to g� in U and g� is null�
homotopic in U � then g is also null�homotopic in U �

�d� Application of Lemma ���	��c� to the pair �H�x��� F �x�� �D�K� ����
�e� K �� � expUV k�H�F ��x�� directly follows from H�x�� � K � � K �� and
K � � expUV k�H�F ��x��� The inclusion K �� � D�K� �� holds because K � �
D�K� �� and fy��� � � � � y�mg � D�K� ��� The inclusion K � D�K ��� ��� follows
from ��� and ����

Proposition ������ is thus proved�

�� Enlargements of compact�valued mappings� Proof of
Theorem �	�	�

A function � � X � IR is said to be locally positive if for every x �
X� there exists a neighborhood V �x� such that inff��x�� j x� � V �x�g 	
	 �� Clearly� every locally positive function � � X � IR on the paracompact
domain X admits a positive continuous minorant� Hence� below we can
consider only positive continuous functions on X� The technique of proofs
in this section in some sense remind of techniques of proofs in Section ��
i�e� the �tubes� technique� But here we work with tubes whose sizes of
projections onto second factor are su�ciently small� So� as in Section �� we
x a paracompact space X� a Tihonov cube Q � X and a Banach space Y �

De�nition ������� �a� For a positive continuous function � � X � IR a
Cartesian product V 
D�y� ��x�� is called an ��tube whenever V is open in
Q with V �X � �� y � Y and x � V �X�
�b� If V is open �in Q� covering of X� then we dene open �in Q
Y � covering
V
� of X
Y as a family of all ��tubes with projections on Q being elements
of V�

Our rst lemma in this section assures the existence of coverings of type
V 
 � which are su�ciently small when they meet the graph of a given
compact�valued upper semicontinuous mapping�

Lemma ������ Let H � X � Y be a compact�valued upper semiconti�
nuous mapping and let G be an open �in Q
Y � neighborhood of ��H�� Then
there exists a covering V 
 � such that St���H��V 
 �� � G�

��	
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Proof�
I� Construction

Let�
��� For each �x� y� � fxg 
 H�x�� we choose a basic open neighborhood

Oy�x�
W �y� � G� here W �y� are open balls in the space Y �
��� For each x � X� the number �
�x� is the Lebesgue number of the covering

fW �y�gy�H�x	 of the compactum H�x��

��� For each x � X� y�� � � � � yl be a nite 
�x��net in H�x�� H�x� �
�fW �yi� j � 	 i 	 lg�

��� For each x � X�

O�x� � �
l�

i��

Oyi�x�� �H���D�H�x�� 
�x���� and

��� V be a covering which is a locally nite renement �with respect to X�
of the covering fO�x�gx�X � and for V � V we pick an element x�V � such
that V � O�x�V ���
We claim that then�

�a� The function ���x� � minf
�x�V �� j V � V� x � V g is locally positive�
and

�b� For an arbitrary positive continuous minorant ���� of ������ the covering
V 
 � is the desired covering�

II� Veri�cation

�a� Follows from the local nitness of the covering V�
�b� Let �x�� y�� � ��H�� �V 
D�y�� ��x���� for some x � V �X and y� � Y �
Then �see ����� V � O�x�V �� and ��x� 	 ���x� 	 
�x�V �� � 
�� Moreover�
�see ����

y� � H�x�� � D�H�x�V ��� 
���

Thus� the point y� is �
��close to some of the points yi from the 
��net
fy�� � � � � ylg in the compactum H�x�V ��� Therefore�

�x�� y�� � Oyi�x�V ��
W �yi� � G�

Our next step is to prove the existence of renements in the class of all
coverings of type V 
 � which posess certain connectedness properties� But
rst we must give an exact denition of such notion�

De�nition ������� �a� For a mapping H � X � Y and for a covering
of type V 
 � the set �X 
 Y � � St���H��V 
 �� is called enlargement of H
with respect to V 
 �� notation Enl�H�V 
 ���
�b� For a pair �H�F � of mappings H�F � X � Y with H � F and for
a natural k a covering V � 
 �� is said to be k�apolyhedral re�nement of a
covering V 
 � with respect to the pair �H�F � if for every point p � �x� y� �

���



��� Addendum� New proof of Finite�dimensional selection theorem

Enl�H�V � 
 ���� there exists an element V 
D � V 
 � such that St�p�V � 

��� � V 
D and the inclusion

���F ��z�� � St�p�V � 
 ��� � ���F ��z�� � �V 
D�

is k�apolyhedral whenever the left side of this inclusion is nonempty�

Lemma ������� Let H � X � Y be upper semicontinuous compact�
valued mapping and W 
 � a covering by ��tubes� Then there exists an open
�in Q� covering V � of X and a continuous positive function �� � X � IR such
that for every point p � Enl�H�V � 
 ���
 there exists a point p� � ��H� such
that

St�p�V � 
 ��� � St�p��W 
 ���

Proof� We put ���x� � ��x��� and dene V � as a star �with respect to
X� renement of W such that for every V � � V �

inff��z� j z � V � �Xg 	 �

�
supf��z� j z � V � �Xg�

Pick a point p � �x� y� � Enl�H�V � 
 ��� � �X 
 Y � � St���H��V � 
 ��� and
pick a point p� � �x�� y�� � ��H� which is �V �
 ����close to the point p� Then
for some x� � X and for some V � � V �� we have that fx� x�� x�g � V � and
dist�y� y�� � ����x��� Pick W � W such that St�x�V �� �W and let us verify
that for W 
D�y�� ��x��� � W 
 �� we have that fp�g � St�p�V � 
 ��� �W 

D�y�� ��x����

The inclusion p� � W 
 D�y�� ��x��� is obvious� To prove the inclusion
St�p�V � 
 ��� � W 
 D�y�� ��x��� we rst note that pQ�St�p�V � 
 ���� �
St�x�V �� � W � Secondly� let r � � supf���z� j z � St�x�V �� � Xg �
� �

� supf��z� j z � St�x�V �� � Xg� Then pY �St�p�V � 
 ���� � D�y� r� and

r � ��x���� because ��x�� � inff��z� j z � St�x�V �� � Xg 	 �
� supf��z� j

z � St�x�V �� �Xg� Moreover� dist�y� y�� � ����x�� � �
���x

�� 	 �
� supf��z� j

z � St�x�V �� � Xg � �
���x

�� and r  dist�y� y�� � ��x��� Hence D�y� r� �
D�y�� ��x����

Lemma ������� Let F � X � Y be a map such that the family ffxg 

F �x�gx�X is ELCn and let H � X � Y be an upper semicontinuous compact�
valued selection of F � Then every covering V
� admits a �n����apolyhedral
re�nement V � 
 ��
 with respect to the pair �H�F ��

Having Lemma ������� we can now prove Theorem ������

Proof of Theorem ������
I� Construction

Let�
��� � 	 � and G open in X 
 Y be given as in the hypotheses of Theorem

������

���



Enlargements of compact�valued mappings� Proof of Theorem ����	 ���

��� V �n 
 ��n be a covering such that enlargement Enl�Hn�V �n 
 ��n� lies in G
and supf��n�x� j x � Xg 	 ����

��� Vn 
 �n be a covering such that for every point p � Enl�Hn�Vn 
 �n��
there exists a point p� � ��Hn� such that St�p�Vn
�n� � St�p��V �n
��n��
and

��� V�
��� V�
��� � � � � Vn
�n be a chain of coverings such that Vk
�k is k�
apolyhedral renement of Vk��
 �k�� with respect to the pair �Hn� Fn��
� 	 k � n�
We claim that then�

�a� Coverings in ������� exist�
�b� There exists an open �in X 
 Y � neighborhood G� of the graph ��Hn�

such that �x� y� � G� implies that St��x� y��V� 
 ������Fn��x� � �� and
�c� There exists a continuous singlevalued h � X � Y such that ��h� � G��

Let�
��� F �i �x� � pY ���Fn��x� � St��x� h�x���Vi 
 �i��� pY � projection on Y �

We claim that then�
�d� The nite sequence fF �igni�� is an L�ltration�
�e� diamF �i �x� � �� for every x � X�
�f� There exists U �ltration fH �

igni�� such that H �
i � F �i � and

�g� fH �
igni�� from �f� is the desired U �ltration of mappings from X to Y �

II� Veri�cation

�a� Existence in ��� follows by Lemma ����	� existence in ��� follows by
Lemma ������ whereas the existence in ��� follows by Lemma �������

�b� For each �x�� y�� � ��Hn�� pick an element V� 
D� of the covering V� 

�� such that �x�� y�� � V� 
 D�� D� � D�y�� ���z�� for some y� � Y and
z � X � V�� Then G

��x�� y�� � �F
��
n �D�� � V�� 
D� is a basic open neigh�

borhood of the point �x�� y�� and G
� � �fG��x�� y�� j �x�� y�� � ��Hn�g is a

desired open neighborhood of the graph ��Hn�� In fact� from �x� y� � G� we
see that �x� y� � G��x�� y�� for some �x�� y�� � ��Hn�� i�e� x � F��n �D�� � V�
and y � D�� Hence� there exists y

� � Fn�x� �D� and

�x� y�� � �V� 
D�� � ��Fn��x� � St��x� y��V� 
 ��� � ��Fn��x��
�c� This is guaranteed by Singlevalued approximation theorem ������

�d� Let us verify all points ������� of Denition ����� of an L�ltration� The
property ���� i�e� F �i � F �i��� is evident and the property ���� i�e� that the
inclusions F �i �x� � F �i���x� are i�apolyhedral� is a direct corollary of ��� of
our construction� Next� we note that the sets �fSt��x� h�x���Vi 
 �i� j x �
Xg� � 	 i 	 n are open subsets of Q 
 Y � Hence the �ELCn�property� ���
and the �G��property� ��� of the mapping Fn imply these properties for the
mappings F �i �

�e� diamF �i �x� 	 diampY �St��x� h�x���Vi 
 �i�� 	 ��i � ��

�f� This is an application of the ltered compact�valued selection theorem
���
� to the L�ltration fF �igni���

���
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�g� H �
n is a selection of F

�
n which in turn is a selection of Fn due to the

construction� Hence H �
n is a selection of Fn and diamH �

n�x� 	 diamF �n�x� �
� for each x � X� Let us check that ��H �

n� � G� Moreover� we in fact verify
that ��F �n� � G� From ��� we have that ��F �n��x� � St��x� h�x���Vn 
 �n��
But St��x� h�x���Vn 
 �n� lies in G because p � �x� h�x�� � Enl�Hn�Vn
 �n�
due to the inclusion p � G� � Enl�Hn�Vn
�n� and St�p�Vn
�n� � St�p��V �n

��n� � G for some p� � ��Hn�� due to ��� and ��� from construction�

Our nal goal is to prove Lemma ������� We divide the proof into four
steps�

Lemma ������ �a�� There exists an open neighborhood G � Q
Y of the
graph ��H� and a continuous positive function  � X � IR such that for every
x � X and every �x� y� � G���F �
 the set F �x� is ���x���� �x���n�apolyhe�
dral at the point y
 i�e� D�y� �x�� � F �x� is n�apolyhedral in D�y� ��x���� �
F �x��

Proof� We apply the relative version of Shift lemma ������� see point �a�
of the proof of Proposition ������� in the situation when Q is an arbitrary

n�dimensional polyhedron and P � P �n��	 is its cone� So� to each x � X�
corresponds a number ��x� 	 � and a neighborhood O�x� of x� such that for
every x� � O�x� �X and every y� � F �x��� the set F �x�� is ���x���� ��x���n�
apolyhedral at the point y�� We can also assume that

inff��z� j z � O�x� �Xg 	 ��x����

Let fU�g��A be a locally nite open renement of the covering fO�x�gx�X
and let U� � O�x��� for each � � A� We dene G by the equality

G �
�
fU� 
D�H�x��� ��x��� j � � Ag�

To dene a function  � X � IR� we consider for x � X� a nite set
f��x�� j x � O�x��g and let ��� be a positive continuous minorant of the
function minf��x�� j x � O�x��g�

So� for every �x� y� � G � ��F � we can nd � � A such that

�x� y� � U� 
D�H�x��� ��x����

Then the set F �x� is ���x����� ��x����n�apolyhedral at y� But ��x��� 	
��x���� and �x� � ��x��� i�e� the set F �x� is ���x���� �x���n�apolyhedral
at y�

Lemma ������ �b�� Let G � Q
 Y and  � X � IR be constructed as
in Lemma �������a�� Then there exists an open �in Q� covering W of X and
a continuous positive function � � X � IR such that for every p � �x� y� �
fxg 
H�x�
 the star St�p�W 
 �� lies in G and

diampY �St�p�W 
 �� � ��F ��z�� � �z�

���
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whenever the last intersection is nonempty�
Proof� First� we nd a coveringW �
� � such that St���H��W �
� �� � G�

provided by Lemma ����	�� After this� we put ��x� � minf� ��x���� �x���g
and dene W as a star �with respect to X� renement of W � such that for
every W � W�

inff��z� j z �W �Xg � �

�
supf��z� j z �W �Xg

and

inff�z� j z �W �Xg � �

�
supf�z� j z �W �Xg�

So� for a xed p � �x� y� � fxg 
 H�x� let Wi 
 D�yi� ��xi�� be the
elements of St�p�W 
 �� which intersect the set fzg 
 F �z�� i � �� �� Then
there exists W � � W � such that fx� x�� x�� zg � W �� Hence ��xi� � �z����
i � �� �� But then D�yi� ��xi�� � D�y� �z����� i � �� �� So�

pY �St�p�W 
 �� � ��F ��z�� � D�y� �z�����

Lemma ������ �c�� In Lemma �������b� one can additionally conclude
that St�p�W 
 �� lies in some V 
 D � V 
 � with the property that the
inclusion

��F ��z� � St�p�W 
 �� � ��F ��z� � �V 
D�

is n�apolyhedral whenever the left side of this inclusion is nonempty�

Proof� We can assume that the covering W from the previous lemma is
also a star renement �with respect to X� of the original covering V�

Lemma ������ �d�� Let W
 � be constructed as in Lemmas �������b�

�c�� Then there exists an open �in Q� covering V � of X and a continuous
positive function �� � X � IR such that for every point p � Enl�H�V � 
 ���

there exists a point p� � ��H� such that

St�p�V � 
 ��� � St�p��W 
 ���

Proof� It su�ces to apply Lemma ������ for the covering W 
 ��

���



PART B� RESULTS

x�� CHARACTERIZATION OF NORMALITY�

TYPE PROPERTIES

�� Some other convex�valued selection theorems

In this section all multivalued mappings are assumed to have convex
values in some Banach space� We begin with the union of Theorems �����
and ����� ����� Theorem ��������

Theorem ������ Let X be a T��space� Then the following assertions
are equivalent�
��� X is paracompact� and
��� For every Banach space B
 every lower semicontinuous map f � X � B

with closed convex values admits a singlevalued continuous selection�

It follows from the proof that the following is equivalent to properties
��� and ��� of Theorem ������

��� For every set A
 every lower semicontinuous map f � X � ���A� with
closed convex values admits a singlevalued continuous selection�

Suppose that we replace in ��� the class of all Banach spaces by one of
its subclasses� e�g� the class of all separable Banach spaces� or the class of
all re!exive �Hilbert� quasire!exive� etc�� Banach spaces� Moreover� we can
substitute in ��� the family of all closed convex sets by some of its subclasses�
e�g� the class of all compacta� the class of all closed bounded sets� etc� The
problem is to nd a suitable replacement for ��� such that the equivalence
between ��� and ��� will be preserved� Some such questions have complete
answers� others have partial or no answer� Each a�rmative answer gives a
selection characterization of some class of topological spaces�

The classical Urysohn extension theorem asserts that the normality of a
T��space X is equivalent to the statement that the real line IR is an extension
space for X� i�e� that for every closed subspace A � X� every continuous
map f � A � IR can be extended to a continuous map �f � X � IR� But an
extension problem is nothing but a special case of some selection problem�
Hence� the class of all normal spaces is a natural candidate for some suitable
substitution in ����

Theorem ������ Let X be a T��space� Then the following assertions
are equivalent�
��� X is normal�

���



Some other convex�valued selection theorems ���

��� Every lower semicontinuous mapping F � X � IR such that for every
x � X
 F �x� is either convex and compact or F �x� � IR
 admits a
singlevalued continuous selection� and

��� For every separable Banach space B
 every lower semicontinuous map�
ping F � X � B such that for every x � X
 F �x� is either convex and
compact or F �x� � B
 admits a singlevalued continuous selection�

The following theorem is an analogue of Theorem ������ without the
separability condition�

Theorem ������ Let X be a T��space� Then the following assertions
are equivalent�
��� X is collectionwise normal� and
��� For every Banach space B
 every lower semicontinuous mapping F �

X � B such that for every x � X
 F �x� is either convex and compact
or F �x� � B
 admits a singlevalued continuous selection�

In the following theorem the separability condition has been added to
the formulation of Theorem ������

Theorem ������ Let X be a T��space� Then the following assertions
are equivalent�
��� X is normal and countably paracompact�
��� Each lower semicontinuous mapping F � X � IR with closed convex

values admits a singlevalued continuous selection� and

��� For every separable Banach space B
 every lower semicontinuous map�
ping F � X � B with closed convex values admits a singlevalued conti�
nuous selection�

Of course� it su�ces to consider only �� instead of an arbitrary separable
Banach space in Theorems ����� and ����� in the assertion ���� Theorems
������ ������ and ����� correspond to Theorems ������� ������� and ������ of
������ Also� it should be noted that with the substitution of extension
properties instead of selection properties in Theorems ����� and ����� we
obtain the classical characterization of normality ������
��� and respectively
of collectionwise normality ������ Finally� we recall that if each countable
covering of a space X has a locally nite renement� then X is called a
countably paracompact space and if for each disjoint� locally nite family fF�g
of closed subsets of X� there exists a disjoint family fG�g of open subsets of
X such that F� � G� � for all �� then X is said to be collectionwise normal�
If such property holds for families fF�g of cardinality � � � � ��� then X is
said to be � �collectionwise normal�

Theorem ���	� ����� Let X be a T��space and let � be any cardinal
number� Then the following assertions are equivalent�
��� X is � �collectionwise normal� and

���



��� Characterization of normality�type properties

��� For every Banach space B of weight 	 � 
 each lower semicontinuous
mapping F � X � B such that for every x � X
 F �x� is either convex
and compact or F �x� � B
 admits a singlevalued continuous selection�

This theorem is interesting not only due to its relation to Theorem ������
Nedev observed that the original proof of the implication ������� in Theorem
����� is valid only for compact�valued mappings F � �Coban and Valov ����
gave the rst complete proof of Theorem ������ based on the method of
coverings� More precisely� they found a compact�valued lower semicontinu�
ous selection G for a mapping F from Theorem ��������� Consequently� the
original Michael�s proof works for convG � F � Hence� we can conclude that
the method of covering sometimes looks more universal than the method
of outside approximations for the case of convex�valued mappings� The
method of coverings also plays a crucial role in selection theorems which
�unify� Theorems ����������� with Zero�dimensional selection theorem �see
x�� below�� We shall conclude this section by a selection theorem for non�
�paracompact domains� due to Nedev ������

Theorem ���
�� Let * be the space of all countable ordinals
 endowed
with the order topology
 and B a re�exive Banach space� Then every lower
semicontinuous mapping F � * � B with closed convex values
 admits a
singlevalued continuous selection�

It is still an open problem whether this theorem characterizes countable
paracompactness and collectionwise normality� in the spirit of Theorems
������������

�� Characterizations via compact�valued selection theorems

We list some of �Coban�s results �����
�� If in the denition of paracom�
pactness �See Theory� x���� one replaces the local �niteness by the pointwise
�niteness of coverings then one obtains the denition of weak paracompact�
ness�

Theorem ������ For every regular space X
 the following assertions are
equivalent�
��� X is weakly paracompact� and
��� For every completely metrizable space Y 
 every closed�valued lower semi�
continuous mapping F � X � Y admits a compact�valued lower semiconti�
nuous selection G � X � Y 
 i�e� G�x� � F �x�
 for every x � X�

Theorem ������ For every T��space X
 the following assertions are
equivalent�
��� X is normal� and
��� For every separable metrizable space Y 
 every compact�valued lower semi�

continuous mapping F � X � Y admits a compact�valued upper semi�
continuous selection�

���



Characterizations via compact�valued selection theorems ���

A space Y is said to be � �paracompact �for an innite cardinal �� if every
open covering of Y of cardinality 	 � has a locally nite open renement�

Theorem ����� For every T��space the following assertions are equiv�
alent�

��� X is normal and � �paracompact� and

��� For every completely metrizable space Y of weight 	 � 
 every closed�
�valued lower semicontinuous mapping F � X � Y admits a compact�
�valued upper semicontinuous selection�

Under the dimensional restriction on the domainX there exists a version
of the last two theorems in which the compactness of values of the selection
is replaced by a suitable niteness condition�

Theorem ������� For every T��space X
 the following assertions are
equivalent�

��� X is normal and dimX 	 n� and

��� For every separable metrizable space Y 
 every compact�valued lower semi�
continuous mapping F � X � Y admits an upper semicontinuous selec�
tion G � X � Y 
 with values G�x� of cardinality at most n ��

Theorem ������� For every T��space X
 the following assertions are
equivalent�

��� X is normal and � �paracompact with dimX 	 n� and

��� For every completely metrizable space Y of weight 	 � 
 every closed�
�valued lower semicontinuous mapping F � X � Y admits an upper
semicontinuous selection G � X � Y with values G�x� with cardinality
at most n ��

Nedev ����� noticed that the property of a lower semicontinuous closed�
and convex�valued mapping F � X � Y to have an upper semicontinu�
ous closed�valued selection also yields a characterization of paracompactness
of X� �Coban and Nedev ���� have obtained characterizations of � �collection�
wise normality which generalize Theorem ����� and reads just like Theorem
���	� with �normal and � �paracompact� replaced by �� �collectionwise nor�
mal� and �closed�valued F� replaced by �F �x� is compact or F �x� � Y ��

Finally� let us mention that Compact�valued selection theorem also holds
for a normal �not necessary paracompact� domain X and for a continu�
ous closed�valued mapping into completely metrizable spaces ����� In other
words� one of the assumptions of Compact�valued selection theorem admits
a weakening with a simultaneous strengthening of the other assumption�
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�� Characterization of normality�type properties

�� Dense families of selections� Characterization of perfect
normality

Theorem ����� states that under certain conditions� a multivalued map�
ping F has at least one singlevalued continuous selection� Consider now the
following construction� Choose a nite subset K of the domain X� choose
arbitrary points y � y�x� � F �x�� x � K� dene a lower semicontinuous
mapping FK by

FK�x� �

�fy�x�g� x � K
F �x�� x � XnK

and then� by means of Theorem ������ nd a singlevalued selection fK of
FK � Such a map fK will be a selection of the multivalued mapping F having
prescribed values of the xed nite subset of the domain� And if we change K
over the family of all nite subsets of the domain X� we obtain a su�ciently
large family of selections of a given lower semicontinuous mapping F � A more
careful technique which generalizes the idea above to countable subsets and
separable ranges� yields the following theorem�

Theorem ������ ������ If X is perfectly normal
 B is a separable
Banach space and F � X � B is a lower semicontinuous mapping with closed
convex values
 then there exists a countable family S of selections of F such
that ff�x� j f � Sg is a dense subset of the value F �x�
 for every x � X�

Every metric space is perfectly normal� whereas the converse is false�
The following strengthening of Theorem ������ was proved in ��
�� for metric
domains�

Theorem ������� Let X be a metric space
 B a Banach space
 and F �
X � B a lower semicontinuous mapping with closed convex values� Then
for each in�nite cardinal �
 there exists a family S of selections of F with
card�S� 	 � such that the set ff�x� j f � Sg is dense in F �x�
 whenever
x � X
 and F �x� has a dense subset of cardinality 	 ��

Let us return to Theorem ������ and let F � X � B be a convex�valued
�in general� nonclosed�valued� lower semicontinuous mapping� Applying
Theorem ������ to the mapping Cl�F � � X � B� we nd some countable
family S of its selections� Fix an enumeration of the family S� say S �
� fs�� s�� � � �g� and consider the following selection s of the mapping Cl�F ��

s�x� �
�X
i��

si�x���
i� x � X �

Clearly� s is continuous and s�x� � Cl�F �x��� due to the convexity of F �x��
However� sometimes s�x� � F �x�� In this way it is possible to construct a
selection for some mappings with nonclosed convex values� More precisely� if
C is a closed� convex subset of a Banach space then a face of C is a closed
convex subset D � C such that each segment in C� which has an interior
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Dense families of selections� Characterization of perfect normality ��

point in D� must lie entirely in D� the inside of C is the set of all points in C
which do not lie in any face of C�

De�nition ������ ������ A convex subset C of a Banach space is said
to be of convex D�type if it contains all interior points of its closure�

Examples of convex D�type sets are� �a� closed convex sets� �b� convex
subsets which contain at least one interior point �in the usual metric sense��
�c� nite dimensional convex sets� �d� the subset of all strongly increasing
functions on the interval ��� �� in the Banach space of all continuous functions
on ��� ��� Before stating the next theorem� we note that if each closed subset
of a space X is a G��subset� then X is called perfectly normal�

Theorem ����	� ������ Let X be a T��space� Then the following
assertions are equivalent�
�a� X is perfectly normal�
�b� Each convex�valued lower semicontinuous mapping F � X � IRn admits

a singlevalued continuous selection� and
�c� For every separable Banach space B
 each lower semicontinuous mapping

F � X � B such that F �x� is a convex D�type subset of B
 for all x � X

admits a singlevalued continuous selection�

For an application of Theorem ������ in the theory of locally trivial
brations� see Applications� x���� Let us recall �see Theory� x
� another
selection theorem for nonclosed�valued multivalued mappings�

Theorem ����
�� Let G be an open subset of a Banach space� Then each
convex�valued lower semicontinuous mapping F from a paracompact space X
into G with closed �in G� values F �x�
 x � X
 admits a singlevalued conti�
nuous selection�

Proof� First� we nd a compact�valued lower semicontinuous selection
of F � say (� Next� we consider the mapping ) � conv�(�� It easy to see�
that ) � X � B is compact�valued �since the closed convex hull convK in a
Banach space is compact whenever K is compact�� convex�valued and lower
semicontinuous selection of the map F � and )�x� � F �x�� for all x � X�
Therefore� Convex�valued selection theorem can be applied to the map )�

Problem ������� Is it possible to substitute the set G in Theorem ������
by any G��subset of a Banach space�

This is an interesting open problem in the theory of selections �see �������
Here the main technical problem is the following� If B is a Banach space� G
one of its G��subsets� F a convex� closed �in G� subset of G and K a compact
subset of F � then� in general� conv�K� is not necessarily a subset of F � The
inclusion conv�K� � F holds if� for example� G is the intersection of some
countable family of open convex subsets of B� e�g� Theorem ����
� holds for
the pseudo�interior of the Hilbert cube�
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�� Characterization of normality�type properties

A partial a�rmative answer to the problem above was given by Gutev
��
���

Theorem ������� Let X be a countably�dimensional metric space or a
strongly countably�dimensional paracompact space� Then each convex�valued
lower semicontinuous mapping F from X into a G��subset G of a Banach
space B with closed �in G� values admits a singlevalued continuous selection�

Note that in the theory of measurable multivalued mappings a countable
dense �in the spirit of Theorem ������� family of measurable selections is
often called the Castaing representation of a given multivalued mapping
�see x
� below�� A special case was proved in ��	� for a mapping F from
a separable metric space X with a nite regular Borel measure � into the
unit ball D of the re!exive Banach space Lp���� for some � � p � � and
some measure �� Consider D endowed with the weak topology w� Then
every Borel singlevalued mapping h � X � D has the integral

R
X h d�� i�e�

the unique point y � Lp with

Ay �

Z
X

�A � h�d�

for every A � L�p� Let
R
be the mapping which associates to every Borel

mapping h � X � D its integral
R
X h d��

Theorem ������ Let F � X � D be a convex�valued lower semicontinu�
ous mapping with F �x� being closed subsets of �D�w� and let BF �resp� CF � be
the family of all Borel �resp� continuous� singlevalued selections of F � ThenR
�CF � is a dense subset of

R
�BF �
 with respect to the norm topology�

�� Selections of nonclosed�valued equi�LCn mappings

In this section we consider nonclosed�valued mappings� We include below
results related to the weakening of the closedness of values F �x� in comparison
with Theorems ������� ����
� and ������ of Section �� First� we note that
the analogue of Problem ������ has an obvious a�rmative solution with the
substitution of Zero�dimensional selection theorem instead of Convex�valued
ones� In fact� every G��subset G of a completely metrizable space Y is also
completely metrizable� So� this selection theorem is directly applicable to the
mapping F � X � G� G � Y � In ����� it was shown that such a replacement is
possible in the case of nite�dimensional selection theorem with simultaneous
weakening of the condition that fF �x�gx�X is an equi�LCn family� The main
point here is the following �factorization� idea� Let ( � X � Z be a mapping
which satises the hypotheses of some selection theorem and hence has a
selection � � X � Z� Let h � Z � Y be a continuous mapping and F �
h�( � X � Y � Then for the mapping F one has the obvious selection h�� �
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Selections of nonclosed�valued equi�LCn mappings ��

X � Y � But� on the other hand� the mapping F has in general no standard
�selection� properties� closedness of F �x�� n�connectedness of F �x�� ELCn

property for fF �x�gx�X � etc� If one can nd for a given F � X � Y such a
representation F � h �(� then a selection theorem with weaker assumptions
will be automatically valid� Moreover� it su�ces to have only F � h �(� i�e�
that h � ( is a selection of F � It seems that rst such observation is due to
Eilenberg ���	� Footnote ����

De�nition ������� A mapping F � X � Y is said to be equi�LCn if the
family ffxg 
 F �x�gx�X is an equi�LCn family of subsets of the Cartesian
product X 
 Y �

Every mapping F � X � Y with equi�LCn family fF �x�gx�X of values
is equi�LCn� but the converse is false� For example� let X � IN� Y � IR� and
F �m� � f�� �

mg � IR� Then F is ELCn�mapping� for every n � IN� but the
family fF �m�gm�IN is not an ELC��family�

Theorem ������ ���	�� Let X be an �n ���dimensional metric space

Y a completely metrizable space and F � X � Y an ELCn lower semiconti�
nuous mapping with closed values� Then F admits a continuous singlevalued
selection�

Proof� Finite�dimensional selection theorem can be applied to the map�
ping �F from X into the �metric� completion of X 
 Y � where �F �x� � fxg 

F �x�� It then su�ces to observe that F � pY � �F �

The key point here is that the product of two metrizable spaces is again
metrizable� Note� that the product of a paracompact space and a metrizable
space need not be paracompact�

Theorem ������� Under the hypotheses of Theorem ������ let G be a
G��subset of X 
 Y 
 and replace the condition that F �x� are closed in Y by
the condition that fxg
F �x� are closed subsets of G� Then F admits a con�
tinuous singlevalued selection�

Proof� One can consider �F � X � G as a mapping into a completely
metrizable space �G� where �G is a G��subset of the completion of X 
Y such
that �G � �X 
 Y � � G�

A natural question arises whether Theorem ������ is true for arbitrary
paracompact �nonmetrizable� domains" This problem was solved in ������

Theorem ������� Finite�dimensional selection theorem can be strength�
ened simultaneously in two directions�
�a� The assumption that fF �x�gx�X is ELCn family can be weakened to the

assumption that F is ELCn mapping� and
�b� The assumption that F �x� are closed in Y 
 for every x � X
 can be

weakened to the assumption that there exists a G��subset G of X 
 Y
such that fxg 
 F �x� are closed in G
 for every x � X�
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�� Characterization of normality�type properties

Proof� We describe only how the mapping F can be factorized through
the completely metrizable space Y 
 �����IN� Fix a representation G �
�
T�
n��Gn with Gn an open subset of X 
 Y and x a representation Gn �

�
SfUn

� 
 V n
� j � � Ang as a union of �rectangular� sets� where An is an

index set� For every x � X and y � F �x�� let

�n�x� y� � supft 	 � j fxg 
D�y� t� � Un
� 
 V n

� for some � � Ang �

Finally� for every x � X� let

(�x� �
n
fyg 
 f��� �n�x� y��g�n�� j y � F �x�

o
� Y 
 �����IN �

Clearly� F � pY � (� where pY � Y 
 �����IN � Y is the projection onto
the rst factor� The rest of the proof is concerned with the verication that
( � X � Y 
 �����IN satises all the hypotheses of the standard Finite�
�dimensional selection theorem�

We complete this section by a remark that universality of Zero�dimen�
sional selection theorem together with Theorem ������ gives the following
�weak� Compact�valued selection theorem �see Theory� x���

Theorem ������� Compact�valued selection theorem remains valid if
the assumption that F �x� are closed in Y 
 for every x � X
 is weakened to
the assumption that there exists a G��subset G of X
Y such that fxg
F �x�
are closed in G
 for every x � X�
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x�� UNIFIED SELECTION THEOREMS

�� Union of Finite�dimensional and Convex�valued theorems�
Approximative selection properties

Let X be a paracompact space and let Z be one of its closed� zero�
�dimensional subsets� hence dimZ � �� Then each lower semicontinuous
mapping F fromX into a Banach space B with closed convex values F �x�� for
all x �� Z� admits a singlevalued selection� To see this� it su�ces to use Zero�
�dimensional selection theorem �A����� for the restriction F jZ � and then use
Convex�valued theorem �A����� for a lower semicontinuous mapping� which
coincides with F over XnZ and which coincides with the chosen singlevalued
selection of F jZ onto Z�

Brie!y� the convexity of values is an essential restriction �on the module�
of the closed zero�dimensional subsets of a domain of lower semicontinuous
mapping� It was shown in ����� that it is possible to omit the requirement
that Z is closed� Below� the inequality dimX Z 	 n means that for each
closed subset A � X such that A � Z� the inequality dimA 	 n holds�

Theorem ������ Let B be a Banach space
 X a paracompact space and Z
a subset of X with dimX Z 	 �� Then each closed�valued lower semiconti�
nuous mapping F � X � B with convex values F �x�
 for every x � XnZ

admits a continuous singlevalued selection�

For Z � �� Theorem ����� is precisely Convex�valued selection theorem�
For Z � X� Theorem ����� coincides with Zero�dimensional selection theo�
rem�

Similar unions can be given for normal� normal and countable paracom�
pact and for collectionwise normal domains� i�e� it is possible to unify Zero�
�dimensional selection theorem with Theorems ����������� from the previous
chapter� For normal and countable paracompact domains this was also ob�
served in ������ For collectionwise normal domains this was proved in ������

Theorem ������ Let B be a Banach space
 X a collectionwise normal
space and Z a subset of X with dimX Z 	 �� Then each lower semiconti�
nuous mapping F � X � B such that F �x� is compact or F �x� � B for all
x � X
 and F �x� is convex for every x � XnZ
 admits a singlevalued conti�
nuous selection�

For normal domains only some weaker version can be obtained invoking
the argument from ������ The additional restriction is that all values F �x�
lie in some xed compactum in a Banach space B� In ����� the a�rmative
answer was given without the above �compactum� restriction�

In order to formulate a unied theorem for Finite�dimensional and Con�
vex�valued selection theorem we need the following denitions�
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�� Uni�ed selection theorems

De�nition ������ A multivalued mapping F � X � Y is said to have
the selection extension property �or SEP� if� whenever A � X is closed� every
continuous selection of the restriction F jA can be extended to a continuous
selection of F �

De�nition ������ A multivalued mapping F � X � Y is said to have
the selection neighborhood extension property �or SNEP� if� whenever A � X
is closed� every continuous selection of the restriction F jA can be extended to
a continuous selection of the restriction F jU onto some open neighborhood
U of A in X�

Theorem ���	� ������ Let B be a Banach space
 X a paracompact space
and Z a subset of X with dimX Z 	 n  �� Then each closed�valued lower
semicontinuous mapping F � X � B with convex values F �x�
 for every
x � XnZ
 and with fF �x� j x � Zg uniformly equi�LCn
 has the SNEP� If

moreover
 all values F �x� are Cn
 for every x � Z
 then F has the SEP�

Theorem ����� is a special case of Theorem ������ it su�ces to take
n � ��� The analogue of the previous theorem for collectionwise normal
domains was proved in ���
��

Theorem ���
�� Let B be a Banach space of weight 	 � 
 X a � �collec�
tionwise normal space and Z a subset of X with dimX Z 	 n  �� Let the
values of a lower semicontinuous mapping F � X � B be compact or equal to
B and let F �x� be convex
 for every x � XnZ� Then the uniformly equi�LCn

property of fF �x� j x � Zg implies the SNEP of F � If
 moreover
 all values
F �x� are Cn
 for all x � Z
 then F has the SEP�

The theorem unies Finite�dimensional selection theorem and the selec�
tion theorem for normal� countable paracompact domains and it was an�
nounced in ������ The question about the union of Compact�valued selection
theorem with Convex�valued selection theorems is also interesting� but the
following elegant example communicated to us by Gutev shows that� in gen�
eral� such union is impossible�

Theorem ������ Let F � D � IR be the lower semicontinuous map�
ping of the unit closed ball D � IR� de�ned by equalities� F ���� ��� � f�g�
F ����� ��� � f��g� F �x� y�� � f��� �g if x�  y� � � and y � ��
F ��x� y�� � ��px�  y��

p
x�  y�� if x�  y� � �� Let H be an upper semi�

continuous compact�valued selection of F with convex values H�x�
 whenever
F �x� is convex� Then H has no lower semicontinuous selection G � D � IR�
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�Countable
 type selection theorems and their unions with other selection��� ��

�� Countable� type selection theorems and their unions with
other selection theorems

As it was pointed out in Theorem �A�
���� every lower semicontinu�
ous mapping from a countable regular space into a space with the rst
countability axiom admits a continuous selection� Moreover� the assumption
that domain is countable regular space can be changed to the domain being
a �discrete paracompact space� i�e� a countable union of its closed discrete
subsets� The following theorem is a union of Zero�dimensional selection
theorem and this �countable� selection theorem�

Theorem ����� ��	�� Let F � X � Y be a lower semicontinuous mapping
from a zero�dimensional paracompact space X into a completely metrizable
space Y and let the set fx � X j F �x� is not closed in Y g be a �discrete
subset of X� Then F admits a singlevalued continuous selection�

A similar result was proved in ������

Theorem ���� ������ Let X be a paracompact space
 Y a completely
metrizable space
 A � X closed subset with dimX�XnA� 	 �
 and F � X � Y
a lower semicontinuous mapping with at most countable set fx � X j F �X� is
not closed in Y g� Then F has the SEP at A
 i�e� every continuous selection
of F jA can be continuously extended to a selection of F �

In terms of the selection extension property it is possible to formulate
�relative� version of Countable selection theorem �A�
����

Theorem ������ ������ Let X be a paracompact space and C its count�
able subset with closed complement XnC� Then every lower semicontinuous
mapping F � X � Y into a metric space Y has the SEP at XnC�

As for unions with Convex�valued selection theorem� we have�

Theorem ������ ������ Let X be a paracompact space and C its co�
untable subset� Let F � X � Y be a lower semicontinuous mapping into a
Banach space with convex and closed values F �x� for every x � XnC� Then
F admits a continuous singlevalued selection and
 moreover
 F has the SEP
at XnC�

There exists unied �with �countable� theorem� theorems for nite�
�dimensional selection theorem and for Compact�valued selection theorem�

Theorem ������ ������ Let X be a paracompact space
 A � X a closed
subset with dimX�XnA� 	 n �
 and C � X a countable subset� Let F � X �
Y be a lower semicontinuous mapping into a completely metrizable space Y
with closed values F �x� for every x � XnC� Then F has the SNEP at A

whenever the family fF �x� j x �� Cg is ELCn in Y � If
 moreover
 all values
F �x� are Cn
 for every x � XnC
 then F has the SEP at A�
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�� Uni�ed selection theorems

Theorem ������ �����	�� Let F � X � Y be a lower semicontinuous
mapping from a paracompact space X into a completely metrizable space Y
and let the set fx � X j F �x� is not closed in Y g be a �discrete subset of X�
Then F admits an upper semicontinuous compact�valued selection H � X �
Y 
 which in turn
 admits a lower semicontinuous compact�valued selection
G � X � Y � Moreover
 the values H�x� and G�x� can be assumed to be
�nite
 whenever F �x� is not closed�

If in Theorem ������ the domainX is assumed to be weakly paracompact�
then the conclusion is that there exists only a lower semicontinuous compact�
�valued selection G�

As a generalization of Theorem ���	� we have�

Theorem ������ ������ Let X�Y and A � X be as in Theorem ������
Let C �

S�
n��Cn
 with each Cn closed in X
 and let F � X � Y be a lower

semicontinuous mapping with closed values F �x�
 for every x � XnC and
with F jCn having the SNEP
 for all n � IN� Then F has the SEP at A�

Theorem ����	� ������ Let X�Y� Y � X and C �
S
Cn be as in

Theorem ������ and assume that A and Cn�s are G��subsets of X� Let Z
be a G��subset of Y and let F � X � Y be a lower semicontinuous mapping
with closed F �x�
 for every x � XnC
 with Z �Cl�F �x�� dense in Cl�F �x��

for all x � C
 and with F jCn having the SNEP at each singleton of X� Then
F has the SEP at A�

The union of Convex�valued� Zero�dimensional and Countable selection
theorems is possible�

Theorem ����
� ������ Let X be a paracompact space
 Z � X with
dimX Z 	 �
 and C � X countable� Then every lower semicontinuous
mapping mapping F � X � Y into a Banach space Y such that F �x� is
closed for every x � XnC and Cl�F �x�� is convex for every x � XnZ admits
a continuous selection and
 moreover
 F has the SEP�

Theorem ������ ������ Let X be a paracompact space
 A � X be closed
with dimX�XnA� 	 n  �
 and Z � XnA with dimX Z 	 m  � 	 n  ��
Then every closed�valued lower semicontinuous mapping F � X � Y into a
complete metric space Y with fF �x� j x � XnZg an ELCm family in Y and
fF �x� j x � Zg an ELCn family in Y 
 has the SNEP at A� If
 moreover

F �x� is Cn for all x � XnZ and F �x� is Cm for all x � Z
 then F has the
SEP at A�

Finally� let us collect the information concerning possible unions of vari�
ous selection theorems� We temporarily denote Convex�valued� Zero�dimen�
sional� Compact�valued� Finite�dimensional and Countable selection theo�
rems by Conv
 Zero
 Comp
 Fine
 and Coun� respectively�
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�Countable
 type selection theorems and their unions with other selection��� ��

Union Possible" References

Conv � Zero  Theorem �����

Conv � Comp � Theorem �����

Conv � Fine  Theorem �����

Conv � Coun  Theorem ������

Zero � Comp " "

Zero � Fine
�

 Theorem ������
Fine � Fine

Zero � Coun  Theorem �����

Comp � Fine " "

Comp � Coun  Theorem �����

Fine � Coun  Theorem ������

Conv � Zero � Coun  Theorem ����
�

Note� that the properties �L is an ELCn family� and �L is an ELCn

family in Y � are di�erent� In the rst case we consider neighborhoods of
points y from the union

SfL j L � Lg� But in the second case we consider
neighborhoods of all points y � Y � i�e� for every y � Y � every neighbor�
hood V �y�� there exists a neighborhood W �y� � V �y� such that for any L �
L� every continuous image of k�sphere� k 	 n� in W �y� � L is contractible
in V �y� � L �compare with the denition �A���
��� Consider the following
example� due to Ageev� Y � IR�� L consists of singletons f �n � ��g and unions
of segments ���� ��� � �n � �� � ���� ��� � �n � ����
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x�� SELECTION THEOREMS FOR NON�LOWER

SEMICONTINUOUS MAPPINGS

�� Lower semicontinuous selections and derived mappings

While lower semicontinuity of a mapping with closed convex values is
su�cient for the existence of continuous selections� it is� of course� not
necessary� For example� one can start by arbitrary continuous singlevalued
map f � X � Y and then dene F �x� to be a subset of Y such that f�x� �
F �x�� Then f is a continuous selection for F � but there are no continuity
type restrictions for F �

Clearly� if we can nd a lower semicontinuous selection G of a given
mapping F with closed convex values� then Michael�s techniques can be used
to nd a continuous selection f of a lower semicontinuous mapping convG�
Moreover� any selection of convG will automatically be a selection of F � This
simple observation appeared at di�erent times in di�erent publications� One
of the rst� it seems� was the paper by Lindenstrauss ������

Theorem ������ Let F be a mapping from a metric space M into
a separable Banach space B with closed convex values
 such that for each
countable compactum K � M 
 the restriction F jK admits a continuous
singlevalued selection� Then F admits a continuous singlevalued selection
over the entire space M �

Sketch of proof� For each x � M and for each countable compactum K
which contains the point x� one can dene G�x�K� � fg�x� j g is a continu�
ous selection F jKg� Clearly� G�x�K� is a nonempty convex subset of F �x��
x � X�

Next� one can dene G�x� �
TfClG�x�K�g� where the intersection is

taken over all countable compactaK which contain the point x� The technical
point of the proof is a verication of the non�emptiness of the closed convex
sets G�x� and the lower semicontinuity of such selection G of the original
map F �

It should be remarked� that the consideration of a subclass of all count�
able compacta which consist of convergent sequences only� is not su�cient for
the lower semicontinuity of selection G� constructed by the method above�
See ����� for generalizations�

The concept of a lower semicontinuous selection appeared in the paper of
Brown ���� with the connection of continuity properties of metric projections
in Banach spaces C�X� of continuous functions on compacta X� If M is
a nonempty subset of C�X� then PM is a multivalued mapping on C�X�
dened as follows�

PM �f� � fg �M j kf � gk � dist�f�M�g �

��	
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For continuity properties of PM see ���� ������
For a closed convex subset M � C�X�� all sets PM �f� are closed convex

subsets of M � So� PM is a mapping from C�X� into itself �in fact� into M�
with convex closed values� If we conjecture that PM �f� � � for all f � then
only lower semicontinuity of PM is an obstacle for using standard selection
theorem� But� in general� PM is not lower semicontinuous� See ���� for
necessary and su�cient conditions�

Theorem ����� ����� Under the above restrictions for M let

P �M �f� � fh � PM �f� j dist�h� PM �g��� �� as g � fg �

Then�
��� PM is lower semicontinuous if and only if P �M � PM � and
��� All continuous singlevalued selections of PM are selections of P �M �

For a survey of the literature concerned with continuity properties of
metric projection and with existence of its continuous selections see �	�� and
Applications� x
�

In ���� an abstract version of an analogue of P �M was proposed�

De�nition ������ Let F be a multivalued mapping between topological
spaces X and Y � Then its derived mapping F � is dened by

F ��x� � fy � F �x� j x � IntF���W �� for each open W� y �Wg �

It is obvious that the original map F is lower semicontinuous if and only if
F ��x� � �� for all x � X and F � � F �

One can dene the transnite iterations of the morphism F �� F ��

De�nition ������ Let F ��	 � F � F ����	 � �F ��	��� for each ordinal

number �� and let F ��	�x� �
TfF ��	�x� j � � �g� whenever � is a limit

ordinal� Then the stable derived mapping F � of a given mapping F is dened
as

F ��x� �
�
fF ��	�x� j � is an ordinal g �

It is obvious that F ��	 � F �� for every ordinal � with card� 	 card�X 
Y ��
Note also� that the denition of F � makes sense for mappings F with

possibly empty values �and the case F �x� � � is a natural special case of the
equality F ��	�x� � ���

Theorem ���	� ���� Let F � X � B be a mapping from a paracompact
space X into a Banach space B with closed convex values� Then�
��� F admits a continuous singlevalued selection if and only if F ��x� � �


for all x � X� and
��� If U is an open subset of X and F jU admits a continuous singlevalued

selection then F ��x� � �
 for all x � U �

���
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Note� that if every open subset of a paracompact space X is paracompact
then every subset of X is paracompact� i�e� X is a hereditary paracompact
space� In the last assumption fx � X j F ��x� � �g is the largest open subset
of X on which F has continuous selections�

Gel�man ����� introduced the notion of a derived mapping and proved
an analogue of Theorem ����� for the case of metrizable X and values F �x��
x � X� in convex subcompactum of a Banach space B� Of course� one
can consider �degree of F� as a minimal ordinal � with F ��	 � F �� For
nite dimensional ranges B the best possible estimate for such a degree was
obtained in �����

Theorem ���
�� Let F � X � IRn be a convex�valued mapping with
possibly empty values and let D�n	 � fx � X j F �n	�x� � �g� Then F � �

� F �n	 if D�n	 is open in X and F � � F �n��	 in the opposite case�

Theorem ������

�A� There exists a real normed linear space X of dimension �n  � and a
linear subspace M � X of dimension n such that for the metric projection
P � PM of X onto M �

��� D�n��	 � X� and

��� P �n	 � P �n��	�

�B� There exists a real normed linear space X of dimension �n and a linear
subspace M � X of dimension n such that for the metric projection P � PM
of X onto M �

���� D�n	 � X� and

���� P �n��	 � P �n	�

In order to replace the �lower semicontinuous� property of F by the prop�
erty of �admitting a lower semicontinuous selection�� the following mapping
�also derived from F � will be useful�

De�nition ������ Let F � X � B be a closed�valued mapping and
suppose that F admits a lower semicontinuous selection� Then F��x� �
� Clfy � F �x� j y � G�x� for some lower semicontinuous selection G of Fg�

Clearly� F� is a lower semicontinuous mapping and it is actually the
largest lower semicontinuous selection of F � If the original map F is lower
semicontinuous then F � F � � F�� But the equality F

� � F� holds outside
the class of lower semicontinuous mappings� For example� this equality holds
for quasi lower semicontinuous mappings �see Section � below��

���
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�� Almost lower semicontinuity

As it was pointed out in Theory� the proofs of selection theorems are
usually divided into two natural steps� The rst one states the existence �for
a xed positive �� of some ��selection of a given multivalued mapping F and
it actually is the rst step of an induction in the later proof� The second
step states the existence �for a xed �n � �� of some Cauchy sequence of
�n�selections� So one can try to analyze such steps separately� A criterion
for a convex mapping which admits a continuous ��selection for all positive
� was found by Deutsch and Kenderov �	��� Their approach was based on
the observation that in order to obtain an open covering of domain F �in the
process of nding an ��selection� it su�ces to consider an arbitrary family
of open ��balls in the range of F � whose preimages under F constitute a
suitable covering� There is no need to require the centers of such ��balls to
lie precisely in the values of F �

De�nition ����� Let F � X � Y be a mapping from a topological
space X into a metric space �Y� ��� Then F is said to be almost lower semi�
continuous at x � X if and only if for each positive �� there exists an open
��ball D� � Y such that x � IntF���D��� If F is almost lower semiconti�
nuous at each point x � X then F is called an almost lower semicontinuous
�ALSC� map�

Theorem ������ �	�� Let F � X � B be a convex�valued mapping from
a paracompact space X into a normed space B� Then F is almost lower semi�
continuous if and only if for each positive � the mapping F admits a conti�
nuous ��selection�

Theorem ������ �	�� Let F � X � B be a mapping from a paracompact
space X into a ��dimensional normed space B with closed convex values�
Then F is almost lower semicontinuous if and only if F admits a continuous
selection�

It was shown in ����� that it su�ces to assume in Theorem ������ that
the values F �x� are closed convex subsets of the line B� It was shown in
���� that Theorem ������ is false when B is two�dimensional� �See Section
� � Examples� below�� For compact�valued mappings one has the following
criterion for almost lower semicontinuity in terms of derived mappings �see
Section � above��

Theorem ������ �	
�� Under the conditions of De�nition ����� let F �x�
be compacta
 for every x � X� Then F is almost lower semicontinuous if
and only if F ��x� � �
 for all x � X�

The concept of almost lower semicontinuity can be reformulated in more
standard terms� Namely� F is almost lower semicontinuous if and only if for
each positive � there exists a neighborhood U�x� such that�

fD�F �x��� �� j x� � U�x�g � � �
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where� as usual� we denote by D�y� �� the open ��ball centered at the point
y and by D�A� �� the union of all open ��balls centered at the points of the
subset A of the metric space �Y� ���

De�nition ������ �	��� Let F � X � Y be a mapping from a topological
space X into a metric space �Y� ��� Then F is said to be n�lower semiconti�
nuous at x � X if and only if for each positive �� there exists a neighborhood
U�x� such that �

fD�F �xi�� �� j x�� x�� � � � � xn � U�x�g � �

for all x�� x� � � � � xn � U�x��
Using Helly�s theorem� Deutsch and Kenderov proved�

Theorem ������ �	�� Let F � X � B be a compact� and convex�valued
mapping from a paracompact space X into an n�dimensional normed space
B� Then F is almost lower semicontinuous if and only if F is �n ���lower
semicontinuous�

For the case when F is a metric projection in C�X�� and X is compact�
Fischer ����� proved the following�

Theorem ����	� ����� The metric projection in C�X� onto an n�di�
mensional subspace is �n ���lower semicontinuous if and only if it admits
a continuous selection�

�� Quasi lower semicontinuity

In order to introduce some classes of multivalued mappings which lie in
between the classes of lower semicontinuous and almost lower semicontinu�
ous mappings we consider the following subclass of the class of lower semi�
continuous mappings�

De�nition ����
�� Let F � X � Y be a mapping from a topological
space X into a metric space �Y� ��� Then F is said to be Hausdor� lower
semicontinuous at a point x � X if for each positive �� there exists an open
neighborhood U�x� such that the following implication holds

�y � F �x��� �U�x� � F���D�y� ��� �

In other words� Hausdor� lower semicontinuity is the �uniform� version
of the usual lower semicontinuity� In the following denition� due to de Blasi
and Myjak ����� such a �uniformity� is not required exactly at the point x �
X� but near x�

De�nition ������� Let F � X � Y be a mapping from a topological
space X into a metric space �Y� ��� Then F is said to be weakly Hausdor�
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lower semicontinuous at a point x � X if for each � 	 � and each open
neighborhood W �x� of x� there exist a point x� � W �x� and an open neigh�
borhood U�x� of x such that the following implication holds�

�y � F �x���� �U�x� � F���D�y� ��� �

The next step in this direction is due to Gutev ����� ���	�� Przeslawinski
and Rybinski ������ They omitted the uniformity restriction in the preceding
denition�

De�nition ������� Let F � X � Y be a mapping from a topological
space X into a metric space �Y� ��� Then F is said to be quasi �weakly
in terminology of ������ lower semicontinuous at a point x � X if for each
positive � and for each open neighborhood W �x�� there exists a point q�x� �
W �x� �here q�x� stands for �quasi� x� such that the following implication
holds

�y � F �q�x��� �x � IntF���D�y� ��� �
�Abbreviation� QLSC at a point x��

In other words� in Denition ����
� the neighborhood U�x� depends only
on � 	 � and W �x�� but in Denition ������ the neighborhood U�x� depends
on the triple ���W �x�� y�� where y � F �q�x��� The mapping F � X � Y is
said to be quasi lower semicontinuous if it is quasi lower semicontinuous at
each point x � X�

ALSCQLSC�WLSC

HLSC

HwLSC
LSC

Below we have collected the convex�valued selection theorems for non�
�lower semicontinuous mappings�

Theorem ������ Let F � X � B be a mapping from a paracompact
space X into a Banach space B with closed convex values� Then F admits a
singlevalued continuous selection in the following cases�
�A� F is weakly Hausdor� lower semicontinuous �����
�B� F is weakly lower semicontinuous ������ or
�C� F is quasi lower semicontinuous ����� ������
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Formally� there is no di�erence between the properties �B� and �C��
However� the proofs are quite di�erent� In �B�� the proof generalizes the
method of the proof of �A� by using the following purely geometrical fact�

Proposition ������� Let E be a convex subset of a normed space
�Y� k�k�
 e an element of Y 
 � 	 � � �
 and � 	 � � � � �� If for some
r 	 �
 the intersection E with D�r�e� is nonempty
 then

D�r�E� �D����	r�e� � DM����	r�E �Dr�e�� �

where M��� �� � ���  ���  ���� � � � ������

Using Proposition ������� it is possible to avoid the fact that the
nonemptiness of the intersections F �x� � D� where F is quasi lower semi�
continuous and D is an open ball� in general gives a map outside of the class
of QLSC mappings�

Theorem ������ ������ Assume that L 	 �
 F � X � B is a convex�
�valued quasi lower semicontinuous mapping from a paracompact space X
into a Banach space B and that f � X � B is singlevalued and continuous�
If d � X � ����� is a continuous majorant for dist�f�x�� F �x��
 then the
multivalued mapping x �� F �x� � DLd�x	�f�x�� is quasi lower semicontinu�
ous�

Theorem ������ is the key point in the inductive construction of a Cauchy
sequence of continuous �n�selections�

Gutev ���	� actually proved Theorem ����	��C� for zero�dimensional
paracompact domains� He used the Isbell theorem ����� on representations
of any topological space as an open image of some zero�dimensional para�
compactum Z�

B
F� � g is a selection of F � p

X ����
p

Z

So� if F is quasi lower semicontinuous� p is open� then F � p is also quasi
lower semicontinuous and if g is a singlevalued continuous selection of F � p
then G � g � p�� is a LSC selection of F � Finally� we can apply the standard
selection theorem to the mapping convG�

Theorem ������ ���	�� Let F � X � Y be a closed�valued quasi lower
semicontinuous mapping from a topological space X into a complete metric
space �Y� ��� Then�

��� F admits a closed�valued lower semicontinuous selection� and
��� For the derived mappings F � and F� �see Section �� we have that F � �

� F��
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We shall give a direct proof of Theorem ����	��C�� without using Propo�
sition ������ and without invoking the �universality� of Zero�dimensional se�
lection theorem� In fact� we shall translate Gutev�s proof into the standard
Michael argument�

Lemma ������� Under the assumptions of Theorem �������C�
 for each
� 	 �
 each open covering � of X and each �not necessarily continuous�
selection h of F 
 there exists a continuous ��selection f for F 
 such that
f�x� � convfh�St�x� ���g
 where St�x� �� � SfU � � j x � Ug
 i�e� the star
of x with respect to the covering ��

Proof�
I� Construction

��� For each x � X� pick ��x� � � such that x � ��x��

��� For the triple �x� ��x�� �� use the denition of quasi lower semicontinuity
�see Denition ��������

��� Find a point q�x� � ��x� and a neighborhood V �x� of x such that all
values F �x��� x� � V �x�� intersect with the open ��ball D�h�q�x��� ���

��� Let f��g� � � A� be a locally nite partition of unity inscribed into the
covering fV �x� � ��x�g� x � X�

��� For each � � A� x a point x� such that

supp e� � V �x�� � ��x���
and nally�

�
� For every x� � X� dene

f�x�� �
X

e��x�� � h�q�x��� �

where the sum is taken over all � � A such that e��x�� 	 ��

We claim that then�
�a� f is continuous�
�b� f is ��selection� and
�c� All points x� from the equality in �
� are in St�x�� ��� i�e� that f�x�� �

convfh�St�x�� ���g�
II� Veri�cation

�a� Follows by standard argument�

�b� We have

�e��x�� 	 ��� �x� � supp e���
� �x� � V �x���� �F �x�� �D�h�q�x���� �� � ���
� dist�h�q�x���� F �x��� � � �

���
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Convexity of F �x�� guarantees that dist�f�x��� F �x��� � ��

�c� Repeating the proof of �b��

�e��x�� 	 ��� �x� � V �x�� � ��x����
� �x� and x� lie in some element of �� �

Lemma ������� Under the assumptions of Theorem �������C�
 for each
� 	 �
 for each � 	 � and for each continuous ��selection g of F 
 there exists
a continuous ��selection f of F such that kf�x� � g�x�k � �  ��
 for all
x � X�

Proof�
I� Construction

��� Let h�x� be an arbitrary point from F �x� � F �g�x�� ���
��� Let � � fg���D�y� ���g� y � Y � be an open covering of X� and

��� According to Lemma ������� let f be a continuous ��selection of F for
the triple ��� �� h� such that

f�x� � convfh�St�x� ���g �

We claim that f is the desired ��selection of F � In order to prove this it
su�ces to check only that
�a� kf�x�� g�x�k � � �� for all x � X�

II� Veri�cation

Pick any x � X� Because of ���� there exist n � IN� positive 
�� 
�� � � � � 
n
with

Pn
i�� 
i � � and points x�� x�� � � � � xn � St�x� �� such that f�x� �

�
P

ih�xi�� Hence for each i� � 	 i 	 n� there exists an open set Ui � �

such that x� xi � Ui� But then �see ���� the points g�x� and g�xi� are in some
open ball of radius ��

Therefore kg�x�� g�xi�k � ��� By ���� we have that kh�xi�� g�xi�k � �
and hence kh�xi� � g�x�k � �  ��� Due to the convexity of the balls we
obtain that

kf�x�� g�x�k � k
X


i�h�xi�� g�x��k � � �� �

Proof of Theorem �������C��

Let f� be a continuous ��selection of F constructed as in Lemma �������
Let f� be a continuous �

���selection of F such that kf� � f�k � � �see
Lemma �������� Continuing this process� one can construct a sequence ffng
of continuous ��n�selections of F such that kfn�� � fnk � ��n��� Clearly�
f � lim

n��
fn is the desired continuous selection of F �
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�� Further generalizations of lower semicontinuity

Let � 	 � and let F � X � Y be a multivalued mapping� Following Beer
����� we dene�

F��x� � fy j for some neighborhood V �x�� y �
�
fD�F �x��� �� j x� � V �x�gg �

Clearly� the nonemptiness of the sets F��x� is equivalent to almost lower
semicontinuity of F � Moreover� the derived mapping F � coincides with the
intersection

T
��� F��

Theorem ����	� ����� Let F � X � Y be an almost lower semiconti�
nuous mapping with compact values
 X a topological space and Y a metric
space� Then F� converges to F�
 as �� �
 and the sets F��x� are nonempty�

Convergence in this theorem means convergence with respect to the
Hausdor� distance� i�e� for every 
 	 �� there exists �� 	 � such that for
all � � � � ��� the following inclusions hold�

D�F��x�� 
� � F��x� and D�F��x�� 
� � F��x� �

It is possible to dene some classes of multivalued mappings which
lie between quasi lower semicontinuous and almost lower semicontinuous
mappings in terms of the decreasing nets fF�g� Indeed� let H�A�B� be the
Hausdor� distance between subsets A and B of a metric space �Y� ���

De�nition ����
� ������ A multivalued mapping F � X � Y is said to
be�
�A� K�ball�Lipschitz lower semicontinuous if supfH�F��x�� F��x�� j x �

Xg 	 K �maxf�� �g�
�B� Ball�uniformly lower semicontinuous if supfH�F��x�� F��x�� j x � Xg �

�� when maxf�� �g � �� and
�C� Ball�locally�uniformly lower semicontinuous if the convergence in �B�

holds locally uniformly at points x � X�

Theorem ������ ������ Let F � X � Y be a multivalued mapping
 X a
topological space
 and Y a metric space� Consider the following statements�
��� F is lower semicontinuous�
��� F is quasi lower semicontinuous�
��� F is K�ball�Lipschitz lower semicontinuous for some K � ��
��� F is ball�uniformly lower semicontinuous�
��� F is ball�locally�uniformly lower semicontinuous� and
�
� F is almost lower semicontinuous�

Then ��� � ��� � ��� � ��� � ��� � ����

There exists a class of so�called convex lower semicontinuous mappings
between classes ��� and ��� which may be obtained as an axiomatization of
the assertions of Lemma ������ above�
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Theorem ������ ������ Let F � X � B be a multivalued ball�locally�
�uniformly lower semicontinuous mapping from a paracompact space X into
a Banach space B� Then�
��� The derived mapping F � is lower semicontinuous and F ��x� � �
 for all

x � X� and
��� If F is closed and convex�valued then F admits a continuous singlevalued

selection�

We conclude this chapter by a remark that there are some other general�
izations of lower semicontinuity which are concerned with existence of selec�
tions over some dense G��subsets of domain of given multivalued mappings�
See x��� below about demi�open� lower demicontinuous and modied semi�
continuous mappings�

�� Examples

Example ������ A quasi lower semicontinuous map which is neither
lower semicontinuous nor Hausdor� weakly lower semicontinuous� Dene a
mapping F � IR� IR by

F �x� �

���������
����n���� if x � ���n
���� n�� if x � ��n

IR� otherwise �

Example ������� A convex� and closed�valued almost lower semiconti�
nuous mapping F � IR� IR� without Borel selections� Let E be a non�Borel
subset of IR� let A be the closed ray f��� t� j t � �g� and let B be the set of
all points �x� y� which are above the hyperbola y � ��x� x 	 �� i�e� f�x� y� j
y � ��x� x 	 �g

F �x� �

���A� if x �� E

B� if x � E �

Example ������� A convex� and closed�valued almost lower semicon�
tinuous mapping F � IR � IR� without continuous selections � see Example
������� Another example�

F �x� �

���������
f�x� tx� j t � ��� ��g� for x irrational�

f�t� �� j t � ��� ��g� for nonzero rational x�

��� ��� for x � � �
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Example ������� A convex� and closed�valued almost lower semiconti�
nuous non�quasi lower semicontinuous mapping F � IR� IR� � see Example
������ and use Theorem ����	� or Theorems ������ and �������

Example ������� A convex closed lower semicontinuous mapping F �
IR � IR� which is non�Hausdor� weakly lower semicontinuous at all points
of IR�

F �x� � f�x� tx� j t � IRg �

Example ������� A metric non�complete space �Y� �� and closed�valued
quasi lower semicontinuous mapping F � ��� ��� Y without lower semiconti�
nuous selections� Let Y � ����� with the usual metric and let

F �x� �

�����n� if x � ��n� n � IN
������ otherwise �

See also ���	�� where a characterization of the completeness of � was given
in terms of existence of lower semicontinuous selections for quasi lower semi�
continuous mappings with range Y �

Example ����	�� A construction of a new quasi lower semicontinuous
mappings starting with a given one�

a� Let f � A � Y be a uniformly continuous singlevalued mapping from a
subset A of a metric space X into a metric space Y � Then by setting F �x� �
� ff�x�g� for x � A� and F �x� � Y otherwise� we get a quasi lower semicon�
tinuous F � X � Y �

b� Let f in �a� be a compact�valued lower semicontinuous� Then for some
G��subset B containing A� the restriction F jB is quasi lower semicontinuous�

Example ����
�� Modulus of local contractibility� A topological space
X is said to be locally contractible if for every point x � X and for each
its neighborhood U � X� there exists a neighborhood V of x such that the
inclusion V � U is a homotopically trivial map� For a metric space X the
notion of local contractibility can also be dened by means of real�valued
parameters� namely the radii of the neighborhoods U and V � More precisely�
letMX be the set of all metrics on X compatible with a given topology on X�
The space MX is considered with the topology induced by the following
metric of uniform converegence�

dist��� d� � supfminfj��x� y� � d�x� y�j� �g j x� y � Xg�
For each triple ��� x� �� �MX 
X 
 ����� we dene the set #��� x� �� of all
positive numbers � such that ��neighborhood B���x� �� of the point x in the
metric � is contractible over the ��neighborhood B���x� �� of the point x in
the same metric �� So� we have dened a multivalued mapping

# �MX 
X 
 ������ �����

���
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with nonempty convex values� The map # is called the modulus of local
contractibility of the space X�

Example ������� Let X � ��� �� and let � be the standard metric on
IR� Then #��� �� �� � ������ and #��� �� �� � ��� ��� for all � � ��

Hence the map # can be not lower semicontinuous and the standard
selection technique� does not apply in general� For a locally compact space X
it is possible to nd a lower semicontinuous selection of the map #�

Theorem ������� Let X be a locally contractible and locally compact
metrizable space and let for each triple ��� x� �� �MX 
X 
 �����

r��� x� �� � f� � #��� x� �� j closure of B���x� �� is compactg �

Then the map r �MX 
X 
 IR� IR� is lower semicontinuous�

In general� we can only establish quasi lower semicontinuity of the clo�
sure of the modulus of local contractibility #� We denote ����� x� �� �
� sup#��� x� �� and +#��� x� �� � ��� ����� x� ���� Clearly� +#��� x� �� is the clo�
sure of the set #��� x� �� on the complete metric space IR� � �������f�g� c�
where

c�t� s� � jt�� � s��j and c�t��� � t�� �

Theorem ������ Let X be a locally contractible metrizable space� Then
+# � MX 
 X 
 ����� � IR� is quasi lower semicontinuous mapping into a
complete metric space with closed convex values�

As a corollary we obtain that there exists a single�valued continuous
function

�� �MX 
X 
 ������ �����
such that for each ��� x� �� �MX
X
IR� the neighborhood B���x� ����� x� ���
is contractible inside the neighborhood B���x� ���
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x�� MISCELLANEOUS RESULTS

�� Metrizability of the range of a multivalued mapping

There is some inconsistency between statements of the classical selection
problems �see Theory� and their solutions� In the category of topological
spaces any selection problem is purely a topological question� However� all
known solutions of selection problems use a suitable metric structure of the
range of the multivalued mapping� i�e� �metric� proofs yield �topological�
answers� So� a very natural question arises� Is the �complete� metrizability
of the range a necessary condition for existence of a continuous selection�

As an interpretation of this question one can state the following problem�
Does there exists a proof of selection theorems which avoids metric structure
of the range of the multivalued mapping�

The results collected in the present section show that� as a rule� answer
to the rst question is �yes� and thus the answer to the second one is �no��

Theorem �	��� ������ Let K be a compact space such that for every
zero�dimensional compact S and every lower semicontinuous mapping F �
S � K with closed values
 there exists a continuous singlevalued selection f
of F � Then K is metrizable�

Proof�

��� Due to a theorem of Aleksandrov� K is the image of a closed subset A
of some Cartesian power D� of D � f�� �g under a continuous mapping g �
A� K� So the mapping

F �x� �

���K� x �� A

fg�x�g� x � A

is a closed�valued lower semicontinuous mapping of the zero�dimensional
compactumD� into K� The assumption of the theorem guarantees existence
of a continuous selection f of F � Hence� K is in fact a dyadic compactum�

��� We note that proof in ��� can be generalized to an arbitrary subcompact
T � K� i�e� any subcompact T � K is a dyadic compact� By Emov�s
theorem ������ K is metrizable as a hereditary dyadic compactum�

Observe� that the converse to Theorem ����� is a special case of Zero�
�dimensional selection theorem�

Theorem �	��� ���������� Let ���� be the one�point compacti�cation
of an uncountable discrete space � which is embedded in some locally convex
topological vector space Y � Let X � exp������� be the compactum of all at
most three�points subsets of ���� endowed with the Vietoris topology� Let
F � X � Y be the mapping which associates to each x � X the convex hull

���
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of all elements of x� Then F is lower semicontinuous mapping with compact
convex values which does not admits any continuous singlevalued selections�

Proof� We present only the idea of the proof� Suppose to the contrary�
that f is a selection of F � Let w be the nondiscrete point of X� Then�

�a� For two�points subsets x � f��wg � ��� x � X� the value f�x� must
be equal to the middle point of the segment ���w� � convf��wg� for some
uncountable set �� � � and for all � � ���
�b� For three�points subsets x � f�� �� wg � ����� � ����� x � X� one can
use some version of �a� for medians of the triangle " � convf�� �� wg and
conclude that the value f�x� must be near the middle point of the median of
"� for some uncountable set ��� � �� and �� � � ����

So we obtain a contradiction� because the point of the intersection of the
medians is not their middle point�

As a corollary we obtain�

Theorem �	��� ������ Let K be a convex compact subset of a locally
convex linear topological space� Then the following two assertions are equiv�
alent�
��� K is metrizable� and
��� Every lower semicontinuous mapping with closed convex values from a

zero�dimensional compact domain into K admits a continuous singleval�
ued selection�

Proof ��� � ���� This is a special case of the selection theorem from
��
��� To prove the implication ��� � ��� it su�ces to use Theorems �����
and ����� and another Emov�s theorem ����� which states that every dyadic
non�metrizable space has a subcompactum homeomorphic to the one�point
compactication ���� of some uncountable discrete ��

For a specication of M,agerl�s results see ������ Clearly� one can formu�
late the following generalization ���� of the ��� from Theorem ������
���� Every convex subcompact of K is dyadic�

M,agerl ����� raised the question about possibility to replace ��� with
���� in Theorem ������ Valov ����� gave the a�rmative answer and hence
proposed an alternate proof of Theorem ������

Theorem �	��� ������ Let K be a convex compact subset of a locally
convex linear topological space� Then the following two assertions are equiv�
alent�
��� K is metrizable� and
���� Every convex subcompact K is dyadic�

Moreover� it was shown in ����� that the condition of existence of con�
tinuous singlevalued selections can be weakened to the existence of upper
semicontinuous compact�valued selections�
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Theorem �	�	� ������ Let K be a compact space such that for every
zero�dimensional compact S and for every closed�valued lower semicontinu�
ous mapping F � S � K
 there exists an upper semicontinuous compact�
�valued selection� Then K is metrizable�

Theorem �	�
� ������ Let K be a convex compact subset of a locally
convex linear topological space� Then the following two assertions are equiv�
alent�
��� K is metrizable� and
��� Every lower semicontinuous mapping with closed convex values from a

zero�dimensional compact domain into K admits an upper semicontinu�
ous compact�valued selection�

Outside the class of compacta our original question looks more sophisti�
cated�

Theorem �	��� ������ Let K be a p�paracompact space� Then the
following assertions are equivalent�
��� K is completely metrizable� and
��� Every lower semicontinuous closed�valued mapping with a zero�dimen�

sional p�paracompact domain into K admits an upper semicontinuous
compact�valued selection�

Theorem �	��� ������ Let K be a p�paracompact convex subset of a
locally convex linear topological space� Then K is completely metrizable if
��� from Theorem ����� holds�

Recall that p�paracompact spaces can be dened as preimages of metric
spaces under perfect mappings �� closed mappings with compact preimages
of compacta��

To formulate some other results of Nedev and Valov� we need the follow�
ing�

De�nition �	��� Let K be a class of topological spaces and let L and
M associate to every topological space X certain families L�X� andM�X�
of closed subsets of X� A space X is called �K�L�M��selector� provided
that for every K � K and every lower semicontinuous mapping F � K � X
with F �k� � L�X�� k � K� there exists an upper semicontinuous selection
G � K � X with F �k� � M�X�� k � K� If in addition� we assume that
X is a subset of a locally convex linear topological space and that all values
of F are closed convex hulls of elements of L�X� then X is called a convex�
��K�L�M��selector�

So� let
�a� C be the class of all compacta�
�b� P be the class of all paracompact spaces�
�c� N be the class of all normal spaces�
�d� cwN be the class of all collectionwise normal spaces�
�e� pP be the class of all p�paracompact spaces�

���
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�f� C�X� be the family of all nonempty subcompacta of a topological space
X and C��X� � C�X� � fXg� and

�g� F�X� be the family of all nonempty closed subsets of a topological
space X�

Theorem �	���� ������
��� The class of all normal �N � C��F��selectors coincides with the class of all

completely metrizable separable spaces�
��� The class of all normal �N �F �F��selectors coincides with the class of all

compact metrizable spaces�
��� The class of all normal convex��N �F �F��selectors coincides with the

class of all closed
 convex
 separable weakly compact subsets of Fr�echet
spaces�

Theorem �	���� ���
��
��� If X � pP and X is a convex��pP� C��F��selector
 then X is metrizable�
��� The class of all collectionwise normal �cwN �F �F��selectors coincides

with the class of all metric compact spaces�
��� If X is a Lindelof space and X is a �P� C��F��selector then X is com�

pletely metrizable�

As a special case of Theorem ����� we have that if a metric space X
is a selector with respect to the class P of paracompact spaces then X is
completely metrizable�

Due to a recent result ����� this conclusion holds for metric selectors with
respect to the class of all metric spaces� In ��
��� this problem was restricted
to the case of a single metric space� namely the Cantor set�

Theorem �	���� ��
��� Let X be a metric space which is a selector with
respect to the Cantor set� Then every closed subset A of X is a Baire space
�i�e� if A �

S�
n��An
 where each An is closed then at least one set An has

nonempty interior��

Recall that every completely metrizable space is Baire space� i�e� The�
orem ������ states that every closed subset of a metric Cantor set�selector
looks like a completely metrizable space� Note also� that there exists a sepa�
rable metric space X every closed subset of which is a Baire space� such that
X is not a selector with respect to the Cantor set� see ��
���

Theorem �	���� ��
��� If X is a metric space and is a Cantor set
selector then either X is scattered �i�e� every closed subset of X has an
isolated point� or X contains a subset homeomorphic to the Cantor set�

Outside the class N of all normal spaces we know one fact of the
above type� Let X and Y be completely regular spaces� A multivalued
map F � X � Y has the weak selection�factorization property if for every
functionally closed subset H of X and for every countable family U consisting
of functionally open subsets of Y such that F���U� � fF���U� j U � Ug
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covers H� there is a locally nite functionally open �inH� cover ofH inscribed
into F���U�� Note that a subset of a completely regular space X is called
functionally open �resp� closed� if it is a preimage of an open �resp� closed�
subset of the real line IR under some continuous function h � X � IR�

Theorem �	���� ����� The following conditions are equivalent for every
completely regular space X�
��� X is a Polish space �i�e� X is completely metrizable separable space�� and
��� For every completely regular space Y with dimY � � and for every closed�

�valued mapping F � Y � X with weak selection�factorization property

there is a continuous singlevalued selection of F �

In a recent paper ������ the following selection characterization of com�
pleteness in the class of metrizable spaces was obtained�

Theorem �	��	�� Let Y be a metrizable space� Then the following
statements are equivalent�
��� Y is completely metrizable�
��� For every ��dimensional metrizable space X
 every closed�valued lower

semicontinuous mapping F � X � Y admits a continuous selection� and
��� For every ��dimensional metrizable space X with densityX 	 density Y 


every closed�valued lower semicontinuous mapping F � X � Y admits a
continuous selection�

It was also proved that the statement �all analytic spaces which are
Cantor set�selectors are completely metrizable� is independent of the usual
axioms of the set theory and proved that assuming the Martin axiom there
exists a Cantor set�selector outside the �algebra generated by the analytic
sets�

For other results from ����� concerning continuous selections of families
of subsets see Section �� below�

�� A weakening of the metrizability of the ranges

We present a list of some successful attempts to weaken� or to omit
altogether in selection theorems� the assumption of metrizability of the range
of a multivalued mapping� We say that a locally convex linear topological
space E is complete if for every compact subset K � E the closed convex
hull convK of K is compact� too�

Theorem �	��
� ��
��� Let F � X � E be a lower semicontinu�
ous mapping from a paracompact space X into a complete locally convex
topological vector space E and let the union M �

SfF �x� j x � Xg admit a
metric compatible with topology induced from E such that each value F �x�

x � X
 is a complete subset ofM � Then there exists a continuous singlevalued
f � X � E such that f�x� � convF �x�
 i�e� the mapping convF admits a
continuous selection�
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Proof� We derive this theorem from the universality of Zero�dimensional
selection theorem �see Theory� x��� for notations p� X�� �� P �X����

E
�
M

F�
x�� g is a selection of F � p

P �X���



X �
p

X�

Then the formula f�x� �
R
p���x	 g d��x� gives the desired continuous selec�

tion� The completeness of E� i�e� the compactness of conv g�p���x�� � E
gives an existence of this integral and its uniqueness follows from the fact
that conjugate space E� separates the points of E�

The original proof of Theorem ����
� appeared as the nal result of the
series of articles ��
�����
�� concerning some improvements of Arens�Eells
theorem about suitable isometric embedding of a metric space into a Banach
space� Note that formally we can weaken the hypotheses of Theorem ����
�
to the condition that the conjugate space E� separates points of E� i�e� we
can omit the local convexity of E� But in this case we can regard M as a
subset of Cartesian power IRE

�

which is locally convex space and hence� such
generalization in fact gives no new results�

The results of ��	� show that �� � � the selection theorem holds for non�
metrizable linear ranges only if their topology is su�ciently weak� and that
the more �proper� situation is the case� when range is a weak�compact set
in a Banach space� All positive results of ��	� are obtained in the situation
when the space Cp�X�Y � of all continuous mappings fromX into Y endowed
with the pointwise convergence topology is a Lindel,of space�

Such a restriction appeared in ����� in an implicit form� So� let �� be the
one�point compactication of a discrete space � and let C���� be the space of
all continuous functions f � �� IR such that f�w� � �� where w � ����n��
C���� endowed with compact open topology is locally convex nonmetrizable
topological vector space� Next� two facts about spaces Cp � Cp�X�C�����
are given with the topology of pointwise convergence� Let � be a discrete
space and X be a continuous image of a complete separable metric space
�resp� of a separable metric space� then Cp�X�C����� �resp� Cp�X�Y � for an
arbitrary compact Y � C����� is a Lindel,of space� Second� let X be a conti�
nuous image of a separable metric space and let �H�w� be the Hilbert space
with the weak topology� Then Cp�X� �H�w�� is a Lindel,of space�

Theorem �	���� ��	�� Let � be a discrete space and X a paracompact
space such that every point x � X has a neighborhood which is a continuous
image of a complete separable metric space� Then every lower semicontinu�
ous mapping F � X � C���� with compact convex values admits a continuous
selection�
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Theorem �	���� ��	�� Let � be a discrete space and X a paracompact
space such that every point x � X has a neighborhood which is a continuous
image of a separable metric space� Let F � X � C���� be a lower semiconti�
nuous mapping with compact convex values such that for every x � X
 there
exists a neighborhood Gx such that ClfSF �x�� j x� � Gxg is compact� Then
F admits a continuous selection�

As corollaries we have�

Theorem �	��� ��	��
��� Let X satisfy the hypotheses of Theorem ������ and let K be a weak

compact space in the Banach space Lp���
 � 	 p � �
 where � is an
arbitrary measure� Then every lower semicontinuous mapping F � X �
K with closed convex values admits a continuous selection�

��� Let X satisfy the hypotheses of Theorem ������ an let F � X � �H�w�
be a locally bounded lower semicontinuous mapping with closed convex
values� Then F admits a continuous selection�

Example �	����� The compactness of the values F �x� is essential in
Theorem �������

Proof �a version of Example 
�� in ���	��� Let � � IN� X � ��� �� and let
fr�� r�� � � �g be a xed enumeration of all rational points in X�

F �x� �

���fy � c� � C��IN� j jy�i�j 	 �� i � INg � if x is irrational

fy � c� j jy�i�j 	 �� i � IN and y�n� � �
�g � if x � rn �

Then F is lower semicontinuous with convex closed bounded �non�compact�
values and without any continuous selections�

Example �	����� The weak compactness is essential in Theorem
����	�����

Proof� Let us consider the map F � �IN� ���� w� dened by

F �n� � fy j y � �y�� y�� � � � � yn� ���� �� �� � � ���
nX
i��

jyij 	 �

�
g

if n � IN and F ��� � f�g� Then F is lower semicontinuous mapping with
convex and �norm� compact values� But

S�
n�� F �n� is not contained in any

weak compact set and F has no continuous selection because each weak
convergent sequence in �� is norm convergent�

Example �	����� Local boundedness is essential in Theorem ����	�����

Proof� By the analogy with the above example� let us consider the map
F � �IN� ���� w� dened by

F �n� � fy j y � �y�� y�� � � � � yn� �� �� � � ���
nX
i��

y�i 	 n�g

���
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if n � IN and F ��� � f�g� Then SfF �n� j n � INg is unbounded� all values
are convex compacta and lower semicontinuous mapping F has no continu�
ous selections�

Example �	����� The local separability is essential in Theorem �������

Proof� Let H be a Hilbert space having an orthonormal basis of cardi�
nality j*j� where * is rst uncountable ordinal and let fe�g��� be a xed
basis� Let X � f�g � Sfe��n j � � *� n � INg be a subset of �H� k�k� with
the induced norm�topology� For every innite ordinal � � *� we order the
set f� j � � �g into a sequence ����� ����� � � � Now let

F �x� �

���f�g if x � � of x � e��n with � a nite ordinal

�e�� e�n�� � if x � e��n with � an innite ordinal

where� as usual� ��� �� denotes the segment convfa� bg� Then F � X � �H�w�
is a lower semicontinuous mapping with convex compact values� cl�

SfF �x� j
x � Xg� is w�compact because the union SfF �x� j x � Xg is a bounded
subset of H� but F has no continuous selections�

Observe that every metric space which is not locally separable� contains
a homeomorphic copy of such space X� i�e� Theorem ������ does not hold for
every nonlocally separable metric space�

For nonconvex�valued mappings one of the earliest results concerning
selections of maps with nonmetrizable ranges is the following theorem about
linearly ordered topological space�

Theorem �	���� ���
�� Let �X�T � be a Hausdor� space and suppose
that there exists a linear ordering on X such that the order topology is coarser
that T � Then there exists a continuous selection f � C�X�� X
 i�e� f�K� �
K
 for every K � C�X��

Here� C�X� denotes the family of all compact subsets of X endowed with
the Vietoris topology� As a corollary� we have�

Theorem �	��	�� Let X be as in Theorem ������� Then every conti�
nuous compact�valued mapping from any topological space Z into X has a
singlevalued continuous selection�

We say that X is a GO�space if X is homeomorphic to a subset of a
linearly ordered space� endowed with the topology� generated by the given
order�

Theorem �	��
� ���	�� Let X be a zero�dimensional GO�space and Y
be a GO�space� Then every lower semicontinuous compact�valued mapping
from X into Y admits a continuous selection�

We also state an �unpublished� Kolesnikov�s result for scattered spaces�
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Theorem �	�����
��� Let X be a pointwise perfect scattered space� Then there is a continuous

selection f � A�X�� X
 i�e� f�A� � A for every A � A�X�
 where A�X�
is the family of all nonempty subsets of X endowed with the Vietoris
topology�

��� Let X be a zero�dimensional paracompact space and Y be a regular
pointwise perfect scattered space� Then every continuous mapping F �
X � A�Y � admits a continuous selection�

��� Let X be a perfect zero�dimensional paracompact space and Y be a scat�
tered space satisfying the �rst axiom of countability� Then every lower
semicontinuous mapping F � X � A�Y � admits a continuous selection�

In ����������� the theory of continuous selections with completely metriz�
able ranges generalized to the class of spaces with aG��diagonal� The spaceX
is said to be a space with a G��diagonal if for some sequence � � f��� ��� � � �g
of open coverings of X and for any x � X� we have that

��
n��

St�y� �n� � fyg�

The subset A � X in this situation is said to be complete �with respect to a
xed � � f��� ��� � � �g� if for any decreasing sequence A� � A� � A� � � � � of
closed subsets of X such that An�A � � and An is a subset of some element
of �n the intersection

T�
n���An �A� is nonempty� Let Compl�X� denote the

family of all complete subsets of X�

Theorem �	����� For any zero�dimensional paracompact X with a
G��diagonal there exists a continuous selection f � Compl�X�� X�

Theorem �	���� Let X be normal and zero�dimensional
 Y be a
paracompact space with a G��diagonal� Then every continuous F � X � Y
with F �x� � Compl�Y �
 x � X
 admits a continuous selection�

Theorem �	����� Let X be a normal space
 Y a paracompact space with
a G��diagonal� Then every continuous multivalued map F � X � Y with
F �x� � Compl�Y �
 x � X
 admits an upper semicontinuous compact�valued
selection G � X � Y which admits a lower semicontinuous compact�valued
selection H � X � Y �

For completely metrizable spaces Y � Theorems ������������� were proved
by �Coban ��
����� We nish this section by Hasumi�s result ����� about con�
tinuous selections of upper semicontinuous mappings�

Theorem �	����� Every upper semicontinuous compact�valued mapping
of an extremally disconnected space into a regular space admits a continuous
selection�

���



Hyperspaces� selections and orderability ��

�� Hyperspaces� selections and orderability

IfX is any topological space then F�X� denotes the family of all nonemp�
ty closed subsets of X� equipped with the Vietoris topology� This topol�
ogy is generated by the sub�basis consisting of all families of the form
O�U�� U�� � � � � Un� � fA � F�X� j A � Sn

i�� Ui� or A�U� � �� � � � � A�Un �
�g with U�� U�� � � � � Un open in X� For every compact metric space X� the
Vietoris topology agrees on F�X� with the Hausdor� metric�

De�nition �	����� A continuous selection on a subspace A � F�X� is
a continuous map f � A � X such that f�A� � A� for every A � A�

One can consider a continuous selection on a subspace A � F�X� as
a continuous selection of the natural multivalued mapping from A into X
which associates to each A � A the same object A but as a subset of X� So�
we can formally say that the selection problem for a subspace A � F�X� can
be reduced to a suitable selection problem concerning multivalued mappings�
Historically� the situation was in some sense reversed� In ���
� the selection
problem for mappings from Y into F�X� was divided into two steps� the
rst dealt with the continuity of a mapping� while the second dealt with the
selection problem for F�X��

We begin by a simple fact about closed �in fact� discrete� subsets of the
real line IR�

Theorem �	���� ���	�� There exists no continuous selection on F�IR��

Proof�
I� Construction

Suppose f were such a selection� We can assume that f�f�� �g� � �� We
claim that then�
�a� f�f�� �g� � ��
�b� f�f�� �� �g� � ��
�c� f�f�� �� �� � � � � ng� � n�
�d� For every neighborhood U of IN in F�IR� there exists N such that

f�� �� �� � � � � ng � U for all n 	 N � and
�e� �c� and �d� contradict with the continuity of f at the element IN � F�IR��
II� Veri�cation

�a� If g�t� � f�� �  tg� t � ��� ��� then f � g is continuous function from ��� ��
into IR with f�g���� � �� clearly� f�g�t�� � �  t� in fact� i�e� f�f�� �g� � ��
�b� Similar to �a�� by using the path g � ��� �� � F�IR� dened by g�t� �
� f�� t� �g�
�c� Continue by induction�

�d� See the denition of the Vietoris topology�

�e� If f�IN� � n� then f�U� � �n� � �� n�  ��� for some neighborhood U of
IN in F�IR��

���
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The following theorem is more di�cult�

Theorem �	���� ���	�� There exists no continuous selection of F�Q��
In a surprising contrast with Theorem ������ is the following�

Theorem �	��	� ���	�� There exists a continuous selection of the space
of all elements of F�Q� of the form C �Q
 with C a connected subset of IR�

Theorem �	��
� ��	��� There exists no continuous selection on the
space C�S�� of all closed connected subsets of the unit circle S��

Proof� Due to the Brouwer xed�point theorem it su�ces to prove that
there is a homeomorphism of C�S�� onto the closed two�dimensional disk D
which is identical on the boundary S� � �D� We put h�S�� equal to the
origin of D� For A � C�S��� A � S�� we nd the unique point x�A� � A
which divides A into two subarcs of equal length � � ��� ��� Then we put h�A�
equal to the point of the segment ��� x�A�� such that dist��� h�A�� � �� ����
Clearly� h�fag� � a for a � S� and h � C�S��� D is a homeomorphism�

Theorem �	���� ��	���
��� If X is a continuum �i�e� a compact connected metric space� which admits

a continuous selection for C�X�
 then X is a dendroid�
��� There exists a dendroid X such that C�X� admits no continuous selection�
��� If X is a Peano continuum then C�X� admits a continuous selection if

and only if X is dendrite�

Recall that a dendroid is a metrizable continuum X which is arcwise
connected and hereditary unicoherent� i�e� if a connected closed Y � X is
represented as a union of two its closed connected subsets Y� and Y� then
the intersection Y� � Y� is nonempty� The class of all continua which admits
a continuous selection on the space of subcontinua is a proper subclass
of dendroids� Recall also� that a Peano continuum is dened as a locally
connected continuum �or� as a continuous image of the segment ��� ��� and
dendrite is dened as a Peano continuum without subsets� homeomorphic to
the circle �or� as a one�dimensional AR subsets of the plane IR���

De�nition �	����� Let � 	 �� Then a continuous ��selection on
a subspace A � F�X� is a continuous mapping f � A � X such that
dist�f�A�� A� � �� for every A � A�

Theorem �	��� ��	
��
��� If X is a continuum such that there is an ��selection on C�X� for every

� 	 �
 then X has trivial shape and X is hereditary unicoherent�
��� If X is an arcwise connected continuum and for every � 	 �
 there exists

an ��selection of C�X� then X is a dendroid�
�c� If X is a Peano continuum then there exists an ��selection on C�X�
 for

every � 	 �
 if and only if X is a dendrite�

���
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Theorem �	���� ��	
��
��� Let X be a nondegenerate continuum� Then there is an ��selection of

F�X� for every � 	 �
 if and only if there is a sequence f�ig�i�� of con�
tinuous mappings � � X � X such that f�ig�i�� converges uniformly to
the identity map id jX and �i�X� is an arc
 for every i�

��� Let X be a nondegenerate arcwise connected continuum� Then there is
an ��selection of F��X�
 for every � 	 �
 if and only if X is an arc �here
Fn�X� � fA � F�X� j A has at most n pointsg
 n � IN��
For more concerning selections on C�X� see Nadler�s book ��	��� We say

that a topological space X is an ordered space if for some linear ordering of X
its usual order topology coincides with the given topology on X� We say that
X is GO�space if X is homeomorphic to a subspace of some ordered space
and we say that X is topologically well�ordered subspace of ordered space L
if every closed �in X� nonempty A � X has the rst element�

Theorem �	���� ���
�� For every GO�space X there is a continuous
selection on the space of all its subcompacta�

In fact� in ���
� Lemma ������� more general result is proved� one can
assume that there is a continuous injection of X into some ordered space�

Theorem �	���� ���	��
�� For every ��dimensional complete metric
space X there is a continuous selection of F�X��

Both proofs of Theorem ������ use a suitable embedding of X into a
Baire space� The example X � IR �see Theorem ������� shows that the
assumption dimX � � cannot be weakened to dimX � �� Completeness is
also necessary�

Theorem �	���� ���	�� Every metrizable
 topologically well�ordered
subspace of an ordered space is completely metrizable�

More precisely� Theorem ������ shows the necessity of completeness for
proof of Theorem ������ by a method from ���	�� because it is based on an
embedding of X as a topologically well�ordered subspace of an ordered space�
Recently� the necessity of completeness in the absolute sense was proved in
����� �compare with Theorem ��������

Theorem �	���� ������
��� Let X be a metrizable space and suppose that there exists a continuous

selection on F�X�� Then X is completely metrizable�
��� Let X be a metrizable space and suppose that there exists an upper semi�

continuous �nite�valued selection on the subfamily of F�X� consisting of
all �nite subsets of M 
 together with all Cauchy sequences which have no
limit� Then X is completely metrizable�

In the class of compacta the relations between orderability and selections
on F�X� have been studied by van Mill and Wattel�

���



��� Miscellaneous results

Theorem �	��	� ������ For every compact space X
 the following
assertions are equivalent�
��� X is an ordered space�
��� There is a continuous selection on F�X�� and
��� There is a continuous selection on F��X��

For compact connected Hausdor� spaces the equivalence ��� �� ��� is
a corollary of equivalence ��	�� �� ��	�� from ���
�� Outside the class of
compacta we have the following older result�

Theorem �	��
� ������ If X is a locally compact separable metric space
for which there is a continuous selection on F��X� then X is homeomorphic
to a subset of the real line�

Finally� we state the Kolesnikov result about selections with values in
GO�spaces�

Theorem �	���� ���	��
��� Let X be a ��dimensional GO�space and Y a GO�space� Then every lower

semicontinuous map F � X � F�Y � admits a continuous singlevalued
selection�

��� Let X be a n�dimensional metric space and Y a GO�space� Then every
lower semicontinuous map F � X � F�Y � admits an upper semiconti�
nuous selection G � X � Fn���Y ��

�c� Let X be a countably�dimensional metric space and let Y be a GO�space�
Then every lower semicontinuous F � X � F�Y � admits an upper semi�
continuous �nite�valued selection�

Note that ��� and ��� are obvious corollaries of ���� due to the universality
of Zero�dimensional selection theorem�

�� Densely de�ned selections

The lower �upper� semicontinuity of a given mapping F does not imply�
in general� upper �resp� lower� semicontinuity of F � On the other hand� both
kinds of semicontinuity have a common �singlevalued� origin� these notions
are equivalent for singlevalued mapping� Two theorems by Fort state that
�under some restrictions� implications�

lower �upper� semicontinuity � upper �lower� semicontinuity

hold for almost all points of domain� We say that X is a Baire space if X
has a Baire property�

�X �
��
n��

An� An closed�� ��n � IN� IntAn � ��

���



Densely de�ned selections ���

or� equivalently�

��n � IN� Gn are open dense subsets of X�� �
��
n��

Gn is dense in X� �

Every complete metric space is a Baire space�

Theorem �	���� ������ Every lower �upper� semicontinuous compact�
�valued mapping of a Baire space X into a metric space is upper semiconti�
nuous �resp� lower semicontinuous� on some dense G��subset of X�

Note that for separable metric ranges� Theorem ������ concerning lower
semicontinuity at G��subset of domain holds without assuming compact or
even closed values �see ���� Proposition 
��������

It seems� that a �maximal� generalization of Theorem ������ yields some
results of Kenderov� Recall that subset A � X of a topological space X
is said to be residual subset of X if XnA can be represented as a union of
countable family of a nowhere dense �in X� subsets�

Theorem �	��� ������
��� Every multivalued mapping into a space with a countable basis is almost

lower semicontinuous at some residual subset of domain�
��� Every upper semicontinuous mapping into a regular space is lower semi�

continuous at point of its almost semicontinuity� and
��� As a corollary of ��� and ���
 every upper semicontinuous mapping into

a regular space with a countable basis is lower semicontinuous at some
residual subset of domain�

As an application we have the following result due to Namioka�

Theorem �	�	�� ��		�� Let K be a weakly compact subset of a normal
space� Then the identity mapping id � �K�w� � �K� k�k� is continuous on a
dense G��subset�

The following theorem gives a �maximal� generalization for implication
of the type�

�some restrictions on F ��
� �F is upper semicontinuous at most points of domain�

Recall that X is said to be a �Cech complete space if it is a G��subset of its
Stone��Cech compactication�

Theorem �	�	�� ���� special case of Theorems ����� and ������� Let F �
X � Y be a mapping with a closed graph

GrF � f�x� y� j x � X� y � F �x�g � X 
 Y

from a Baire space X into a �Cech complete space Y � Let for every open V �
Y 
 the interior of the set fx � X j F �x� � V g be dense in F���V �� Then

���
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there exists a dense G��subset X� � X such that F jX� is upper semicontinu�
ous and compact�valued� If
 in addition
 Y is completely metrizable then it
can be assumed that F jX� is singlevalued�

Theorems of such kind were recently proved for so�called metric �upper
or lower� quasi�continuous mappings ������

De�nition �	�	��� A multivalued mapping F � X � Y into a metric
space �Y� �� is called metric upper �resp� metric lower� quasi�continuous at
x� � X if for every � 	 � and every open neighborhood V �x�� of x�� there
exists a nonempty open subset U � V such that F �x� � D�F �x��� �� �resp�
F �x�� � D�F �t�� ��� for all x � U �

If in this denition we put U � V � we obtain the notion of metric �upper
or lower� semicontinuity�

Theorem �	�	��� A metric upper quasi�continuous mapping F � X �
Y of a Baire space X into a metric space Y with totally bounded values on a
dense subset D of X is both metric upper semicontinuous and metric lower
semicontinuous at the points of a dense G��subset of X�

For other results we need a weakening of the notion of lower semiconti�
nuity�

De�nition �	�	��� A multivalued mapping F � X � Y is said to be�
�a� lower demicontinuous in X if for every open V � Y � the set

Int�Cl�F���V ��� is dense in Cl�F���V ��� and
�b� demiopen if IntY �ClY �F �U��� is dense in ClY �F �U��� provided U is open

in X�

Theorem �	�		� ���
��
��� Let f � Y � X be a continuous demiopen singlevalued mapping from a

regular almost complete space Y such that f�Y � is dense in X� Then for
some G��subsets C of Y and D of X
 the restriction f jC � C � D is a
perfect surjection�

��� If
 in addition to ���
 Y contains a dense and completely metrizable
subspace
 then f jC can be considered to be a homeomorphism�

Note� that lower demicontinuity in X follows from lower semicontinuity
and follows from minimal upper semicontinuity with compact values� An
upper semicontinuous compact�valued F is minimal if its graph does not
properly contain the graph of any other upper semicontinuous compact�
�valued mapping with the same domain�

In spirit of the method of coverings �see Theory� x��� suppose that we
have in the topological space Z�
�a� a countable spectrum p � f�pn� An�g of discrete� pairwise disjoint index
sets An and surjections pn � An�� � An� n � �� �� �� � � � and
�b� a sequence � � f�ng of families �n � fV��n j � � Ang of nonempty
subsets V��n � Z�

�		
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De�nition �	�	
�� A pair s � �p� �� is said to be a sieve in Z if V��� �
� Z for � � A� and V� � SfV� j � � p��n ���g� for � � An� A sequence
�� � f�ng is called a p�chain if pn����n��� � �n and kernel K�S� of the sieve
denotes the set fz � Z j z � T�n��fV�n�nj�n�n for some p�chain� �� � f�nggg�

Note� that V�n�n need not be open and �n need not be a covering of Z� A
sieve s is called complete if for every p�chain �� � f�ng� the set T�n�� V�n�n is
nonempty and compact and for every neighborhood W of this intersection�
there exists index n � IN such that V�n �W �

Theorem �	�	�� ����� Let F � X � Y be a mapping with a closed graph
and with domain Dom�F � � fx � X j F �x� � �g dense in X� Let X be
a Baire space and suppose that Y admits a complete sieve s � �fpng� f�ng�
such that for every � � An and n � IN
 the union

SfInt�Cl�F���V���� j � �
p��n ���g is dense in Int�Cl�F���V����� Then there exist a dense G��subset
X� � X and upper semicontinuous compact valued mapping G � X� � K�s�
such that X� � dim�F � and G is a selection of F jX� �

As a special case one can consider a lower demicontinuous F � X � Y
with Dom�F � � X� Gr�F � closed in X 
 Y � X a Baire space and Y a �Cech
complete space�

It is possible to require in Theorem ������ that G � F jX� � i�e� that F is
upper semicontinuous and compact valued on X�� More precisely� we need
only to change the �big� preimages F���U�� in Theorem ������ to �small�
preimages F��V�� � fx � X j F �x� � V�g�

Theorem �	�	�� ����� Let F � X � Y be a mapping with a closed graph
and with a domain Dom�F � dense �in X�� Let X be a Baire space and Y
admit a complete sieve s � �fpng� f�ng� such that for every � � An and n �
IN
 the union

SfInt�F��U��� j � � p��n ���g is dense in Int�F��U���� Then
there exists a dense G��subset X� � X such that X� � Dom�F � and F jX�

is an upper semicontinuous and compact�valued mapping from X� into the
kernel K�s� of the sieve s� Moreover
 if every p�chain is a one�point set at
the points of X�
 then F jX� is singlevalued�

Theorem ������ can be derived from Theorem ������� A generalization
of Theorem ����	� was proposed by Kolesnikov�

Theorem �	�	� ������ Let F � X � Y be an upper semicontinuous
mapping from a Baire space X into a space Y with an uncountable closed
net� Then F is lower semicontinuous on some G��subset of X�

Theorem �	�
�� ������ Let F � X � Y be a �nite�valued upper semicon�
tinuous mapping from a Baire space X into a Hausdor� fragmentable space
Y � Then F is lower semicontinuous on some G��subset of X�

Following ���	� we give a modication of the semicontinuity of multival�
ued mappings�

�	�
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De�nition �	�
��� A multivalued mapping F from a topological space
X into a topological space Y is said to be modi�ed upper �lower� semicon�
tinuous at a point x� � X if for every open W in Y � where F �x�� � W
�resp� F �x�� �W � ��� and for every open neighborhood U�x��� there exists
an open subset V � U�x�� such that F �x� � W �resp� F �x� �W � ��� for
all x � U �

Of course� F � X � Y is said to be modi�ed continuous �resp� upper
continuous� lower continuous� if it is modied upper and lower semiconti�
nuous �resp� upper continuous� lower semicontinuous�� at every x� � X�
For modied semicontinuous mappings� analogues of Fort�s theorem �see
Theorem ������� and Convex�valued selection theorem were proved in ���	��

Theorem �	�
��� A modi�ed upper �lower� semicontinuous multivalued
mapping from a topological space X into subsets �resp� compact subsets� of a
separable metric space Y is lower semicontinuous �resp� upper semicontinu�
ous� at the point of a residual subset of X�

Theorem �	�
��� For every modi�ed lower semicontinuous closed val�
ued mapping F from a Baire space X into a Banach space B there exist a
dense G��subset D � X and a selection f � X � B of F such that�

��� f jD is continuous� and

��� If x� � D and � 	 � then F �x��D�f�x��� �� � �
 for every x from some
neighborhood V of the point x��

Example �	�
��� There exists a modied continuous mapping F from
the Hilbert space ���IR� with closed convex values into itself� which is nowhere
upper semicontinuous and nowhere lower semicontinuous�

Construction� For x � ���IR� and t � IR we set�

�x�t� �

����� t �� kxk
�� t � kxk

Then �x � ���IR� and we can dene�

G�x� �
�
f��� �y � j y � ���IR� with kyk 	 kxkg

and F �x� � convG�x��
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�� Continuous multivalued approximations of semicontinuous
multivalued mappings

A classical result of Baire ��	� provides a characterization of real�valued
upper �lower� semicontinuous singlevalued functions f � IR� IR �i�e� f � IR�
IR is upper semicontinuous at a point x� if f

������� f�x��  ��� is open
for every � 	 �� as a pointwise limit of monotone decreasing �respectively�
increasing� sequence of continuous functions� A similar result gives the
Dowker theorem of separation of two real�valued semicontinuous functions
f � X � IR� g � X � IR� f 	 g� by continuous singlevalued function h�
Moreover� such separation theorem gives characterizations of normal and
countably paracompact domainsX �see Theorem ����� above�� In this section
we collect facts about multivalued analogues of these two fundamental results�
First� we note that Compact�valued selection theorem looks like a possible
answer� A more direct answer is given by the following theorem of Zaremba�

Theorem �	�
	� ������ For a mapping F � IRm � IRn with compact
convex values the following assertions are equivalent�
��� F is upper semicontinuous� and
��� There exists a sequence of continuous mappings Fi � IR

m � IRn with
compact convex values such that for all x � IRm�
�i� F �x� � IntFi���x� � Fi���x� � Fi�x�
 i � IN� and
�ii� F �x� �

T�
i�� Fi�x��

Aseev generalized Theorem ���
�� to the case of metric domains X� Fur�
thermore� he gave a symmetric description for lower semicontinuous map�
pings�

Theorem �	�

� ����� Let X be a metric space� Then for a mapping
F � X � IRn with compact convex values the following are equivalent�
��� F is lower semicontinuous� and
��� There exists a sequence of continuous mappings Fi � X � IRn with

compact convex values such that for all x � X�
�i� Fi�x� � Fi���x�
 i � IN�
�ii� F �x� � Cl�

S�
i�� Fi�x��� and

�iii� dimFi�x� � dimF �x��

The proof of Theorem ���

� is based on the construction from the proof
of Theorem ������ ������ Theorem �������� and uses a dense countable family
ffig of continuous selections of F � Roughly speaking� one can consider a
mapping x� Cl�convff��x�� � � � � fi�x�g�� In ����� such a theorem was proved
as a characterization of perfectly normal domains�

Theorem �	�
�� ����� For every T��space X the following assertions
are equivalent�
��� X is perfectly normal� and
��� For every lower semicontinuous mapping F � X � Y into a separable

Fr�echet space Y with convex closed values there exists a sequence of
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continuous mappings Fi � X � Y with compact convex values such that
for all x � X�
�i� Fi�x� � Fi���x�
 i � IN�
�ii� F �x� � Cl�

S�
i�� Fi�x��� and

�iii� di�F � � di�Fi��
where for a multivalued mapping ( � X � Y 
 the set di�(� � X is de�ned as
the set of all x � X
 such that there exist �i �� linearly independent points
in the value (�x��

Another approach to approximations of F by a sequence fFig was pro�
posed by de Blasi� He used term approximations as convergence of Hausdor�
distance H�F �x�� Fi�x�� to zero �compare with �ii� in Theorems ���

� and
���
���� First� he gave a characterization of Hausdor��lower semicontinuous
mappings �see x��� for a denition��

Theorem �	�
�� ����� Let X be a metric space and Y a separable �real�
Banach space� Then for a mapping F � X � Y with compact convex values
the following assertions are equivalent�
��� F is Hausdor� lower semicontinuous� and
��� There exists a sequence of continuous mappings Fi � X � Y with compact

convex values such that for all x � X�
�i� F��x� � F��x� � � � � � F �x�� and
�ii� H�Fi�x�� F �x��� � as i���

A multivalued mapping F � X � Y is said to be Hausdor� upper
semicontinuous if for every x � X and for every � 	 �� there exists � 	 � such
that F �x�� � D�F �x�� ��� for all x� � D�x� ��� Clearly� such notion makes
sense for metric spaces X and Y �

Theorem �	�
� ����� Let X be a metric space and Y a separable �real�
Banach space� Then for every mapping F � X � Y with closed
 bounded and
convex values
 the following assertions are equivalent�
��� F is Hausdor� upper semicontinuous� and
��� There exists a sequence of continuous mappings Fi � X � Y with closed


bounded and convex values such that for all x � X�
�i� F��x� � F��x� � � � � � F �x��
�ii� H�Fi�x�� F �x��� � as i��� and
�iii� F��X� � Cl�conv�F �X����
Note� that Theorem ���
	� remains true if we add that values F �x� and

F��x� have interior points� It is surprising that for Y � IRn it is possible
to weaken convexity assumption to purely topological condition that values
F �x� are connected compacta�

Theorem �	���� ����� Let F � X � IRn be an upper semicontinuous
mapping with connected compact values
 X be a metric space� Then there ex�
ists a sequence of locally Lipschitzian mappings Fi � X � IRn with connected
compact values such that for all x � X�

�	�
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�i� F �x� � Fi���x� � Fi�x�� and
�ii� H�Fi�x�� F �x��� � as i���

Here� locally Lipschitzian condition for ( � X � Y means that for every
x � X� there exists a constant C 	 � and there exists a neighborhood V �x�
of x such that

H�(�x���(�x��� 	 C dist�x�� x��� �

for all x�� x�� � V �x�� Clearly� this is a stronger restriction rather than
continuity�

We now pass to a generalization of the Dowker separation theorem� or
to the so�called� �sandwich� theorems�

Theorem �	���� ����� Let F � X � IRn be a lower semicontinuous
mapping with convex compact values and G � X � IRn its upper semiconti�
nuous selection with convex compact values� Then there exists a continuous
mapping H � X � IRn with convex compact values such that

G�x� � H�x� � F �x�� x � X�

The following theorem is more technical�

Theorem �	���� ����� Let X be a metric space and Y a real separable
Banach space� Let G � X � Y �F � X � Y � be a Hausdor� upper semicon�
tinuous �resp�
 lower semicontinuous� mapping with bounded
 closed
 convex
�resp� with bounded
 closed convex and with nonempty interior� values and
let � � X � ����� be a function such that D�G�x�� ��x�� � F �x�
 x � X�
Then there exists a continuous mapping H � X � Y with bounded
 closed

convex values with nonempty interiors and there exists a continuous function
� � X � ����� such that

D�G�x�� ��x�� � H�x� � D�H�x�� ��x�� � F �x��

in particular
 G�x� � H�x� � F �x��

A �measurably�parametrized� version of the theorems of Aseev and
de Blasi were proved in ������ For example� we have�

Theorem �	����� Let T and X be Polish spaces
 Y a separable Banach
space and let F � T 
X � Y �resp� G � T 
X � Y � be an upper semicon�
tinuous map in x � X �resp� lower semicontinuous in x � X� with compact
convex values� Let G�t� x� � F �t� x�
 for �t� x� � T 
 X
 and let F�G be
B�T 
 X��measurable mappings� Then there exists a B�T 
 X��measurable
mapping H � T 
X � Y with compact convex values which is continuous in
x
 such that G�t� x� � H�t� x� � F �t� x�
 for �t� x� � T 
X�

�S�cepin has recently observed that �sandwich� theorems hold in a maxi�
mal general position for zero�dimensional paracompact domains�

�	�
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Theorem �	����� Let X be a zero�dimensional paracompact space
 Y
a metric space
 F � X � Y �resp� G � X � Y � a lower semicontinuous
�resp� upper semicontinuous� mapping with compact values
 and G a selection
of F � Then there exists a continuous mapping H � X � Y with compact
values such that G�x� � H�x� � F �x�
 x � X�

Proof� Let Z be the set of all subcompacta of Y endowed with the
Vietoris topology� Then Z is the space with the Hausdor� metric� Let the
mapping ( � X � Z be dened by

(�x� � fK j K subcompactum of Y� G�x� � K � F �x�g �

It turns out� that Zero�dimensional selection theorem is applicable to the
mapping (� So� a continuous selection of ( gives a desired continuous
compact�valued mapping H � X � Y �

It is natural to attempt to use the �universality� of the Zero�dimensional
selection theorem �see Theory� x�� for deriving a genuine generalization of
Theorems ������ and ������ from Theorem ������� This is possible by a use of
integration procedure for compact�valued �not singlevalued� mappings� So�
we can prove�

Theorem �	��	�� Let X be a paracompact space
 Y a Banach space

F � X � Y �resp� G � X � Y � a lower semicontinuous �resp� upper semicon�
tinuous� mapping with compact convex values
 and G a selection of F � Then
there exists a continuous mapping H � X � Y with compact convex values
such that G�x� � H�x� � F �x�
 x � X�

In order to compare compact�valued selection theorems and �sandwich�
theorems we emphasize that in these theorems upper semicontinuous and
lower semicontinuous mappings stand in di�erent order�

compact�valued selection theorems lower semicontinuous � upper semicontinuous

�sandwich� theorems upper semicontinuous � lower semicontinuous

We nish this section by returning to selection theorems� The prob�
lem of nding a �good� singlevalued continuous selections theory for map�
pings F � X � Y where X is innite dimensional and restrictions on
X�Y� F� fF �x�gx�X are purely topological� it seems� have no suitable solu�
tion� �See the example of Pixley� Theory x
�� But for multivalued continu�
ous selection such a solution actually exists� Here is an answer proposed by
Nepomnya�s�ci&'�

Theorem �	��
� ���	�� Let X be a paracompact space
 Y a metric
space and suppose that F � X � Y is a lower semicontinuous mapping with
complete values and such that the family fF �x�gx�X is equi�locally connected�
Then for every closed subset A � X and every continuous compact�valued
selection H � A� Y of the restriction F jA
 there exists an open U � A and
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a continuous compact�valued selection �H � U � Y of the restriction F jU such
that �HjA � H� Moreover
 if all values of F are connected then one can put
U � X�

An analoguous theorem holds for continuous continuum�valued selec�
tions� Furthermore� if Theorem ����
� holds for a xed T��space X� then X
is a paracompact space ���	�� The denition of equi�locally connected family
can be given similar to the denition of ELCn family� More precisely� a fam�
ily L of subsets of a topological space Y is said to be equi�locally connected if
for every L � L� for every y � L and for every neighborhood U�y� of y� there
exists a neighborhood V �y� � U�y� of y such that for every L� � L and for
every points y�� y�� � V �y� � L�� there exists a connected subset of U�y� � L�
containing both point y� and y��� An analogue of Theorem ����
� for collec�
tionwise normal domains was proved in ������ Finally� note that Theorem
������ is a corollary of another result due to Nepomnya�s�ci&' ������

Theorem �	���� ������ Let X be a paracompact space
 Y a complete
metric space
 F � X � Y �resp� G � X � Y � a lower �resp� upper� semi�
continuous mapping with compact connected �resp� compact� values
 and G
a selection of F � Then there exists a continuum�valued continuous mapping
H � X � Y such that G�x� � H�x� � F �x�
 x � X
 whenever the family
fF �x�gx�X is equi�LC��

�� Various results on selections

There are too many selection theorems to allow a universal complete
classication� In this section we collect various results on selections which do
not t in any of the above paragraphs�

�a� E�avoiding selections

We begin by the Saint�Raymond�s selection theorem� applied in ��
�� to
the theory of xed points of multivalued mappings�

Theorem �	���� ��
��� Let X be a paracompact space
 Y a Banach
space and F � X � Y a lower semicontinuous mapping with closed convex
values� Let dimX � dimF �x�
 for all x � X with � � F �x�� Then F admits
a ��avoiding selection f 
 i�e� f � X � Y with f�x� � F �x� and f�x� � �
 for
all x � X�

Michael developed this subject in ����� with attention to the nite di�
mensionality restriction on X� On one hand� such restriction is essential even
for continuous multivalued mappings� In fact� let F be the mapping of the
Hilbert cube Q into the Hilbert space �� which associates to every x � Q�
the parallel shift of Q on the vector �x� If� to the contrary� f is continu�
ous ��avoiding selection of F then the singlevalued mapping g�x� � f�x�  x
maps Q into itself without xed points� Contradiction� Some positive results
can nevertheless be proved�
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Theorem �	��� ������ Let X be a topological space
 Y a Banach space
and F � X � Y a continuous mapping with closed
 in�nite�dimensional
convex values� Suppose that from �y � F �x�� y � �� it follows that �y�kyk �
F �x��� Then F has a ��avoiding selection�

Theorem �	���� ������ Let X be a paracompact space
 Y a Banach
space
 E � Y a closed subset
 and F � X � Y a lower semicontinuous
mapping with closed convex values� Let

dimX � dimF �x�� dim�conv�F �x� �E���

for all x � X with F �x� �E � �� Then F has an E�avoiding selection�

Michael posed a problem in ����� of ��avoiding selection of a lower semi�
continuous mapping F � X � Y with values being a nite codimension
subspaces of Y � Drani�snikov ����� gave a counterexample �see Applications�
x�����
�b� Selections of complements of upper semicontinuous mappings

If H � X � Y is an upper semicontinuous mapping into a regular space
Y with closed values then the complement mapping F � x �� Y nH�x� is a
lower semicontinuous mapping with possibly empty values� Cauty proved
the following selection theorem for such kind of multivalued mappings�

Theorem �	���� �
��� Let H � X � Y be an upper semicontinuous
mapping of a paracompact space X into a topological space Y with closed
values� Then there exists a singlevalued continuous mapping h � X � Y
which avoids H �i�e� h�x� �� H�x��
 whenever there exists�
�a� An open covering fU�g��A of X�
�b� A correspondence which assigns to every � � A a subset B� � Y 
 B� �

� Y � and
�c� A correspondence which assigns to every simplex 
 dim � d��� �
 of

the nerve of the covering fU�g��A a �nite family B�� 
 B�
 � � � 
 B�d��� of
pairwise disjoint subsets of Y �

such that the following properties hold�
��� B� is a neighborhood of H�x�
 whenever x � U��
��� B�� � B�
 whenever dim�� � �
 i�e�  coincides with some � � A�
��� If  is a face of � then each V�� lies in some B�j �

��� If x �
T

 then H�x� lies in the interior of some B�j � and

��� All complements Y nB�i are weakly homotopically trivial�

An example when the hypotheses of Theorem ������ are satised is when
Y is the ��dimensional sphere S� and all values H�x� are cellular subsets of
S�� Recall that a subset C of an n�dimensional manifold Mn is said to be
cellular inMn if it can be represented as the intersection of a properly nested
countable family of subsets of Mn homeomorphic to the n�dimensional cube�
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Theorem �	���� �
��� For every cellular�valued upper semicontinuous
mapping H of a paracompact space X into the ��dimensional sphere S�
 there
exists a singlevalued continuous mapping h � X � S� such that h�x� �� H�x�

x � X�

�c� Selection criteria for realcompactness

A topological space is said to be realcompact if it is homeomorphic to a
closed subset of a Cartesian power IR� of the real line� For basic facts on
realcompact spaces see ������

In ����� a characterization of realcompactness by selections was proposed�
A cozero subset of a topological space X is a set of the form fx � X j
f�x� � �g� for some continuous real�valued function f � X � IR� Denote by
BX the collection of all realcompact cozero subsets B of a topological space X
with a noncompact complement XnB� We say that a multivalued mapping
F � X � Y is B��xed if for every B � BX � the intersection TfF �x� j x �
Bg is nonempty� Clearly� this notion makes sense for an arbitrary family of
subsets of X�

Theorem �	���� ����� Let X be a normal
 countably paracompact and
realcompact space and Y a Banach space� Then every B��xed lower semicon�
tinuous mapping F � X � Y with closed convex values admits a continuous
selection�

Theorem ������ is also valid if we substitute the condition of perfect nor�
mality for X with the requirement for convex values for F � Furthermore� this
theorem is also true with substitution of �topologically complete� for X with
�C�xed� instead of �B�xed�� where C is the collection of all topologically
complete cozero subsets C � X with noncompact XnC� Similarly� paracom�
pactness of a completely regular space X is equivalent to the property that
every A�xed lower semicontinuous mapping from X into closed convex sub�
sets of a Banach space admits a selection� Here A � fA � X j A is cozero
subset� Cl�A� is compact and XnA is not compactg�

Theorem �	���� ����� For a completely regular space X of a non�
�measurable cardinal the following assertions are equivalent�

��� X is realcompact�

��� Every B��xed lower semicontinuous mapping from X to the convex sub�
sets of a locally convex topological space is of �nite character� and

��� Every B��xed lower semicontinuous mapping of in�nite character X to
the convex subsets of a locally convex topological space admits a selection�

Here the term �F � X � Y is of innite character� means that there
exists a symmetric convex neighborhood V of the origin of Y such that the
open covering fF���y  V �gy�Y has no nite subcovering� If F is not of
innite character it is said to be of �nite character�
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�d� Lipschitz selections and uniform continuous selections

Let us consider the set Cn of all compact convex subsets of IRn endowed
with the Euclidean distance� In Cn the Hausdor� distance

H�A�B� � inff� 	 � j A � D�B� ��� B � D�A� ��g

agrees with the Vietoris topology� So� one can consider a natural �evaluation�
mapping en which associates to every A � Cn� the same object A� but
considered as a subset of IRn� Does there exist a continuous selection of en"

There are di�erent ways to give an a�rmative answer� First� we note
that Convex�valued selection theorem is really applicable to en� A more
direct way is an observation of Eggleston ����� that one can dene such a
selection by choosing for each A � Cn� the unique element of A close to the
origin� Third� one can dene a selection of en which associates to each A �
Cn� its �Ceby�sev center� i�e� the center of the closed ball of minimal radius
containing A� All selections above are continuous� but in general� they are
not Lipschitz continuous �see ��
�������

For an element A of Cn with nonempty interior one can dene a value
of a selection of en as the barycenter of A� i�e� �

R
A x d����A� This map is

certainly continuous� but it fails to be uniformly continuous ���	�� With
these three negative answers it is very surprising that Lipschitz selections
of en exist at all� The answer gives the so�called Steiner point of a convex
compact� Shephard ����� noticed that such Steiner selection s � Cn � IRn is
indeed a continuous selection and that for every bounded convex A � IRn�
the point s�ClA� belongs to A� i�e� Steiner point of a set always belongs to
the relative interior of the set�

Moreover� the Steiner selection s is the unique continuous selection of
en � Cn � IRn with the properties that s�
A �B� � 
s�A�  �s�B�� 
� � �
������ and s�L�A�� � L�s�A��� for every rigid motion L of the Euclidean
space IRn� For a convex polytope E with vertices V�� � � � � Vm the Steiner point
s�E� can be dened as follows� For a xed Vj we draw all edges of E that
meet in Vj and for every such edge we draw the hyperplanes through the
origin which are perpendicular to this edge� Then� we consider the convex
cone bounded by these hyperplanes and dene a number 
j as the ratio of
the measure of intersection of this cone with the unit sphere centered on
the origin and the measure of the whole sphere� Finally� s�E� �

Pm
j�� 
jVj�

Here� of course� we consider a normed Lebesgue measure on the unit circle
S�� The general analytic expression for s�A� is

s�A� � �

Z
Sn��

x�A� x� d�����Sn����

where x � Sn��� �A� x� is the supporting function of A and � is the measure
above�
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Theorem �	��	� ����� The mapping s � Cn � IRn is Lipschitz with the
constant n�

The situation with Lipschitz selections is quite di�erent if we pass to the
innite�dimensional case� Denote by C�X� the set of all bounded closed con�
vex subsets of a Banach space X� equipped with the Hausdor� distance� De�
note also by eX � C�X�� X the natural �evaluation� multivalued mapping�

Theorem �	��
��
��� ����� There is no uniformly continuous selection of eH 
 where H is the

Hilbert in�nite�dimensional space�
��� ���	� There is no Lipschitz selection of eC�����

��� ���
� There is no uniformly continuous selection of eX for any in�nite�
�dimensional Banach space X�

Some positive results are known for subsets A of C�X��
Theorem �	���� ������ Let X be a uniformly convex Banach space and

let A � fA � C�X� j diamA 	 rg
 for a �xed r 	 �� Then there exists a
uniformly continuous retraction of A onto X�

A Banach space is said to possess a uniformly normal structure if its
Young constant is less than �� Here

Y �X� � supfradA�diamA j A � C�X�� A inniteg

and radA is the �Ceby�sev radius of A with respect to the whole space X�

Theorem �	���� �������
�� For a Banach space X with uniformly
normal structure there exists a selection of eX � C�X�� X which is uniformly
continuous on each of the sets fA � H�X� j diamA 	 rg
 r 	 ��
�e� Selections in uniform spaces

We mention two papers on this subject� Geiler�s work ����� gives a direct
translation of Convex�valued selection theorem for uniform spaces as domains
of multivalued mappings� Somewhat more advanced results are due to Pelant
������ Let P be a uniform cover of a uniform space �X�U�� A family fe�g��A
of mappings fromX into ����� is called an �p�uniformly continuous partition
of unity inscribed into P if P� e��x� � �� for all x � X� the collection fx �
X j e��x� 	 �g renes P and the mapping � � �X�U� � �p�A� dened by
��x� � fe��x�g��A is uniformly continuous� Here� �p�A� is equipped with
the �p�norm uniformity� A multivalued mapping F � �X�U�� �Y�V� between
two uniform spaces is called uniformly continuous if for each uniform cover
P � V� there exists R � U such that for every Q � R and for every x� y � Q�
the image F �y� is a subset of the star St�F �x��P� of the image F �x�� with
respect to P�

Theorem �	���� For a uniform space �X�U� the following assertions
are equivalent�
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��� �X�U� has the ���property
 i�e� every uniform covering of X admits a
���uniformly continuous partition of unity subordinated to this covering�
and

��� Every uniformly continuous mapping from �X�U� with convex closed
values lying in the unit ball of a Banach space has a uniformly conti�
nuous selection�

It was also shown that ��� implies a selection theorem for unbounded low�
er semicontinuous mappings� This can be made via the so�called approxima�
tively w�uniformly continuous mappings� The Kuratowski�Ryll�Nardzewski
measurable selection theorem �see Theorem �
���� below� is a special case of
the general plan�

�f� Selections of mappings with �Cn� ELCk� values

Finite�dimensional selection theorem is an analogue of the Kuratowski�
�Dugundji extension theorem� Borsuk ���� proved a generalization of this
extension theorem for ranges Y which are LCn�� and Ck�� spaces� � 	 k 	
	 n� More precisely� he showed that such condition is equivalent �in the class
of metrizable spaces with countable base� to the possibility of extension of a
mapping f � X � Y with dim�XnA� 	 n onto some open set U � A� with
dim�XnU� 	 n� k � �� A selection analogue of this extension theorem was
proved in ������

Theorem �	���� Let X be a hereditary paracompact space
 A a closed
subset of X with Ind�XnA� 	 n
 and Y a completely metrizable space� Let
F � X � Y be a lower semicontinuous mapping with closed Ck���values
F �x�
 x � X
 and with ELCn���family fF �x�gx�X of values� Then every
continuous selection f of the restriction F jA can be extended to a selection of
restriction F jXnE 
 for some closed in X subset E
 with E � XnA and with
IndE 	 n� k � ��

	� Recent results

Here we list some heretofore unpublished selection theorems�

�a� The rst one is a result of Uspenski&'� Recall that a normal space X is
said to have property �C� �or� is a C�space� if for every sequence ��� ��� � � � of
open coverings of X� there exists a sequence ��� ��� � � � of families consisting
of disjoint open sets such that every �i is a renement of �i and the unionS�
i�� �i is a covering of the space X� The class of all C�spaces contains the
class of all nite�dimensional paracompact spaces and is the subclass of the
class of weakly in�nite�dimensional spaces� For the class of all paracompact
spaces there is no suitable �purely topological� selection theory �see Theory�
x
�� It is interesting that there is a selection characterization of C�spaces in
topological terms�
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Theorem �	���� For a paracompact space X
 the following assertions
are equivalent�
��� X is a C�space�
��� For every multivalued mapping F � X � Y with weakly contractible

values and with the property that the set fx � X j K � F �x�g is open
in X
 whenever K is compact in Y 
 there exists a continuous selection
of F � Y is an arbitrary space� and

��� For every multivalued mapping F � X � Y with contractible values and
with the property that the graph of F is open subset of X
Y 
 there exists
a continuous selection of F � Y is an arbitrary space�

Observe� that the type of continuity in Theorem ���	����� reminds one
of the Browder selection theorem ���� with open sets fx � X j y � F �x�g�
i�e� K � fyg and the Michael selection characterization of paracompactness�
More precisely� in Theorem �A������ the mapping F � X � ���A� is lower
semicontinuous and� in addition� has an approximative version of type of
continuity from Theorem ���	������ That is� F has the property that for
every x� � X� every compact K � F �x�� and every open U � K� there
exists compact K � � U � F �x�� such that x� is an interior point of the set
fx � X j K � � F �x�g�

�b� For a multivalued mapping with values in a metric space �Y� �� there
are two notions of continuity� topological and metric� From topological
point of view� F � X � Y is continuous if it is both lower semicontinuous
and upper semicontinuous� The metric approach states that continuity of
F � X � Y at a point x� � X means that for every � 	 �� there exists
a neighborhood V �x�� of x� such that F �x�� � D�F �x�� �� and F �x� �
D�F �x��� ��� for every x � V �x��� Note� that metric continuity of F does not
imply topological continuity and vice versa� Michael ��
�� proved that for an
arbitrary topological space X� a metric continuous mapping F � X � Y with
convex closed values in a Banach space Y has a continuous selection� The
proof is based on the observation that metric continuity of F coincides with
� �continuity of F regarded as a singlevalued mapping from X into the space
of all convex closed subsets endowed with some metrizable topology � � Then�
standard Convex�valued selection theorem is applicable� For results about
selections of topologically continuous mappings� see ����� Recently� Gutev
proved a selection theorem for a mixed version of continuity� A mapping
F � X � Y into a metric space �Y� �� is said to be ��proximally continuous
provided that F is ��upper semicontinuous and topologically lower semicon�
tinuous�

Theorem �	���� Let X be a topological space
 Y a Banach space and
F � X � Y a k�k�proximal continuous mapping with convex closed values�
Then F admits a continuous singlevalued selection�

It is interesting� that for re�exive Banach spaces it is possible to pass
to weaker restriction of the type of continuity� More precisely� F � X � Y
is said to be weakly continuous if it is lower semicontinuous and if for every
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weak compactumKnY � the set fx � X j F �x� � Y nKg is open in X� Gutev
and Nedev proved the following theorem�

Theorem �	���� Theorem ������ holds for a re�exive Banach space Y
and a weakly continuous mapping F � X � Y �

�c� In ��� a selection theorem is proved which �unies� all nite�dimen�
sional selection theorems up to some xed nite dimension of domain� We
say that a sequence � � X�� � X�� � X� � � � � � Xn � X of subsets of a
�n ���dimensional paracompact space X forms a dim�strati�cation of X if
dimXk

�Xk��� 	 k� for all � 	 k 	 n� For a metric space X this property is
equivalent to dim�XknXk��� 	 k  ��

Theorem �	���� Let L���L�� � � � �Lk be a sequence of families of closed
subsets of a metric space �Y� �� and let � � X�� � X� � � � � � Xn � X be
a dim�strati�cation of a �n ���dimensional paracompact space X� Then a
lower semicontinuous mapping F � X � Y with ��complete values has the
property SNEP at a closed subset A � X whenever
 for every �� 	 k 	 n�
��� Lk is ELC k family�
��� The union

SfL j L � Lkg is closed in the union
SffL j L � Lkg j �� 	

	 k 	 ng� and
��� For every x � XknXk��
 the value F �x� lies in Lk�

Moreover
 if all members of Lk are k�connected subsets of Y 
 then F has
the SEP at A�

The proof is based on the ideas of the proof of Finite�dimensional selec�
tion theorem� but is performed in terms of coverings �� �� �� � � � � instead of
numbers � 	 �� ����� ����� � � � � Thus� this proof does not use the uniformly
LCk assertions�

Ageev and Repov�s ��� presented a realization of a Pixley�s suggestion
����� about possibility to prove selection theorems under some strengthened
continuity�type restrictions for multivalued mappings� Moreover� their result
generalizes Ferry�s selection theorem for strongly regular multivalued map�
pings �see Denition �C��������

Theorem �	�	�� Let X be a paracompact space
 Y a �nite�dimensional
paracompact space
 Z a metric space and F � X � Z the composition G � �

where � � X � Y is a continuous singlevalued surjection and G � Y � Z
is a strongly regular mapping� Then F has the SEP at every closed A � X

whenever the values F �x� are ��complete AE subsets of Z
 x � X�

Generally� the main step of the proof states that the notion of strong
regularity of mappings splits two properties� continuity of this mapping and
�ne� topological structure of the collection of values of the mapping� That
is� the authors extract a version of uniform Lefschetz property and prove that
strongly regular multivalued mappings with ANE�values have the so�called
uniform super Lefschetz property�
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�� Uniformization problem

The uniformization problem is close to the problem of nding a singleval�
ued solution y � f�x� of an implicitly dened equation F �x� y� � �� From the
modern point of view such a problem evidently is a special case of a selection
problem� nd a selection of multivalued mapping x �� fy � Y j F �x� y� � �g�
This problem was originally started without using any �selection� terms and
goes back to Hadamard and Lusin�

We shall use a geometrical approach proposed by P� S� Novikov� A set
E � IR� is said to be uniformized with respect to the OY axis� if every vertical
line x � const intersects E in at most a single point� For a given planar set
Q � IR� the uniformization problem is a problem of nding �or� proving an
existence� of a subset E � Q such that�
��� Projection of E onto the OX axis coincides with the projection of Q onto

the same line� and
��� E is uniformized with respect to axis OY �

In this case Q is said to be uniformized by E�
Clearly� such a general statement admits a generalization to subsets of

arbitrary Cartesian product X
Y � But the uniformization problem requires
the following essential additional condition� Namely� that for a given class L
of planar subsets one must nd nd a �good� classM of planar subsets such
that every element Q � L can be uniformized by some element E �M�

To formulate the rst results in this area� recall that B�Y � denotes the
Borel �algebra for a topological space Y and that for separable metrizable
spaces� Borel subsets are also called projective sets of the class �� The
projective sets of class �n � are dened as continuous images of projective
sets �in some Polish space� of the class �n and the projective sets of class �n
are complements of projective sets of class �n � �� n � IN� The projective
sets of the rst class are also called analytic sets �A�sets� or Suslin sets�� and
the projective sets of the second class are called also CA�sets�

We shall begin by some preliminary results�

Theorem �
����
�A� ��������� Every planar Borel set Q � IR� can be uniformized by a planar
CA�set E � Q�
�B� ���
� Every planar Borel set Q � IR� with closed intersections with all
vertical lines can be uniformized by a planar Borel set E � Q and the pro�
jection pXQ onto the axis OX is a Borel set�
�C� ����� �B� holds in the case when intersections of Q with all verticals are
at most countable�
�D� ���� �B� holds in the case when intersections of Q with all verticals are
F��sets
 i�e� unions of at most countable families of closed sets�
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�E� ��
�� �B� holds in the case when the intersections of Q with all verticals
are sets which admit nonempty F��intersections with some open subinterval
on the vertical�
�F� ����� There exists a planar Borel set Q � IR� with pXQ � ��� �� which
does not admit any Borel uniformization�
�G� ����� Every planar CA�set �planar A��set� Q � IR� can be uniformized
by a planar CA�set E � Q�
�H� ����� Every planar A�set Q � IR� can be uniformized by a planar
�A�����set E � Q which has the Baire property� here
 A� is the family of
all di�erences of A���sets�

Novikov�s Theorem �
����B� was the rst step in this area and his proof
was practically a model for all subsequent investigations� We reformulate
Theorem �
����B� as a selection result�

Theorem �
���� Let F � IR� IR be a multivalued mapping with closed
and possibly empty values� Suppose that the graph �F � f�x� y� j y � F �x�g
of the mapping F is a Borel subset of IR�� Then�
��� Dom�F � � fx � IR j F �x� � �g is a Borel subset of IR
 and
��� F has a Borel selection f � Dom�F � � IR
 i�e� f�x� � F �x�
 for all
x � Dom�F ��

Recall that a singlevalued mapping f � X � Y between topological
spaces is called a Borel mapping if the preimage f���G� of every open set
G � Y is a Borel subset of X�

The Arsenin�Novikov��S�cegol�kov results were generalized to �compact�
�valued mappings between Polish spaces� i�e� separable completely metrizable
spaces�

Theorem �
��� ����� Let F � X � Y be a multivalued mapping between
Polish spaces with �compact and possibly empty values� Suppose that the
graph �F of the mapping F is a Borel subset of X 
 Y � Then�
��� Dom�F � � fx � X j F �x� � �g is a Borel subset of X� and
��� F has a Borel selection f � Dom�F �� Y 
 f�x� � F �x��

Sometimes it is possible to avoid the completeness condition for the
domain of the multivalued mapping� Recall that a set of Q a separable metric
space X is said to be bianalytic if Q and XnQ are analytic� Notation� Q �
BA�X��

Theorem �
��� �	��� Let X be a separable metrizable space
 Y a Polish
space and F � X � Y a �compact�valued mapping with possibly empty values
and with a bianalytic graph �F � X 
 Y � Then�
��� Dom�F � � fx � X j F �x� � �g is a bianalytic subset of X� and
��� F has a selection f � Dom�F � � Y such that the preimage f���B� of

every Borel subset B � Y is a bianalytic subset of X
 i�e� f is �BA�X�#
B�Y ���measurable selection of F �
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Further results in this direction are due to Levin who replaced a separable
metrizable space X by a suitable measurable space �X�L�� i�e� a set X with
a �algebra L of subsets of X� Let X be a nonempty set and K be a class of
subsets of X with � � K� We denote by -�K� the �algebra generated by K
and by AK the class of K�analytic subsets of X� i�e� the subsets representable
as the result of the A�operation on elements of K�

A � AK �� A �
�

fnkg�ININ

�
k�IN

B�n�� � � � � nk�

where B�n�� � � � � nk� � K� and fnkg is a sequence of natural numbers nk �
IN� A�operation was introduced by Aleksandrov in �
�� It is known �����
that analytic subsets of a separable metrizable space M admit an equivalent
denition as results of A�operation on certain Borel sets� A set B � X is
called K�bianalytic if B � AK and XnB � AK� the class of all K�bianalytic
sets is denoted by BA�K�� For measurable spaces �X��L�� and �X��L�� the
smallest �algebra in X�
X� containing all Cartesian products L�
L� with
L� � L�� L� � L�� is denoted L� # L�� Finally� the Baire �algebra B��X�
in a topological space X is dened as the �algebra generated by the sets
f������ where f is a continuous real�valued function on X�

Theorem �
�	� �������
�� Let F � X � Y be a �quasicompact �quasi�
compactness means compactness without the Hausdor� separation property�
valued mapping with possibly empty values and with the graph �F � BA�L#
B��Y ��
 where �X�L� is a measurable space and Y is a topological space that
is the image of a Cartesian product of a family of Polish spaces under some
proper �i�e� preimage of quasicompacta are quasicompacta� mapping� Then�
��� Dom�F � � BA�L�� and
��� F has a �BA�L��B�Y ���measurable selection f 
 i�e� the preimage f���B�

of any Baire subset B � Y belongs to the �algebra BA�L��
The proof of the following theorem uses the Continuum hypothesis �CH��

Theorem �
�
� �CH� ���
�� Let F � X � Y be a �compact�valued
mapping between compacta with possibly empty values and with the graph �F
a Baire subset of X 
 Y � Then�
��� Dom�F � is a Baire subset of X� and
��� F has a Baire �i�e� �B��X� � B��Y ���measurable� selection f �

If Y is a dyadic compactum �i�e� Y is a continuous image of some f�� �g� ��
then �CH� can be avoided� See also results of Evstigneev ����� in connection
with the role of �CH� in measurable selection theorems for nonmetrizable
compacta Y �

All theorems above present the two statements� one about properties
of a projection of a subset of X 
 Y and the other� about a selection from
the image of projection into the given subset of X 
 Y � Sion ����� obtained
some results in the second direction� but without metrizability restriction�
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We say that a topological space Y satises condition �SI� if and only if Y
is completely regular� has a base of cardinality at most rst uncountable
cardinal and every family of open subsets of Y has a countable subfamily
with the same union of elements�

Theorem �
���� Suppose that X is a topological space
 Y satis�es
condition �SI�
 Q is compact in X
Y 
 and PX � X
Y � X is a projection�
Then there exists a selection f � PXQ� X 
 Y of the multivalued mapping
P��X � PXQ� X 
 Y such that for every open set U � X 
 Y 
 the preimage
f���U� � X is an element of the �algebra
 generated by all compact subsets
of X�

Theorem �
���� Suppose that X is a Hausdor� space
 Y satis�es
condition �SI� and Q is analytic in X 
 Y � Then there exists a selection
f of P��X such that for every open set V � X
Y 
 the preimage f���V � � X
is an element of the �algebra
 generated by all analytic subsets of X�

In the last theorem� the expression �A is analytic subset of a topological
Hausdor� space X� means that for some Hausdor� space Z and for some
B � Z� which is an element of K���Z�� there exists a continuous mapping
from B onto A� B � K���Z� �� B �

T�
i���

S�
j��Cij�� Cij are compacta in

Z�
As a generalization of the Sion�s results it was proved in ���	� that �under

the continuum hypothesis CH� every upper semicontinuous compact�valued
mapping from the space of irrationals to a compact �not necessarily metric�
space admits a selection� which is measurable in the sense that preimages
of Baire measurable sets are universaly measurable� i�e� are measurable with
respect to each �nite Radon measure�

�� Measurable multivalued mappings

Let �X�L� be a measurable space� Y a separable metric space� and F �
X � Y a closed�valued mapping with possibly empty values� Consider the
following properties of the mapping F � As usual� F���B� � fx � X j F �x��
B � �g�
�I� F���B� � L� for every Borel set B � Y �
�II� F���A� � L� for every closed set A � Y �
�III� F���G� � L� for every open set G � Y �
�IV� Dom�F � � L and all distance functions x �� dist�y� F �x�� are measurable

real�valued functions on Dom�F �� for every y � Y �
�V� Dom�F � � L and there exists a sequence ffng of measurable mappings

fn � Dom�F � � Y such that F �x� � Clffn�x� j n � INg� for all x �
Dom�F �� and

�VI� The graph �F is an �L
B�Y ���measurable subset of X 
Y where B�Y �
is the Borel �algebra� generated by open subsets of Y �
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Recall that a singlevalued mapping f into a topological space is said to
be measurable if the preimages of open sets are measurable subsets of the
domain of f � These properties were collected by Castaing in ��	� for the case
when Dom�F � � X and Y is complete� See also �
�����������

Theorem �
��� If on a �algebra L of subsets of X there exists a
complete ��nite measure and if Y is a Polish space then all conditions
�I�!�VI� above are equivalent�

A non�negative �additive measure � � L � ����� is said to be complete
if every subset of a set with a zero measure has also the zero measure� The
�niteness of the measure � means that X �

S�
n��Xn with nite ��Xn��

n � IN� The equivalence �I� �� �VI� was proved by Debreu �	���
In general� we have only the following theorem�

Theorem �
����� Under the above notations the following implications
hold�

�I� �� �II� �� �III� �� �IV� �� �VI� �

If Y is a Polish space then

�I� �� �II� �� �III� �� �IV� �� �V� �� �VI� �

Sometimes a version of completeness of �algebra L can be formulated
in Theorem �
�	� without the measure�

Theorem �
���� ������
��� Let L � AL and Y be a metrizable analytic space� Then the properties

�I���VI� are equivalent�
��� Let L � BA�L� and Y be a metrizable �compact� Then �III� ��

�V� �� �VI��
For our purpose the property �V� is of the maximal interest� It states

that a measurable multivalued mapping F admits a countable �dense� fam�
ily of measurable selection� Such a family is often called the Castaing rep�
resentation of F � As a special case of the implication �III� � �V� for the
case of a Polish space Y we formally obtain the Kuratowski�Ryll�Nardzewski
selection theorem ���
�� In fact� the situation is reversed� i�e� the implica�
tion �III�� �V� is a corollary of such a selection theorem� Observe that for
the case of so�called standard measurable space such a selection theorem was
in fact� proved by Rohlin ��
��� Note also� that the existence of a Castaing
representation in the case X � Y � IR is a direct corollary of the Novikov
theorem �
����B�� The similar result was also proved by Neumann ������

So� we give a proof of this selection theorem �called the Kuratows�
ki�Neumann�Novikov�Rohlin�Ryll�Nardzewski�Yankov theorem� for measur�
able multivalued mappings�

Theorem �
����� Let �X�L� be a measurable space
 Y a Polish space
and F � X � Y a closed valued mapping with possibly empty valued and
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with F���G� � L
 for every open G � Y � Then there exists a measurable
singlevalued mapping f � Dom�F � � Y such that f�x� � F �x�
 for all x �
Dom�F ��

Proof� Without loss of generality� we can assume that Dom�F � � X�
because Dom�F � � F���Y � � L� We also assume that Y is completely
metrizable by some metric d bounded by ��

I� Construction

Let�
��� fy�� y�� � � � � yk� � � �g be a dense sequence of distinct points in Y � with a

xed denumeration order�
���

P�
k�� �k be a convergent series with � � �k�� � �k and �� � ��

��� f��x� � y� for all x � X�
��� For some n � IN� there exist measurable mappings f�� f�� � � � � fn from X

into Y such that for all x � X�
��n� dist�fi�x�� F �x�� � �i� i � �� �� � � � � n�
���n� dist�fj�x�� fj���x�� � �j � j � �� �� � � � � n� �� and

��� For every x � X� the value fn���x� is dened as the rst element of the
sequence fykg which belongs to the intersection

D�F �x�� �n��� �D�fn�x�� �n��

We claim that then�
�a� fn�� � X � Y is well�dened�
�b� fn�� is a measurable mapping�
�c� For fn�� the following inequalities hold�

��n��� dist�fi�x�� F �x�� � �i� i � �� �� � � � � n� n �
���n��� dist�fj�x�� fj���x�� � �j � j � �� �� � � � � n�

�d� For every x � X� there exists lim
n��

fn�x� � f�x�� and

�e� f � X � Y is a desired selection of S�

II� Veri�cation

�a� Follows because F �x� �D�fn�x�� �n� � �� see ��n��
�b� fn���X� � fykg� So� it su�ces to check only that for every yk the
�level� sets f��n���yk� � fx � X j fn���x� � ykg are L�measurable�
But f��n���yk� � Cknn�

SfCmn j m � kg�� where Ckn � F���D�yk� �n���� �
� f��n �D�yk� �n�� � L�
�c� Follows from ����

�d� Is due to the completeness of Y � inequalities ���n� and ����
�e� f is measurable as a pointwise limit of measurable mappings and f�x� �
F �x� because of the closedness of F �x� � Y �

Theorem �
���� is thus proved�
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We give a version of the Yankov�s theorem �see Theorem �
����E�� in
order to emphasize that sometimes the condition of closedness of values F �x��
x � X� can be omitted�

Theorem �
����� Let F � X � Y be a mapping between Polish spaces
such that the graph �F is a Suslin subset �or A�subset� of X 
 Y � Then F
admits a measurable selection�

A simultaneous generalization of the Yankov�s theorem and von Neu�
mann selection theorem ����� can be found in �
��� We say that a Hausdor�
topological space X is a Suslin space if it is a continuous image of Polish
space and we denote by S�X� the �algebra� generated by Suslin subsets
of X�

Theorem �
����� Let F � X � Y be a mapping with nonempty values
from a Suslin space X into a topological space X such that the graph �F is
a Suslin space� Then there exists a sequence ffng of singlevalued �S�X� �
� B�Y ���measurable selections of F such that ffn�x�g is dense in F �x�
 for
all x � X� Moreover
 every fn is the limit of a sequence of singlevalued
S�X��measurable mappings
 assuming a �nite number of values�

Under the additional assumption that � is a regular measure� i�e� ��B� �
� supf��K� j K is subcompactum of Bg the selections fn in Theorem �
����
have the Lusin C�property�

An analogue of Theorem �
���� for the case when �X�L� is a measurable
space� Y is a Suslin space and �F can be obtained from elements of L#B�Y �
using A�operation� was proved in ����������

De�nition �
��	�� A multivalued mapping F � X � Y with arbitrary
values from a measurable space �X�L� into a separable metric space� is
said to be measurable �resp� weakly measurable� if F has the property �II�
�resp� property �III�� above�

Note that in the literature there is some disagreement concerning the
use of terms �measurable�� �weak measurable�� and �strong measurable� for
multivalued mappings�

A compact�valued mapping F � X � Y with Dom�F � � X can be
considered as a singlevalued mapping from X into the set exp�Y � of all
subcompacta of Y � endowed with the Hausdor� distance topology�

Theorem �
��
� �
��� For a compact�valued mapping F � X � Y with
Dom�F � � X from a measurable space �X�L� into a separable metric space
Y the following assertions are equivalent�

��� F is measurable�
��� F is weakly measurable� and

��� F � X � expY is a measurable singlevalued mapping�

���
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For a metric space X and bounded subset A � X we dene the Kura�
towski index as follows�

��A� � inff� j A �
n�
i��

Ai�diamAi 	 �� n � INg �

A �compact� version of the Castaing representation was proposed in �
���

Theorem �
����� Let �X�L� �� be a ��nite measure space
 � 	 p 	 �
and F � X � IRm a measurable nonempty and closed�valued mapping with
kF �x�k 	 ��x�
 for all x � X and for some � � Lp�X� IR�� Then there exists
a Castaing representation ffng for F such that all fn are elements of the
Banach space Lp�X� IR

m� and the Kuratowski index ��ffng� is equal to zero
in Lp�X� IR

m��

Finally� we state the Io�e representation theorem which� roughly speak�
ing� states that a measurable multivalued mapping can be factorized through
two parametric mappings of a Carath�eodory type�

Theorem �
���� ���
�� Let Y be a Polish �resp� compact metrizable�
space
 �X�L� a measurable space and F � X � Y a closed�valued measurable
mapping with possibly empty values� Then there exists a Polish �resp� compact
metrizable� space Z and a singlevalued mapping f � X 
 Z � Y such that�
��� f is continuous in z and L�measurable in x� and
��� For all x � DomF 
 F �x� is equal to the image f�x�Z� of Z�

By taking a dense countable set in Z� one gets a dense countable family
of measurable selections of F � i�e� the Castaing representation of F �

�� Measurable selections of semicontinuous mappings

There exists an obvious similarity between the proofs of selection the�
orems in the continuous and in the measurable case� More precisely� in
Michael�s selection theorems as well as in Kuratowski�Ryll�Nardzewski selec�
tion theorem �see Theorem �
����� the resulting selection is constructed as
the uniform limit of a sequence of �n�selections of a given multivalued map�
ping� A natural problem is to nd a simultaneous proof of both selection
theorems� Such an idea was realized by M,agerl in ������ To begin� note that
the family T of all open subsets of a topological space and the family L of
all measurable subsets of a measure space have the following common stabil�
ity �with respect to the set operations� property� T and L are closed under
operations of nite intersections and countable unions�

De�nition �
���� If X is a set and P is a family of subsets of X� then
P is called a paving and the pair �X�P� is said to be paved if X � P� � � P
and P is closed under nite intersections and countable unions�
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De�nition �
����� If �X�P� is a paved space and Y is a topological
space� then a multivalued �singlevalued� as a special case� mapping F � X �
Y is said to be P�measurable if F���G� � P� for every open G � Y �

De�nition �
����� Let k be a cardinal number and n � IN � f�g� A
paved space �X�P� is called �k� n��paracompact if every covering U � P of X
with cardinality less than k� has a renement V � P such that�
��� dimN�V� 	 n� and
��� There exists a P�measurable mapping� � X � N�V� with ����St�eV �� �

V � for all V � V�
Here N�V� is the geometric nerve of the covering V endowed with the

Whitehead topology� eV is the vertex of N�V� which corresponds to V � V
and St�eV � is the star of the vertex eV in the simplicial complex N�V�� Let
us dene an abstract version of the convex hull operator�

De�nition �
����� Let H be a mapping which assigns to every subset
A of Y a subset� H�A� of Y � Then H is called a hull�operator if H�fyg� �
� fyg� y � Y � H�A� � H�H�A��� A � H�A� and A � B implies that
H�A� � H�B�� A hull�operator on a topological space Y is called n�convex if
for every at most n�dimensional simplicial complex S and for every mapping
� of vertices of S into Y � there exists a continuous mapping � � S � Y such
that ��#� � H���V �#���� for all simplices # � S� �here V �#� is the set of
all vertices of #��

De�nition �
����� For a set Y endowed with a hull operator H a
pseudometric d on Y is called H�convex if for � 	 �� the equality A � H�A�
implies equality H�D�A� ��� � D�A� ��� For a uniform space Y a hull operator
H is called compatible with the given uniform structure if the uniformity of
Y is generated by a family of H�convex pseudometrics�

Theorem �
���� ������ Let �X�P� be a �k� n��paracompact paved space

Y a k�bounded complete metric space and H an n�convex
 compatible hull�
�operator in Y � Then every P�measurable mapping F � X � Y such that
F �x� � ClF �x� � H�F �x��
 x � X
 admits a singlevalued P�measurable
selection�

In this theorem� k�boundedness of a metric space Y means the existence
of ��nets of cardinality less that k� for any � 	 ��

As special cases of Theorem �
����� one can obtain Zero�dimensional
selection theorem� the Convex�valued selection theorems for normal and
paracompact domains� the Kuratowski�Ryll�Nardzewski theorem and some
others�

The rest of this section is devoted to the �mixed� type selection theorems�
which� roughly speaking� yield for semicontinuous mappings an existence of
�as a rule� non�continuous but descriptive �well�� selections� A fundamental
result is due to �Coban ��
�����
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Theorem �
��	�� Let F � X � Y be a continuous closed�valued
mapping from a topological space X into a completely metrizable space Y �
Then there exists a selection f of F such that f���G� is an F��subset of X

whenever G is open in Y �

Note� that Y is not necessarily separable and observe that in fact the
proof consists of nding a suitable selection for the hyperspace of all nonemp�
ty closed subset of Y �see also x�����

A well�known Hausdor� theorem states that an open continuous image
of a Polish space is a complete space� Hausdor� asked a question whether
an open continuous image of a Borel set of class � is a Borel set of the same
class� Generally� the answer is negative� as it was demonstrated by Keldy�s
��	���

Theorem �
��
�� Let f � X � Y be an open mapping of a metric space
X onto a metric space Y and let preimages f���y� be complete subsets of X�
Suppose that X is a Borel set of class � � �� Then Y is a Borel set of class
	 � �
 provided � � w�
 and of class 	 � otherwise�

Theorem �
����� Let F � X � Y be a closed�valued mapping from a
perfectly normal space X into a completely metrizable space Y and let pX �
�F � X be a closed mapping where pX is the natural projection of the graph
�F onto X� Then F has a singlevalued selection f such that f���G� is a
F��subset of X
 whenever G is open in Y �

The next �Coban�s theorem is in some sense reminiscent of Yankov�s
theorem� Let F��X� be the family of all di�erences of closed subsets of X
and F���X� a countable union of elements of F��X�� For perfectly normal
spaces X we have that F���X� � F��X��

Theorem �
����� Let F � X � Y be a compact�valued lower semicon�
tinuous mapping into a metric space Y � Then there exists a selection of F
such that f���G� � F���X�
 whenever G is open in Y �

Theorem �
���� Let F � X � Y be a closed�valued lower semicontinu�
ous mapping from a paracompact space X into a completely metrizable space
Y � Then there exists a selection f of F such that f���G� is an F��subset of
X
 whenever G is open in Y �

A part of �Coban�s results was generalized by Kolesnikov to the non�
metrizable ranges Y � more precisely� to spaces with a G��diagonal and GO�
spaces �see �������	��� We nish this section by a list of some further results
in this direction�

Theorem �
���� ��
��� Let F � X � Y be an upper semicontinuous
completely valued mapping between metric spaces� Then F has a Borel class �
selection�

Theorem �
���� ��	��� Let F � X � Y be an upper semicontinuous
mapping between metric spaces� Then F has a Borel class � selection�

���



Carath�eodory conditions� Solutions of di�erential inclusions ��

Theorem �
���� ������ Let F � X � Y be an upper semicontinuous
mapping between metric spaces and let Y be an absolute retract� Then F has
a Baire class � selection�

Theorem �
���� ��	��� Let F � X � Y be an upper semicontinuous
mapping from a metric space X into a Banach space Y endowed by the weak
topology and let F take values in �xed weak subcompacta of Y � Then F has
a norm Borel selection�

Theorem �
���� ������ Let F � X � Y be an upper semicontinuous
mapping from a metric hereditary Baire space X into a Banach space Y
endowed by the weak topology and let all values F �x� be weak compacta in Y �
Then F has a norm Baire class � selection�

Theorem �
��	� ������ Let F � X � Y be as in Theorem ������ �without
completeness of Y �� Then there exists a sequence ffng of norm continuous
mappings fn � X � Y converging pointwisely in the norm to a selection f
�Borel class �� of F �

In Theorems �
������
���� the term Borel class � �resp� class �� mapping
f means that f���G� is a F��set �resp� f

���G� is a G���set�� whenever G is
open� A mapping f is said to be of a Baire class � if it is pointwise limit of
continuous mappings� See also ��	�� for more details�

�� Carath�eodory conditions� Solutions of di�erential
inclusions

It is well�known that a di�erential equation x� � f�t� x�� x�t�� � x� with
a continuous right side is equivalent to the integral equation

x�t� � x�  

tZ
t�

f��� x���� d� �

For a discontinuous right�hand sides f one can consider the Lebesgue integral
instead of the Riemann integral and obtain a solution in the Carath�eodory
sense�

De�nition �
��
�� Let G be an open connected subset of IRn�� � IR

IRn� A singlevalued function f � G� IR is called a Carath�eodory function if�
�a� For almost all t � IR� the function f�t� �� is continuous� over x � IRn�

where �t� x� � G�
�b� For every x the function f��� x� is measurable over t � IRn� where �t� x� �

G� and
�c� kf�t� x�k 	 ��t� for some summable function ��t� �at each nite segment�

if G is unbounded along the variable t��

���



��� Measurable selections

Observe� that sometimes Carath�eodory conditions are stated as �a� and
�b� only� while �c� is often called the integral boundedness condition�

Theorem �
���� ��
�� Let �t�� t�  a� 
 Cl�D�x�� b�� � G � IR 
 IRn
and f � G � IR a Carath�eodory function� Then for some d 	 �
 there exists
on the segment �t�� t�  d� an absolutely continuous function x�t� such that
x�t�� � x� and x��t� � f�t� x�t��
 for almost all t � �t�� t�  d�� Moreover


one can assume that � � d 	 a and
R t��d
t�

���� d� 	 b�

We see from kx�t� � x�k � kR tt� f��� x���� d�k 	 R t��d
t�

���� d� 	 b that
the graph of the solution x��� from Theorem �
���� is a subset of the rectangle
�t�� t�  d�
 Cl�D�x�� b���

For multivalued right�hand sides� i�e� for di�erential inclusions x� �
F �x� t�� there exists a series of di�erent existence theorems� To formulate one
of the earliest variants� we remark that an upper semicontinuous compact�
�valued mapping F � K � IRn with a metric compact domain K is bounded�
i�e� supfkF �k�k j k � Kg ���

Theorem �
���� ���������� Let . � �t�� t�  a� 
 Cl�D�x�� b�� � IR 

IRn and let F � . � IRm be an upper semicontinuous compact� and convex�
�valued mapping� Then for some d 	 �
 on the segment �t�� t�  d�
 there
exists an absolutely continuous function x�t� such that x�t�� � x� and x

��t� �
F �t� x�t��
 for almost all t � �t�� t�  d�� Moreover
 one can assume that d �
� minfa� b� supfkF �t� x�k j �t� x� � .gg�

Certain versions were proposed in �	���

Theorem �
���� Let . � �t�� t�  a� 
 Cl�D�x�� b�� � IR 
 IRn and
let F � . � IRn be upper semicontinuous over x � Cl�D�x�� b��
 for almost
all t � �t�� t�  a�
 let values of F be convex and closed and let F admit a
singlevalued integrally bounded selection f � . � IRn which is measurable
with respect to t � �t�� t�  a�
 for every x � Cl�D�x�� b��� Then the problem
x� � F �t� x�
 x�t�� � x� admits a solution �in the Carath�eodory sense� over
the segment �t�� t�  d�
 where d 	 � is de�ned as in Theorem �������

For a nonconvex�valued right�hand sides F �t� x� the upper semicontinuity
hypothesis is insu�cient� Its strengthening to continuity is� sometimes�
su�cient�

Theorem �
���� ��	��� Let . � �t�� t�  a� 
 Cl�D�x�� b�� � IR 
 IRn
and let F � . � IRn be a closed�valued
 integrally bounded �by a summable
function � � �t�� t�  a� � IR� mapping which is continuous with respect to x
and measurable with respect to t� Then the problem x� � F �t� x�
 x�t�� � x�
admits a Carath�eodory solution over the segment �t�� t�  d�
 where d 	 � is
de�ned as in Theorem �������

It was shown in ���	� that the continuity condition in the theorem can be
weakened at the points �t� x� with convex F �t� x� to the upper semicontinuity
with respect to x�

���



Carath�eodory conditions� Solutions of di�erential inclusions ���

For the proofs of these theorems� see also ���
�� We describe the sketch
of a proof with an attention to selections� First� we need the notion of the
�weak� Carath�eodory conditions for multivalued mappings F �t� x� and the
notion of multivalued superposition operator�

De�nition �
����� A multivalued mapping F over a Cartesian prod�
uct of a measure space �T�A� and a topological space X is said to be a
Carath�eodory �resp� lower Carath�eodory� upper Carath�eodory� mapping if�

�a� For almost all t � T � the mapping F �t� �� � X � Y is continuous
�respectively� lower semicontinuous� upper semicontinuous�� and

�b� For all x � X� the mapping F ��� x� � T � Y is measurable�

The standard area of use of this denition is the case when T is a
segment on the real line IR with the Lebesgue measure� X is IRm� and Y is
IRn� The superposition operator in the singlevalued case is called Nemitsky
operator and for a given mapping f � T 
 X � Y it associates to every
� � T � X the composition mapping t �� f�t� ��t�� from T into Y � Hence�
Nemitsky operator acts from a space of mappings from T into X into a space
of mappings from T into Y � A typical problem is to nd conditions for f
which are su�cient for the Nemitsky operator to map a prescribed space S�
of mappings from T into X into another prescribed space S� of mappings
from T into Y �see� e�g� ������ A similar question can formally be stated in
the multivalued case� However� the situation becomes more complicated� For
multivalued Carath�eodory mappings� Nemitsky �or superposition� operator
associates to every continuous singlevalued mapping g � T � X �i�e� S� �
� C�T�X�� the set of all measurable selections of the mapping (�t� �
� F �t� g�t��� ( � T � Y �

Theorem �
���� ����� Let F � �t�� t��
 IRm � IRn be a compact�valued
Carath�eodory mapping and G � �t�� t�� � IRm a compact�valued measurable
mapping� Then ( � �t�� t��� IRn
 de�ned by (�t� � F �t� G�t��
 is measurable

i�e� the compact�valued Carath�eodory mapping is superpositionally measurable
�sup�measurable��

The special case of this theorem with G � �t�� t�� � IRm a singlevalued
continuous mapping tells us that the superposition operator
NF � C��t�� t��� IR

m� � M��t�� t��� IR
n� has nonempty values in the space

M��t�� t��� IR
n� of all singlevalued measurable mappings from the segment

�t�� t�� into IR
n� In fact� the mapping (�t� � F �t� g�t�� is measurable� for

every g � C��t�� t��� IR
m� and hence admits a singlevalued measurable selec�

tion� according to Measurable selection theorem �
����� Theorem �
���� does
not hold for upper Carath�eodory compact�valued mappings �see ������� It
is a very useful fact that singlevalued measurable selections of the mapping
(�t� � F �t� g�t�� do exist for every upper Carath�eodory mapping F � ( mere�
ly admits a measurable compact�valued selection for which Theorem �
����
is applicable�

���



��� Measurable selections

Theorem �
���� ����� Let F � �t�� t��
 IRm � IRn be a compact�valued
upper Carath�eodory mapping and g � �t�� t��� IRm a measurable singlevalued
mapping� Then ( � �t�� t�� � IRn
 de�ned by (�t� � F �t� g�t��
 admits a
compact�valued measurable selection�

Clearly� one can generalize this theorem by assuming that G � �t�� t�� �
IRm is closed�valued and measurable� it su�ces to consider a singlevalued
measurable selection g of G and use Theorem �
�����

Under the additional assumption that F is integrally bounded we con�
clude that the superposition operator NF maps C��t�� t��� IR

m� into the Ba�
nach space L���t�� t��� IR

n��

De�nition �
����� A multivalued mapping F � �t�� t��
 U � IRn� U �
IRm is said to be integrally bounded if kF �x� t�k � supfkyk j y � F �t� x�g 	
	 ��t�  ��t�kxk� for some summable functions �� � � L���t�� t��� IR� and for
all �t� x� � �t� t��
 U �

For a bounded U � IRm this denition implies Denition �
��
��c� with
kF �t� x�k 	 ��t��

for some � � L���t�� t��� IR��

Theorem �
��	� ��	�� Let F � �t�� t��
 IRm � IRn be a compact�valued
upper Carath�eodory and integrally bounded mapping
 g � �t�� t��� IRm conti�
nuous
 and ( � �t�� t��� IRn de�ned by (�t� � F �t� g�t��� Then every measur�
able selection � of ( is a summable mapping
 i�e� � � L���t�� t��� IR

n�� Hence

the superposition operator NF is the multivalued mapping from C��t�� t��� IR

m�
into L���t�� t��� IR

n��

Theorem �
��
� ��	�� Under the hypotheses of Theorem ������ let
F be a convex�valued mapping� Then the superposition operator NF �
C��t�� t��� IR

m�� L���t�� t��� IR
n� is a closed mapping with closed convex val�

ues�

Here� the closedness of a multivalued mapping means the closedness of
the graph of this mapping� In addition to Theorem �
��
�� every composition
T �NF is a closed mapping whenever T � L���t�� t��� IR

n�� B is a continuous
linear operator in a Banach space B�

Theorem �
���� ������ Let . � �t�� t�  a� 
 Cl�D�x�� b�� � IR 
 IRn
and let F � . � IRn be an upper Carath�eodory mapping
 integrally bounded
mapping with compact convex values� Then for some � � d 	 a on the
segment �t�� t�  d�
 there exists a solution x��� of the problem x� � F �t� x�

x�t�� � x��

Recall� that the term �x��� is a solution on the segment �t�� t� d� of the
problem x� � F �t� x�� x�t�� � x�� means that x��� is an absolutely continu�
ous mapping such that �t� x�t�� � . for all t � �t�� t�  d�� x�t�� � x�� and
x��t� � F �t� x�t��� for almost all t � �t�� t�  d��

���
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Proof�
I� Construction

Let�

��� F be integrally bounded by mappings �� � � L���t�� t�  a�� IRn�� i�e�
kF �t� x�k 	 ��t�  ��t�kxk� and

��� m�t� �
R t
t�
�����  �kx�k b������ d� �

We claim that then�

�a� m��� is a continuous function with m�t�� � �� and
�b� There exists � � d 	 a such that m�t�  d� 	 b�

To construct a solution on the segment �t�� t�  d�� let�

��� NF � C��t�� t�  d�� IRn� � L���t�� t�  d�� IRn� be the superposition
operator dened by F �

��� For every g � C��t�� t�  d�� IRn� � C� the subset AF �g� of C be dened
by setting�

�AF �g���t� � x�  f
tZ

t�

���� d� j � � NF �g�g � and

��� D � Cl�D�+x�� b�� be the closed b�ball in C centered at the point +x��t� �
� x��

We claim that then�

�c� AF � C � C is a closed mapping with closed convex values�

�d� Cl�AF �D�� is compact in C� i�e� AF is compact operator�

�e� AF �D� � D and AF jD is upper semicontinuous�
�f� AF has a xed point x��� � C� i�e� x��� � AF �x����� and
�g� Such a xed point is the desired solution of the problem x� � F �t� x��

x�t�� � x� on the segment �t�� t�  d��

II� Veri�cation

�a�� �b�� Obvious�

�c� Corollary of Theorem �
��
� and linearity of the Lebesgue integral�

�d� If g � C with kg � +x�k 	 b and h � AF �g�� then

h�t� � x�  

tZ
t�

���� d� for some � � NF �g� �

���



��� Measurable selections

i�e� ���� � F ��� g����� Hence

kh�t�kIRn 	kx�k 
tZ

t�

k����k d� 	

	kx�k 
tZ

t�

�����  �kx�k b������ d� 	

	kx�k m�t� 	 kx�k m�t�  d� 	 kx�k b �

i�e� khkC 	 kx�k  b� By virtue of the Arzela�Ascoli theorem we only need
to check that AF �D� is an equicontinuous family of mappings� Using our
previous notations� we have

kh�t��� h�t���kIRn � k
t��Z
t�

���� d�kIRn 	
t��Z
t�

���� d�  �kx�k b�

t��Z
t�

���� d�

and therefore the statement follows by the absolute continuity of the Lebesgue
integral�

�e� With the notations from the proof of �d�� we have for g � C with kg �
� +x�k 	 b and for h � AF �g��

kh� +x�kC �maxfkh�t� � x�kIRn j t � �t�� t�  d�g �

�maxfk
tZ

t�

���� d�kIRn j t � �t�� t�  d�g 	 m�t�  d� 	 b �

Hence AF �D� � D� The upper semicontinuity of AF jD follows by its
closedness �in the sense that the graph of AF is closed� see �c��� and from its
compactness �in the sense that the image of a bounded set has a compact
closure� see �d���

�f� An application of the Brouwer�Kakutani xed�point principle �see e�g�
���	�� to the mapping AF �

�g� Evident� Theorem �
���� is thus proved�

Observe� that the operator AF � C � C� dened in ��� of the proof of
Theorem �
����� is often called a multivalued integral of the superposition op�
erator NF � More generally� the integral

R
T F �t� dt of a multivalued mapping

F from a measurable space T into IRn is usually dened as the set fRT f�t� dtg
of all integrals of all integrable selections f of F � see �����

We nish this chapter by an observation that the Carath�eodory condi�
tions and Measurable selection theorem imply the well�known Filippov im�
plicit function theorem �lemma��

��	



Carath�eodory conditions� Solutions of di�erential inclusions ���

Theorem �
���� ������ Let F � �t�� t�� 
 IRm � IRn be a compact�
�valued Carath�eodory mapping and G � �t�� t�� � IRm a compact�valued
measurable mapping� Then for every singlevalued measurable selection ����
of the composition (��� � F ��� G����
 there exists a singlevalued measurable
selection g of G such that ���� is �almost all� selection of the composition
F ��� g����
 i�e� ��t� � F �t� g�t��
 for almost all t�

For a singlevalued f � F � this theorem states the possibility of a single�
valued solution of the inclusion ��t� � f�t�G�t��� with respect to the second
variable of the mapping f � i�e� we �implicitly express� g�t� via ��t�� for al�
most all t � �t�� t��� The proof of Theorem �
���� is based on the consider�
ation of the intersection of the mapping G with the mapping H � �t�� t�� �
IRm� dened as

H�t� � fx � IRm j ��t� � F �t� x�g �
Clearly� G�t� � H�t� are nonempty compacta in IRm� t � �t�� t�� and every
measurable selection of G � H is the desired selection g of G� by Theorem
�
�����

Only one point must be veried� the measurability of G �H� This can
be done using the fact that the compact�valued Carath�eodory mapping has
the so�called Scorza�Dragoni property � a multivalued analogue of the well�
�known Lusin property� For a metric space M with a �measure on the Borel
subsets a multivalued mapping F �M 
 IRm � IRn is said to have the upper
�resp� lower� Scorza�Dragoni property if for a given � 	 �� one can nd a
closed subsetM� �M with ��MnM�� � � and the restriction F to M�
 IRm
is upper �resp� lower� semicontinuous� F has the Scorza�Dragoni property if
F has both upper and lower Scorza�Dragoni property�

Theorem �
��� ������ For a compact�valued mapping F �M 
 IRm �
IRn the following assertions are equivalent�
��� F is a Carath�eodory mapping� and
��� F has the Scorza�Dragoni property�

���



PART C� APPLICATIONS

x�� FIRST APPLICATIONS

In this paragraph we list a number of applications which can be derived
in a rather straightforward manner from the main selection theorems �see
Theory�� Among them are Banach�valued version of the Dugundji extension
theorem� the Bartle�Graves theorem� Kadec�s solution of the homeomorphism
problem for Banach spaces� the Mazurkiewicz theorem� paracompactness of
CW�complexes� on continuous choice in the continuity type denitions� etc�

�� Extension theorems

Recall the Dugundji extension theorem�

Theorem ����� ������ Let A be a closed subset of a metrizable space X
and f � A � E a continuous mapping of A into a locally convex topological
linear space E� Then there exists a continuous mapping �f � X � E such that
�f jA � f � Moreover
 one can assume that �f�X� � conv�f�A���

Using Convex�valued selection theorem one can obtain a version of Theo�
rem ����� with weaker restrictions on the domain and with stronger hypothe�
ses on the range of the continuous singlevalued mapping f �

Theorem ������ Let A be a closed subset of a paracompact space X and
f � A � B a continuous mapping of A into a Banach space B� Then there
exists a continuous mapping �f � X � B such that �f jA � f � Moreover
 one

can assume that �f�X� � conv�f�A���
Proof� Let C � conv�f�A��� Then C is a closed convex subset of the

Banach space B� Dene a multivalued map F � X � B by

F �x� �

���C� x �� A

ff�x�g� x � A

Clearly� Convex�valued selection theorem can be applied to F to get the
desired continuous extension �f � X � B of f �

Note� that for the �intersection� of assertions of Theorems ����� and ������
i�e� for metrizable domains and Banach spaces as ranges� we practically have
two proofs of the same extension result� The only di�erence is that �f�X� �
conv�f�A�� in Theorem ������ whereas �f�X� � conv�f�A�� in Theorem

������ In the rst case� the values of �f�x� can be found directly via some

���



Bartle�Graves type theorems� Theory of liftings ���

suitable locally nite partition of unity �Theorem ������� On the other hand�

the second proof gives no straightforward answer for �f�x� because it uses
an inductive process of a construction of �n�selections of the multivalued
mapping F �Theorem �������

We also note that for separable Banach spaces �for example � the real
line IR� theorems of Dugundji ������ Hanner ��
�� and Urysohn ����� yield
stronger results�

Theorem ������ A T��space X is normal if and only if every continu�
ous mapping f � A � B of a closed subset A � X into a separable Banach
space B admits an extension �f � X � B�

Note that Convex�valued selection theorem and its converse gives a
characterization of paracompactness� but the converse of Theorem �����
gives an unknown class of a topological spaces� It is only known that in
the assertions of Theorem ����� it is possible to pass outside the class of
metrizable spaces and consider the so�called strati�able spaces �see ������

�� Bartle�Graves type theorems� Theory of liftings

We begin by a standard fact from linear algebra� If L is a linear operator
from a nite�dimensional vector space X onto a vector space Y � then X is
isomorphic to the direct sum Y �KerL of the range Y and the kernel KerL
of the operator L� This is also true for a nite�dimensional space Y and an
arbitrary locally convex topological vector space X� The operator and the
isomorphism X � Y �KerL in the last case must� of course� be continuous
�or bounded� �see ��
�� Lemma �������

However� the situation is quite di�erent when X and Y are both innite�
�dimensional topological vector spaces� In fact� every separable Banach space
Y is the image of the Banach space l� of all summable sequences of real
numbers� under some continuous linear surjection L� If we suppose that l� is
isomorphic to the direct sum Y �Ker l�� then the space Y becomes isomorphic
to a complementable subspace of the space l�� However� by ���	�� all innite�
�dimensional complementable subspaces of the space l� are isomorphic to
l�� Hence� we would prove that all innite�dimensional separable Banach
spaces are isomorphic to l�� Contradiction� Therefore� there is as a rule� no
isomorphism between X and Y � KerL� for innite�dimensional spaces X
and Y and for continuous linear surjections L � X � Y � However� a homeo�
morphism between X and Y �KerL always exists� This is the content of the
Bartle�Graves theorem �����

Theorem ������ Let L be a continuous linear operator which maps a
Banach space X onto a Banach space Y � Then there exists a section f of
L
 i�e� a continuous mapping f � Y � X such that L � f � id jY � Moreover

there exists a homeomorphism between X and the direct sum Y �KerL�

���
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Proof� By the Banach open mapping principle� L is an open mapping�
i�e� it maps open sets to open sets� Hence� F � L�� � Y � X is a lower
semicontinuous multivalued mapping and the values F �y�� y � Y � are convex
closed subsets of X� because they are parallel translates of the kernel KerL �
L����� of the operator L� So� let f � Y � X be a selection of F � guaranteed
by Theorem �A������ Dene g � Y � X by the formula g�y� � f�y�� f����
y � Y � Then g�y� is also an element of F �y� � L���y�� since f��� � L������
f�y� � L���y� and L�g�y�� � L�f�y���L�f���� � L�f�y�� � y� So� g � Y �
X is also a selection of F � and g��� � �� One can now dene h � X � Y �
KerL by the equality

h�x� � �L�x�� x � g�L�x��� �

The continuity of h follows by the continuity of L and g� It follows from
L�x�g�L�x��� � L�x�� �L�g��L�x�� � � that h�x� indeed lies in Y �KerL�
If x � y and x� y �� KerL then h�x� � h�y�� because

h�x�� h�y� � �L�x� y�� x� y � �g�L�x�� � g�L�y���� � � �

If x � y and x�y � KerL� then � � x�y and L�x� � L�y�� So� on the right
hand side of the last equality the rst coordiante is zero and the second one
is nonzero� Therefore we check injectivity of h� To prove that h is �onto� it
su�ces to note that for every �y� z� � Y �KerL�

h�g�y�  z� � �L�g�y��� g�y�  z � g�L�g�y��  L�z��� � �y� z� �

To complete the proof� note that the inverse mapping h�� is given by the
formula h���y� z� � g�y�  z and it is continuous because of the continuity
of g�

Theorem ����� holds for every pair �X�Y � of spaces to which the Banach
open mapping principle and Selection theorem �A����� apply� For example� it
is also true for Fr�echet spaces� i�e� for completely metrizable and locally con�
vex topological vector spaces� Moreover� one can consider completely metriz�
able �nonlocally convex� X and Y � but add the locally convexity assumption
for the kernel KerL �see ��
�� or ���� Proposition II������� Note that the proof
of Convex�valued selection theorem via Zero�dimensional selection theorem
�see Theory� x�� gives the third proof of such a generalization of Theorem
������ Indeed� it su�ces to observe that every continuous function over com�
pactum into KerL is integrable� because of the local convexity of KerL�

Theorem ����� admits the following interesting renement� which says
that a section for L can be �almost� linear�

Theorem ���	� ������ Under the hypotheses of Theorem �����
 there
exists a section s � Y � X of L such that s�ty� � ts�y�
 for all t � IR and
y � Y �

���



Bartle�Graves type theorems� Theory of liftings ��

Proof� Let g � Y � X be a section of L such that g��� � � �see the proof
of Theorem ������� Let

h�y� �

���kyk g�y�kyk�� y � �
�� y � ��

Then h is a section of L due to the linearity of L� and h�ty� � th�y�� for
every t � �� To complete the proof it su�ces to set

s�y� � �
��h�y�� h��y�� � y � Y �

For spaces over the eld of complex numbers C� Theorem ����� is still
valid� but with a more complicated formula for s�

s�y� �

Z
S

+zh�zy� dz � y � Y �

where S � fz � C j kzk � �g and dz is the usual invariant normalized mea�
sure on S�

Only the additive property s�x  y� � s�x�  s�y� fails to hold for s�
However� this is a key point� because a linear section s would yield a contra�
diction as it was explained at the beginning of this section�

We end this section by a formulation of the parametric version of The�
orem ������ The proof is more sophisticated than the previous ones �see
����� Theorem ������

Let X and Y be Banach spaces and suppose that the space End�X�Y � of
all linear continuous operators which map X onto Y is nonempty� We equip
End�X�Y � with the usual sup�norm� kLk � supfkL�x�kY j kxkX � �g� For
every L � End�X�Y � and for every y � Y � let d�L� y� be the distance between
the origin � � X and the hyperspace L���y�� i�e�

d�L� y� � inffkxk j x � L���y�g �

Theorem ���
� ������ For every 
 	 �
 there exists a continuous map�
ping f � End�X�Y �� Y � X such that for every pair �L� y� � End�X�Y ��
Y �
�a� f�L� y� � L���y�
 i�e� f�L� �� is a section of L�
�b� kf�L� y�k � 
d�L� y�� and
�c� f��L� �y� � �����f�L� y�
 for all � � IR
 � � IRnf�g�

In summary� Theorem ���
� states that in Theorems ����� and ����� a
section f of a linear continuous surjection L can be chosen to continuously
depend on this surjection� The additional statement �b� shows that the values
of the selection f�L� �� can be chosen to lie at the �minimal� possible distance
from the origin � � X�

���
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Note� that without condition �c� it is possible to reduce Theorem ���
�
to the standard Convex�valued selection theorem �A������ In fact� for a xed
� � � � 
� one can consider a multivalued mapping F � End�X�Y ��Y � X
dened by

F �L� y� � L���y� �ClD��� �d�L� y�� �
Then the values of F are nonempty closed convex subsets of X� After a
verication of lower semicontinuity of F we can obtain f as a selection of F �

For a special endomorphism L between special Banach spaces� the prob�
lem of nding linear selections for L�� admits a solution without using the
selection theory techniques�

So� let �X�A� �� be a measure space and L� � L��X�A� �� a Banach
space �in fact� algebra� of all bounded ��measurable functions f � X � IR
with pointwise dened vector operations� Let P � L� � L� be the quotient
mapping which associates to every f � L� its equivalence class� i�e� the set
of all functions� ��equivalent to f � Then L� � L��X�A� �� is the Banach
space �in fact� an algebra� endowed with the following norm

k�f �k � ess supfkf�x�k j x � Xg �

So� a homomorphism � � L� � L� of Banach algebras L� and L� is said
to be a lifting if � is a selection of P�� and ���id jX �� � id jX � In summary�
existence of lifting gives a way to talk about values of elements of the space
L� at points x � X� If � is a linear �not algebraically�homomorphic� selection
of P�� with norm � and ���id jX �� � id jX then � is a linear lifting� If X is a
topological space with Borel measure � then a strong lifting is dened as a
lifting which is identical for all continuous bounded functions f on X�

Theorem ����� ���������� For every measurable space �X�A� �� the
following assertions are equivalent�

��� There exists a lifting � � L� � L�� and

��� The measure � has the direct sum property
 i�e� �X�A� �� is a direct sum
of measurable spaces �X��A�� ��� with �nite measures �� and ���complete
�algebras A�
 � � A�

For a detailed exposition of the theory of liftings see ����� or ������

���
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�� Homeomorphism problem for separable Banach spaces

Theorem ������ Every in�nite�dimensional separable Banach space is
homeomorphic to the Hilbert space l��

This theorem was rst proved in �	
� by Kadec ��	�� and gives an
a�rmative answer to the Banach�Mazur problem� stated already in the mid
thirties� Results concerning homeomorphisms between l� and specic Banach
spaces� e�g� C��� ��� lp� Lp� etc� were obtained before �	��� In a series of
papers� Kadec successively solved this problem by making a replacement of
a given norm of a Banach space with bases of some �equivalent� �smoother�
norms� What can one say about separable Banach spaces without Schauder
bases"

We observe that the question of existence of a Schauder basis in an
arbitrary separable Banach space was another Banach problem �still unsolved
in �	
��� A negative solution was given by En!o only in �	��� For a detailed
discussion see ���� Chapter VI� x��� Here we mention the reduction of the
Banach�Mazur problem to the case of spaces with bases�

Theorem ���� ��	�� If every in�nite�dimensional Banach space with a
basis is homeomorphic to l� then every separable in�nite�dimensional Banach
space is homeomorphic to l��

Proof� We shall use a version of the Cantor�Bernstein theorem in the
category of Banach spaces and continuous mappings� Such a version� due to
Pe�lczy�nski� is called the decomposition principle �or scheme� �see ���� Chapter
VII� x���� Three facts from Banach space theory will be exploited�
�a� Every innite�dimensional Banach space has a closed innite�dimensional

subspace with a Schauder basis�
�b� Every separable Banach space is the image of l� under some linear con�

tinuous surjection� and
�c� The Banach space

c��l�� � fx � �xn��n�� j xn � l� and kxnkl� � �� n��g �

with the usual max �norm� has a Schauder basis�
So� let X be an innite�dimensional separable Banach space and Z its

closed innite�dimensional subspace with a Schauder basis� Then Theorem
����� is applicable to the natural projection X � X�Z and hence

X � �X�Z�� Z � �X�Z�� l� � �X�Z�� l� � l� � X � l� �

On the other hand� using �b�� we have that l� � X � Y � for some closed
subspace Y � l�� namely Y is the kernel of a linear continuous surjection
from l� onto X� Therefore� using Theorem ����� once more�

l� � c��l�� � c��X � Y � � X � c��X � Y � � X � c��l�� � X � l� �

���
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i�e� X � l�� Here� the symbol � denotes a homeomorphism and c��B� � fx �
� fxng�n�� j xn � B and kxnkB � �� n��g with the usual max�norm� To
describe a homeomorphism c��X � Y � � X � c��X � Y � it su�ces to remark
that c��X � Y � � c��X�� c��Y � and c��X� � X � c��X��

Theorem ����� also holds for all innite�dimensional separable Fr�echet
spaces and was proved by Anderson �	�� Note that in the original paper
��	��� the Bartle�Graves theorem ����� was used in a straightforward manner
without reference to selection theory�

�� Applications of Zero�dimensional selection theorem

Let us consider a metric compactum �X� �� and let U�� U�� � � � � Un� � � � be
a sequence of open balls in �X� �� such that�
��� fU�� U�� � � � � Un�g is a covering of X and the radii of U�� U�� � � � � Un� are

equal to ����
��� fUn���� � � � � Un�g is a covering of X and the radii of Un���� � � � � Un� are

equal to ����
etc�

Next� put U�
n � ClUn and U�

n � XnUn and for every dyadic sequence
� � ��n�

�
n��� �n � f�� �g� set

g��� � g���n�� �
��
n��

U�n
n �

Clearly� g��� is either empty or a singleton� and for every x � X� there exists
a dyadic sequence � � ��n�

�
n�� such that g��� � x� Identifying the set of

all dyadic sequences with the Cantor set K we obtain a continuous mapping
g � K � X with a closed domain A � Dom�g� � K and with a range equal
to X� Hence� in order to prove the Aleksandrov theorem that every metric
compactum is a continuous image of the Cantor set� it remains to show that
every closed subset A of K is an image under some continuous retraction
r � K � A� r��� � �� for all � � A�

To this end it su�ces to cut every complementary �to A into the segment
��� ��� interval �a� b� at some point c not from the Cantor set K and then map
�a� c� �K into a � A and �x� b� �K into b � A�

The Mazurkiewicz theorem asserts that not only for the Cantor set K�
but for every zero�dimensional metric space �Z� �� and every complete subset
A � Z� there exists a continuous retraction of Z onto A�

Both of these important facts are simple corollaries of Zero�dimensional
selection theorem �A������ In fact� for the multivalued mapping R � Z � A
which is dened by

R�z� �

���A� z �� A

fzg� z � A

���



Applications of Zero�dimensional selection theorem ���

this selection theorem is applicable and a continuous selection r of R gives
the desired retraction r � Z � A�

Another application of Zero�dimensional selection theorem concerns poly�
nomial equations with parametrized scalar items� Indeed� let us consider the
following equation

P �z� t� � anz
n  � � �  a�z  a��t� � �� z � C� n � � �

where the term a� � a��t� depends continuously on some parameter t � T �
To every such equation one can associate the �nite� set of all its roots� We
claim that for a zero�dimensional paracompact space T it is possible to nd
a root z � z�t�� t � T � continuously depending on t� In fact� let us consider
the diagram

C
P�� C

f � � g
T

where P��z� � P �z� � a��t� and g�t� � �a��t�� Then P� � C � C is
a nonconstant analytic map and therefore is open� So� Zero�dimensional
selection theorem is applicable to the multivalued mapping P��� � g � T � C

and a selection f of P��� � g will continuously �depending on t� choose a root
f�t� of the equation P �z� t� � ��

Clearly� instead of the polynomial P� one can substitute an analytic
mapping� dened on an open subset U � C�

Now� let us pass to the so�called �sandwich� theorems� In general�
question can be stated as follows� For a given lower semicontinuous convex�
�valued mapping F � X � Y and for its given upper semicontinuous convex�
�valued selection G � X � Y � nd a continuous mapping H � X � Y with

G�x� � H�x� � F �x�� x � X �

For X � Y � IR and for singlevaluedmappings existence of such a continuous
separation yields the classical Baire theorem ��	�� For a normal space X� Y �
IR and for singlevalued mappings this is the Dowker theorem ������ For X �
IRm� Y � IRn and for compact�valued mappings this is the Zaremba theorem
������ For a metric space X� Y � IRn� and compact�valued mappings such
theorem was proved by Aseev ����� For perfectly normal X and separable Y
a result of such type is due to de Blasi ���� and �Coban and Ipate �����

We begin by the following observation� Let X be a zero�dimensional
paracompact space� Y a complete metric space and F � X � Y �resp� G �
X � Y a lower semicontinuous compact�valued �resp� upper semicontinu�
ous� mapping with G�x� � F �x�� x � X� Then to every x � X� one can
associate the set (�x� of all subcompacta K of F �x�� such that G�x� � K�
So� we obtain a multivalued mapping ( � X � expY � where expY is the
set of all subcompacta of Y � endowed with the Hausdor� distance� Zero�
�dimensional selection theorem is applicable to (� Hence� its selection gives

���
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the desired �separation� continuous mapping H � X � Y � Moreover� it
su�ces to assume that F �x� are closed �not necessary compact� in Y �

Now we can use the universality of Zero�dimensional selection theorem
�see Theory� x���

Y
F�G� �H�

P �Z� �



X �
p

Z

Here� H� separates G � p and F � p� and H�x� � R
p���x	H��t� d�x�t�� p is a

Milyutin mapping from a zero�dimensional paracompact space onto the given
paracompact space X and � is a mapping� associated with P � Existence
of H� is explained above and H�x� is dened as the integral of the con�
tinuous compact�valued mapping H� over the compactum p���x� � the
closure of the set of all integrals of singlevalued continuous selections of H��
The compactness and convexity of values of F and G imply that G�x� �
H�x� � F �x�� Continuity of H can be checked as in Theory� x�� Finally�
we conclude that the Sandwich theorem holds for arbitrary paracompact
domains and arbitrary Banach spaces as ranges of compact�valued semicon�
tinuous F and G�

�� Continuous choice in continuity type de�nitions

Let �X� �� and �Y� d� be metric spaces and C�X�Y � the set of all conti�
nuous mappings from X into Y � endowed by the uniform metric�

dist�f� g� � supfminf�� d�f�x�� g�x��g j x � Xg �
Then for each triple �f� x� �� from the Cartesian product C�X�Y � 
 X 

������ one can associate the set #�f� x� �� of all positive numbers � 	 �� for
which the following implication holds�

��x� x�� � � � d�f�x�� f�x��� � � �

So� we have dened some multivalued mapping

# � C�X�Y �
X 
 ������ IR

of the metrizable space C�X�Y � 
 X 
 ����� into the real line IR� The
values of such mapping # are nonempty subsets of IR� accordingly to the
denition of continuity� Clearly� #�f� x� �� is always a convex subset of IR�
Unfortunately� the map # needs not be lower semicontinuous� as the simple
example X � ��� �� shows� Indeed� let f��x� � x� x� � �� �� � �� Then
#�f�� x�� ��� � ������ while #�f�� x�� �� � ��� ��� for � � ���

Theorem ������� The mapping # above is a quasi lower semiconti�
nuous mapping from C�X�Y � 
 X 
 ����� into the complete metric space
����� with convex closed values�

��	



Continuous choice in continuity type de�nitions ���

We omit the �routine� proof� So� applying the selection theorem for quasi
lower semicontinuous mappings �see Results� x�� we nd a selection � of #�

In the denition of continuity of a mapping f at a point x we can always
assume that � � ��f� x� �� is singlevalued continuous function on the triple of
parameters f � C�X�Y �� x � X� � � ������ As a corollary� let us consider
case of a metric compactumX and xed continuous mapping f fromX into a
metric space Y � Moreover� let us x the parameter � 	 �� Then � � ��f� �� ��
is a continuous� strongly positive function over the compactumX� Hence its
minimal value ����� is also positive and f is uniformly continuous since for
every � 	 �� it su�ces to associate the corresponding ������ Such an approach
shows that the Cantor theorem about uniform continuity of a continuous
mapping over compactum can be derived from the Weierstrass theorem on
boundedness of a continuous real�valued function over a compactum�

Such a continuous choice may be realized in the denition of local
n�connectedness or local contractibility of a metric space X� Let MX be the
space of all metrics on X� compatible with the topology of X� and MX is
endowed by the metric�

dist��� d� � supfminf�� j��x� y� � d�x� y�jg j x� y � Xg �

Theorem ������� Let X be a locally contractible metrizable space� Then
there exists a continuous singlevalued mapping � � MX 
 X 
 ����� �
����� such that the ���� x� ���ball at a point x is contractible in ��ball �in
the metric ��
 centered at the x � X�

A similar example of the selection theory approach motivates a question
on continuous choice in the Stone�Weierstrass theorem� More precisely� is it
always possible to assume that a polynomial ��approximation P of a given
continuous function f continuously depends on f and �" The answer turns
out to be a�rmative�

Theorem ������� Let �X� k�k� be a normed space and V � X a convex
subset� Then the following assertions are equivalent�
�a� V is a dense subset of X� and
�b� There exists a continuous mapping v � X 
 ����� � V such that

kx� v�x� ��k � �
 for all �x� �� � X 
 ������
Theorem ������ is not derived directly from a selection theorem� How�

ever� the selection theory techniques are used in the proof� More precise�
ly� we can construct a sequence of �n�approximations v�x� �n� of an element
x � X and then simply unify the segments �v�x� �n���� v�x� �n��� where �n
monotonely converges to ��

Finally� let us reproduce an elegant proof of de Marco of the existence of
continuous choice in the denition of continuity� which avoids the selection
theory� So� dene for f � C�X�Y �� x� x� � X and � 	 �� the number�

s�f� x� x�� �� � �� d�f�x�� f�x��� �

���
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It is easy to see that s � C�X�Y � 
 X 
 X 
 ����� � IR is a continuous
function and that every point �f� x� x� �� is an interior point of the set� where
values of s are positive� Hence� it su�ces to dene a required function � �
C�X�Y �
X 
 ������ ����� as the distance between the point �f� x� x� ��
and the closed subset of C�X�Y �
X 
X 
 ������ where the function s is
nonpositive�

�� Paracompactness of CW�complexes

The following theorem is an interesting simultaneous application of Con�
vex�valued selection theorem and its converse� A similar theorem �and proof�
holds for simplicial complexes�

Theorem ������ ������ Every CW�complex is a paracompact space�

Proof� Let X be a CW�complex and K a family of all its nite subcomp�
lexes� According to the denition of a CW�complex and its topology� every
memberK � K is a closed and metrizable �hence paracompact� subset of X�
To prove that X is paracompact� we need to nd a selection f for every lower
semicontinuous mapping F � X � B of X into a Banach space with closed
convex values� So� for each restriction F jK � K � K� such a selection exists
due to Convex�valued selection theorem� We dene f as some �maximal�
such selection� Let

IL � f�M� g� �M is a subfamily of K and g is
a selection of F over the union

SM of all members ofMg�

Note that IL � �� because one can consider M � fKg� K � K� In the set
IL there exists a natural ordering �� We say that �M� g� � �N � h� if

SM�SN and h is an extension of g� Let us check that every nonempty linearly
ordered subset IP � IL has an upper boundary�

So� let M� � fK j K � M and �M� g� � IP for some gg� If K � M�

then K �M� for someM� K and with �M� g� � IP� for some g� Therefore
we can naturally dene g�jK � gjK and we see from the linear ordering of
IP that in such a way some mappings g� �

SM� � B are correctly dened�
To see the continuity of g� it su�ces to recall the denition of topology on
the CW�complex

SM�� In fact� for every closed A � B and for every nite
subcomplexK � SM�� the intersection of the preimage �g�����A� with K is
closed inK because of the continuity of g�jK � gjK � So� �g�����A� is closed inSM�� as a subset having a closed intersection with every nite subcomplex�
Finally� g� is clearly a selection of F � Therefore we have proved that �M�� g��
is an upper boundary for IP�

Now we apply the Zorn lemma to the ordered set �IL� �� and let �M�� g��
be a maximal element� We claim that

SM� �
SK � X and that f � g� is a

���
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desired selection of F � Suppose� to the contrary� thatM� � K and let K � K
be a nite subcomplex with K �� M�� If K � �SM�� � � then one can put
M� �M��fKg and g�jSM�

� g�� g�jK be an arbitrary continuous selection
of F � Then �M�� g�� � �M�� g��� This contradicts to the maximality of
�M�� g��� If K � �SM�� � K� � � then one can consider the following lower
semicontinuous closed convex mapping on the paracompactum K

F��x� �

���fg��x�g� x � K�

F �x�� x � KnK�

Such a multivalued mapping admits a selection� say f�� Then a singlevalued
mapping g� � K � �SM��� B� dened by the formula

g��x� �

���f��x�� x � K

g��x�� x � SM�

is a selection of F onto K � �SM��� Hence �M�� g�� � �M� � fKg� g��� We
once more get a contradiction� Theorem ������ is thus proved�

Note that a more natural version of Theorem ������ is that a space X�
which is dominated by a family of paracompact subsets� is itself paracompact�

	� Miscellaneous results

�a� In a Hilbert space every closed subspace admits a complement space�
for example the orthogonal complement� The problem of nding closed
subspaces without any complements in non�Hilbert Banach spaces has a
rather long history� Such noncomplementable spaces were found in L��
C��� ��� c�� lp� � � � In �	��� Lindenstrauss gave an a�rmative answer to this
problem� Note that as a key step he used the well�known Dvoretzky theorem
on near�Euclidean sections of the unit sphere� �See the survey ��	
� for
details�� So� noncomplementable subspaces always exist� But let us return
to complementable subspaces� Is it possible to choose their complement in
a singlevalued and continuous manner" An a�rmative answer was given in
������

�b� The K��functor for a Banach algebra A can be dened as a direct
limit of quotient�groups GLn�A��GL

�
n�A�� where GLn�A� is the group of

all invertible �n
 n��matrices with coe�cients from A and GLn� �A� is the
connected component of the unit matrix in GLn�A�� It can be shown that the
sequence of such quotient�groups is stabilized beginning with some number
N � Such a number is called the stable rank of the Banach algebra A� and

���
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is denoted by sr�A�� One way to prove such stabilization is to invoke the
inequality

sr�C�X�A�� 	 sr�A�  dimX

for nite dimensional compacta X and for the algebra C�X�A� of A�valued
mappings over X� Finite�dimensional selection theorem was used in ���� for
proving this inequality for a nite�dimensional paracompact spaces X�

�c� The following elegant characterization of convexity in IRn via selections
was obtained in ���	�� Let V be an open bounded subset of IRn and suppose
that there exists a singlevalued continuous choice which assigns to every
intersection V with an a�ne hyperspace� a point in this intersection� Then
V is convex�

�d� Let us consider the Cauchy problem for di�erential equation with multi�
valued right�hand side�

x��t� � F �t� x�t��� x��� � � �

Its solutions are understood in the almost everywhere sense� t � ��� a� �
IR� Gorniewicz ����� proved that the topological structure of the set SF of
solutions depends only on selection properties of F � More precisely� using
Convex�valued selection theorem� he proved that for lower semicontinuous
F � ��� a�
IRn � IRn with convex values and with F ���� a�
IRn� � D��� r�� for
some r 	 �� the set SF of the solutions is acyclically contractible� and hence
is an acyclic set� Here acyclical contractibility of SF means the existence
of an upper semicontinuous homotopy H � SF 
 ��� �� � SF with acyclic
compact values such that f � H�f� ��� for all f � SF and that the intersectionTfH�f� �� j f � SFg is nonempty�
�e� Finite�dimensional selection theorem was used in ��	�� to prove the
existence of slices� If a compact Lie group acts on a space M � then a slice at
a point p � M is a subset S � M � with p � S� which satises the following
conditions�
�i� S is closed in G � S and G � S is an open neighborhood of the set G � p�
�ii� Gp � S � S� where Gp � fg � G j g � p � pg is stabilizer G at p� and
�iii� Gy � Gp� whenever y � S�

Theorem ������� Let G be a compact Lie group which acts as a
topological transformation group of a �nite�dimensional Polish space M �
Then there exists a slice at every point p �M �

In this theorem Finite�dimensional selection theorem is applied to the
natural mapping T � E�Gp � M�G of orbit spaces� where E � fx � M j
Gx � Gpg�

Soon thereafter� Palais ����� proved this theorem for G�actions on com�
pletely regular spaces without using any selections�

�f� Relations between theory of selections and theory of subdi�erentials of
sublinear operators were established by Linke ������ For a Banach space B
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Miscellaneous results ��

and a compact space K� a mapping L � B � C�K� is said to be a sublinear
operator if

L�x�  x�� 	 Lx�  Lx�� x�� x� � B� and

L�tx� � tL�x�� x � B� t � � �
For a sublinear operator L � B � C�K� its subdi�erential �L is dened as
a set of all continuous linear operators � � B � C�K�� with the �support�
property that �x 	 Lx� for all x � B�

If a Banach space B is separable� then every sublinear operator L � B �
C�K� has a nonempty subdi�erential� For Banach spaces B with uncountable
biorthonormal systems f�e�� e��� j � � �g there exist sublinear operators
without subdi�erential� or with empty subdi�erential� This fact is based
on the M,agerl�Weizs,acker example of convex�valued mappings without con�
tinuous selections �see Theorem �B������� To describe an example of such
sublinear operator we denote D�� unit ball in conjugate space B� endowed
with the weak�star topology and denote K the set of all subcompacta of D�

endowed with the Vietoris topology� Then the operator L � B � C�K� can
be dened by setting�

Lx�z� � supf��x� j � � zg� x � B� z � K �

For each z � K� one can associate the closed convex hull conv z � D� � B�

and dene a multivalued mapping F � K � B�� It turns out that the sublin�
ear operator L has nonempty subdi�erential �L if and only if the multivalued
mapping F admits a continuous singlevalued selection� But in our case K
contains a copy of the Aleksandrov compactication of uncountable discrete
set � and hence F has no selection� by Theorem �B������

�g� The extension problem in the category of metric G�spaces and G�map�
pings� where G is a compact group� can be reduced to a selection �more pre�
cisely� section� problem by using the following construction� In the Cartesian
product Z 
 X of two G�spaces Z and X� we consider the G�subset T �
f�z� x� j Stabz � Stabxg� where as usually� Stabx is G�stabilizer of the point
x� i�e� fg � G j gx � xg� Then the projection p � T � Z is G�map and hence
induces the map q � T�G � Z�G� For every partial section s � A�G � T�G
of q� where A is closed G�subset of Z� one can nd a G�mapping �s � A� X�
by letting �s�a� to be a single point x of X such that s�a� � ��a� x��� where
� � is the equivalence class under action of G� On the other hand� for every
G�mapping � � A� X the image of the mapping id
� � A� Z 
X lies in
T and hence we can dene the mapping s� � A�G� T�G� It turns out that
s� is a partial section of q and� moreover�

s�s � s and �s� � � �

for every section s � A�G � T�G of q and for every G�mapping � � A � X
�see �	����
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��� First applications

So� in order to apply selection theory one needs information about
preimages of the mapping q � T�G� Z�G� Ageev ��� proved that�

�a� q is a surjection whenever XG � fx j Stabx � Gg is nonempty�
�b� The preimages q����� are complete under some metric on T�G� whenever

X is complete metric space�
�c� q is an open mapping� whenever for every open set O � X� the set fz �

Z j Stabz � Stabx� for some x � Og is open in Z� and
�d� The family of preimages q����� is equi�LCn� whenever the family fXH �

� fx j Stabx � Hg j H is a closed subgroup of Gg is equi�LCn in X�
Hence� if in addition� dim�ZnA� 	 n �� then every G�mapping � � A�

X admits a continuous G�extension on a G�neighborhood U � A� The global
version of this fact is also true with addition in �d� of the property that XH

is an n�connected set� for every closed subgroup H of G�

�h� Let us consider the autonomous di�erential equation x� � f�x� for a
continuous singlevalued right�hand side f � E � E� where E is an innite�
�dimensional metric linear topological space� x � IR � E� The following
simple example shows that for E � IR� such a problem in general admits no
solutions� More precisely� let for x � fxng � IR� a mapping f � IR� � IR�

be dened by f�fxng� � fx�n  n�g � �See �����������
If x�t� � fxn�t�g is a solution of the equation x� � f�x�� then for every

n � IN� the function xn�t� is a solution of the equation x�n � x�n n� over the
real line IR� But the last equation admits no solutions� whenever jt � t�j 	
	 ��n� because

t� t� �
�

n
�arc tg�

�

n
xn�t��� arc tg� �

n
xn�t���� �

Hence no equation x�n � x�n  n� has any solutions at the points t � t��
Now� one can use the Eidelheit theorem �see ���� VI������� to the e�ect

that every innite�dimensional non�normable Fr�echet space E admits a linear
continuous surjection L � E � IR�� Find a singlevalued continuous selection
s � IR� � E of L� using Convex�valued selection theorem� Then the equation

y� � �s � f��y�

admits no solution in E� In fact� if y� � �s�f��y� then L�y will be a solution
of the equation

x� � f�x�

in IR�� because �L � y�� � L � y� � L � s � f�y� � f�y�� Contradiction� So�
the Peano theorem for the equation x� � f�x� has in general no solution
in Fr�echet spaces� See ����� for the same answers in the case of �innite�
�dimensional� Banach spaces�
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x�� REGULAR MAPPINGS AND LOCALLY

TRIVIAL FIBRATIONS

�� Dyer�Hamstr�om theorem

De�nition ������ Let f � X � Y be a continuous surjection and M a
topological space� Then f is said to be a locally trivial �bration with a �ber
M � if for each y � Y � there exists a neighborhood U � U�y� and a homeo�
morphism h � hU � U 
M � f���U� such that

f � h � pU �

where pU � U 
M � U is the projection onto the rst factor�

For general facts on brations see e�g� ������ Here we will describe only
aspects which are close to the theory of continuous selections� The most
traditional topological problem is the problem of nding conditions which
guarantee that a given map f is a locally trivial bration with a prescribed
ber� The obvious necessary condition �for the case of connected Y � is to
have constant �up to homeomorphism� bers f���y�� y � Y � For compact
metric spaces X and Y � it is easy to see that homeomorphisms between bers
f���y�� and f���y���� y�� y�� � U can be chosen so that they move points less
than for a given � 	 �� It su�ces to use the uniform continuity of homeo�
morphisms h and h���

Let us give a less trivial necessary condition for the local triviality of a
map�

De�nition ������ A map f � X � Y between metric spaces is said
to be regular �completely regular in terminology of ������ if for each y � Y
and � 	 �� there exists a � 	 � such that if distY �y� y

�� � �� then there is
an ��homeomorphism from f���y� onto f���y��� i�e� a homeomorphism � �
f���y�� f���y��� such that distX�x� ��x�� � �� for all x � f���y��

We can reformulate the original problem for metric spaces as follows�
When is a given regular map a locally trivial �bration� A well�known answer
was given by Dyer and Hamstr,om ������ Let us denote by H�M� the space of
all homeomorphisms of the space M onto itself� endowed with the compact�
�open topology�

Theorem ������ Let Y be a complete metric space
 dimY 	 n �
 and
f � X � Y a regular map with preimages homeomorphic to a compactum M �
Let the space H�M� be locally n�connected �i�e� H�M� � LCn�� Then f is a
locally trivial �bration�
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��� Regular mappings and locally trivial �brations

Proof �construction�

Let�
��� C � C�M�X� be the space of all continuous maps fromM to the metric

space X� endowed with usual sup�metric �it is clear that C is then a
complete metric space�� and

��� For every y � Y � F �y� be the set of all homeomorphisms M onto the
preimage f���y�� considered as a subspace of C� F �y� � C�
We claim that then�

�a� F �y� is a nonempty closed subset of a complete metric space C�

�b� F � Y � C is a lower semicontinuous map� and

�c� fF �y�gy�Y is an ELCn�family of subsets of C�
So� x y � Y and using Finite�dimensional selection theorem� nd a

neighborhood U � U�y� and a selection s � U � C of the map F jU � i�e�
s�z� � F �z� � C�M�X�� z � U �

We claim that then�

�d� The map h � U 
M � f���U�� dened by h�z�m� � �s�z���m�� is the
desired homeomorphism� i�e� f � h � pU �

Note� that the regularity condition was used in �b� and �c��

If M is a compact nite�dimensional manifold� then H�M� is LCn� for
each n� �See ������
�� for dimM 	 � and �

����� for any M �� For more on
the space H�M� and the Homeomorphism group problem see x� below�

Remark� There exists an example of a regular map from a two�dimen�
sional compact absolute retract onto the interval which is not a locally trivial
bration ������ Moreover� the bers in this example are homeomorphic to a
one�dimensional absolute retract�

There are various kinds of su�cient conditions for local triviality of a map
for di�erent versions of regularity ��

�� For example� every ��regular map of
nite�dimensional compacta with ber which is a manifold of dimension 	 �
is a locally trivial bration ������ Recall that for n � IN � f�g� a surjection
f � X � Y is said to be n�regular if the family of preimages of f is an ELCn

family of subsets of X�
By theorems of Chapman and Ferry �
	� and Ungar ����� one can obtain

a higher dimensional analogue of Dyer�Hamstr,om�s theorem for in�nitely
regular maps between nite�dimensional compacta� with a constant ber
which is a manifold of dimension � ��

For innite�dimensional bers the answer is negative �see e�g� the example
of Toru�nczyk and West ��	���� For an innite�dimensional base B such a
problem was stated in ���
� as the Bundle problem�

Problem ������ Let p � E � B be a Serre �bration with a constant �ber
which is an n�dimensional manifold� Is p a locally trivial �bration�

An a�rmative solution of Problem ����� would yield a positive solution
of the celebrated Cell�like mapping problem �cf� ���
�����������
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Regular mappings with �bers homeomorphic to the interval ���

Problem ���	�� Let f �M � X be a surjective cell�like mapping de�ned
on an n�dimensional manifold M � Is dimX � � �equivalently
 is dimX �
� n��

Recall that it was rst established� from results of Drani�snikov �����
and Edwards ������ that Problem ����� has a negative solution for n � ��
Subsequently� Dydak and Walsh ����� showed that the answer is also negative
for n � � and 
� On the other hand� Kozlowski and Walsh ����� proved the
answer to Problem ����� is a�rmative for n � � �and classical results show
this is so also for n 	 ��� Hence the Cell�like mapping problem remains open
only for n � � �cf� ����������� As a corollary� the Bundle problem has a
negative answer for n � ��

We shall show that another Michael�s selection theorem gives a local so�
lution of Problem ����� for n � �� Observe also that the ��dimensional bers
case of Theorem ����� can be found in ���
�� which treats regular mappings
with bers homeomorphic to the Cantor set and includes applications of Ze�
ro�dimensional selection theorem�

�� Regular mappings with �bers homeomorphic to the interval

We use the selection criteria for perfect normality �see Theory� x
��
Theorem ���
�� For every Hausdor� space X the following assertions

are equivalent�
��� X is perfectly normal� and
��� Every lower semicontinuous map of X into convex D�type subsets of a

separable Banach space admits a continuous single�valued selection�

Recall� that a convex subset of a Banach space is said to be convex D�type
if it contains all interior �in the convex sense� points of its closure� �A point
of a closed convex subset of a Banach space is said to be interior �in the
convex sense� if it is not contained in any supporting hyperplane�� Standard
examples of convex D�type sets are� ��� closed convex sets� ��� convex subsets
of Banach spaces which contain at least one interior �in the metric topology
sense� point� and ��� nite�dimensional convex sets�

We shall need the following example of a convex D�type set in the Banach
space C�X� of all bounded continuous functions on a completely regular space
X� Let H��I� denote the set of all homeomorphisms of the unit interval
I � ��� �� onto itself which are identity on the boundary �I�

Lemma ������ Let X be a completely regular space
 h � I � X an
embedding and let

Ch�X� � ff � C�X� j f � h � H��I�g �

Then Ch�X� is a convex D�type subset of the space C�X��
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�� Regular mappings and locally trivial �brations

Proof� The convexity of Ch�X� follows immediately from the convexity
of H��I��

���� 
�f  
g� � h � ��� 
��f � h�  
�g � h�� � 	 
 	 �� f� g � Ch�X� �
The inequality kf� � h � fn � hkC�I	 	 kf� � fnk implies that the closure of
Ch�X� is

Cl�Ch�X�� � ff � C�X� j f � h � Cl�H��I��g �
Consider an arbitrary element f � Cl�Ch�X��nCh�X�� Then there exist
numbers � 	 a � b 	 � such that f�h�a�� � f�h�b�� � f � h ja�b��

The set
Q
� fg � C�X� j g�h�a�� � g�h�b��g is a codimension � hy�

perspace in the Banach space C�X�� This hypersubspace Q will be support�
ing the closed convex set Cl�Ch�X�� since� �i� it passes through the point
f � Cl�Ch�X��� and �ii� the whole set Cl�Ch�X�� lies in the closed halfspace
fg � C�X� j g�h�a�� 	 g�h�b��g� Therefore f is not an interior �in the con�
vex sense� point of Cl�Ch�X��� Consequently� the convex set Ch�X� contains
all interior �in the convex sense� points of its closure� i�e� Ch�X� is a convex
D�type set�

Theorem ����� ������ Let f � X � Y be a regular map between compact
metric spaces with point inverses homeomorphic to ��� ��� Then f is a locally
trivial �bration�

Proof�
I� Construction

Let�
��� C � C�X� be the Banach space of all continuous functions on the

compact space X� endowed with the usual norm�topology� Note� that
C�X� is a separable Banach space�

��� For any y� � Y � denote the endpoints of the arc f���y�� by c� and d��
��� � distX�c�� d�� 	 �� and

��� U � U�y�� be the ���neighborhood such that the preimages f
���y� and

f���y�� are ���homeomorphic�
We claim that then�

�a� For every y � U � exactly one of the endpoints of the arc f���y� lies near
c� and the other endpoint lies near d�� denote those endpoints by c�y�
and d�y�� and

�b� The maps y �� c�y�� y �� d�y� are continuous�
Let for every y � U �

��� (�y� � f� � C�X� j �jf���y	 is a homeomorphism of f���y� onto ��� ��
with ��c�y�� � �� ��d�y�� � �g�
We claim that the above mentioned selection theorem is applicable to

the multivalued map ( � U � C�X�� i�e�
�c� (�y� is a nonempty subset of C�X��
�d� (�y� is a convex D�type subset of C�X�� and
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Regular mappings with �bers homeomorphic to the interval ��

�e� ( � U � C�X� is lower semicontinuous map�
It now su�ces to dene the homeomorphism h � f���U�� U 
 ��� �� by

the equality h�x� � �f�x�� �s�f�x����x��� where s � U � C�X� is a continuous
selection of the map (� s�y� � (�y�� for all y � U �

Note� that in �d� we need Lemma ����� and for a noncompact X the
direct use of selection theorem does not work� due to the nonseparability of
C�X��

Pixley ����� used some additional arguments to prove Theorem ����� for
separable metric spaces X and Y � He considered the space expM �X� of all
subsets of X� homeomorphic to a given compactum M and topologized by
the metric�

dreg�A�B� � inffsupfdistX�x� h�x�� j x � Ag j
j h is homeomorphism A onto Bg�

There exists a natural multivalued map

HM�X � expM �X�� C�M�X�

which associates an element A � expM �X� to f� � C�M�X� j � is a homeo�
morphism of M onto Ag�

Lemma ����� For every compactum M 
 the following assertions are
equivalent�
�i� For every separable metric space X
 the map HM�X admits a local selec�

tion at every point from expM �X�� and
�ii� The map HM�Q admits a local selection at every point from expM �Q��

Proof� �i� � �ii� is obvious� For �ii� � �i� it su�ces to consider any
embedding of X into Q� If we restrict the continuous choice given by �ii� to
the elements from expM �X�� then we obtain the desired continuous choice
for �i��

By a method similar to the proof of Theorem ����� above it is easy to
show that assertion �ii� is true for M � ��� ��� So� �i� also holds� Now� if
f � X � Y is a regular map with preimages homeomorphic to ��� ��� then
for a xed y� � Y we nd the neighborhood �in the sense if dreg�metric� of
f���y�� � exp�����X� in which we can distinguish the endpoints of an arc
f���y�� Then we nd a continuous selection s of H�����X in some smaller

neighborhood U of f���y�� � exp�����X� and for every t � ��� �� and every
z � V � fy � Y j f���y� � Ug� it su�ces to dene

h�z� t� � �s�f���z����t� � f���z� �

The map h � V 
 ��� �� � f���V � is the desired trivialization of the regular
map f at the point y��
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�� Regular mappings and locally trivial �brations

Note that conversely� Theorem ����� implies assertion �i� from Lem�
ma ���	� for a xed compactumM and for arbitrary separable metric spaces
X�Y � Indeed� it su�ces to consider E � f�A� x� � expM �X� 
 X j x � Ag
and the restriction pjE of the projection expM �X�
X � expM �X� onto the
rst factor� Then expM �X� and E are the separable metric spaces� pjE is a
regular map with ber M and its local trivialization gives a local selection
for HM�X �

For a generalization when M is a one�dimensional polyhedron see ������
For M � ��� �� or for M � S� these results can also be obtained by the
method of ��parametrization of Whitney ������

�� Strongly regular mappings

Ferry ����� introduced the notion of strongly regular mappings� From
intuitive point of view this means that nearby preimages of points are homo�
topically equivalent under some �small� homotopy equivalence�

De�nition ������� A proper map �i�e� any preimage of a compactum
is also a compactum� f � X � Y between metric spaces �X� �� and �Y� d� is
said to be strongly regular if for every y� � Y and for every � 	 �� there exists
� 	 � such that for every y� � Y with d�y�� y�� � �� there are homotopies

h�t � f
���y��� f���y�� and h�t � f

���y��� f���y��� t � ��� ��

and mappings

g� � f���y��� f���y��� g� � f���y��� f���y��

such that�
�a� ��h�t �x�� x� � � and ��g��x�� x� � � for all x � f���y�� and t � ��� ���
�b� ��h�t �x�� x� � � and ��g��x�� x� � � for all x � f���y�� and t � ��� ���
�c� h�� � g� � g� and h�� � g� � g�� and
�d� h�� � id and h

�
� � id�

Theorem ������� Let X and Y be separable metric spaces and Y
complete and �nite�dimensional� Let f � X � Y be a strongly regular
mapping with compact ANR preimages� Then f is a Hurewicz �bration �i�e�
the Covering homotopy property holds for all spaces��

Due to the Hurewicz uniformization theorem ����� XX� ���� ����� Theorem
������ is a corollary of the following proposition�

Proposition ������� Under hypotheses of Theorem ������
 for every
y � Y 
 there exist a neighborhood V � V �y�
 an ANR K
 a �ber preserving
embedding e � f���V � � K 
 V 
 and a �ber preserving onto�retraction
r � K 
 V � f���V ��
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Noncompact �bers� Exact Milyutin mappings ��

Proof�
I� Construction

Let�
��� X be regarded as a subset of the Hilbert cube Q�
��� y � Y and K be a compact ANR neighborhood of f���y� � X � Q�
��� U � U�y� be a neighborhood of y such that f���U� � K�
��� C�K� f���U�� be the space of all continuous mappings fromK to f���U�

with the sup�metric� and
��� The multivalued mapping F � U � C�K� f���U�� be dened by setting

F �z� � f� � C�K� f���U�� j � is a retraction K onto f���z�g�
We claim that then�

�a� F is lower semicontinuous� and
�b� The family fF �z�gz�U is equi�LCn� for all n � IN�

So� let�
�
� �y be any xed element of F �y�� i�e� y �� �y be a selection of F over the

closed subset A � fyg � U �
Finally� we apply Finite dimensional selection theorem and extend a

selection from �
� onto some neighborhood V � V �y� � U � Denote such a
selection by s � V � C�K� f���U��� To nish the proof it su�ces to put

e�x� � �x� f�x��� x � f���V �

and
r�x� z� � �s�z���x�� �x� z� � K 
 V

Using his technique of approximations of �small� homotopies by homeo�
morphisms� Ferry ����� strengthened Theorem ������ as follows�

Theorem ������� Under assumptions of Theorem ������ the composi�
tion f � pX of the projection pX � X 
 Q � X and f is a regular mapping
and thus �see Theorem ����� above� is a locally trivial �bration�

�� Noncompact �bers� Exact Milyutin mappings

Recall� that a continuous surjection f � X � Y between completely
regular spaces X and Y is called a Milyutin mapping �see Theory� x���� if
there exists a continuous mapping � � Y � P��X� such that for every point
y � Y �

supp �y � f���y� � ���
where P��X� is the space of all probability measures on Stone��Cech compact�
ication �X of X endowed with the topology induced from P ��X� regarded
with ��weak topology in the conjugate space for the Banach space C��X� of
all continuous functions on �X�

���



�� Regular mappings and locally trivial �brations

Here the support of the measure �� supp �� is dened as the intersection
of all closed subsets A � X such that ��B� � �� for every Borel set B �
XnA�

In Theory� x� we proved that�
Theorem ������� Every paracompact space X is the image of some

paracompact space X� of Lebesgue covering dimension dimX� � �
 under a
perfect Milyutin mapping p � X� � X�

In the present section �see ������ we prove that for every continuous open
surjection f � X � Y between Polish spaces X and Y one can choose the
map � � Y � P �X� so that the inclusion in condition ��� can be replaced by
the equality�

sup �y � f���y� � ����
We shall call such f an exact Milyutin mapping� As usually� a Polish
space is a synonim for a separable completely metrizable space� Note that
Theorem �A���	� remains valid if �paracompact� is replaced by �Polish�
�see ������

Theorem ����	�� Every continuous open surjection f � X � Y between
Polish spaces X and Y is an exact Milyutin mapping�

Since the proof of Theorem ������ uses� in an essential way� the Michael
selection theorem� our approach does not allow a straightforward generaliza�
tion beyond the class of completely metrizable spaces� The separability re�
striction is essential because of our use of the existence of a probability mea�
sure whose support coincides with the whole space� Note� that the equality
supp � � X is equivalent to the fact that ��U� 	 �� for each open nonempty
subset U � X� Hence the Suslin number of X is countable�

We shall also prove that sometimes it is possible to unify the condition
���� with the following condition�

�y�fxg� � �� for all x � f���y� � �����
We shall call such f an atomless exact Milyutin mapping�

Theorem ����
�� Every topologically regular mapping f � X � Y
between Polish spaces X and Y whose point�preimages are homeomorphic
to a �xed Polish space without isolated points is an atomless exact Milyutin
mapping�

Corollary ������� For every Polish space K
 there exists a continuous
map � � expK � P �K� such that sup��F � � F 
 for every subcompactum
F � K�

Corollary ������� Every topologically regular mapping between Polish
spaces whose preimages are homeomorphic to a �xed compact one�dimension�
al polyhedron is a locally trivial bundle�
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Noncompact �bers� Exact Milyutin mappings �

Corollary ������ Every topologically regular mapping between Polish
spaces whose preimages are homeomorphic to the real line is a locally trivial
bundle�

Corollary ������ gives an alternative proof of Theorem ���
�� We point
out that in Corollaries ������ and ����	� there are no dimensional restrictions
for the range of the regular mapping� Observe that the technique of previous
sections of this paragraph is not applicable to Corollary ����	� because of the
noncompactness of bers�

We shall describe the construction of the map � � Y � P �X� which
satises the condition ����� i�e� such that sup �y � f���y�� Consider the
following main diagram�

A
i���
��m�
�������� X �T

�
��y i

I � Z � ��������
��m

X � Y

f��y pZ ��y pY
Z

m
�������� Y

s
�������� P �Z���y �

P �X�

Here� ��� I � IN� is the space of irrational numbers�
��� i � X � X 
 Y is an embedding which identies X with the graph

of the map f � i�e� pY � i � f � where pY � X 
 Y � Y is the projection onto
the second factor�

��� m is a Milyutin mapping of a zero�dimensional metric space Z onto
Y and the map s is associated to m� i�e� sup sy � m���y�� y � Y �

��� For the construction of a pair of maps �m� s� in ��� one can use an
embedding j � Y � Q of Y into Hilbert cube Q and the standard Milyutin
map m� � C � Q of the Cantor set C onto Q �see ���
������� It then su�ces
to dene Z � m��

� �j�Y �� and m � m�jZ � Note that all point�preimages
m���y�� y � Y are compact subsets of Z�

��� � is an arbitrary continuous surjection of I onto X and 
 is a
probability measure on I whose support sup
 coincides with I� on IN such
a measure clearly exists while on I � IN� one has to consider its countable
power�

�
� �
m � I 
Z � X
Y is the Cartesian product of surjections � and
m and A � ��
m����i�X��� i�e� A � f�t� z� j ��t� � f���m�z��g� Note that
A is closed in I 
 Z since i�X� is closed in X 
 Y because of the openess
of f �

��� � is a continuous selection of the lower semicontinuous multivalued
map / � I 
 Z � X� given by

/�t� z� �

� f��t�g� if �t� z� � A
f���m�z��� if �t� z� �� A �

���



�� Regular mappings and locally trivial �brations

Such a selection exists by the Michael selection theorem ������ due to the
��dimensionality of the space I
Z� the completness of values of / in X� the
closedness of A� the openess of the map f and the fact that on A the map
�t� z� �� ��t� is a selection of the map given by �t� z� �� f���m�z���

��� P ��� � P �I 
Z�� P �X� is a map between the spaces of probability
measures which is induced by the map � � I 
Z � X� Here� the value of the
measure �P ����� on the set B � X is by denition equal to ������B��� for
every � � P �I 
 Z�� and

�	� �y � P ����
#sy�� where 
#sy denotes the measure�product in P �I

Z�� 
 � P �I� has sup
 � I and sy � P �Z�� y � Y has sup sy � m���y� � Z
�see ��� and �����

Proof of Theorem ������� By construction� we have that �f � ���t� z� �
f�f���m�z��� � m�z� � �m�pZ ��t� z�� i�e� f �� � m�pZ � Next� the continuity
of the map � � Y � P �X� follows by the continuity of the maps sjY � 
# sY �
� and the functoriality of P �see �������

Let us verify that for every y � Y � sup �y � f���y�� To this end we
calculate the value of the measure �y on the set B � f���y� � X� By
denition� we have that

�y�B� � �P ����
# sy���B� � �
# sy���
���f���y��� �

� �
# sy��p
��
Z �m

���y��� � �
# sy��I 
m���y�� �

� 
�I�sy�m���y�� � � �

since sup sy � m���y�� see ���� Therefore� the closed set f���y�� has the
property that for every E � Xnf���y�� the value of the measure �y on E is
equal to zero� i�e� sup �y � f���y��

Finally� let us prove that sup �y � f���y�� for every y � Y � This
equality is equivalent to the property of the measure �y that its value on
every nonempty open subset of the preimage f���y� is positive� Let G � X
be an open subset of the space X intersecting the preimage f���y�� Let us
check that the set ����G�f���y�� has a subset of type U
m���y�� for some
nonempty open set U � I� We obtain that

�y�G � f���y�� � �P ����
# sy���G � f���y�� �
� �
# sy���

���G � f���y��� �
� �
# sy��U 
m���y�� �

� 
�U� � sy�m���y�� � 
�U� 	 � �

because sup
 � I� see ����
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By ��� the map � � I 
Z � X makes a continuous choice via �t� z� from
the sets f���m�z�� and for pairs �t� z� � A and such a choice coincides with
the point ��t�� So� x y � Y and pick any x � G � f���y�� t � ����x� �
I� For every z � m���y�� we have that �t� z� � A and ��t� z� � ��t� � x�
By the continuity of the selection � at the point �t� z�� we can nd an open
rectangle neighborhood U 
 V � �U 
 V ��t� z� such that ��U 
 V � � G� By
the compactness of the preimage m���y�� we can nd a nite cover of the set
ftg 
m���y� by such open rectangles fUi 
 Vigni��� Here� Ui are neighbor�
hoods of the point t � I� fVigni�� is an open cover of the compactumm���y�
and ��Ui 
 Vi� � G� Let us now verify that� n�

i��

Ui
�

m���y� � ����G � f���y�� �

First� we have that

�
�� n�

i��

Ui
�

m���y�

�
� �

� n�
i��

Ui 
 Vi
�
� G �

Second� by the denition of the selection � �see ����� for every �t�� z� �
�
Sn
i�� Ui� 
 m���y�� the value ��t�� z� lies in the set f���m�z�� � f���y��

i�e�

�
�� n�

i��

Ui
�

m���y�

�
� f���y� �

Thus we have checked the inclusion and this completes the proof of
Theorem �������

Remark� Note� that there exists a direct way of calculating the value
�y�B� of the measure �y over a Borel set B � X� To do this one must�

a� For a xed z � m���y�� nd the preimage ��jI�fzg����B� � Bz�

b� Calculate the measure 
�pI�Bz��� and

c� Evaluate the integral Z
z�m���y	


�pI�Bz�� dsy �

Proof of Theorem �������
Step �� We show that the case of an arbitrary Y can be reduced to the case
dimY � �� Let us consider the following diagram�

X 
 Z � T
pX��������� X��y pZ � p

��y f

Z
m��������� Y

s��������� P �Z���y 

��y �

P �T � P �X�

���



�� Regular mappings and locally trivial �brations

where�
��� The pair of maps �m� s� is as in ��� of construction�
��� T � f�x� z� � X 
 Z � f�x� � m�z�g� pX and pZ � p are projections

onto the factors� Clearly� Z and T are Polish spaces� and
��� dimZ � �� Clearly the map p is an open surjection� and by the

hypothesis we can nd a continuous map 
 � Z � P �T � with properties ����
and ������ i�e�

sup
z � p���z�� for all z � Z

and

z�f�x� z�g� � �� for all �x� z� � p���z� �

Now� for a xed y � Y � we consider a Borel set B � f���y� and for every
z � m���y�� we consider the value 
z�Bz� � ��� �� of the measure 
z on the
Borel subset Bz � f�x� z� � x � Bg of the preimage p���z�� Then we put

�y�B� �

Z
z�m���y	


z�Bz� dsy �

If G is open in f���y�� then Gz is open in p���z�� for any z � m���y� and
hence 
z�Gz� 	 �� By the properties of the integral it follows that �y�G� 	 ��

If B is a singleton in f���y�� the Bz is a singleton in p
���z� and hence


z�Bz� � �� So� �y�B� � �� This completes the proof of Step �� Note� that
we have used only the openness of f � but not the regularity of f �

Step �� Let us prove Theorem ����
� for zero�dimensional Polish spaces Y �
Let C�I 
 Y�X� be the set of all continuous mappings from I 
 Y into X�
endowed with the topology of uniform convergence� Then C�I 
 Y�X� is a
completely metrizable space� Let

S � fs � C�I 
 Y�X� j s�I 
 fyg� � f���y�� for all y � Y g �
As in the proof of Theorem ������ we can see that S is nonempty� Clearly� the
space S of all �berwise� mappings of I
Y onto X is closed in C�I
Y�X��
Hence S is completely metrizable space� too� For each s � S and each y � Y �
let �sy be the probability measure on the ber f

���y�� dened as follows�

�sy�B� � 
�pI ��sjI�fyg����B��� �

where B is a Borel subset of X and 
 � P �I�� with sup
 � I� Clearly�
sup��sy� � f���y�� for all y � Y � because s � S�

Now� we dene a multivalued mapping H � Y � S as follows� for
each y � Y � let H�y� be the set of all mappings s � S such that the
probability measure �sy is atomless� i�e� �

s
y�fxg� � �� for all x � f���y��

Clearly� H�y� is a closed subset of S� For the mapping H� Michael�s zero�
�dimensional selection theorem is applicable� Lower�semicontinuity of H

���



Noncompact �bers� Exact Milyutin mappings ��

follows by standard methods ����� from the regularity of f � Some technical
di�culties arise� however� with the non�emptiness of H�y�� y � Y � First� we
represent the preimage f���y� as an image I 
 fyg under some surjection
which induces an atomless measure on f���y�� Then we extend such a
surjection to some element s � S in the same manner as we constructed the
map � in the construction above�

So� let h � Y � S be a continuous singlevalued selection of H� hy � H�y��
Then the map m � I 
 Y � X� dened by

m�t� y� � hy�t� y�

gives the desired atomless exact mapping � � Y � P �X�� according to the
formula above� i�e�

�y�B� � 
�pI ��mjI�fyg����B���� B � f���y� �

Indeed� hy � S and hence hy�I 
 fyg� � f���y�� i�e� sup��y� � f���B�
and from hy � H�y� we conclude that �y is atomless�

Proof of Corollary ������� Recall that expK is the family of all nonempty
subcompacta of the Polish space K� equipped with the Hausdor� distance
topology with respect to which expK is also a Polish space �see ����� Theorem
�������� Apply Theorem ������ for the spaces Y � expK� X � f�t� F � j F �
expK� t � Fg � K
expK and for the map f � X � Y � being the restriction
of the projection p � K 
 expK � expK onto the second factor� Then
for every F � Y � expK� we obtain a probability measure ��K 
 expK��
continuously depending on F � whose support coincides with the set f���F ��
Clearly� under the projection of X onto the rst factor of the product K 

expK� the set f���X� is mapped homeomorphically precisely onto the set F �
Therefore� we have constructed the desired mapping of expK into P �K��

Proof of Corollary ������� For simplicity let us consider the case of the
unit interval as the ber� Let y� � Y � let fc�� d�g be the endpoints of the
preimage f���y�� and let ��� � dist�c�� d�� 	 �� Find a ��neighborhood U �
� U�y�� such that for every y � U � the preimages f���y�� and f���y� are
homeomorphic under some ���homeomorphism� Then we can distinguish the
endpoints of the preimages f���y�� y � U � One of these endpoints lies near
c� and the other one lies near d�� We denote these endpoints by c�y� and
d�y�� respectively�

By Theorem ����
�� there exists a continuous map � � Y � P �X� such
that

sup �y � f���y�� y � Y � ����
and

�y�fxg� � �� x � f���y� � �����
Now� for every x � f���U� we put

��x� � �f�x�� �f�x	��c�f�x��� x��� � U 
 ��� ��

���
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where we denoted with �c�f�x��� x� the part of the arc f���f�x�� between
the points c�f�x�� and x� In order to prove the bijectivity of the map � �
f���U�� U 
 ��� �� it is su�cient to observe that for a xed y � U the map
�y�x� � �y��c�y�� x��� �y � f

���y�� ��� ��� is monotone because the measure
�y is a monotone function of sets� From ���� we obtain that �y is strongly
monotone� i�e� if �c�y�� x� � �c�y�� x��� x � x�� then �y�x� � ��x��� From
����� we conclude that �y is in fact a continuous function and hence �y is a
bijection� Continuity of the map follows from the continuity of f � � and cjU �

For an arbitrary� compact one�dimensional polyhedron an argument�
similar to the one in ������ can be used�

Proof of Corollary ������� We repeat the idea of the previous proof�
However� we start from the points c�y�� y � U�y��� which divide the point�
�preimages f���y� into two �equal� parts� This means that f���y�nc�y� has
exactly two connected components and the values of measures �y at this
components are equal to ����

The existence of such an intermediate point c�y� follows from the con�
dition ����� of the atomlessness of measures �y and the uniqueness of such
points follows from the condition ���� of exactness of measures �y�

��	



x�� FIXED�POINT THEOREMS

�� Fixed�point theorems and �xed�point sets for convex�valued
mappings

We begin by the well�known Banach contraction principle� A mapping
f � X � Y from a metric space �X� �� into a metric space �Y� d� is said
to be a contraction if there is a number � 	 � � � such that inequality
d�f�x�� f�x��� 	 � � ��x� x�� holds� for every pair of points x� x� � X� The
Banach xed�point theorem states that every contraction f � X � X of a
complete metric space �X� �� into itself has a point x � X such that f�x� �
� x� Such a point x is called a �xed point of the mapping f � Moreover� if
x � f�x� and x� � f�x��� then

d�x� x�� � d�f�x�� f��x�� 	 �d�x� x�� �

This means that either d�x� x�� � � or � � �� In either case we see that a
contraction f admits a single xed point� The standard areas of applications
of this theorem are existence theorems for integral and di�erential equations�
For example� the Picard form of the solution of the Cauchy problem y� �
� f�x� y� with the initial data y�x�� � y��

We are concerned here with multivalued analogues of this fact because
certain selection theorems play an essential role in their proofs� For multi�
valued mappings there exists a natural generalization of the notion of the
xed point� if x � F �x� then a point x is called a �xed point of the given
multivalued mapping F � For detailed information about general aspects of
the xed�point theory see the monograph ���	�� As an example� we state be�
low a theorem which deals with relations between xed�point theorems and
selection theorems�

Theorem ����� ���	� Theorem ����
��� Let C be a convex
 not neces�
sarily closed
 subset of a Banach space E and let F � C � C be a lower
semicontinuous mapping of C into itself with convex closed values� If the
closure of the set F �C� is compact in C then F has a �xed point x� � C
 i�e�
x� � F �x���

Proof� The standard convex�valued selection theorem is applicable to the
mapping F � So let f � C � C be a continuous singlevalued selection of F �
Then f�x� � F �x� � ClfF �C�g � C and we can use the classical Schauder
xed�point theorem for the mapping f � Hence� there exists a point x� � C
such that x� � f�x�� � F �x���

The structure of the proof of the Banach contraction principle for singl�
evalued mapping f � X � X is as follows� One starts by an arbitrary point
x� � X and then sets xn�� � f�xn�� for every n � IN� It is easy to see that

���
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the sequence fxngn�IN is fundamental and therefore converges in the com�
plete metric space X to some point x�� By the continuity of the contraction
f we have that

f�x�� � f� lim
n��

xn� � lim
n��

f�xn� � lim
n��

xn�� � x� �

Therefore� x� is a xed point of f �
The idea of the proof in the multivalued case is practically the same� It

was rst realized by Nadler in ��	��� We begin once more by an arbitrary
point x� � X and replace the equality xn�� � f�xn� by some suitable choice
xn�� from the set F �xn�� where F is a given multivalued mapping� The only
problem is how to formulate the conditions for multivalued mapping F which
would guarantee the desired estimate of the distance between xn and xn���
From such an estimate one can obtain that fxngn�IN is a Cauchy sequence in
the complete metric space X and its limit point will be a xed point of the
contraction F �

De�nition ������ Let �X� �� be a metric space and let D�M� �� denote
the ��neighborhood of the subset M � X� � 	 �� Suppose that for closed
subsets A � X and B � X the following set is nonempty�

f� 	 � j A � D�B� �� and B � D�A� ��g � � �

Then the inmum of this set is called the Hausdor� distance H�A�B�
between A and B�

It is easy to check that H��� �� is a metric on the set of all bounded
closed subsets of the given metric space �X� �� and it is in fact the standard
Hausdor� metric� But for our purposes we can also consider H� � � � � for
unbounded subsets of X�

De�nition ������ A multivalued mapping F � X � X of a metric space
�X� �� into itself with closed values is said to be a contraction if for some
� 	 � � � the inequality H�F �x�� F �x��� 	 � � ��x� x�� holds for every pair of
points x� x� � X�

So� the multivalued analogue of the Banach contraction principle states
��	�� that every contraction F � X � X of a complete metric space �X� �� into
itself admits a xed point x�� x� � F �x��� The essential di�erence between
the multivalued and siglevalued case is that a xed point in multivalued case
is not unique in general� For example� recent results of Saint�Raymond ��
��
show that the set Fix�F � of all xed points of the contraction F may be
nonconnected even when all values F �x�� x � X� are compact and connected�
Hence� in order to establish some topological properties of the xed�point set
Fix�F � one needs to have some serious restrictions for values F �x� of the
contraction F � A simplest example of such a restriction gives the convexity
of sets F �x�� x � X� Here Convex�valued selection theorem plays a crucial
role� The following result is due to Ricceri�

���
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Theorem ����� ������ For every contraction F � B � B of a Banach
space �B� k�k� into itself with convex values the �xed�point set Fix�F � � fx �
B j x � F �x�g is a retract of B�

Proof� Any contraction F is a lower semicontinuous �and upper semicon�
tinuous� mapping and its xed�point set Fix�F � is a nonempty closed subset
of B� So� by Convex�valued selection theorem we can nd a singlevalued con�
tinuous selection f� � B � B of the lower semicontinuous selection �F of the
mapping F � where

�F �x� �

���F �x�� x �� Fix�F �
fxg� x � Fix�F �

Let F� � F � f�� Then F is a lower semicontinuous mapping with convex�
closed values and for every x � B�

dist�f��x�� F��x�� 	 H� �F �x�� F��x�� 	 H�F �x�� F �f��x��� 	
	 � � kx� f��x�k � � � �kx� f��x�k �� � � � ��x��

where � � B � ����� is some continuous function� Theorem �A�����$$ shows
that in this situation there exists a selection f� of the mapping F� such that
kf��x�� f��x�k � � � ��x�� Moreover� if x � Fix�F � then f��x� � x � F �x� �
� F �f��x�� � F��x�� i�e� f� is a selection of F� over closed set Fix�F �� Hence
we can assume that f� coincides with f� over xed�point set Fix�F ��

Let F� � F �f�� Then F� is a lower semicontinuous mapping with convex
closed values and for every x � B�

dist�f��x�� F��x�� 	 H�F��x�� F��x�� � H�F �f��x��� F �f��x��� 	
	 � � kf��x�� f��x�k � �� � ��x� �

Moreover� for x � Fix�F � we have that f��x� � f��x� � x � F �x� �
� F �f��x�� � F��x�� Hence� there exists a selection f� of the mapping F�
such that

kf��x�� f��x�k � �� � ��x�� x � B � and

f��x� � f��x� � f��x� � x for x � Fix�F � �
A continuation of this procedure yields a sequence of continuous single�

valued mappings fn � B � B such that for every n � IN� the mapping fn��
is identical over the set Fix�F � and is a selection of Fn � F � fn� with
dist�fn�x�� Fn�x�� � �n � ��x� and kfn���x�� fn�x�k � �n � ��x�� x � B �

The function � is locally bounded because of the continuity of � � B �
������ Hence the sequence ffngn�IN is locally Cauchy� i�e� this sequence

���
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has the pointwise limit f� and the convergence fn � f� is locally uniform�
Therefore f� is a locally and �hence� globally continuous mapping of the
Banach space B into itself�

Let x � f��B�� i�e� x � f��z� � lim
n��

fn�z�� for some z � B� Then

dist�x� F �x�� � dist�f��z�� F �f��z��� 	
	 kf��z�� fn�z�k  dist�fn�z�� Fn�z�� 
 H�Fn�z�� F �f��z��� � kf��z�� fn�z�k �n � ��z� 
 � � kfn�z�� f��z�k � �� n�� �

Hence x � F �x�� i�e� x � Fix�F �� Moreover� by the construction� fn�x� � x
for all n � IN and x � Fix�F �� Hence f�jFix�F 	 � id jFix�F 	� i�e� f� � B � B is
a retraction of B onto Fix�F ��

A parametric version of Theorem ����� was proved in ��
��� i�e� a closed
convex mapping F � X 
 B � B was considered such that all mappings
Fx � B � B� Fx�z� � F �x� z�� are contractions� with the same constant � 	
	 � � �� Moreover� the lower semicontinuity of Fx was replaced by a quasi
�weak� lower semicontinuity �see Results� x� for the denition��

Theorem ���	�� Let � 	 � � � and suppose that the Cartesian product
X
B of a paracompact space X and a Banach space �B� k�k� is a paracompact
space� �For example
 one can let X be metrizable or perfectly normal�� Let
F � X 
B � B be a mapping with closed convex values such that�

�a� H�F �x� z�� F �x� z��� 	 � � kz � z�k for all x � X
 z� z� � B� and

�b� The mappings Fz � X � B
 Fz�x� � F �x� z�
 are quasi lower semiconti�
nuous
 for every z � B�

Then there exists a continuous singlevalued mapping f � X 
 B � B such
that f�x� z� � F �f�x� z��
 for all x � X
 z� z� � B�

Notice� that in Theorems ����� and ����� one can substitute the Banach
space B with its closed subset Y � B�

���
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�� Fixed�point sets of nonconvex valued mappings

We begin by a generalization of Theorem ����� to the case of noncon�
vex�valued mappings� More precisely� we consider ��paraconvex valued map�
pings� For the denition of the paraconvexity� see Results� x�� In ��
�� the
following selection theorem was proved for such kind of multivalued map�
pings�

Theorem ���
�� Let � 	 � � � and let F � X � B be an ��paraconvex
valued lower semicontinuous mapping from a paracompact space X into a
Banach space B� Then�
�a� For every � � ��� ��
 every � 	 � and every continuous singlevalued

��selection f� of the mapping F 
 there exists a continuous singlevalued
selection f of the mapping F 
 such that

kf��x�� f�x�k � �

�� �
� for every x � X� and

�b� F admits a continuous singlevalued selection f �

We use a slight modication of this theorem which consists of the re�
placement of the constant � in the part �a� by an arbitrary continuous func�
tion � � X � ������ Of course� the inequality in �a� must then be rewritten
as follows�

kf�x�� f��x�k � ��x�

�� �
� for every x � X �

Theorem ������ Let � and � be constants from ��� �� such that � � �
� �� Then for every ��paraconvex valued ��contractive mapping F � B � B
of a Banach space B into itself
 the �xed�point set Fix�F � of F is a retract
of B�

Proof� Every contraction F is lower semicontinuous �and upper semi�
continuous� and Fix�F � is a nonempty closed subset of B� So� by Theorem
���
��b� we can nd a singlevalued continuous selection f� of the ��paracon�

vex valued lower semicontinuous selection �F of the mapping F � where�

�F �x� �

���F �x�� x �� Fix�F �
fxg� x � Fix�F ��

�

Let F� � F �f�� Then F� is also a ��paraconvex valued lower semicontinuous
mapping and for every x � B� we have that�

dist�f��x�� F��x�� 	 H� �F �x�� F��x�� 	 H�F �x�� F �f��x��� 	
	 � � kx� f��x�k � � � �kx� f��x�k  �� � � � ��x� �

���
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where � � B � ����� is some continuous function� i�e� f� is a � ���selection of
F� and f�jFix�F 	 is a selection of F�jFix�F 	� Theorem ���
��a� shows that for
any xed � � ��� �� there exists a selection f� of the mapping F� such that

kf��x�� f��x�k � � � ��x�
�� �

� for every x � B �

Moreover� we can assume that f� is an extension f� from Fix�F � to the whole
space B�

We can always assume that ����� �� � q � �� because of the inequality
�  � � �� It su�ces to use the continuity of the function 
�t� � �

��t at a

point t � �� 
��� � �� Hence

kf��x�� f��x�k � q � ��x�� for every x � X� and

f��x� � f��x� � x� for every x � Fix�F � �

Let F� � F � f�� Then F� is also an ��paraconvex valued lower semicon�
tinuous mapping and for every x � B� we have that

dist�f��x�� F��x�� 	 H�F��x�� F��x�� � H�F �f��x��� F �f��x��� 	
	 � � kf��x�� f��x�k � ��q� � ��x� �

i�e� f� is a ��q� � ��selection of F��
Hence there exists a selection f� of the mapping F� such that kf��x� �

� f��x�k � ��q� � ��x���� � �� � q� � ��x�� As above� we can assume that
f�jFix�F 	 � id jFix�F 	�

Continuation of this procedure produces a sequence of continuous singl�
evalued mappings fn � B � B such that for every n � IN� the mapping fn��
is identical over Fix�F � and is a selection of Fn � F � fn� with

dist�fn�x�� Fn�x�� � ��q
n��� � ��x� and kfn���x�� fn�x�k � qn � ��x� �

The remaining part of the proof coincides with the corresponding one of
the proof of Theorem ������

A parametric version of Theorem ����� �in the spirit of Theorem ������
can also be proved�

���
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�� Hilbert space case

Is the restriction �  � � � in Theorem ����� essential" In general� the
answer to this question is negative� Namely� we prove that in a Hilbert space
the inequality ����� ����� � � � is su�cient for the existence of continuous
selections� So� the situation �����  �����  � � � � �  � is admissible
in a Hilbert space� The proof is based on a new version of paraconvexity�
namely strong paraconvexity and on relations between paraconvexity and
strong paraconvexity in a Hilbert space�

De�nition ������ Let � � ��� ��� A nonempty closed subset P � B of
a Banach space B is said to be strongly ��paraconvex if for every open ball
D � B with radius r and for every q � conv�D�P �� the following inequality
holds� dist�q�D � P � 	 � � r�

The di�erence between paraconvexity and strong paraconvexity is that in
the latter we use the inequality dist�q�D�P � 	 � �r instead of the inequality
dist�q� P � 	 � � r� Clearly� the strong ��paraconvexity implies the usual
��paraconvexity� The converse is false� but in the Hilbert space it is possible
to obtain the converse implication for some weaker degree of paraconvexity�
Let ���� �

p
�� � ��� for every � � ��� ��� Then ���� � ��� �� and ���� 	 ��

for every positive ��

Proposition ����� Each ��paraconvex subset P � H of a Hilbert
space H is its strong �����paraconvex subset�

Proof� We x � � ��� ��� � � ��� ��� an open ball D � D�c� r� � H with
radius r centered at a point c � H� and a point q from the closed convex hull
of the intersection D � P � Only two cases are possible�

Case �� kq � ck 	 ��� �� � r�
In this case the open ball D�q� � � r� is a subset of the ball D� The

intersection D�q� � � r� � P is nonempty� due to the ��paraconvexity of the
set P � Hence

� � D�q� � � r� � P � D�q� � � r� � �D � P � � D�q� ���� � r� � �D � P �
i�e� dist�q�D � P � � ���� � r�

Case �� r � kq � ck 	 ��� �� � r�
Let q� be a point of intersection of the sphere S�c� �� � �� � r� with the

segment �c� q� and let . be the tangent hyperspace to this sphere at the point
q�� Then the intersection . �D is an open ball in . centered at the point
q� with the radius ���� � r� For every t � ��� ��� let q�t� � �� � t�q�  tq and
let .�t� be the hyperspace parallel to . passing through the point q�t�� We
put ��t� � supfkq � zk j z � .�t� �Dg� Then � is a monotone decreasing
continuous function� ���� �

p
����� � r��  kq � q�k� 	 ���� � r and ���� �

���� �r� Therefore� there exists a point q� � q�t�� � �q�� q� such that ��t�� �
� ���� �r� For simplicity we call the hyperspace .� � .�t�� the �horizontal�
hyperspace and we say that the points c and q� lie �below� .�� Then the

���
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point q lies above .�� If all points of the intersection D � P are below .�

then the convex hull of this intersection also lies below .�� Hence� the point
q � conv�D � P � lies below .� or belongs to .�� Contradiction� Therefore�
there exists a point from the intersection D � P which lies above .�� Hence

dist�q�D � P � 	 ��t�� � ���� � r �

So in both cases we obtain that

dist�q�D � P � 	 ���� � r
and by passing to the limit� when � tends to � �� we nd that

dist�q�D � P � 	 ���� � r

Theorem ������� Let � 	 � � � and let F � X � H be an ��paraconvex
valued lower semicontinuous mapping from a paracompact space X into a
Hilbert space H� Then�
�a� For every 
 � ������  ���� ��
 every positive continuous function � �

X � IR and every continuous singlevalued ��selection f� of the mapping
F 
 there exists a continuous singlevalued selection f of the mapping F
such that

kf�x�� f��x�k � ��x�

�� 

� x � X� and

�b� F admits a continuous singlevalued selection f �

Proof�

�a� We x � � ��� �� and put�
F��x� � convfF �x� �D�f��x�� ��x��g �

Then F� is a lower semicontinuous mapping with nonempty closed convex
values� Hence F� admits a selection� say f�� The ��paraconvexity of the
values F �x� implies that

dist�f��x�� F �x�� 	 � � ��x� � � � ��x�� for every x � X �

Let

F��x� � convfF �x� �D�f��x�� ��x�� �D�f��x�� ���� � ��x��g �
Then F� is a lower semicontinuous mapping with closed convex values�
Moreover� F��x� � �� due to Proposition ���	�� Hence F� admits a conti�
nuous selection� say f�� The ��paraconvexity of values F �x� implies that

dist�f��x�� F �x�� 	 � � ���� � ��x� � � � ���� � ��x�� x � X �

���



Hilbert space case ���

Let

F��x� � convfF �x� �D�f��x�� ��x�� �D�f��x�� ��� � ����� � ��x��g �

and so on� Hence we construct a sequence of continuous singlevalued map�
pings fn � X � H such that for every x � X� kf��x� � fn�x�k 	 ��x� and
dist�fn�x�� F �x�� � �n � ��x� where �� � � and �n�� � � � ���n�� The se�
quence f�ngn�IN is monotone� decreasing and converges to a nonzero limit
limit

�� � ��
����  ��� 	 ������  ��� �

So� if we choose the number � such that

������  ��� � ������  ��� � 
 � � �

we can then nd an index N such that

������  ��� � ������  ��� � �N � 
 � � �

Therefore the mapping g� � fN is a continuous 
 � ��selection of the mapping
F and kf��x�� g��x�k 	 ��x�� for every x � X�

If we repeat the procedure above� starting with g�� then we nd a

� � ��selection g� of F such that

kg��x�� g��x�k 	 
 � ��x�� x � X �

Continuation of this construction produces a continuous mapping f �
� lim

n��
gn� which is the desired selection of F �

�b� Follows from �a��

One can repeat the proof of Fixed point theorem ����� from the previous
section using Theorem ������ instead of Theorem ���
�� So� for a Hilbert
space H we obtain the following improvement of Theorem ������

Theorem ������� Let � and � be constants from ��� �� such that
������ ��� � � �� Then for every ��paraconvex valued ��contractive map�
ping F � H � H of a Hilbert space H into itself
 the �xed�point set Fix�F �
of F is a retract of H�

As an example� for � � ���� Fixed�point theorem ����� gives the estimate
� � ��� for the degree of contractivity� But Fixed�point theorem ������ gives
the estimate � � ��� for the ��contractive ��paraconvex valued mapping F �
which guarantees the existence of xed points�

���
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�� An application of selections in the �nite�dimensional case

There are several results concerning structure of xed�point set Fix�F �
of a contraction F � see ����������
���

Here we mention an elegant application of the selection theory in nite�
�dimensional case� proposed by Saint�Raymond ��
��� The original question
was the following� Let F be a ��contraction� When does the following
implication hold�

�Fix�F � is a singleton x��� �F �x�� is a singleton x�� "

The example of a mapping F �z� �
p
z over unit circle S in the complex plane

C shows that in general the answer is negative�
But there are two cases when the answer is a�rmative� The rst is the

case ��
�� when the constant � of the contractivity is less than �
� � The second

one is described by the following theorem�

Theorem ������ ��
��� Let X be a closed convex subset of a Banach
space and F � X � X a ��contraction with closed convex values
 � 	 � � ��
Then for each x� � Fix�F �


diam�Fix�F �� � �� �

�
diam�F �x��� �

We reproduce a proof from ��
�� to the e�ect that for a �nite�dimensional
Banach space the above inequality can be sharpened as follows�

diam�Fix�F �� � �

�  �
diam�F �x��� �

Proof� Let x� � F �x��� and let y� be a point from F �x��� We want to
nd a xed point x � Fix�F � such that

kx� x�k � �

�  �
ky� � x�k �

For an arbitrary 
 � ��� ��� we dene a multivalued mapping F� of closed
convex space X into itself by setting for x � X�

F��x� � ClfF �x� �D�y�� 
kx� x�k�g �
We conclude from dist�y�� F �x�� 	 H�F �x��� F �x�� 	 �kx�x�k � 
kx� x�k
that F��x� � �� Convex�valued selection theorem can be applied to the
mapping F� � X � X� i�e� we can nd a continuous selection of F�� say f��

Let r� � ky� � x�k��� � 
� and X� � X � ClD�x�� r��� Then X� is
convex and compact because of the nite dimensionality of balls� We claim

��	
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that f� maps X� into itself� In fact� for each x � X�� we have x � X and
kx� x�k 	 r�� Therefore�

f��x� � F��x� � X � ClD�y�� 
kx � x�k� �

Hence� f��x� � X and ky� � f��x�k 	 
kx� x�k� i�e�

kx� � f��x�k 	 kx� � y�k 
kx� x�k 
r� 	
	 ky� � x�k��  �

���� � r� �

So� we have proved that f��X�� � X� and we can nd a xed point of f��
say x�� From x� � f��x�� � F �x�� we see that x� is a xed point of the
given ��contraction F� Moreover�

ky� � x�k � kx� � x�k 	 ky� � x�k � ky� � f��x��k 	 
kx� � x�k �

So� kx� � x�k � �
���ky� � x�k�

There are exactly two possibilities�
�a� kx� � x�k � �

��� ky� � x�k� for some 
 � ��� ��� or
�b� �

���ky� � x�k 	 kx� � x�k � �
��� ky� � x�k� for all 
 � ��� ���

In �a�� the point x� is the desired xed point of F � In �b�� we set x to
be an accumulation point of the sequence

fx�n j �n � �  �
n � �g �

Such an accumulation point exists due to the compactness of the closed balls�
Evidently� x � Fix�F � and kx� x�k � �

��� ky� � x�k� The example F � IR�
IR� F �x� � ���x�����x �� shows that the constant �

��� is the best possible

in the inequality diam�Fix�F �� � cdiam�F �x����

�� Fixed�point theorem for decomposable�valued contractions

There exists another version of Theorem ����� on the topological struc�
ture of xed�point set Fix�F � for nonconvex valued contraction F � i�e� the
decomposability of subsets of a Banach space L� as a substitution for con�
vexity� For denition of decomposability see Results� x� or x�� below�

Let * be a measure space with a nite� positive� nonatomic measure
� and for a Banach space �B� k�k� let L��*� B� be the Banach space of all
�classes� Bochner ��integrable mappings with the norm

kfk �
Z
�

kf���kB d� �

���
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Theorem ������ ����� Let ( �M
L� � L� be a continuous mapping of
the Cartesian product of a metric separable space M and a separable Banach
space L��*� B� with nonempty
 bounded
 closed and decomposable values� Let
( be a ��contraction with respect to the second variable
 i�e�

H�(�m� f��(�m� g�� 	 �kf � gkL�
for some � � � and any m � M 
 f� g � L�� Then there exists a continu�
ous singlevalued mapping � � M 
 L� � L� such that for every m � M 
 the
mapping (�m� �� is a retraction of L� onto the set Fix�(m� of all �xed points
of the ��contraction (m� (m�f� � (�m� f��

In summary� the xed�point sets of ��contractions with decomposable
values are absolute retracts and moreover� retractions may be chosen conti�
nuously� depending on the parameter m �M �

The proof of Theorem ������ is similar to the proof of Theorems �����
and ����� with some modications� Instead of Michael�s convex�valued se�
lection theorem one must use the selection theorem for decomposable�valued
mappings� see Theorem ������� below�

Finally� we formulate the theorem on the structure of the xed�point sets
in which selection conditions are assumptions of the theorem�

Theorem ������ ��
�� Let F � X � X be a mapping of a Banach
space X into itself with convex values such that for any point �x� y� of the
graph �F 
 there exists a selection fx�y of F such that f�x� � y and which
is a contraction of X �degree of contractivity
 in general
 depends on �x� y���
Then the �xed�point set Fix�F � of the mapping F is linearly connected�

Recently� Gorniewicz and Marano proposed some unied approach to
proving of Theorems ����� and ������� They extracted some selection type
property which holds for convex�valued and for decomposable�valued con�
tractions as well� and showed that this property implies that the xed�point
set is an absolute retract�

De�nition ����	� ������ Let X be a metric space and F � X � X be a
lower semicontinuous closed�valued mapping from X into itself� We say that
F has the selection property with respect to X if for every pair of continuous
mappings f � X � X and h � X � ��� �� such that

G�x� � Cl�F �f�x�� �D�f�x�� h�x��� � �� x � X

and for any nonempty closed set A � X� every continuous selection g of GjA
admits a continuous extension �g over X such that �g is a continuous selection
of G�

Theorem ����
� ������ Let X be a complete absolute retract and F �
X � X a contraction� Suppose that F has the selection property with respect
to X� Then the �xed point set Fix�F � is a retract of X�

���
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In fact� one can dene the selection property with respect to a class L of
metric spaces� It su�ces to consider in Denition ������ a pair f � Y � X�
h � Y � ������ for every Y � L�

Theorem ������ ������ Let X be a nonempty closed subset of separable
L��*� B�� Then every lower semicontinuous mapping F � X � X with
bounded decomposable values has the selection property with respect to the
class of all separable metric spaces�

It was shown in ����� that the boundedness restriction in Theorem ������
can be omitted�

���



x�� HOMEOMORPHISM GROUP PROBLEM

�� Statement of the problem� Solution for n � �

A usual and natural way to generate innite�dimensional topological
objects is to consider spaces of morphisms of nite�dimensional objects� For
example� the Banach space of continuous functions on the cube In� the space
of di�eomorphisms of the sphere Sn� etc� Among such examples� the groups
H�M� of all self�homeomorphisms of an n�dimensional compact manifolds
stand at the top� An intensive study of H�M� started in the mid �	���s�
accordingly to its relations to local triviality of regular mappings �see x���
Dyer and Hamstr,om ����� showed that H�M� is locally contractible if M is
a ��manifold with boundary� �Cernavski&' �

� and Edwards and Kirby �����
showed that this is also true for n 	 ��

Geoghegan ����� proved that H�M� is homeomorphic to its Cartesian
product with the Hilbert space ��� Anderson ���� proved that the group
H��I� of all homeomorphisms of the segment I which are identity at the
endpoints of I� is homeomorphic to ��� Hence� H�I� is homeomorphic to
the union of two disjoint copies of ��� and as a corollary� is an ���manifold�
So� the general question can be formulated as follows� Is the space H�M� of
all homeomorphisms of a compact n�dimensional manifold M locally homeo�
morphic to ���

This problem �abbreviated as HGP� was stated in several lists of open
problems on innite�dimensional topology ������������������ It is still open
and moreover� the last progress in this area dates back to �	��� Namely�
in �	�� Mason ����� proved that the answer for HGP is positive for n �
� �� In �	�� Ferry ����� showed that the answer is �yes� for n � �� i�e�
for Q�manifolds M �see also ��	
��� Haver ����� reduced the HGP to the
problem that H��I

n� is an AR �absolute retract� and Geoghegan and Haver
reduced the HGP �for n � �� �� to the problem of whether every open subset
of H��I

n� is homotopically dominated by CW�complex �see �������
In this chapter we show how Finite�dimensional selection theorem played

a crucial role in the solution of the HGP for the two�dimensional case� As
a preliminary step we consider the one�dimensional case� We rst list some
well�known basic facts from innite�dimensional topology�

Henderson�Schori theorem ����� ���
�� Let X and Y be connected
L�manifolds
 where L is a locally convex linear metric space which is homeo�
morphic to its countable power� Suppose that X and Y are of the same
homotopic type� Then X is homeomorphic to Y �

Toru�nczyk theorem ����� ��	��� The Cartesian product of �� and a
complete metric separable ANR space is an ���manifold�

Toru�nczyk criterion ����� ��	��� A space X is an ANR if and only if
there is a space E such that X 
 E has a basis � of open sets such that for

���



Statement of the problem� Solution for n � � ��

every �nite subcollection � of �
 the intersection
T
� is either empty or is

path�connected and all of its homotopy groups are trivial�

Geoghegan theorem ����� ������ If A is a closed subset of an n�di�
mensional manifold M then HA�M� is homeomorphic to HA�M�
 ��
 where
HA�M� is the set of all homeomorphisms M which are identity on A�

Let H��I� be the set of all homeomorphisms f � ��� ��� ��� �� with f��� �
� � and f��� � �� We encountered this set in x�� As usually� we endow
H��I� with the topology generated by the sup�norm in the Banach space C �
� C�I� � ff � I � IR j f is continuousg� Clearly� H��I� consists of exactly
all continuous strongly increasing functions f with f��� � � and f��� � ��
As it was pointed out in x�� H��I� is a convex but nonclosed subset of C�
More precisely� H��I� is a D�type convex subset of C� Anderson was the rst
to prove that H��I� is homeomorphic to �� ����� However� his proof is still
unpublished and we use an approach which is an interpretation of Mason�s
proof for the two�dimensional case� So� this section will be an introduction
to the next one�

Theorem ���	�� The space H��I� has a basis of open sets such that the
intersection of every �nite subfamily is either empty or path�connected and
with all homotopy groups trivial�

Proof
I� Construction

Let�
��� Tn � fi��n j � 	 i 	 �ng � I� n � �� �� � � ��

��� Un � f�ai� bi�g�ni�� be a set of open intervals on the y�axis such that ai �
� bi � aj � bj � for � 	 i � j 	 �n�

��� O�Un� � ff � H��I� j f�i��n� � �ai� bi�g� and
��� O be the family of all O�Un� over all n � IN and over all collections Un

of all increasing sequences of open intervals of length �n�
We claim that then�

�a� O�Un� is an open subset of H��I�� for each Un �see �����
�b� O� � O� � O� if O� � O and O� � O�
�c� For every O� � O and O� � O� the intersection O� � O� is either empty

or contractible into itself� and
�d� For every open G � H��I� and every h � G� there exist n � IN and Un

such that h � O�Un� � G�
In summary� �a���d� state that O is the desired basis of open subsets

of H��I��

II� Veri�cation

�a� If Un � f�ai� bi��ni��g and f � O�Un� then one can nd � � minfminfbi �� f�i��n�� f�i��n� � aig j � 	 i 	 �ng 	 �� Clearly� from � 	 kf � gk �
� supfjf�x� � g�x�j

��� � 	 x 	 �g it follows that ai � g�i��n� � bi� i�e� g �
O�Un� and hence D�f� �� � O�Un��

���
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�b� Let O� � O�f�ai� bi�g�ni��� and O� � O�f�cj � dj�g�mj���� for some � 	 n 	
m and some collections of open intervals f�ai� bi�g�ni�� and f�cj � dj�g�

m

j��� Note

that in this case the set Tn is a subset of Tm� see ���� So� only two cases are
possible� First� let there be a number � 	 i 	 �n such that �ai� bi�� �cj � dj� �
�� where j � �n�mi� Then O� �O� � � because it follows from f � O� �O�

that f�i��n� � �ai� bi� and f�i��n� � f��n�mi��m� � f�j��m� � �cj � dj��
Next� let for every � 	 i 	 �n� the intersection

�ai� bi� � �cj � dj� � �c�j � d�j�
be nonempty� where j � �m�ni� Clearly� in this caseO��O� � O�f�c�j � d�j�g�

m

j����

where for j � �m�ni� the numbers c�j and d
�
j are dened above and for others

� 	 j 	 �m we put c�j � cj and d
�
j � dj �

�c� Due to �b�� it su�ces to show that every nonempty O�f�ai� bi�g�ni��� �
O is contractible in itself� But this is obvious because of convexity of
O�f�ai� bi�g�ni����
�d� If h � G and fg � H��I� j kg � hk � �g � G� Because of the uniform
continuity of h we can nd n � IN such that h��i  ����n � h�i��n�� � ����
for all � 	 i 	 �n � �� Next� we dene � � �� � ��� by setting

�� �
�
� minfh��i  ����n�� h�i��n� j � 	 i 	 �n � �g �

Let ai � h�i��n�� ��� bi � h�i��n�  �� and g � O�f�ai� bi�g�� According to
the monotonicity of g and h� we have that ai � g�x� � bi�� and ai � h�x� �
� bi�� for all i��

n 	 x 	 �i ����n� Hence

supfjg�x� � h�x�j
��� i��n 	 x 	 �i ����ng � bi�� � ai �

� h��i  ����n�� h�i��n�  ��� � � �

Thus O�f�ai� bi�g�ni��� � fg � H��I�
���kg � hk � �g � G� Theorem is thus

proved�

Theorem ���
�� The space H��I� is homeomorphic to the Hilbert space
���

Proof� Theorem ����� and the Toru�nczyk criterion imply that H��I�
is an ANR� Geoghegan�s result shows that H��I� is homeomorphic to the
Cartesian product H��I�
 ��� Toru�nczyk�s theorem implies that H��I�
 ��
is an ���manifold and hence H��I� is also an ���manifold�

Finally� H��I� is contractible being an arbitrary convex set� So� H��I�
and �� are two ���manifolds of the same homotopy type �trivial� in fact��
Hence H��D� is homeomorphic to ��� due to the Henderson�Schori theorem�
So� to nish the proof one only needs to check that the hypotheses of
Toru�nczyk�s theorem are satised� i�e� that H��I� is a completely metrizable
separable space� We omit the verication of this easy fact�

���
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�� The space of all self�homeomorphisms of the disk

The purpose of this section is to give a sketch of the following Mason�s
theorem ������

Theorem ������ The space H��D� of all self�homeomorphisms of the
two�dimensional ball D which �x the boundary �D
 is homeomorphic to the
Hilbert space�

Theorem ������ Let H��D� be as in Theorem ������ Then H��D� is an
ANR�

Proof that Theorem ����� implies Theorem ������
The proof is quite similar to the proof of the implication �Theorem ������

� �Theorem ���
�� with a single exception� H��I� is contractible because
of its convexity� But H��D� is �very� nonconvex and its contractibility is
veried by the well�known Alexander trick ����

Let us think of points x � IR� as being vectors with origin O of the unit
disk D� and assume that every map f � H��D� is extended to IR

�nD as the
identity map� So� let

A�f� t��x� � tf�x�t�� x � IR�� t � ��� ��� f � H��D�

and let A�f� �� � id jIR� �
Then A � H��D� 
 I � H��D� is the desired homotopy with A��� �� �

� id jH��D	� In other words� we uniformly push the boundary S of D to the
origin� making our mapping equal to identity on the annulus between circles
S and St � tS� Inside of St we make a �copy� of a homeomorphism f �

As in Section �� we derive Theorem ����� �due to Toru�nczyk�s criterion�
from the following theorem�

Theorem ����� The space H��D� has a basis of open sets such that the
intersection of every �nite subfamily is either empty or path�connected and
with all homotopy groups trivial�

The description of a suitable basis O is a bit more complicated than in
the one�dimensional case� Here we consider the disk D as the unit square on
IR�� We begin by a short explanation� Consider nets Tn on D consisting of
��n 
 �n� congruent �small� squares ���n 
 ��n��squares� n � IN� Horizontal
and vertical lines li and mj of a net Tn we map using a homeomorphism
f � H��D�� So� we obtain some degenerate net f�Tn�� Next� we perform
some �thickening� operation with the images f�li� and f�mj� and nd some
disjoint horizontal �Hi� and disjoint vertical �Vj� tubes� Finally� we forget
about f and consider a set O � O�Tn� �Mi�� Vj�� of all homeomorphisms
which maps li into Hi and maps mj into Vj� The set of all such sets
O�Tn� �Hi�� �Vj�� constitutes a basis O�
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De�nition ������� Let n � IN� let �i be the intersection of the square
D with the line y � i��n and let mj be intersection of the square D with the
line x � j��n� � 	 i� j 	 �n� A polygon Hi is said to be a horizontal i�tube
if � � i � �n and�
�a� The intersection Hi with the line x � � is a segment with an interior

point ��� i��n��
�b� The intersection Hi with the line x � � is a segment with an interior

point ��� i��n�� and
�c� The intersections Hi with the lines y � �� y � � are empty�

�We consider polygons as the images of a square under a PL�homeomorphism��
Clearly� one can dene in a similar way the vertical j�tubes Vj � with � � j �
� �n� n � IN�

De�nition ������� Let n � IN and H�� � � � �H�n�� be a set of mutually
disjoint horizontal tubes and V�� � � � � V�n�� a set of disjoint vertical tubes�
Then

O�n� �Hi�� �Vj�� � ff � H��D� j f�Int��i�� � Int�Hi�

and f�Int�mj�� � Int�Vj�g �
Also� O � fO�n� �Hi�� �Vj�� j n � IN� �Hi� are disjoint horizontal tubes and
�Vj� are disjoint vertical tubesg�

So� our goal is to verify that�
�a� O�n� �Hi�� �Vj�� are open subsets of H��D��
�b� If O� � O and O� � O then O� �O� � O�
�c� O is a basis of the topology in H��D�� and
�d� Each nonempty memberO � O is path�connected and with all homotopy

groups trivial�
The verication of �a���c� is not so easy as in Section �� but it is possible

to make it directly� The main di�culties are related to point �d� and here
we use Finite�dimensional selection theorem�

Theorem ������� For every n � IN
 for every disjoint horizontal
tubes �Hi� and disjoint vertical tubes �Vj� with � � i
 j � �n
 each �nite�
�dimensional compactum K � O � O�n� �Hi�� �Vj�� can be shrunk over O to
a point�

The main problem here is that although the intersections f�li� � f�mj�
are singletons� the intersections Hi�Vj can have a very complicated structure�

A shrinking of the compactumK to a point can be carried out as a nite
sequence of isotopies K � K� � K� � K� � �� The restrictions of all
members of the compactum K� to the rst horizontal line l� are the same�
All members of the compactumK� agree when restricted to all the horizontal
lines li� All members of the compactum K� have the same restrictions to all
horizontal lines li and to all vertical lines mj� Then we can in fact assume
that restrictions of all homeomorphisms f fromK� are identity on the lattice

���
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Tn� It su�ces to consider the compactum� f
��
� �K�� for some xed f� � K��

So� nally it is possible to apply the Alexander trick to each two�dimensional
���n 
 ��n��square and shrink f��� � K� to the identity homeomorphism�
Multiplication by f� of the last shrinking gives a contraction of K� to f�
over O�

We consider only a sketch of the rst isotopy K into K�� Let L�R� T�B
be the left� right� top and bottom sides of the rst horizontal tube H��
respectively� The set

Sff�l�� j f � Kg is compact in H�n�T � B�� Thus�
one can make slight deformation of H� in order to obtain only nitely many
components of the intersection H� � �Si �Vi��

Each component � of H� � �Si �Vi� is a polygonal path� Exactly two
cases are possible for �� If one of the endpoints of � lies on B and its second
endpoint lies on T � then � separates H�� and we denote this fact by � �
SEP � If both endpoints of � are on T �or in B� then � does not separate
H� and we write this fact as � � NSEP � We want to push f�l�� o� �� for
each � � NSEP and f � K�

Proposition ������� Let � � NSEP � Then there exists a homotopy
� � K 
 ��� ��� O such that for all f � K and t � ��� ���
�a� ��f� �� � f �

�b� ��f� t� � f outside f���H��� and

�c� ��f� ���l�� � � � ��

Proof� First� we dene a certain special space MON� Let�

��� �a� b� and �c� d� be disjoint segments on a horizontal line�

��� D� be a closed disk with diametrally opposite points b and c�

��� D� � D� �D� �D� be a xed decomposition of the disk D
� in the union

of disks D�� D�� D� with polygonal arcs D� �D� and D� �D� and with
D� �D� �D� � fb� cg�

��� MON be a union of D� with �a� b� and �c� d��

��� � � �a� b� � �D� �D�� � �c� d�� and
�
� H�MON�H�� be the space of all embeddings of MON into the horizontal

tube H��

Now� we dene some multivalued mapping from K into H�MON�H���
Note that

Sff�l�� � � j f � Kg is a compact subset of Int�� So� we can x
points b� � Int�� c� � Int� such that Sff�l�� � � j f � Kg is a subset of the
subarc of � with endponts b� and c�� Let�

��� f � K and E�f� be the set of all embeddings e of MON into H� such
that�

�i� e��� � �� e�b� � b�� e�c� � c�� e�a� � a�� e�d� � d� where a� and d�

are endpoints of the arc � � NSEP �

�ii� e�D�� � IntH��

�iii� � separates e�Int�D��� and L �R in the tube H��

���
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�iv� e�MON� does not intersect with other members of NSEP and with
images f�mj� of vertical lines mj under the homeomorphism f � and

�v� e��a� b� �D� � �c� d�� � f�l�� � �� and
��� EK �

SfE�f� j f � Kg�
We claim that then�

�a� E�f� � � for every f � K� and
�b� The mapping E � K � EK admits a continuous singlevalued selection�

say e��
Now� one can x an isotopy S � MON
��� �� � MON with S��� �� �

� id jMON� S � ��� t�j�MON � id� and S�D�� �� � D� �D�� That is� we push
D� into D�� Using a selection e� � K � Ek� e��f� � E�f�� we �move� the
isotopy S into every image of the MON under embedding e��f�� Thus� we
push f�l�� o� �� for every f � K and such �pushing� continuously depends
on f � K� dimK ��� Proposition is thus proved�

Certainly� the main di�culty here is to verify that Finite�dimensional se�
lection theorem is really applicable to the map E� In ����� such a verication
occupied several pages� In fact� two additional remarks are needed� First�
it is more suitable to consider the �graph� mapping E� � f �� ffg 
 E�f��
E� � K � K 
H�MON�H���

Second� in order to use in a similar way the nite�dimensional theorem
once again� we must guarantee that dim���K� ��� ��� This can be achieved
by some sharpened variant of Proposition ������ which states that there exists
an isotopy � � K 
 ��� ��� O with the same properties�

��	



x�� SOFT MAPPINGS

�� Dugundji spaces and AE����compacta

Pe�lczy�nski ����� introduced the notion of Milyutin space and Dugundji
space� �S�cepin ����� proposed the notions of Milyutin mapping and Dugundji
embedding and dened aMilyutin �Dugundji� compactum X as a compactum
which admits a Milyutin mapping �respectively� Dugundji embedding� from
a power f�� �g� onto X �respectively� from X into a power ��� ��� ��

De�nition �	���� Let X and Y be compact spaces�
�a� A linear operator L � C�X� � C�Y � between Banach spaces C�X� and

C�Y � is said to be regular� if kLk � � and L�id jX� � id jY �
�b� A regular linear operator L � C�X� � C�Y � is said to be a regular

extension operator associated with a continuous injection � � X � Y if

�Lf� � � � f �

for all f � C�X��
�c� A regular linear operator L � C�X� � C�Y � is said to be a regular

averaging operator associated with a continuous surjection � � X � Y if
L�g � �� � g for all g � C�Y ��

�d� A continuous injection � � X � Y �respectively continuous surjection
� � X � Y � is said to be a Dugundji embedding �resp� Milyutin mapping�
if it admits a regular extension �resp� averaging� operator associated with
it�

�e� A compact spaceX is said to be a Dugundji �resp�Milyutin� space if there
exists a Dugundji embedding of X into some power ��� ��� �resp� Milyutin
mapping from some power f�� �g� onto X��
Clearly� if we identify X and ��X� in Denition ����� �b� then for an

individual mapping f � X � IR� the mapping Lf is its usual extension

X �������E

�� ��X� � ��������

Y

f Lf
IR

So� the extension operator L � C�X� � C�Y � makes an extension of each
continuous f � X � IR in a simultaneous �linear� fashion�

Theorem �	���� A compact space X is a Dugundji space if and only
if every continuous injection of X into a compact space Y is a Dugundji
embedding�

Proof� Let � � X � Y be an embedding� � � X � I� a Dugundji
embedding into a power I� � ��� ��� and B � C�X� � C�I� � a regular

���
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extension operator associated with �� Using the Tietze�Urysohn theorem in
every coordinate gives an extension of �� i�e� a mapping �� � Y � I� such that
�� � � � �

X �
�

Y

�� $��
I�

Then the mapping L � C�X�� C�Y �� dened by Lf � �Bf� � ��� f � C�X��
is the desired regular extension operator associated with � since

�Lf� � � � �Bf� � �� � � � �Bf� � � � f �

Every metrizable compact space is a Dugundji space and a Cartesian
product of Dugundji spaces is again a Dugundji space �see �������

De�nition �	���� A compact space X is said to be an absolute extensor
for zero�dimensional compacta if every continuous mapping f � A � X of
a closed subset A of a zero�dimensional compact space Z has an extension
�f � Z � X� Notation� X � AE����

Zero�dimensional selection theorem implies that every metrizable com�
pact space is an AE����space and a simple coordinatewise observation shows
that the Cartesian product of AE����spaces is again an AE����space� Hence�
we see that the class of all AE����spaces and the class of all Dugundji spaces
have the common �large� intersection� the subclass of all products of metriz�
able compacta� It was proved in �	������ that the class of all AE����spaces
coincides with the class of all Dugundji spaces� It is interesting that both
of the inclusions fAE���g � fDugundji spacesg and fDugundji spacesg �
fAE���g have no direct proofs� In both cases the known proofs exploit dif�
ferent classes of spaces� Milyutin spaces for the rst and spaces with Haydon
decomposition for the second inclusion�

First� let us state that there exists a Milyutin mapping from f�� �g� �
� D� onto I� � � is an innite cardinal� and that a surjection � � X � Y is a
Milyutin mapping if and only if there exists a continuous mapping � � Y �
P �X� such that supp ��y� � ����y�� y � Y ����� �see Theory� x��� Recall
that P �X� is the space of all probabilistic measures on X endowed with the

topology induced by the inclusion P �X� � IC�X	�

Theorem �	���� Every AE����space is a Dugundji space�

Proof� We can assume that X is a closed subset of a suitable power I�

of the segment I � ��� ���

D�

��������F

m� I�

� P �D� �S

�m�
S

m���X� �
m�

X �
f

IR

���



Dugundji spaces and AE����compacta ���

So� letm � D� � I� be a Milyutin mapping and � � I� � P �D� � be associated
with m� Dene m� � mjm���X	� By the zero�dimensionality of D

� and due
to the fact that X � AE��� we can nd an extension �m� � D

� � X of the
surjection m�� For every f � C�X�� and for every y � I� denote

�Lf��y� �

Z
D�

�f � �m��d�y �

Clearly� L � C�X� � C�I� � is a well�dened regular linear operator� More�
over� for x � X � I� � we have

�Lf��x� �

Z
D�

�f � �m��d�x �

Z
ftjt�m���x	g

f�m�t�d�x �

�f�x� �
Z

m���x	

� � d�x � f�x�

because supp �x � m���x� and �x is a probabilistic measure� Hence L is a
regular extension operator associated with the identical embedding X into
I� �

The proof of the inclusion fDugundji spacesg � fAE����spacesg is di�
vided into two inclusions�

fDugundji spacesg � fspaces with a Haydon
decompositiong � fAE����spacesg

The key ingredient of the proof of the second inclusion is Zero�dimen�
sional selection theorem� We must begin by the denition of the Haydon
decomposition� We assume that the reader knows the basic concepts of the
theory of inverse limit of topological spaces�

De�nition �	�	�� A continuous mapping f � X � Y between compacta
is said to have ametrizable kernel if for some compact metrizable spaceK and
for some embedding � � X � Y 
K� the following diagram is commutative

X
������F

�� Y 
K

f

��y pY
Y

where pY is the projection on the rst factor�
In other words� the embedding � � X � Y 
 X maps each preimage

f���y�� y � Y � into the ber fyg 
K� So� in a certain sense� � embeds f
into pY �

De�nition �	�
�� Let a compact space X be represented as the inverse
limit

X � lim
	�
�X�� p

�
��� � 	 � � �

���
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of a well�ordered inverse spectrum� indexed by the ordinals less that some
ordinal � � �As usual� we identify a cardinal number with the corresponding
initial ordinal number�� Then X is said to be the inverse limit of a continu�
ous spectrum if for every limit ordinal � � � � the natural mapping from X�

to lim
	�
�X�� p

�
������� is a homeomorphism�

De�nition �	���� A compact space X is said to have a Haydon decom�
position if X can be represented as an inverse limit of continuous spectra with
a metrizable initial space and with bonding maps having metrizable kernels�

Theorem �	��� ������ If X has a Haydon decomposition then X is an
AE����space�

Proof�
I� Construction

Let�
��� X � lim

	�
�X�� p

�
������� be a given Haydon�s decomposition of X and p�

be the canonical mapping X � X�� and
��� f � A � X be a continuous mapping of a closed subset A of a zero�

�dimensional compactum Z�
We claim that then�

�a� There exists a continuous mapping �� � Z � X� which extends the
composition p� � f � A� X��
Let�

��� For some � � � and for every � 	 �� there exists an extension �� � Z �
X� of the composition p� � f � A� X� with the property that

p�� � �� � ��� � 	 � 	 � �

��� For z � Z�

F����z� �

���fp����f�z��g� z � A

�p���� �������z��� z �� A

��� �� � X��� � X� 
 K� be an embedding with a metrizable compact

kernel K� such that pX�
� �� � p����

X� 
K�

pX�
$ � ��

� � �� X�

p���
�� X��� � � � �� Xx� ����
��

��
��

��
��

��

Z� A
��

��
��

��
�	
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Dugundji spaces and AE����compacta ��

We claim that then�
�b� The multivalued mapping F��� � Z � X��� is lower semicontinuous�
�c� Zero�dimensional selection theorem is applicable to the multivalued map�

ping G� � pK�
� �� � F��� � Z � K�� i�e� there exists a selection g� �

Z � K� of G� �
�d� The mapping ���� � Z � X���� dened by setting

�����z� � ���� ����z�� g��z�� �

is an extension of the composition p����f � A� X���� with the property
that

p�� � �� � ��� � 	 � 	 �  � � and

�e� If a mapping �� has already been dened for � � �� � a limit ordinal�
then �� is uniquely determined� due to the continuity of the spectrum

fp��g� Hence � � �� is the desired extension of f �

II� Veri�cation

�a� Use Zero�dimensional selection theorem for the mapping�

F��z� �

���X�� z �� A

fp��f�z��g� z � A

�b� The multivalued mapping �p���� ��� � �� � Z � X��� is lower semiconti�

nuous� due to the openness of p���� and the composition p��� �f � A� X���

is its partial selection because

�p���� ��p����f�a�� � p��f�a�� � ���a��

for a � A�

�c� G� is lower semicontinuous due to �b� and the continuity of pK�
and ���

and the values of G� are nonempty closed subsets of the metrizable compact
space K��

�d�e� Routine verication� Theorem is thus proved�

The fact that every Dugundji space has a Haydon decomposition exploits
more sophisticated techniques without any selection argument �see ���������
������ Finally� we state the following characterization of the Dugundji spaces�

Theorem �	��� For a compactum X the following assertions are
equivalent�
��� X has a Haydon�s decomposition�
��� X is an AE����space� and
��� X is a Dugundji space�

���



��� Soft mappings

�� Dugundji mappings and ��soft mappings

�S�cepin ����� constructed an analogue of the results of Section � for
a class of mappings �not spaces�� An analogue of spaces with Haydon
decomposition admits a clear denition� A mapping f � X � Y has a Haydon
decomposition if there exist a compact �X with a Haydon�s decomposition
�X � lim

	�
�X�� p

�
������� and homeomorphisms h � X � �X and h� � Y � X�

such that the diagram

X
h� �X��y f

��y p�

Y
h�� X�

is commutative�
A transfer of the notion of AE����spaces into a category of continuous

mappings allows for the notion of ��soft mappings�

De�nition �	����� A continuous mapping f � X � Y is said to be
��soft if for every zero�dimensional compactum Z� every continuous mapping
g � Z � Y � every closed subset A � Z and every continuous mapping h �

A � X with f � h � gjA� there exists an extension �h � Z � X of h with

f � �h � g

A
h� XT �h

�y f
Z
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Setting in Denition ������ Y � f�g and f � f�g we nd that the
mappingX into a point is ��soft if and only ifX is an AE����space� Moreover�
setting in Denition ������ y � Y � and g � Z � Y dened by g�Z� � y we

nd for A � � that there exists a point x � �h�Z� � X such that f�x� � y� i�e�
that f is a surjection� This observation gives a way to reformulate Denition
������ in terms of selection�

De�nition �	������ A continuous mapping f � X � Y is said to be
��soft if for every zero�dimensional compactum Z� every continuous mapping
g � Z � Y � every closed subset A � Z and every continuous selection h �
A � Y of the multivalued mapping �f�� � g�jA� there exists a continuous
extension �h � Z � X of h which is a selection of f�� � g � Z � X�

Theorem �	�����
�A� Every ��soft mapping between compacta is an open surjection�
�B� Every open surjection between compacta with a metrizable kernel is

��soft�

Proof� �A� For a ��soft mapping f � X � Y nd a zero�dimension�
al compact Z such that Y is an image of Z under some open mapping

���



Dugundji mappings and �soft mappings ���

g � Z � Y � For existence of such g see e�g� Theory� x�� For any x � X� let
A � g���f�x�� be a closed subset of Z and h � A� X map A into the point

x� Then ��softness of f gives the existence of an extension �h � Z � X of h
such that f � �h � g� So� if U is a neighborhood of x then �h���U� is open in

Z and g��h���U�� is an open subset of f�U� � Y � Hence f is open at a point

x � X� If y � Y and z � g���y� then f��h�z�� � y� Therefore f is indeed a
surjection�

�B�

A
h� X

�� Y 
KT �h
�y f

�y pK
Z
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Let K be a metrizable kernel of the open surjection f and � � X � Y 
K
an associated embedding� Then for any pair �Z�A� with dimZ � �� A closed
in Z and any mappings g � Z � Y � h � A� X with h�a� � f���g�a��� a � A�
one can dene a multivalued mapping F � Z � K� by setting

F � pK � � � f�� � g �

Clearly� F �z� are nonempty closed subsets of a metrizable compactum K
and F is lower semicontinuous� due to the openness of f��� Moreover� the
composition pK � � � h is a selection of F jA� Hence� there exists a selection
of F � say �� � � Z � K� which extends pK � � � h� due to Zero�dimensional
selection theorem�

To nish the proof it su�ces to dene �h � Z � X as

�h�z� � �����g�z�� ���z��� � X �

Theorem is thus proved�

We state without proofs the following properties of ��soft mappings�

Theorem �	�����
�A� A composition of any two ��soft mappings is again a ��soft mapping�
�B� Let X � lim

	�
�X�� p

�
������� be the inverse limit of continuous spectra with

compacta X� and ��soft bonding maps p���� � Then the natural projection
X � X� is also ��soft�
�C� Let f � X � Y be a ��soft mapping� Then X is an AE����space if and
only if Y is an AE����space�

As a corollary of Theorems �������B� and �������B� we have that every
mapping f having a Haydon�s decomposition is a ��soft mapping� The proof
of converse implication is performed using the following new notion�

���



��� Soft mappings

De�nition �	����� A surjection f � X � Y is called a Dugundji
mapping if for some mapping g � X � I� � the diagonal mapping f"g �
X � Y 
 I� dened as f"g�x� � �f�x�� g�x��� is an embedding and admits
a regular extension operator L � C�X� � C�Y 
 I� �� such that for every
h � C�Y �� the image L�h � f� is a function on Y 
 I� � which is constant over
every ber fyg 
 I� �

g I�

X

��
��

��
��

�	

���������F

���������fg Y 
 I�

f Y

One can put f � id jX � X � X and obtain that in this case g � X � I�

is a Dugundji embedding� i�e� the Dugundji spaces are compacta with the
identity mapping being a Dugundji mapping�

Theorem �	����� Every ��soft mapping f � X � Y is a Dugundji
mapping�

Proof�
I� Construction

Let�
��� � � X � I� be an embedding�
��� �"f � X � I� 
 Y be the diagonal mapping�
��� m � Z � I�
Y be a Milyutin mapping of a zero�dimensional compactum

Z onto I� 
 Y �
��� � � I� 
 Y � P �Z� be a mapping associated with m� and
��� A � m����"f�X�� be a closed subset of Z�

We claim that then�
�a� mjA is a selection of ���"f��� �m�jA�
�b� There exists �m � Z � X which extends mjA and which is a selection of

��"f��� �m � Z � X�
�c� The formula �L�h���t� �

R
m���t	�h� �m�d�t� h � C�X�� t � I� 
Y � denes

a desired regular extension operator L � C�X�� C�I� 
 Y ��

A
mjA� X

h� IRT
�m

��y �"f

Z
��
��
��
��
�

�
m

I� 
 Y �



P �Z�

II� Veri�cation

We check only one point from �c��

�c� Let g � C�Y �� Then h � g � f � C�X� and

�L�h���t� �

Z
m���t	

�h � �m�d�t

���



Dugundji mappings and �soft mappings ���

But for t � �s� y� � I� 
 Y and for z � m���t� we have t � m�z� �
� ��"f�� �m�z�� � ��� �m�z��� f� �m�z�� � �s� y�� So�

�L�h���t� �

Z
t�m���t	

�g � f � �m��z�d�t �
Z

m���t	

g�y�d�t �

�g�y� �
Z

m���t	

d�t � g�y� �

i�e� L�g�f� is a function on I�
Y � constant on every ber I�
fyg� Theorem
is thus proved�

The proof of the inclusion fDugundji mappingg � fmappings with a
Haydon�s decompositiong is based on the same techniques as the proof of the
inclusion fDugundji spacesg � fspaces with Haydon�s decompositiong�

Theorem �	��	� ������ For a mapping f between compacta the following
assertions are equivalent�
��� f has a Haydon�s decomposition�
��� f is ��soft� and
��� f is a Dugundji mapping�

Theorems ���	� and ������ show that the notion of ��soft mapping is a
suitable analogue in the category of mappings of the notion of AE����spaces
in the category of spaces� But the proofs of these theorems state more
essential and intimate relations between these notions� More precisely� for
compact spaces we have the following two �adequacy properites��

Ad ���� If all spaces X� of continuous spectra �X�� p
�
�� are AE����spaces

and all projections p�� are ��soft mappings then the inverse limit X �
� lim

	�
�X�� p

�
�� is an AE����space and all projections p� � X � X� are ��soft

mappings	
Ad ���� Every nonmetrizable AE����space X can be represented as an

inverse limit of continuous spectra �X�� p
�
�� with all X� � AE���
 all p�� being

��soft mappings and weight�X�� � weightX� �Only for weight�X� � ��� for
other weights it is necessary to consider non well�ordered spectra �see ��������

In ����� the properties Ad ��� and Ad ��� were formulated as the fact
or adequatness of the class of all AE����spaces and the class of an ��soft
mappings�

The three pairs of adequate classes can be found in ������

Theorem �	��
�� The following pairs of classes are adequate pairs of
spaces and mappings�
�A� AE����spaces and ��soft mappings�
�B� AR�spaces and soft mappings� and
�C� ��metrizable spaces and open mappings�

���



��� Soft mappings

�� General concept of softness� Adequacy problem

We rewrite Denition ������ for a xed pair �Z�A�� where A is a closed
subset of a topological space Z�

De�nition �	����� A continuous mapping f � X � Y is said to be a
soft mapping with respect to a pair �Z�A� if for every continuous mapping
g � Z � Y and for every continuous mapping h � A � X with f � h � gjA�
there exists a continuous extension �h � Z � X of h with f � �h � g�

A
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De�nition �	����� A continuous mapping f � X � Y is said to be a
soft mapping with respect to a class Z of topological spaces �f is Z�soft� for
shortness� if f is soft with respect to every pair �Z�A�� with Z � Z and A a
closed subset of Z�

As in previous section� setting A � � and g � Z � Y dened by g�Z� �
� fyg� y � Y � we nd that a Z�soft mapping f is a surjection� So� we can
consider in Denition ������ the mapping h � A� X as a selection of �f�� �
g�jA and the extension �h � Z � X of h as a selection of f�� � g�

For various classes Z we obtain di�erent versions of the notion of the
Z�soft mappings� For Z � fn�dimensional paracompactag� we obtain the
notion of n�soft mappings� For Z � fnite�dimensional paracompactag� it
gives the notion of ��soft mappings� For Z � fparacompactag� we dene
the notion of soft mappings �sometimes� the term absolutely soft mappings
is also used�� If in Denitions ������� ������ we claim an existence of a local
�only� extension of a selection h � A� X of the mapping �f�� � g�jA then we
obtain the notions of locally n�soft� locally ��soft
 locally soft� etc� mappings�

Note� that for n�softness of a mapping between compacta X and Y
�metrizable compacta X and Y � it su�ces to consider only compacta Z �re�
spectively� metrizable compacta Z�� Observe that the above notions indeed
work in the class of normal spaces X and Y � only� Outside normal spaces�
more sophisticated denitions must be given �see ���
����� for discussion and
������� for solution�� Moreover� as a rule� the softness notions relates to the
case of continuous mappings between compacta� The main problem here is
the adequacy problem or� in fact� the splitting problem ��
	��

Problem �	���� Can every AE�n��compact space be represented as an
inverse limit of spectrum of metrizable AE�n��compacta with n�soft bonding
maps�

This problem was solved for n � � by Haydon ������ For n � � it was
solved by Fedor�cuk ����� and Nepomnya�s�ci&' ������ For an arbitrary n � IN�
this problem was positively solved by Drani�snikov ����� Theorem �����

��	



General concept of softness� Adequacy problem ���

Theorem �	����� For a compactum X and n � IN
 the following
assertions are equivalent�
�a� X is an AE�n��space�
�b� X is the limit space of a continuous trans�nite inverse spectrum whose

initial space is a singleton and all bonding maps are n�soft mappings with
metrizable kernels� and

�c� X is the limit space of a �spectrum of metrizable AE�n��compacta with
n�soft limit projections�

Recall that a �spectrum is a continuous inverse spectrum �X�� p
�
�� over a

directed set with every countable chain having a least upper bound� As a solu�
tion of the splitting problem �not the adequacy problem� for AE����spaces�
i�e� for spaces which are AE�n��spaces� for any n � IN� we have�

Theorem �	���� ������ Every compact AE����space can be represented
as an inverse limit of a �spectrum of a metrizable AE��� compactum with
��soft limit projections�

As another example of an application of selection technique is the fol�
lowing fact �compare with the proof of Theorem �A�������

Theorem �	����� For a mapping f � X � Y between metrizable
compacta the following assertions are equivalent�
�a� f is n�soft mapping� and
�b� f is open surjection
 all �bers f���y� are �n� ���connected and the

family ff���y�gy�Y is ELCn���

Proof� �b� � �a�
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Clearly� Finite�dimensional selection theorem is applicable to the lower semi�
continuous mapping F � Z � X dened by setting

F �z� �

���f���g�z��� z �� A

fh�z�g� z � A
� dimZ 	 n �

�a� � �b� First� the ��softness of f implies that f is an open surjection
�see Theorem �������A��� Let for a xed y � Y � a mapping h � A � X map
A � Z with dimZ 	 n into the ber f���y�� Then h is a partial selection of
f�� � g� where g maps z into the point y � Y � Hence n�softness implies that
f���y� is AE�n��space and therefore is a �n� ���connected space�

Suppose to the contrary� that ff���y�gy�Y is not equi�LCn�� and hence
is not a uniformly LCn�� family� Then there exist � 	 � and � 	 k � n
such that for every m � IN� there exist ym � Y and a continuous mapping

���



��� Soft mappings

hm � S
k � f���ym�� with diameter hm�S

k� less than ��m� and without any

extension �hm to the ball Bk��� bounded by Sk� For any m � IN� we pick a
point xm � hm�S

k� and without loss of generality we may assume that fxmg
converges to x � X and fymg converges to y � Y � such that f�x� � y�

Put Z � Bk�� 
 �fymg � y� and A � Sk 
 �fymg � y� � �Bk�� 
 fyg��
dimZ � k � 	 n� Let g � Z � fymg�fyg be the projection onto the second
factor and hjSk�fymg � hm� m � IN� hjBk���fyg � x� Clearly� h is a conti�

nuous selection of �f�� � g�jA� Due to the n�softness of f we nd a selection
�h of f�� � g which extends h� So� for a su�ciently large m� the diameter of
the image �h�Bk�� 
 fymg� � f���ym� is less than �� and �hjBk���fymg is an

extension of hm from Sk onto Bk��� Contradiction�

As for a solution of the splitting problem� let us state the answer for
mappings �not for spaces��

Theorem �	���� ������ Every n�soft mapping between compacta can be
decomposed into a continuous spectrum whose bonding maps are n�soft and
have metrizable kernels�

This theorem reduces the study of n�soft mappings between compacta to
n�soft mappings with metrizable kernels� which are completely characterized
by the property that their bers are Cn�� and ELCn�� families� due to
Finite�dimensional selection theorem�

�� Parametric versions of Vietoris�Wazewski�Wojdys�lawski
theorem

Recall that a continuum is a connected metrizable compact spaces and
Peano continua are exactly locally connected continua� or� equivalently �due
to the Hahn�Mazurkiewicz theorem�� continuous images of the interval ��� ���

For a topological space X we denote by expX the set of all nonempty
compact subsets of X endowed with the Vietoris topology whose basis is
formed by all sets of the form

O�U�� � � � � Un� � fA � expX j A �
n�
i��

Ui

and A � Ui � � for all i � �� �� � � � � � ng

where Ui are open subsets of X� For a metric space �X� �� the Vietoris
topology restricted on the space of all subcompacta of X is compatible with
the Hausdor� metric �H if and only if X is compact� The subspace of expX
consisting of all subcontinua of X is denoted by expcX�

One can consider exp and expc as covariant functors on the category of all
topological spaces and continuous mappings� More precisely� for a mapping

���



Parametric versions of Vietoris�Wazewski�Wojdys�lawski theorem ���

f � X � Y � the mapping exp f � expX � expY �expc f � expcX � expc Y �
is dened by setting �exp f��A� � f�A�� for A � expX �resp� for A � expcX��
It is easy to check that exp f and expc f are continuous mappings whenever
f is continuous� For a compact space X� the space expX is also compact� see
������ Moreover� for a normal space X� the space expcX is a closed subset
of the space expX ������ So� exp and expc are covariant functors from the
category of all �metrizable� compact spaces and continuous mapping into
itself�

Theorem �	���� �������
���
�� For any continuum X
 the following
assertions are equivalent�
��� X is locally connected
 i�e� X is a Peano continuum�
��� expX is locally connected�
��� expcX is locally connected�
��� expX is an absolute retract� and
��� expcX is an absolute retract�

The Hahn�Mazurkiewicz theorem shows that it is possible to strengthen
the connectedness condition in the denition of Peano continuum by linear
connectedness� Hence� due to the Kuratowski�Dugundji extension theorem
����� Peano continua are exactly compact AE����spaces� But a genuine ana�
logue of the property �AE����space� for the class of mapping was formulated
in Section � above� namely� the property ���soft mapping�� The following
theorem is a suitable analogue of Theorem ������ for mappings�

Theorem �	��	� �������
�� For a mapping f � X � Y between Peano
continua the following assertions are equivalent�
��� f is ��soft and expc is open�
��� expc f is ��soft� and
��� expc f is soft�

The main di�culty is to prove the implication ��� � ��� and here the
key ingredient is the ��dimensional selection theorem� Let us sketch the
argument�

To establish ��softness of expc f � expcX � expc Y it is su�cient in
accordance with the denition of ��softness and with Finite�dimensional
selection theorem to check that�
�a� expc f is an open surjection�
�b� The bers of expc f are either ��connected� or are Peano continua� and
�c� The family of bers of expc f is uniformly locally linearly connected� i�e�

for any � 	 � there is � 	 � such that whenever B�� B� � �expc f����A�
with �H�B�� B�� � �� then there exists an arc in �expc f����A� joining
B� and B�� with diameter less than ��
Now �a� is contained in the hypotheses ��� of the theorem� By ��softness

of f we have that preimages of f are AE����compacta� or Peano continua�
Due to the result of ������ we know that preimages of expc f are absolute
retracts�

���



��� Soft mappings

Let � 	 � be given and let � 	 � be a positive number which corresponds
to ��
 in the property that ff���y�gy�Y is uniformly LC��family� i�e� when�
ever x�� x� � f���y� and ��x�� x�� � � � ��
� there is an arc in f���y� join�
ing x� and x�� with diameter less than ��
� This property holds because of
��softness of f and compactness of X� We claim that the pair ��� �� satis�
es �c��

Denote S � fy � Y j f���y� is a singletong the singular set of f and
M � Y nS� As a separate statement we claim that�
�$� Y contains no simple closed curve intersecting M

Let us now return to �c�� If A intersects with S then the union B � B��
B� is an element of �exp

c f����A�� whenever B�� B� � �expc f����A�� So B�

is joined to B� by an arc of diameter � �� � ���� Here� we used Kelley�s
result that there exists an ordered arc in expX from Bi to B� Bi � B and
Bi� B � expc� if and only if each connected component of B intersects Bi�
For A � M we claim the existence of an arc X � f���A�� with diameter
� ��� which intersects B� and B�� Then B� can be joined to B� by an arc of
diameter less than �� formed two ordered arcs from Bi to B � B� � � � B��
Recall that an arc � � expX is said to be ordered if for any A�B � �� either
A � B or B � A�

To construct the arc � we assume that � is a convex metric on X� We
choose an arbitrary x� � B�� Since �H�B�� B�� � �� there is a point x� � B�

with ��x�� x�� � �� So� we nd a straight line segment �� � X� joining x� to
x�� Clearly� diam�� � � � ��
� We shall construct � � f���A� joining x� to
x� and lying in the ��
�neighborhood of ��� which implies that diam� � ����

If f j�� is one�to�one� then f���� � A� since A � M is a dendroid� i�e�
a Peano continuum that does not contain any topological circle� So� in this
case we put � � ���

Otherwise we can x on �� maximal intervals �ti� t
�
i� whose endpoints are

glued together by f � Using �$� we claim that f�ti� � f�t�i� � A� Then we
can replace the interval �ti� t

�
i� by a small arc �i � f���f�ti�� joining ti to

t�i� If i�� then length of �ti� t
�
i� tends to zero and due to the ��softness of

f we see that the diameters of substituted arcs �i also tend to zero� Hence�
the limit map is continuous� i�e� it gives an arc � � f���A�� Theorem is thus
proved�

���
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�� Functor of probabilistic measures

The probabilistic measure function P is a covariant functor acting from
the category of compact spaces and continuous mapping into itself� P �X� is
a compact subset of the Banach space C��X� conjugate to the Banach space
C�X� of continuous functions on X� P �X� is endowed with ��weak topology�
induced in C��X� by the linear actions of elements x � X� The set P �X�
consists of all nonnegative functionals � � C��X� �i�e� � � � implies ��f� �
�� with norm �� or equivalently� with property that ��aX� � �� By the Riesz
theorem �Riesz for ��� ��� Banach and Saks for metric compacta� Kakutani for
compacta� the space C��X� is isomorphic to the space of countably additive
regular Borel measures onX� In view of that� sometimes the notation

R
X f d�

is more preferable than ��f�� For a continuous mapping f � X � Y between
compacta the mapping P �f� � P �X�� P �Y � is dened by

�P �f�������� �

Z
X

�� � f�d�

or� if we consider measures as functions of subsets�

�P �f������A� � ��f���A�� �

where A is a Borel subset of Y �
Note� that outside the class of compacta the above two approaches are in

general nonequivalent� see ������ We omit the verication that P �f� is really
continuous for continuous f �

Theorem �	��
� ������ For a continuous surjection f � X � Y between
compacta the following assertions are equivalent�
��� f is an open mapping� and
��� P �f� � P �X�� P �Y � is an open mapping�

Together with Convex�valued selection theorem� Theorem ����
� shows
that the functor P acts from the category of metrizable compacta and open
mappings into the category of convex compact subsets of the Hilbert space
�� and soft mappings�

Theorem �	����� For a continuous surjection f � X � Y between
metrizable compacta the following assertions are equivalent�
��� f is an open mapping� and
��� P �f� � P �X�� P �Y � is a soft mapping�

Proof ��� � ���� For a metrizable compactum X only two cases are
possible� First� if X consists of a nite number of points x�� � � � � xn then
P �X� equals the set of all convex combination of the Dirac measures�

� �
nX
i��


i�xi �
X


i � �� 
i � � �

���



��� Soft mappings

where

�xi�A� �

����� xi �� A

�� xi � A

Hence� in this case P �X� is a�nely homeomorphic to the standard �n� ���di�
mensional simplex�

For innite metrizable compact X we can consider P �X� a�nely embed�
ded into the power IRF � where F is a countable dense subset of C�X� which
separates points of X� Due to the compactness of P �X�� we can nd an
a�ne embedding P �X� into the Hilbert space ��� So� P �X� is an innite�di�
mensional convex compact subset of �� and� consequently� P �X� is homeo�
morphic to the Hilbert cube Q� by Keller�s theorem ��	���

A
j� P �X�T �h

��y P �f�

Z
��
��
��
�

�
g

P �Y �

With notations of Section � above� for every paracompact space Z� �P �f�����
g is a mapping with convex values which is lower semicontinuous� due to
Theorem ����
�� Hence Convex�valued selection theorem is applicable to
�P �f���� � g and its partial selection h � A � P �X�� Consequently� we can

nd a selection �h of �P �f���� � g which extends h�
���� ���� The softness of P �f� implies openness of P �f� which implies

the openness of f �by Theorem ����
��� Theorem ������ is thus proved�

A natural problem arises immediately� When does the mapping P �f� be�
come a trivial Q�bundle �i�e� with bers homeomorphic to the Hilbert cube�"
Clearly� if P �f� is a trivial Q�bundle then f is certainly an open surjection
with all bers f���y� innite� Unfortunately� this is only a necessary condi�
tion �see example below��

Theorem �	���� ���	�� Let f � X � Y be a continuous mapping between
�nite�dimensional compact metric spaces� Then the following assertions are
equivalent�

��� f is an open surjection and all preimages f���y�
 y � Y 
 are in�nite�
and

��� P �f� � P �X�� P �Y � is a trivial Q�bundle�

Theorem �	��� ���	�� Let f � X � Y be an open continuous mapping
of an arbitrary metric space X onto a zero�dimensional compact metric
space Y 
 with in�nite �bers f���y�� Then P �f� � P �X� � P �Y � is a trivial
Q�bundle�

���
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Theorem �	���� ���	�� Let f � X � Y be an open continuous mapping
of an arbitrary metric space X onto a �nite�dimensional compact metric
space Y such that the �bers f���y� have no isolated points� Then P �f� is a
trivial Q�bundle�

Theorem �	���� ��
��� Let f be an open continuous mapping from a
compact metric space X onto a countable�dimensional metric space Y 
 with
all �bers f���y� in�nite� Then P �f� is a trivial Q�bundle�

Here� countable dimensionality of Y means that Y can be represented as
a countable union of its nite�dimensional subsets� The proofs of Theorems
������������� have a common idea and are essentially used in the Toru�nczyk�
�West criteria� In checking of this criteria two technical moments are crucial�
Milyutin�s surjections and selection theorems �Zero�dimensional� in Theorems
������������� and a strengthening of Compact�valued in Theorem ��������

Toru�nczyk�West criterion ���� �	����� A Hurewicz �bering f �
X � Y of ANR�compact metric spaces with contractible �bers is a trivial
Q�bundle if an only if for every � 	 �
 there exist mappings g� � X � X and
g� � X � X such that
�i� f � gi � f �
�ii� dist�gi� id jX� � �� and
�iii� g��X� � g��X� � �
 i � �� ��

A Hurewicz �bration f � X � Y is a mapping with the covering
homotopy property with respect to every paracompact space P � Every soft
mapping is a Hurewicz bration� it su�ces to put Z � P 
 ��� �� and A �
� P 
 f�g � Z� Moreover� the bers of a soft mapping of compact spaces
are absolute extensors and hence� in metrizable case� are absolute retracts�
Ferry ����� proved that the converse also holds� Namely� Hurewicz brations
with all bers absolute retracts are soft mappings� So� in our assumptions
in Theorems ������������� we only need to nd g� � P �X� � P �X� and g� �
P �X�� P �X� with properties from the statements of Theorem �������

We will emphasize a selection moment in the proof below� see Lemma
������� According to the nite�dimensionality of X and Y � we can assume
that f is a �submapping� of the projection pY � Y 
 IRn � Y � So� the main
commutative diagram here is

S
m� T

g�� X � Y 
 IRn
f�
��y f

��y $ pY
Z �

g
Y

where f � X � Y is the given mapping� g � Z � Y is a Milyutin surjection
of a zero�dimensional metric compactum Z onto Y � T � f�z� x� � Z 
 X j
g�z� � f�x�g is the berwise product of f and g� f� and g� are the natural
projections� and m � S � T is a Milyutin surjection of a zero�dimensional
metric compactum S onto T �

���
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Lemma �	����� For every � 	 �
 there exist two selections �� � � Z �
T of the mapping f��� such that dist���z�� ��z�� � �
 for every z � Z
 and
�g����Z��� � �g����Z��� � ��

We say that a family L of sets has 	 m neighbors� if every element L � L
intersects at most m other elements of L�

Combinatorial lemma �	����� There is a mapping

k � IN� � IN

such that for every set X
 every �nite covering U � fU�� � � � � Usg of X with
number of neighbors 	 m
 and every system B�� � � � �Bs of disjoint balls in
IRn with cardinality jBij � k���m� n�
 there exist balls

Bi
�� � � � � B

i
 � Bi� i � �� �� � � � � s �

such that the system fUi 
Bi
j j � 	 i 	 s
 � 	 j 	 �g is disjoint�

Proof of Lemma ������� Since the compact metric space Y is nite�
�dimensional� there exists an m 	 � such that every open covering of Y has
a renement with at most m neighbors� Let k � k���m� n� as in Lemma
������� For an arbitrary point y � Y � let xi�y� � �y� ri�y��� i � �� �� � � � � k be
distinct points in the ber f���y� separated by distances less than ��� from
each other �the existence follows from the innity of f���y��� ri�y� � IRn�

Let B�y� � fBi�y� j i � �� �� � � � � kg be a disjoint system of open
����neighborhoods of the point ri�y� in IR

n� The sets Vi�y� � f��Y 
Bi�y���
X� are open neighborhoods of y� since f is open� i � �� �� � � � � k� Let V �y� �
�
TfVi�y� j i � �� � � � � kg� Let U � fU�� � � � � Usg be a covering of Y with at

most m neighbor that renes the open covering fV �y�gy�V � For every Uj we
x a y such that Uj � V �y� and set Bj � B�y�� By Lemma ������� there exist
balls Bj

�� B
j
� � Bj such that the system U 
 B � fUj 
 Bj

i j � 	 j 	 s� � 	
	 i 	 �g is disjoint�

By the construction� f��V �y�
Bi�y���X� � V �y�� y � Y � and moreover�

f��Uj 
Bi�y�� �X� � Uj for Uj � V �y�� Consequently� f��Uj 
Bj
i � �X �

� Uj for all � 	 j 	 s� � 	 i 	 �� Therefore� f���g
���Uj� 
 Bj

i � � T � �
� g���Uj�� The restriction f�jwij of the open mapping f� onto the open set
wij � �g

���Uj�
Bj
i � � T is an open mapping�

Moreover� wij is a topological complete space� being an open subset of
a complete space T � By Zero�dimensional selection theorem� there exists
a selection ij � g

��Uj � wij for restriction f�jwij � Using a combinatorial
argument we take a disjoint open�closed covering fO�� � � � �Osg of Z which
renes the open covering fg���Uj� j � 	 j 	 sg of the zero�dimensional
compact metric space Z� For z � Oj let i�z� � ij�z�� The selections

�� � � Z � T for f� are thus dened� Since the balls B
j
i have radii less than

��� and the distance between their centers is less than ���� for a given j� we

���
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have that dist��� �� � �� Finally� �g����Z��� � �g����Z��� � � since the
system U 
 B is disjoint� Lemma ������ is thus proved�

In ��
��� Lemma ������ was derived for a countable�dimensional Y from
the following selection lemma�

Lemma �	��	�� Under assumptions of Theorem ������ for every � 	 �

there exist lower semicontinuous selections �� and �� of the inverse mapping
f�� such that ���y� � ���y� � � and the Hausdor� distance between ���y�
and ���y� is less than �
 for all y � Y �

We nish this paragraph by an example of Drani�snikov� which shows that
for an arbitrary compact space Y � Theorems ������������� are in general�
false�

Theorem �	��
� ������ Let fk � S
k � IRP k be the standard ��fold

covering mapping of the k�dimensional sphere onto the real projective k�space
and let

f �
�Y
n��

S�
n �

�Y
n��

IRP �n

be the direct product of the mappings f�� f�� f�� f�� � � � Then the mapping P �f�
admits no two disjoint selections for �P �f���� and hence P �f� is not a trivial
Q�bundle�

���



x�� METRIC PROJECTIONS

�� Proximinal and �Ceby�sev subsets of normed spaces

Let �M��� be a metric space and A be its closed subset� For every x �
M � one can dene a set

PA�x� � fy � A j ��x� y� � dist�x�A� � inff��x� z� j z � Agg

of all elements y � A which are so called elements of the best approximation
of a given x �M by elements of subset A�

De�nition �
���� The multivalued mapping PA � x �� PA�x� of a metric
space �M��� into its closed subset A � X is called a metric projection M
onto A�

Clearly� PA�x� is a closed subset of A� For any nite�dimensional normed
spaceM the set PA�x� is nonempty� for every x �M � due to the compactness
of the closed balls in M � Moreover� for PA�x� � �� it su�ces to have
only the fact that the distance function dA�x� � dist�x�A� restricted to the
intersection of A with closed balls in M attains its inmum� Hence PA�x� �
� �� x � M � for every nite�dimensional A � M and innite�dimensional
M or PA�x� � �� x � M � for every ��closed convex subset A of a conjugate
space M � B� of a Banach space B�

In the last example closed balls in M are ��compact subsets due to the
Banach�Alaoglu theorem and the distance function dA is a lower semiconti�
nuous real�valued function dA � M � ������ As a version of ���	� we have
the following criterion for Banach spaces B with the property PA�x� � �� for
every x �M and every closed convex A � B�

Theorem �
���� For every Banach space B
 the following statements
are equivalent�
�a� B is re�exive�
�b� Every functional f � B� attains its supremum on the unit sphere S � B�

and
�c� For every closed convex subset A � B and every x � B
 the best

approximation set PA�x� is nonempty�

De�nition �
���� A closed subset A of a metric space �M��� is called
proximinal �resp� �Ceby�sev� if PA�x� is nonempty �resp� PA�x� is a singleton��
for every x � M � �Another often used term is E�subset �existence subset��
and resp� U �subset �uniqueness subset���

In the middle of the previous century� �Ceby�sev proved that in the space
C��� �� the subspace of all polynomials of degree 	 n and the subset Rnm of

�		
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all rational functions a��a�x�����anxn

b��b�x�����bmxm
with xed n�m � IN are �what we call

today� �Ceby�sev subsets�

In nite�dimensional Euclidean spaces� �Ceby�sev sets are completely de�
scribed by the following Motzkin theorem ��	���

Theorem �
���� For every �nite�dimensional Euclidean space E and
every closed subset A � E
 the following assertions are equivalent�
�a� A is a �Ceby�sev subset� and
�b� A is a convex subset�

Every retract of any metrizable space is its �Ceby�sev subset with respect
to some suitable metric as the following Kuratowski theorem shows�

Theorem �
�	� ������ For every metrizable space M and every closed
subset A �M 
 the following statements are equivalent�
�a� A is a retract of M � and
�b� M admits a metric � �compatible with a given topology� such that A is a

�Ceby�sev subset of �M����

Recall that a Banach space B is said to be strictly convex if its unit
sphere S � B does not contain a nondegenerate segment� It is easy to see
that B is strictly convex if and only if for every closed convex subset A � B
and for every x � B� the sets PA�x� are singletons or empty� Therefore� by
Theorem �
���� we have�

Theorem �
�
�� For every Banach space B the following statements
are equivalent�
�a� B is re�ective and strictly convex� and

�b� Every closed convex subset A � B is a �Ceby�sev subset�

As a generalization of Theorem �
��� for nite�dimensional Banach �non
Euclidean� spaces we have�

Theorem �
��� ��	��� For every �nite�dimensional Banach space B the
following statements are equivalent�
�a� B is strictly convex and smooth� and

�b� The class of all �Ceby�sev subsets of B coincides with the class of all closed
convex subsets of B�

Examples of strictly convex Banach spaces are�
�a� Hilbert spaces�
�b� Lp��� spaces� � � p ���
�c� Space C � C��� �� with the following norm k � k�� equivalent to the

original sup�norm k � k�

kfk� � kfk ��

�Z
�

f��x�dx����� � 	 � �

�	�
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�d� Any separable Banach space B with some suitable norm� equivalent to
the original norm� In fact� it su�ces to embed B into C� endowed with
the norm from �c�� and

�e� The space ����� with uncountable � admits no equivalent strictly convex
norm�
As a weakening of strict convexity� we say that a Banach space B is

uniformly convex if for every � � ��� ��� the modulus of convexity dened as

���� � inff�� kx y

�
k j kxk � kyk � �� kx� yk � �g

is positive� For uniformly convex smooth Banach space B there exists criteria
for convexity of their �Ceby�sev subsets�

Theorem �
��� ���
�� Let A be a �Ceby�sev subset of an uniformly convex
smooth Banach space� Then the following statements are equivalent�
��� A is convex� and
��� A is approximately compact�

Recall that a subset A of a metric space �M��� is called approximatively
compact if for every x � M and every sequence fxng� xn � A� the equality
lim
n��

��x� xn� � dist�x�A� implies the existence of a subsequence fxnkg which
converges to an element from A�

Clearly� in this case lim
k��

xnk � PA�x� and hence every approximately

compact subset is a proximinal subset� The example A � ff � C��� �� j
f��� � �g � C��� �� shows that proximinal subset can be non�approximately
compact� As a corollary of Theorem �
���� Emov and Ste�ckin proved �in
contrast to the �Ceby�sev results� that the subset Rnm of rational functions is
not a �Ceby�sev subset of Lp��� ��� � � p ���

Theorem �
�� ������ There exist no �Ceby�sev subspaces in the Banach
space ����� with j�j 	 jIRj�

Theorem �
���� ���������
��� There exist no �nite�dimensional �Ceby�sev subspaces in the Banach space
L���� ���
��� There exists a separable re�exive Banach space without �nite�dimensional
�Ceby�sev subspaces�

We shall end this section by stating two important open problems�

Problem �
����� Does there exist a separable Banach space without
�Ceby�sev subspaces�

Problem �
���� �Emov�Klee�Ste�ckin�� Does there exist a nonconvex
�Ceby�sev subset in the Hilbert space�

For more details see the surveys �	�����������
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�� Continuity of metric projections and ��projections

Below� we consider only the case when M � B is a Banach space and
A � B is its closed convex �nonempty� subset� Under this assumption the
metric projection PA � B � A is a multivalued mapping with closed convex
values� In the innite�dimensional situation it is possible that PA�x� � ��
for some x � B� Moreover� there exists an example of a convex body A �
c� such that PA�x� � �� for every x � c�nA �see ������� We can avoid such
problems only by the additional assumption that we consider only proximinal
�not necessarily �Ceby�sev� subsets A � B� So there is a single obstruction to
applying the Michael selection theorem to the metric projection PA� namely�
the continuity properties of the metric projection�

De�nition �
����� A convex closed subset A of a Banach space B is
said to be strongly �Ceby�sev �resp� weakly �Ceby�sev� if the metric projection
PA is a singlevalued continuous mapping �resp� if PA admits a singlevalued
continuous selection��

It is easy to check that for compact �or approximately compact� subsets
A � B� the metric projection is upper semicontinuous�

Theorem �
����� Every approximately compact �Ceby�sev set is a strong�
ly �Ceby�sev set�

Theorem �
��	� ������ In every uniformly convex Banach space
 every
convex closed subset is a strongly �Ceby�sev subset�

Sometimes this property characterizes uniform convexity of Banach
spaces�

Theorem �
��
� ������ For every Banach space B the following asser�
tions are equivalent�
��� Every nonempty closed convex subset is a �Ceby�sev subset� and
��� If kxnk � �
 where xn � B
 kfk � �
 f � B�
 and lim

n��
f�xn� � �
 then

fxng is a convergent sequence�

Theorem �
����� �a� ����� There exists a �Ceby�sev subset A in C��� ��
which is not strongly �Ceby�sev
 i�e� PA is discontinuous�
�b� ����� The same is true for subspaces A � C��� ���
�c� ����� There is a strictly convex re�exive Banach space B with a �Ceby�sev
but not strongly �Ceby�sev subspace�

O�sman ������������� characterized�
�a� Banach spaces for which every closed convex subset is a proximinal subset

with an upper semicontinuous metric projection�
�b� Re!exive Banach spaces for which metric projection PA is upper semi�

continuous� for every closed convex A�

�	�
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�c� Banach spaces with upper semicontinuous metric projection onto hyper�
spaces codimension �� and

�d� Banach spaces with lower semicontinuous metric projection pA for su��
ciently large family of closed convex subsets A�
As it was pointed out in Results� x� the notion of a weak �Ceby�sev subset

is related to the derived mapping P �A of the metric projection PA� Recall� that
for a proximinal subset A of a Banach space B� the mapping P �A associates
to every x � B� the set

fa � PA�x� j dist�a� PA�xn��� � as xn � xg �

Now let us apply Convex�valued selection theorem to obtain a su�cient
condition for weak �Ceby�sev sets�

Theorem �
����� Let A be a convex closed subset of a Banach space B
and let P �A � PA� Then PA is lower semicontinuous and hence
 A is a weak
�Ceby�sev subset of B�

Proof� Let F � P �A � PA � B � A � B and G be open in B� Let us
check that x is a limit point of C and xn � x� xn � C� xn � x� We want
to see that F �x� does not intersect with G� So� if y � F �x� � P �A�x�� then
y � lim

n��
yn� for some yn � F �xn�� But xn � F���G�� i�e� F �xn� � BnG�

Hence y � lim
n��

yn � BnG�
This is why PA is lower semicontinuous� Now Convex�valued selection

theorem is applicable to the mapping PA and hence it admits a selection� i�e�
A is indeed a weak �Ceby�sev subset�

The lower semicontinuity of a metric projection PA sometimes implies
�nice� connectedness properties of A� For example� we have�

Theorem �
��� ������ Every proximinal subset A of a �nite�dimen�
sional smooth Banach space is convex
 whenever the metric projection PA is
lower semicontinuous�

Neve�senko ����� characterized nite�dimensional Banach spaces in which
the class of closed subsets A with a lower semicontinuous PA coincides with
the class of the so�called direct suns� Amir and Deutsch ��� proved that in
C��� �� each �Ceby�sev subset with continuous metric projection is a sun�

Theorem �
���� ��
�� Every proximinal subset A of a �nite dimensional
Banach space is V �acyclic
 provided that the metric projection PA is lower
semicontinuous�

Recall that a subset A � B is said to be V �acyclic if all its intersections
with balls are empty or acyclic�

Theorem �
���� ��
�� For every �nite�dimensional Banach space B the
following assertions are equivalent�

�	�
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�a� Each bounded proximinal subset A � B with a lower semicontinuous
metric projection PA is convex� and

�b� The set of all extremal points of the unit sphere S� � B� is dense in S��

Here� a point x� � S� is said to be extremal if x� �� �a� b�� whenever
�a� b� � S��

Theorem �
���� ����� A metric projection PA is lower semicontinuous
for every �nite�dimensional subspace A of a Banach space X if and only if
for every x� y � X
 with kx yk 	 x
 there exist positive constants �� � such
that kz  �yk 	 kzk
 whenever kx� zk 	 ��

Theorem �
���� ����� PA is lower semicontinuous for every �nite�
�dimensional subspace A of a Banach space
 if PA is lower semicontinuous
for every one�dimensional subspace A�

Theorem �
���� �	��� Let the set fx � B j PA�x� is a singletong be
dense in B for a subspace A � B� Then PA admits a continuous selection if
and only if PA is ��lower semicontinuous�

For denition of n�lower semicontinuity see Denition �B������� See also
Theorem �B������� for B � C�X� and A any n�dimensional subspace of B�

Let B � X� be the conjugate Banach space and let A � Y� � B be the
annihilator of a subspace Y � X� Then one can consider the �Hahn�Banach�
multivalued mapping HBY � Y

� � X� � B� Namely� for every g � Y ��

HBY �g� � ff � X� j f jY � g and kfk � kgkg�

Theorem �
��	� ������ The mapping HBY admits a continuous selec�
tion if and only if PY� � X

� � Y� admits a continuous selection�

Due to a result of Sommer ������ the following condition is necessary
for an n�dimensional subspace A of the Banach space C�a� b� to be a weak
�Ceby�sev subspace� Every function f � A has at most �n� �� changes of
sign� i�e� there is no �n �� points a 	 x� � x� � � � � � xn�� 	 b� such that
f�xi�f�xi��� � �� i � �� �� � � � � n�

For example� for the ��dimensional subspace �sin� � fx �� t sinx j t � IRg
of the space C���� �� this condition fails and hence this subspace is not a
weak �Ceby�sev subspace�

Note that in �	������ the term �weak �Ceby�sev� is used exactly for this
condition of sign changes� To eliminate troubles with �possible� non�proxim�
inality of a given subset A � B one can consider the notion of the metric
��projection PA���

De�nition �
��
�� Let � 	 � and A be a closed subset of a metric space
�M���� Then a multivalued mapping PA�� is dened at every x � M as the
following �nonempty� set�

PA���x� � fa � A j ��x� a� 	 dist�x� a�  �g�

�	�



��� Metric projections

For a Banach space M � B and closed convex A � B� the sets PA���x� are
nonempty and it is easy to check the lower semicontinuity of PA�� � B � A�
So� Convex�valued selection theorem is applicable and hence continuous
selections for PA�� �i�e� continuous ��approximations� always exist�

If we do not x � 	 �� � and A � M in Denition �
��
� then we
obtain the denition of metric projection as a multivalued mapping of four
parameters� �x�A� d� ��� where x � X� A is a closed subset ofM � d is a metric
equivalent to an original metric �� and � 	 �� Brie!y�

P � X 
F�X� 
MX 
 ������ X�

So� one can consider continuity property of the so�dened metric projection
P � As usual� we regard F�X� equipped with the �partial� Hausdor� metric�
i�e� the inequality H�A�� A�� 	 t means that for every s 	 t� the closed set
A� and A� lies in s�neighborhoods of each other� Stability �global or local�
of P means its continuity �global or local�� Below� we omit the variation of
metric �� i�e� P depends on a triple �x�A� ���

Theorem �
���� ���	�� Let M � B be a Banach space
 A its compact
convex subset
 and � 	 �� Then the metric projection P � B 
 F�B� 

������ B is continuous at the point v � �x�A� ���

Theorem �
���� ��������� Let B be a Banach space
 A its closed convex
subset
 and v � �x�A� �� � B 
 F�B� 
 ������ Suppose that for w �
� �y�C� �� � B 
F�B�
 ����� the following estimate holds�

j�� �j �kx� yk �H�A�C� � ��

Then the following inequality is satis�ed�

H�P �v�� P �w�� 	
�
� dist�x�A�

�
 �

�
�j�� �j  �kx� yk �H�A�C�� �

Moreover
 for convex C � F�B�
 the inequality

H�P �v�� P �w�� 	
�
�minfdist�x�A��dist�y�C�g

maxf�� �g  �

�
�

� �j�� �j �kx� yk �H�A�C��

holds without any prescribed estimate for the distance between v and w�

To formulate another Marinov�s result about stability of the metric
projections let us introduce the module of convexity ��t� of the Banach space
B as follows�

��t� � inff�� kx y

�
k j kxk � kyk � �� kx � yk � tg

�	�
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and let

(�a� s� � �a s����
�

s

a s

�
�

Theorem �
��� ������ Let v � �x�A� �� � B 
 F�B� 
 ����� with
convex A
 and w � �y�C� �� � B 
F�B�
 ����� with


 � minf�� �g  d�v� w� 	 � �

where d�v� w� � j�� �j kx� yk �H�A�C�� Then

H�P �v�� P �w�� 	 	

�

(�dist�x�A�� 
�



d�v� w� �

�� Continuous selections of metric projections in spaces of
continuous functions and Lp�spaces

Let B � C�X� be the Banach space of continuous functions on a compact
space X and let A be a nite dimensional subspace of C�X�� Clearly� A is a
proximinal subset of C�X�� i�e� PA�f� � �� for f � C�X�� Denote by Z�f�
the set of all zeroes of a function f � C�X� and by Z�S� �

TfZ�f� j f �
Sg� where S � C�X�� One of the rst selection results is related to a one�
�dimensional A�

Theorem �
���� ������ Let f be a nonzero element of C�X� and A �
� f
f j 
 � IRg a one�dimensional subspace of C�X�
 spanned by f � Then
PA admits a continuous selection if and only if�
�a� f has at most one zero
 and
�b� For every x from the boundary of Z�f�
 there is a neighborhood Vx such

that f jVx has a constant sign�

A surprising result was proved in ����� to the e�ect that as a rule� conti�
nuous selections for PA can be found in a unique manner� A subspace A of
C�X� is said to be Z�subspace if for every nonzero element f � A and every
nonempty open subset G � X� the restriction f jG is not identically zero�

Theorem �
���� ����� Let A be a proximinal Z�subspace of C�X� such
that PA�f� is �nite�dimensional
 for every f � C�X�� Then either there is
no continuous selection for the metric projection PA or there is a unique one�

Theorem �
���� ����� There exists a �ve�dimensional non� �Ceby�sev
Z�subspace of C����� ��� which contains the constants and has a unique con�
tinuous selection for its metric projection�

�	�



��� Metric projections

Theorem �
���� �	��� For a �nite�dimensional Z�subspace A of C�X�
the following statements are equivalent�
�a� PA admits a continuous selection� and
�b� PA is ��lower semicontinuous�
Moreover
 if �a� or �b� holds
 then PA has a unique continuous selection�

Theorem �
����� �a� ����� Let A be an n�dimensional Z�subspace of
C�a� b�� Then PA admits a continuous selection if and only if every nonzero
f � A has at most n zeros and if every f � A has at most �n� �� changes
of sign �see discussion before De�nition ��������

�b� ���� Let A be an n�dimensional subspace of C�a� b�� Then the condi�
tion from �a� are necessary and su�cient for PA to have a unique continuous
selection�

As a parallel to Theorem �
���� we have two following theorems for
Lp�spaces�

Theorem �
��	� ���	�� Let x � fxng be a nonzero element of �� and
A � f
x j 
 � IRg� Then PA admits a continuous selection if and only if
there is no decomposition supp x � N� t N� with in�nite N� and N� such
that kxjN�k � kxjN�k�

Here� supp x � fn � IN j x�n� � �g and kxjNi
k �Pn�Ni

jx�n�j�
Theorem �
��
� ������ Let � be a ��nite measure on a set T 
 f a

nonzero element of L����
 and A � f
f j 
 � IRg� Then the following
statements are equivalent�
�a� supp f is a union of �nitely many atoms� and
�b� PA admits a continuous selection s with the property that s�g� � �


whenever � � PA�g��

�� Rational ��approximations in spaces of continuous func�
tions and Lp�spaces

In this section we present a proof of a theorem about continuous ��ap�
proximations which is due to Konyagin ������ The main ingreedient of the
proof is Convex�valued selection theorem� Let X be a connected compact
space� C�X� the Banach space of continuous functions� and A and B closed
subspaces of C�X�� Denote R � ff�g � C�X� j f � A� g � Bg� We must
assume that in the subspace B there exists element g with g�x� � �� for all
x � X� As above� we denote by dR�h� � inffkh � rk j r � Rg� for all h �
C�X� and for � 	 �� we denote by PR�� the metric ��projection of C�X� onto
R� dened by

�PR���h � fr � R j kh� rk 	 dR�h�  �g�

�	�



Rational ��approximations in spaces of continuous functions and Lp�spaces ���

Note that the values PR���h� are in general not closed convex subsets of C�X��
i�e� Convex�valued selection theorem does not apply directly�

Theorem �
���� ������ Under the above assumptions
 the metric ��pro�
jection PR�� admits a continuous selection s � C�X� � R
 i�e� ks�h� � hk 	
	 dR�h�  �
 for all h � C�X��

Proof�
I� Construction

Let�
��� For every h � C�X�� the subset (�h� � A
B be dened by�

(�h� � f�f� g� � A
B j minfg�x� j x � Xg � � and f

g
� P �h�g�

where P � PR���
We claim that then�

�a� (�h� � �� for every h � C�X��
�b� (�h� is a closed convex subset of A
B� for every h � C�X��
�c� ( � C�X�� A
B is a lower semicontinuous mapping� and
�d� ( admits a continuous selection � � C�X�� A
B�

Let�
��� � be a selection of ( �see �d�� and ��h� � �f�h�� g�h��� and
��� s�h� � f�h��g�h��

We claim that then�
�e� s � C�X�� R is the desired continuous selection�

II� Veri�cation

�a� Fix any �f�� g�� � A
B such that f��g� � P �h�� Then g� has a constant
sign due to the connectedness of X� Hence for some suitable 
 � IR� the pair
�
f�� 
g�� is an element of (�h��

�b� Rewrite the set (�h�� h � C�X�� as a solution of the following system of
linear inequalities�����������

f�x�� g�x�h�x� 	 �dR�h�  �� � g�x�
� �dR�h�  ��g�x� 	 f�x�� g�x�h�x�

� 	 g�x�

for all x � X� Hence (�h� is closed in A 
 B and the convexity of (�h�
follows from the inequalities of the type of

���� 
�f��x�  
f��x��� ���� 
�g��x�  
g��x��h�x� �

� ��� 
��f��x�� g��x�h�x��  
�f��x�� g��x�h�x�� 	
	 ��� 
�cg��x�  
cg��x� �

� c���� 
�g��x�  
g��x�� �

�	�



��� Metric projections

where 
 � ��� ��� x � X and c � dR�h�  � � const�

�c� For h � C�X� and for � � �f� g� � (�h� nd an element �� � �f�� g�� �
(�h� with kh � f��g�k strictly less than dR�h�  �� Let for a given � 	
	 �� the pair �� � �f �� g�� be an arbitrary element of the intersection of
��ball D��� �� with the half�open interval ������ � A
B� Then� due to the
convexity conditions �see the argument for �b��� maxfg��x� j x � Xg � � and
kh� f ��g�k � dR�h�  ��

So� for any h� � C�X� with kh� � hk �  � �dR�h�  �� kh� f ��g�k���
we obtain that

kh� � f ��g�k 	 kh� � hk kh� f ��g�k �   kh� f ��g�k �
� �  kh� f ��g�k �  � dR�h�  ��  	 dR�h

��  ��

i�e� h� � D�h� � implies that �� � �f �� g�� � (�h���D��� ��� Hence ( is lower
semicontinuous at the point h�

�d� Follows from the closedness A 
 B in C�X� 
 C�X�� from �a���c� and
the convex�valued selection theorem�

�e� Obvious� Theorem �
���� is thus proved�

At it was pointed out by Carkov� Theorem �
���� does not hold in
Lp�spaces� This observation was based on the following theorem�

Theorem �
���� ����� Suppose that an approximately compact subset A
of a Banach space B admits continuous selections for PA��
 � 	 �� Then all
values of PA are acyclic�

��	



x	� DIFFERENTIAL INCLUSIONS

�� Decomposable sets in functional spaces

To every di�erential equation x� � f�t� x�� where f is a continuous
mapping� dened on an open connected subset G of IRn��� assuming values
in IRn� and to every initial condition x�t�� � x�� where �t�� x�� � G� one can
associate an integral operator A by the formula�

�Au��t� � x�  

tZ
t�

f�s� u�s�� ds �

Such an operator A is dened for every continuous mapping u � IR � IRn

with the graph �u lying in G� Clearly� every xed point u� of the operator
A is a solution of the Cauchy problem� i�e� is a local solution of x� � f�t� x�
with x�t�� � x�� To establish an existence of xed points of the operator A�
usually two xed�points theorems are used� First one of them is the Banach
contraction principle� In this case the continuity property of f is supplied by
the Lipschitz condition for f � with respect to the second variable x� Then
one can nd a rectangle . � �t� � �� t�  ��
 +D�x�� r� � G such that�
��� The set M � fu � C��t� � �� t�  ��� IRn� j �u � .g is invariant under

the operator A� i�e� A�M� �M � and
��� The restriction AjM �M �M is a contraction�

Due to the closedness of the set M in the Banach space C��t� � ��
t�  ��� IRn� of all continuous functions on the segment �t� � �� t�  �� and due
to the Banach contraction principle one can obtain a �unique� xed point for
A�

For di�erential equations with continuous right�hand side �without Lip�
schitzian restrictions� another xed points principle is usually used� the
Schauder theorem� For simplicity� consider the equation x� � f�t� x�� with
initial data t� � �� x��� � x� � ��

We may assume that the values of f are bounded by a constant 
 	 �
at the point ��� ��� i�e� kf�t� x�k 	 
 at some neighborhood U of the origin
��� �� � IRn��� Let us x a rectangle . � ��� r�
� 
 +D��� r� � U and dene
the following subset K� of the Banach space C���� r�
�� IR

n�� K� is the set
of all absolutely continuous mappings u � ��� r�
� � IRn with u��� � � and
ku��t�k 	 
� for almost every t � ��� r�
��

Clearly K� is a convex subset of the Banach space C � C���� r�
�� IRn�
and K� is a compact subset of C due to the Ascoli theorem� Observe� that
u � K� implies that �t� u�t�� � .� for every � 	 t 	 r�
� In fact� due to the
Lebesgue theorem for integrals of absolutely continuous functions

ku�t�k � ku�t�� u���k � k
tZ

�

u��s� dsk 	 
 � t 	 r �

���



��� Di�erential inclusions

Hence for every u � K�� the function A�u� dened by

�A�u��t� �

tZ
�

f�s� u�s�� ds� � 	 t 	 r�


is well�dened and A�u � K�� So� A� is a continuous mapping of the convex
compact subset K� of the Banach space C into itself and the Schauder
theorem gives the existence of a �in general not unique� xed point for A��

Let us now pass to the Cauchy problems with multivalued right�hand
sides� i�e� to solutions of di�erential inclusions

x� � F �t� x�� x��� � ��

where F is a multivalued mapping from a suitable subset of IRn�� into IRn�
Natural examples of di�erential inclusions are� for example� implicit

di�erential equations f�t� x� x�� � �� In fact one can associate to every �t� x��
a set F �t� x� � fy j f�t� x� y� � �g� Di�erential inclusions can be considered
as a reformulation of a control system problem� Namely� if the equation

x� � f�t� x� u�� u � U

describes a control system with the set U�t� x� of a control parameter u then
to each �t� x�� one can associate the set F �t� x� � ff�t� x� u� j u � U�t� x�g�

Di�erential inequalities f�t� x� x�� 	 � admit analoguous reformulations
as a problem of solution of suitable di�erential inclusions� In both cases a
solution of the inclusion x� � F �t� x� gives a solution of original problems�
Di�erential inclusions also arise as a way to dene a solution of the Cauchy
problem x� � f�t� x� with non�continuous sight side �see ������� For simplic�
ity� let �t�� x�� be a unique point of discontinuity of f � Then� by one of the
possible denitions� a solution of di�erential equation x� � f�t� x� is a solu�
tion of the di�erential inclusion x� � F �t� x�� where F �t� x� � ff�t� x�g for
�t� x� � �t�� x�� and F �t�� x�� is closed a convex hull of the set of all limit
points of sequences ff�tn� xn�g�n�� with �tn� xn�� �t�� x���

Let F be a multivalued mapping from an open connected subset G �
IRn�� into IRn and let �t�� x�� � G�

De�nition ������ A solution of a di�erential inclusion x� � F �t� x� with
x�t�� � x� is any absolutely continuous mapping u from a neighborhood I of
t� into IR

n such that u�t�� � x� and u
��t� � F �t� x�t��� at almost every t � I�

De�nition ������ A classical solution of a di�erential inclusion x� �
F �t� x� with x�t�� � x� is a continuously di�erentiable mapping u � V � IR
such that u�t�� � x� and u

��t� � F �t� u�t��� for all t � I�

Filippov ����� proved the existence of solutions for compact�valued con�
tinuous �in the Hausdor� sense� F with a Lipschitz condition

H�F �t� x��� F �t� x��� 	 s�t�kx� � x�k �

���



Decomposable sets in functional spaces ���

where H is the Hausdor� distance and s� � � is a summable function� For an
existence of classical solutions for compact�valued and convex�valued F �see
�	��������

So� as in the case of di�erential equations x� � f�t� x� with continuous
�singlevalued� right�hand side for di�erential inclusions x� � F �t� x�� let us
assume that F is dened over the Cartesian product ��� r�
� 
 D��� r� and
takes compact values in D��� 
�� for some r 	 � and 
 	 �� We also consider
the family K� of absolutely continuous mappings u � ��� r�
� � IRn with
u��� � � and ku��t�k 	 
� at almost every �a�e�� t � ��� r�
� � I� On the
compact convex subset K� of the Banach space C���� r�
�� IR

n� we dene the
following multivalued mapping�

�F �u� � fv � L��I� IR
n� j v�t� � F �t� u�t�� a�e� in Ig � u � K� �

Here� L� � L��I� IR
n� is the Banach space of all �classes� of summable

mapping endowed with the norm

kfkL� �
Z
I

kf�t�kIRn d��

where � is the Lebesgue measure on I�

In comparison with Results� x
��� we note that �F is the restriction of the
superposition operator NF onto the subset K� of C��� r�
�� IR

n��

Theorem ����� ����� With the notations above
 the mapping �F � K� �
L� assumes nonempty
 closed and bounded values in L�� Moreover
 the lower
semicontinuity of F implies lower semicontinuity of �F �

Clearly� �F is convex�valued� provided that such is F � But for an arbitrary
compact valued F the sets �F �u� are in general nonconvex and Convex�valued
selection theorem is not directly applicable� It turns out� that a selection
theorem for the mapping �F is valid �see Sections �� � below�� One is interested

in a property of values of �F which gives a way for proving a selection theorem�

De�nition ������ A set Z of a measurable mappings from a measure
space hT�A� �i into a topological space E is said to be decomposable� if for
every f � Z� g � Z and for every A � A� the mapping

h�t� �

���f�t�� t � A

g�t�� t �� A

belongs to Z�
In comparison with the denition of a convex hull we dene the decom�

posable hull dec�S� of a set S of mappings from T to E as the intersection of
all decomposable sets Z� containing S�

���
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Example ���	�� �a� Let E� � E� Then the set ff � T � E j f is
measurable� f�t� � E� a�e� in Tg is decomposable�
�b� Let F � T � E be a multivalued mapping� Then the set ff � T � E j f
is measurable� f�t� � F �t� a�e� in Tg is decomposable�
�c� As a special case of �b� we have that �F � K� � L� is decomposable valued
mapping�

Example ������b� is in some sense a universal example of decomposable
sets� More precisely� let E be a real separable Banach space� hT�A� �i be
a set with �additive nite positive measure �� We say that a multivalued
mapping F � T � E is measurable if preimages F���U� of open sets under
F are measurable sets of T � A measurable singlevalued mapping f � T � E
is called a measurable selection of F if f�t� � F �t� a�e� in T �

Theorem ���
� ������ With the notations above
 let Z be a nonempty
closed subset of Lp�T�E�
 � 	 p � �� Then Z is decomposable if and only
if there exists a measurable closed valued mapping F � T � E such that Z
is the set of all measurable selections of F 
 belonging to the Banach space
Lp�T�E��

Let us discuss some geometrical properties of decomposable subsets of
L��T�E�� We assume that hT�A� �i is a measure space with atomless non�
negative �additive measure �� i�e� that for every A � A with ��A� 	 �� there
exists A� � A such that � � ��A�� � ��A�� An essential point below is the
following Lyapunov convexity theorem�

Theorem ����� ��
�� Theorem ����� Let ��� � � � � �n be �nite real�valued
�not necessary nonnegative� atomless measures on �algebra A of ��measur�
able subsets of T � Then the image of A under the mapping � � A � IRn

de�ned by ��A� � �A�� � � � � �n�A��
 A � A
 is a convex compact subset of IRn�

Corollary ������ With the assumptions of Theorem �����
 there exists
a family fA�g������ of elements of A
 such that A�� � A�� 
 for 
� � 
� and
��A�� � 
��T �
 for all 
� 
�� 
� � ��� ���

Observe that one can always assume in Corollary ����� that �n coincides
with � and hence we can add to Corollary ����� the equality ��A�� � 
��T ��

Lemma ����� Let u and v be elements of L��T�E�� Then the decom�
posable hull decfu� vg of the pair fu� vg coincides with the set f�Au �TnAv j
A � Ag
 where �A is the characteristic function of ��measurable set A�

Proof� If Z is decomposable and u � Z� v � Z� then f�Au �TnAv j A �
Ag � Z due to the denition of decomposability� Let w� � �Au  xTnAv�
w�� � �Bu �TnBv and let w � �Cw

� �TnCw
��� for some A�B�C � A� Then

w � �C��Au �TnAv�  �TnC��Bu �TnBv� �

� ��C�A  �TnC�B�u ��C�TnA  �TnC�TnB�v �

� �Du �TnDv �

���
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where D � �A�C�t �B � �TnC�� � A� Hence f�Au �TnAv j A � Ag is the
minimal decomposable subset of L� spanning on u and v�

The set decfu� vg is a natural version of decomposable segment between
u and v� Note that decfu� vg is homeomorphic to the Hilbert space �� �see
Results� x����� So� for decomposable subsets of L� we have �multivalued�
segments between their elements� To obtain a singlevalued segment between
u and v one can substitute a family fA�g fromCorollary ����� into the formula
for decfu� vg� i�e� to consider the set W �u� v� fA�g� of elements of the form

w � �A�u ��� �A��v� 
 � ��� �� �
For analogues of higher dimensional simplices we have�

Lemma ������� Let u�� � � � � un be elements of L��T�E�� Then the
decomposable hull decfu�� � � � � ung of the set fu�� � � � � ung coincides with the
set

f
nX
i��

�Aiui j
nG
i��

Ai � T� Ai � Ag�

Unfortunately� the metric structure of the Banach space L��T�E� and
its above �multivalued convex� structure are not related� i�e� balls are inde�
composable� In fact� if kuk � � and kvk � � then for w � decfu� vg we have
only that

kwk �
Z
T

kw�t�kE d� �

Z
A

ku�t�kE d� 

Z
TnA

kv�t�kE d� 	 kuk kvk � � �

Analogously� for ku�k � �� � � � � kunk � � and for w � decfu�� � � � � ung� we
have only that kwk � n� However� the following theorem shows that the
intersection of decfu�� � � � � ung with unit ball D�O� �� is rather large� i�e� it
includes some singlevalued curvilinear n�dimensional simplex�

Theorem ������ ������ Let u�� � � � � un � L��T�E� and let kuik � ��
Then there exists a continuous mapping w � #n�� � decfu�� � � � � ung �
D�O� �� from the standard �n� ���dimensional simplex #n�� �
� convfe�� � � � � eng � IRn such that w�ei� � ui�

Proof� Let �i�A� �
R
A
kui�t�kE d�� A � A� We apply Corollary ����� to

the vector�valued measure � � ���� � � � � �n� ��� � � A � IRn��� and nd an
increasing family fA�g������ of ��measurable subsets of T such that ��A�� �

� 
��T �� for all 
 � ��� ��� Let for every q �
Pn

i�� 
iei � #n��� Ai�q� �
� A��������inA��������i�� � with 
� � � and A� � �� Finally� we put

w�q� �
nX
i��

�Ai�q	ui � decfu�� � � � � ung �

���
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The continuity of w � #n�� � decfu�� � � � � ung follows from the continuity of
a xed path 
 �� A�� 
 � ��� ��� The equality w�ei� � ui is evident� So� let
us check that kw�q�k � �� Indeed�

kw�q�k �
Z
T

kw�q��t�kE d� �
nX
i��

Z
Ai�q	

kui�t�k d� �

�
nX
i��

�i�Ai�q�� �
nX
i��

��i�A��������i�� �i�A��������i���� �

�
nX
i��

��
�  � � �  
i��i�T �� �
�  � � �  
i����i�T �� �

�
nX

I��


i�i�T � �
nX
i��


i

Z
T

kui�t�kE d� �
nX
i��


i � � �

We use Theorem ������ in Section � below for proving a selection theorem
for decomposable valued mappings� But we nish the present section by a
demonstration of the fact why such a selection theorem implies the existence
of solutions of the Cauchy problem for di�erential inclusions x� � F �t� x��
x��� � �� So� let under the notations above �before Theorem ������� for every
u � K��

�F �u� � fv � L��I� IR
n� j v�t� � F �t� u�t�� a�e� in Ig �

and let �f � K� � L��I� IR
n� be a singlevalued continuous selection of the

decomposable valued mapping �F � K� � L��I� IR
n��

Theorem ������ ����� The integral operator A� de�ned by

�A�u��t� �

Z t

�
� �f�u���s� ds

is a continuous singlevalued mapping of the convex compact space K� into
itself and everyone of its �xed points �u � K� is a solution of the di�erential
inclusion x� � F �t� x�
 x��� � ��

Proof� For a xed u � K�� the function A�u � I � IRn is absolutely
continuous as an integral with variable upper bound� Clearly� A�u���� � �

and k�A�u�
��t�k � k�f�u��t�k � fkyk j y � F �t� u�t��g 	 
� for a�e� t � I�

Hence A��K�� � K� and the continuity of A� follows from the continuity of
�f � K� � L��I� IR

n�� By the Schauder xed�point theorem� the operator A�

admits a xed point� say �u � K�� Hence

�u � A���u�� i�e� �u�t� � A���u��t� �

tZ
�

� �f��u���s� ds�

for all t � I� Therefore �u��� � � and �u��t� � �f��u��t� � �F ��u��t� � F �t� �u�t���
for a�e� t � I�

���
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�� Selection approach to di�erential inclusions� Preliminary
results

Let F be a multivalued mapping dened on a suitable subset of IRn��

with nonempty compact values in IRn� In the simplest case of continuous
and convexvalued F one can directly nd a continuous selection f of F � To
do this it su�ces to put f�t� x� equal to the �Ceby�sev center of the convex
compact F �t� x� in the Euclidean space IRn�� �see ������� So� in this case the
existence of a solution of the di�erential inclusion x� � F �t� x� follows from
Peano�s existence theorem for ordinary di�erential equations with continuous
right�hand side�

It was shown in ����� Section �� that for nonconvex case the situtation
when F admits no continuous selections� but the di�erential inclusion x� �
F �t� x� has a solution is possible� The existence of a continuous selection
for nonconvex valued right hand sides dened on a segment I with bounded
variation was proved in ���	�� More precisely� in ���	� autonomous inclusions
x��t� � R�x�t�� with x��� � x� were considered�

For simplicity� let x� � � and let R continuously map from the closed
ball +D�O� r� into compact subsets of the closed ball +D�O� 
�� We say that R
has a bounded variation if

V �R� � sup
n mX
i��

H�R�yi���� R�yi�� j m � IN� kyik 	 r

and
mX
i��

kyi�� � yik 	 r
o

is nite� where H�A�B� stands for the Hausdor� distance between compacta
A and B�

Theorem ������� Let R � +D�O� r�� +D�O�
� be a compact valued con�
tinuous mapping with a bounded variation� Then the di�erential inclusion
x��t� � R�x�t��
 x��� � �
 admits a classical solution on the segment ��� r�
��

Proof� Our argument is a generalization of Peano existence proof for
ordinary di�erential equations�

I� Construction

Let�
��� K� � fu � C���� r�
�� IRn� j u��� � � and ku�t��� u�t���k 	 
jt� � t��jg�
��� �i be a sequence of positive numbers� converging to zero� and
��� �i be a sequence of positive numbers� converging to zero� such that

H�R�u�t���� R�u�t����� � �i� whenever u � K� and jt� � t��j � �i�
We claim that then�

�a� K� is a convex compact subset of C � C���� r�
�� IRn��
�b� fR�u� � ��gu�K�

is an equicontinuous family of mappings from ��� r�
� �
� ��� T � into IRn� and

���
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�c� A sequence f�ig exists� for every sequence f�ig�
Let�

��� y� � R��� and i � IN�
��� ri � ����� �i� � IRn be dened as ri � y� and xi�t� �

tR
�
ri�x� ds� for t �

����� �i��
�
� yi� be an element of R�xi��i�� such that

ky� � yi�k � dist�y�� R�xi��i����

��� ri���i� � yi� and the mapping ri � ��i� ��i�� IRn be dened as the linear
mapping and

xi�t� �

Z t

�
ri�s� ds for t � ����� ��i��

��� We continue extensions of ri and xi over segments ����� �j  ���i�� j �
� �� �� �� � � � until the functions ri and xi are dened on ����� T ��
We claim that then�

�d� The sequence of restrictions frij��T �g�i�� is bounded and equicontinuous
in the Banach space C��� T �� i�e� �due to Ascoli�s theorem� there exists
uniformly convergent subsequence frikg�k�� which converges to� say� r� �
��� T �� IRn�

�e� xi � K�� for every i � IN and hence fxikg has a uniformly convergent
subsequence which converges to� say� x � K��

�f� r��t� � R�x�t�� due to the closedness of R�x�t�� and

x�t� �

tZ
�

r��s� ds for t � ��� T � �

i�e� x��t� � R�x�t�� and x��� � ��

Theorem ������ ���	�� Let F � I � IRn be a continuous compact�valued
mapping of a segment I � IR� Then�
�a� If F has bounded variation then F admits a continuous selection�
�b� If F is a ��Lipschitz mapping
 i�e� H�F �t�� F �t��� 	 �jt � t�j
 then F

admits a ��Lipschitz singlevalued selection�

Recall that there exists a continuous multivalued mapping F � I �
IR� without continuous selections �see Theory� x
�� Note that there exists
a Lipschitz compact�valued mapping F � IR� � IR�� with no continuous
selections �see �������

Antosiewicz and Cellina ���� proposed a unied and essentially elemen�
tary approach to di�erential inclusions� The notion of decomposability was

���
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rst exploited in their work� but in an implicit form� So� in the above nota�
tions we assume that F is �Hausdor�� continuous compact valued mapping
from the rectangle ��� r�
� 
 +D�O� r� into +D�O�
�� for some � � 
� r and
K� � fu � C���� r�
�� IRn� j u��� � �� u is an absolutely continuous function
and ku��t�k 	 
� for a�e� t � ��� T � � ��� r�
�g�

Theorem ����	� ����� For every � 	 �
 there exists a continuous
mapping g� � K� � L����� T �� IR

n� such that

dist�g��u��t�� F �t� u�t�� � ��

for every u � K� and almost every t � ��� T ��

Proof�
I� Construction

Let�
��� � � ���� 	 � be taken accordingly to the uniform continuity of F �
��� fU�� � � � � Ung be a nite open covering of K� with diamUi � ��
��� feigni�� be a continuous partition of unity inscribed into fUigni���
��� fuigni�� be points from K� such that ui � Ui�
��� For every u � K��

t��u� � � and ti�u� � ti���u�  Tei�u�

i�e� ft��u�� t��u�� t��u�� � � �g is a division of ��� T � onto subsegments with
lengths proportional to the values fe��u�� e��u�� � � �g�
We claim that then�

�a� The mappings t �� F �t� ui�t�� are measurable� i � IN�
�b� There exist measurable selections vi of the mappings from �a��

Let�
�
� For every u � K� and for every i � f�� � � � � ng with nonempty

�ti���u�� ti�u��� the restriction of g��u� onto this interval conicides with
the restriction of vi onto this interval� i�e�

g��u� �
nX
i��

�ti���u	�ti�u		vi

We claim that then�
�c� g��u� is a desired continuous mapping from K� into L����� T �� IR

n��

II� Veri�cation

�a� Follows from the continuity of F �
�b� It is a corollary of �a� and Measurable selection theorem �see Results�

x
��

���
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�c� One can omit a denition of g��u� at the right end of ��� T � because we
need to dene g��u� as an element of L�� Next� note that for a given
u � K� and t � ��� T �� exactly for one index i � f�� �� � � � � ng we have
t � �ti���u�� ti�u��� But then �see ���� ei�u� 	 � and u � Ui� So� from
��� and ��� we have dist�u� ui� � � and from ��� we obtain� using the
equality g��u��t� � vi�t�� that

dist�g��u��t�� F �t� u�t�� � dist�vi�t�� F �t� u�t��� 	
	dist�vi�t�� F �t� ui�t���  H�F �t� ui�t��� F �t� u�t��� � � �

at almost every t � ��� T �� The continuity of g� follows directly from the
continuity of the real�valued functions t�� t�� � � � � tn over the compactum
K��

Theorem ����
� ����� Under the assumptions of Theorem ������
 there
exists a continuous mapping g � K� � L����� T �� IR

n� such that

g�u��t� � F �t� u�t�� �

for every u � K� and at almost every t � ��� T ��
Theorem ����
� was generalized in ���� to mappings F which satisfy the

so called Carath�eodory�type conditions�
�i� For every x� the mappings F � � � x� are measurable� and
�ii� For every t� the mappings F �t� � � are continuous�

As it was pointed out in the previous section� Theorem ����
� and
its extension above imply a theorem on the existence of solution of the
di�erential inclusion x� � F �t� x�� Recall that it su�ces to pick a xed point
of the integral operator A � K� � K�� dened by

�Au��t� �

tZ
�

g�u��s� ds� g is a selection of �F �

See ��	�� for existence of solutions x� � F �t� x� with some other restrictions
on F and without selection approach�

A more �functorial� interpretation of this construction was proposed
in ���� and Theorem ����
� was proved for lower semicontinuous right�hand
sides� More precisely� under above notations to each F � ��� T � 
 +D�O� r� �
+D�O�
� one can associate a mapping �F � K� � L����� T �� IR

n�� dened by

�F �u� � fv � L����� T �� IR
n� j v�t� � F �t� u�t�� a�e� in ��� T �g �

In this notation� Theorem ����
� �respectively ������� can be considered
as a selection �respectively and ��selection� theorem for the multivalued

mapping �F �

��	
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Theorem ������ ����� If F � ��� r�
� 
 +D�O� r� � +D�O�
� is compact

valued and lower semicontinuous mapping then �F is also lower semicontinu�
ous and admits a continuous singlevalued selection� �

The lower semicontinuity of F cannot be replaced by the lower semi�
continuity with respect to the variables t and x separately� because this as�
sumption does not provide the measurability of the composite mappings t ��
F �t� u�t��� u � K��

�� Selection theorems for decomposable valued mappings

The main result of this section is the following theorem due to Fryszkow�
ski�

Theorem ������ ������ Let hT�A� �i be a probabilistic space with a
nonatomic measure � on the �algebra A of subsets of the set T and B a
separable Banach space� Then every lower semicontinuous mapping F from
a metric compactum X into L��T �B� with closed decomposable values admits
a continuous singlevalued selection�

In ������ Theorem ������ was proved with the assumption that � is
a nonatomic regular measure on B�algebra of Borel subsets of a metric
compactum� Later in ���� authors avoided this assumption and proved
Theorem ������ for a separable metric X� There are three key ingredients
in the proof of Theorem ������� First� the notion of decomposability �see
Denition ������� Second� the Lyapunov convexity theorem �see Theorem
����� and Corollary ������� The third element is the Michael convex�valued
selection theorem�

As in every Banach space� we denote by D�f� �� the open ��ball in
L��T�B� centered at the point f � L��T�B�� Recall that

kf � gkL� �
Z
T

kf�t�� g�t�kB d� �

Together with such open balls in L��T�B� we consider another concept of
a ball�

De�nition ������ Let f be an element of L��T�B� and � a positive
element of L��T� IR�� We say that the set

D�f� �� � fg � L��T�B�
��� kg�t�� f�t�kB � ��t� at a�e� t � Tg

is a functional ��ball� centered at f �

Clearly� the sets D�f� �� are not open subsets of L�� but two of their
properties are useful� First� D�f� �� � D�f� k�k� and second� D�f� �� is a
convex and decomposable subset of L��

���
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De�nition ������� Let F � X � L��T�B� be a multivalued mapping
and let � � X � L��T� IR� be a singlevalued mapping with positive values
�in L��T� IR��� We say that a singlevalued mapping f � X � L��T�B�
is a functional ��selection of F if the intersection F �x� � D�f�x�� ��x�� is
nonempty� for every x � X�

As in the Theory� we derive Theorem ������ from two propositions�

Proposition ������� Under the assumptions of Theorem ������
 there
exist for every � 	 �
 a mapping � � X � L��T� IR� and a continuous
functional ��selection f� of F such that k��x�kL� � �
 for every x � X�

Proposition ������� Under the assumptions of Theorem ������
 for
every sequence f�ng of positive numbers
 there exist a sequence f�ng of
mappings �n � X � L��T� IR� with k��x�kL� � �n
 for every x � X and
a sequence ffng of a continuous functional �n�selections fn of F such that

kfn�x��t� � fn���x��t�kB 	 �n�x��t�  �n���x��t� for a�e� t � T �

Proof of Theorem ������� It su�ces to consider in Proposition ������ a
sequence f�ng with Pn �n ��� Then kfn�x�� fn���x�kL� 	 �n  �n��� i�e�
ffng is a uniformly Cauchy sequence and dist�fn�x�� F �x�� 	 k�n�x�k � �n�
Hence f � lim

n��
fn is the desired selection� due to the closednes of values

of F �

Proposition ������ is a corollary of Proposition ������ and the following
�stability intersections� lemma�

Lemma ������� Under the notations of Theorem ������
 let � � X �
L��T� IR� be a continuous mapping with positive �in L�� values and f � X �
L��T�B� a continuous functional ��selection of F � Then the mapping G �
X � L��T�B� de�ned by

G�x� � fx � X j F �x� � D�f�x�� ��x�� � �g� x � X �

is a decomposable�valued lower semicontinuous mapping�

Before starting the proofs we list some preliminary results about essential
inmum of a family of measurable functions�

Lemma ������ ����� p� ����� For every family M of nonnegative
measurable functions u � T � �����
 there exists a measurable function v �
T � ����� such that�
�a� v�t� 	 u�t� at a�e� t � T � and
�b� If w has a property �a� together with v
 then w�t� 	 v�t� at a�e� t � T �

Moreover

v�t� � inffun�t� j n � INg at a�e� t � T �

���
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for some sequence fung of elements of M� If M is a downwards directed
family �i�e� u�� u�� � M implies that u 	 u� and u 	 u�� a�e� in T for
some u �M� then the sequence fung can be chosen to be decreasing�

So� we denote by ess infM the unique �up to ��equivalence� function
v � T � ����� from the Lemma �������

One of the interesting properties of the decomposable sets of functions is
that the essential inmum of their norms can be approximated by the norms
of elements of the sets� As a more elementary version of such property� note
that for a decomposable subset Z � L��T� IR� and for u � Z� v � Z� we have
that minfu� vg � Z and maxfu� vg � Z� This property has some advantages
of decomposability in comparison with convexity�

Lemma ����	�� Let Z be a nonempty closed decomposable subset of
L��T�B� and let v � ess inffku���kB j u � Zg � v�
 a�e� in T 
 for some
v� � L��T� IR�� Then there exists an element u� � Z such that

v�t� 	 ku��t�k � v��t�� a�e� in T �

Proof� The set fku���kB j u � Zg is a decomposable and hence directed
subset of L��T� IR�� So� by Lemma ������� there exist un � Z such that

ku��t�k � ku��t�k � � � � and v�t� � lim
n��

kun�t�k� at a�e� t in T �

Dene the increasing sequence of subsets of T � T� � �� Tn � ft � T j
kun�t�k � v��t�g� Notice that ��Sn Tn� � �T � Dene the sequence fwng by

wn�t� �

���uk� t � TknTk��� k � f�� � � � � n� �g
un� t � Tn�T� � � � � � Tn���

Due to decomposability of Z we have that wn � Z� Clearly� fwn�t�g is a
pointwise stabilized sequence and fkwn�t�kBg is a ��bounded �by ku��t�k�
sequence� Hence� the Lebesgue dominated convergence theorem gives the
existence of the limit u� � L��T�B� of the sequence fwng� Clearly� u� � Z
and

ku��t�k � kun�t�k � v��t� for t � TnnTn���

Proof of the Proposition ������
I� Construction

Let�
��� For a chosen x � X and u � F �x��

Gx�u�x
�� � fg � L��T� IR� j g�t� �

� ess inffku��t�� u�t�kB j u� � F �x��g a�e� in Tg� x� � X

���



��� Di�erential inclusions

We claim that then�
�a� Michael convex�valued theorem is applicable to the multivalued mapping

Gx�u � X � L��T� IR�� and
�b� Gx�u admits a continuous selection� say gx�u � X � L��T� IR� with

gx�u�x� � � � L��T� IR��
Let�

��� For any �� 	 �� Vx�u � fx� � X j kgx�u�x��k � ��g� for every x � X and
u � F �x��

��� fVi � Vxi�uigni�� be a nite open covering of the compactumX by neigh�
borhoods from ��� and fgigni�� be the corresponding selections gi � gxi�ui
of the mappings Gxi�ui with gi�xi� � � � L��T� IR��
We claim that then�

�c� For every �� 	 �� there exists a nite set S � X such that for every
x � X� there is a point s � S� with the following properties� for every
� 	 i 	 n�

kgi�x�� gi�s�k � ��

and
�x � Vi�� �s � Vi� �

Let�
��� � � A � IRN be a vector valued measure on A dened by setting�

��A� �
�nZ

A

gi�s��t�d� j s � S� � 	 i 	 n
o
� ��A�

�
� IRN �

��� By Corollary ������ there exist a correspondence 
 �� A� � A which is
monotone� i�e� 
� � 
� implies A�� � A�� and ��A�� � 
 � ��T �� 
 �
��� ���

�
� feigni�� be a continuous partition of unity� inscribed into the coveringfVigni���
��� For every x � X and every i � f�� �� � � � � ng�

Ai�x� � Ae��x	�����ei�x	nAe��x	�����ei���x	 and A��x� � � �

��� ��x� � ��  
Pn

i�� gi�x��Ai�x	� and

�	� f��x� �
Pn

i�� ui�Ai�x	�

We claim that then�
�d� � � X � L��T� IR� and f� � X � L��T�B� are continuous�
�e� One can choose �� and �� so that k��x�k � �� for every x � X� and
�f� The intersection

F �x� � D�f��x�� ��x��
is nonempty� for every x � X�

���
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II� Veri�cation

�a� Clearly� the values of the mapping Gx�u are nonempty closed convex
subsets of L��T� IR�� Pick x� � X� g� � Gx�u�x�� � fg � L��T� IR� j g�t� �
� ess inffku��t� � u�t�kB j u� � F �x��g a�e� in Tg and � 	 �� Then we can
apply Lemma ������ to the function g�� � g�  ��� and to the decomposable
set fku��t��u�t�kB j u� � F �x��g� We nd an element� say u�� in F �x�� such
that

ess inffku��t�� u�t�kB j u� � F �x��g 	 ku��t�k � g���t� a�e� in T �

Due to the lower semicontinuity of F we nd a neighborhood U�x�� such
that for every x� � U�x�� the intersection F �x�� � D�u�� ���� is nonempty�
Let w � F �x�� �D�u�� ���� and

v�t� � kw�t�k  g���t�� ku��t�k �
Then v � Gx�u�x

�� and dist�v� g�� 	 dist�v� g���  dist�g��� g�� � �� Hence Gx�u

is lower semicontinuous at point x��

�b� This is a corollary of the general theory of continuous selections� since
� � Gx�u�x��

�c� The set U�x� �
Tfg��i �D�gi�x�� ������ j � 	 i 	 ng is a neighborhood of

x � X� So� if dist�x� s� is less than the Lebesgue number � of the covering
fU�x�gx�X then kgi�x� � gi�s�k � ��� � 	 i 	 n� Suppose to the contrary�
that for every ���k��net Sk � X� with ��k � �� k � IN� there exists xk � X
such that for every s � Sk� we have that xk � Vik � but at the same time�
s �� Vik � for some � 	 ik 	 n� By passing to a subsequence� we may assume
that ik � i 	 n� Hence Sk�Vi � �� for all su�ciently large k� Contradiction�
�d� g�� � � � � gn and u�� � � � � un are xed mappings and a correspondence 
 ��
A� is continuous with respect to the �pseudo� metric on A dened as
dist�A�B� � ���AnB� � �BnA���
�e� k��x�k �

Z
T

���x���t� d� � ��  
nX
i��

Z
Ai�x	

�gi�x���t� d� �

���  
nX
i��

Z
Ai�x	

�gi�x�� gi�s���t� d�  
nX
i��

Z
Ai�x	

�gi�s���t� d� �

where s � S and S are chosen in accordance with �c�� Hence for the second
item we have an upper estimate

nX
i��

Z
T

jgi�x�� gi�s�j�t� d� �
nX
i��

kgi�x�� gi�s�k � n�� �

As for the third term� we have
R

Ai�x	

�gi�s���t� d� � ei�x�kgi�s�k due to ����
Moreover�

�ei�x� 	 ��� �x � Vi�� �s � Vi�� �kgi�s�k � ��� �

���



��� Di�erential inclusions

due to �
�� �c� and ���� respectively� So� k��x�k � ���  n��� Hence� it
su�ces to put �� � ��� and �� � ���n�

�f� By Lemma ������� for every i � f�� �� � � � � ng and every x � X� one can
nd wi�x� � F �x� such that�

kwi�x��t�� ui�t�kB � ��  ess inffku�t� � ui�t�k
��� u � F �x�g �

Then w�x� �
Pn

i��wi�x��Ai�x	 belongs to F �x� because of decomposability
of F �x�� On the other hand we have

kf��x��t�� w�x��t�kB �
nX
i��

kui�t�� wi�x��t�k�Ai�x	�t� �

�
nX
i��

���  ess inffku�t� � ui�t�k
��� u � F �x�g��Ai�x	�t� 	

	
nX
i��

���  gi�x��t���Ai�x	�t� � ��x��t� �

We omit the technical proof of the �stability intersections� Lemma �������
Notice that in the original proof the metrizability of the domain X was an
essential tool and the lower semicontinuity of a multivalued mapping G was
veried by the fact that fx � X j G�x� � Rg is closed for every closed R�
As usually� we check that fx � X j G�x� � U � �g is open whenever U is
open� Such a replacement allows us to work with convergent �with respect
to �� functional sequences� to use the Egorov theorem and to use directly the
decomposability property�

The idea of the proof in ���� is the same� except that instead of the
compactness of domain� authors proposed a sophisticated generalization of
Lyapunov convexity theorem� for a separable metric domain� and a corollary
about the family of paths in the metric space of classes of ��measurable
subsets of T �

In ����� �resp�� ������ the techniques of papers ����� �resp�� ����� were
modied to establish an existence of a common selection of nitely many de�
composable�valued mappings�

Theorem ����
� ������ Let F�G�� � � � � Gn be lower semicontinuous de�
composable�valued mappings from a separable metric X into a Banach space
L��T�E�
 where T is a probabilistic space with a nonatomic measure� Let
�i � X � ����� be lower semicontinuous functions such that

(�x� � F �x� � �
n�
i��

�Gi�x�  �i�x�B�� � ��

for every x � X
 where B is the unit ball in L�� Then ( admits a continuous
singlevalued selection�

In fact� a stronger version was proved in ����� with a replacement of B
by Bi�unit balls� under some suitable continuous pseudonorms on L��

���
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�� Directionally continuous selections

Consider the Cauchy problem����x��t� � f�t� x�t��

x�t�� � x�

with a singlevalued� but discontinuous right�hand side� There are many ways
to dene the solution in such situations ���
��

Here we discuss one of the possible ways� In general� one can consider
the right�hand side f��� �� as a continuous mapping under some topology ner
than the original Cartesian product topology� The problem here is to examine
the link between original and new topologies in order to obtain the existence
of a solution of the Cauchy problem� A successful attempt in this direction
was made by Bressan and Colombo�

De�nition ������� Let M be a positive number and B a Banach space�
Then the mapping f � IR
B � B is said to be �M �continuous at �t�� x�� �
IR
B� if for every � 	 �� there exists � 	 � such that kf�x� t��f�t� x��k � ��
whenever t� 	 t � t�  � and kx� x�k 	M�t� t���

Sometimes the term directionally continuous �along �M � f�t� x� j kx �
x�k 	M�t� t�� and t� 	 t � t� �g� is also useful� It turns out that di�er�
ential equations with �M �continuous right�hand sides have �Carath�eodory�
solutions�

Theorem ������ ����� Let M 	 L 	 � and let f � ��� T � 
 IRn � IRn

be a �M �continuous mapping
 with kf�t� x�k 	 L
 for all �t� x� � ��� T �
 IRn�
Then for every �t�� x��
 the Cauchy problem with initial data x�t�� � x� has
a Carath�eodory solution on �t�� T ��

Because of Theorem ������� a question of the construction of �M �conti�
nuous selections for di�erential inclusions with lower semicontinuous right�
�hand side arises naturally�

Theorem ����� ��	�� Let M 	 � and let B be a Banach space� Then
for every * � IR 
 B and every lower semicontinuous mapping F � * � B
with closed values
 there exists a �M �continuous singlevalued selection of F �

Theorem ����	� was originally proved in ���� for the case B � IRn� In
��	� authors dened a topology �� on IR
B with respect to which �M �con�
tinuous mappings are continuous� The second step was an axiomatization of
the property of �� which made a proof of Theorem ����	� possible�
�P� For every pair of disjoint closed �in the original topology �� pair of

subsets A� and A� there exists a closed�open �in topology ��� set C which
separates A� and A�
 i�e� A� � C and A� � C � ��
If one closed set �with respect to �� A� is xed and A� is any closed

�with respect to �� set disjoint with A�� then �for normal spaces� it is easy

���



��� Di�erential inclusions

to see that A� �
TfC j A� � C and A� � C � �g i�e� A� is �

��closed�
Hence the topology �� is ner than the original topology� Moreover� every
point has a basis of neighborhoods consisting of ���closed�open sets� So� the
original topological space X endowed with topology �� satisfying �P� looks
as a zero�dimensional �in the ind sense� space� But �X� ��� is in general� not
paracompact and the zero�dimensional �in dim�sense� selection theorem does
not directly apply� And the property �P� is exactly a connection between
�paracompact� topology � and topology ��� So� an abstract selection theorem
is as follows�

Theorem ������ ��	�� Let �X� �� be a paracompact space
 Y a completely
metrizable space and F � X � Y a lower semicontinuous mapping with closed
values� Then for every topology �� on X with property �P�
 there exists a
���continuous selection of F �

The proof of Theorem ������ follows a well�established plan of the proof
of selection theorems� i�e� the result is obtained as the limit of the sequence of
�n�selections� �n � �� It is interesting that this proof is based on arguments�
similar to those of the proof of Measurable selection theorem �see Results�
x
�� More precisely� ��selections are constructed by a transnite induction
on the cardinality of a suitable �discrete� ���covering of X�

Proof �existence of ���continuous ��selections��
I� Construction

Let �for a xed � 	 ���
��� y � X � Y be an arbitrary selection of F �
��� U�x� � F���D�y�x�� ��� be an open neighborhood of x�
��� fV�g��A and fW�g��A be a pair of locally nite open coverings of X

which renes the covering fU�x�gx�X such that Cl�W�� � V�� � � A�
and

��� For every � � A� choose x� � A such that V� � U�x���

We claim that due to the property �P��
�a� There exist sets fZ�g��A which are closed�open with respect to the

topology �� and such that

Cl�W�� � Int�Z�� � Cl�Z�� � V� �

Let�
��� � be a well�ordering of the index set A�
�
� For every � � A� the set *� be dened by setting

*� � Z�n�
�
���

Z�� �

We claim that then�
�b� The family f*�g��A is a partition of X�

���
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�c� The family f*�g��A is ���closed�open covering of X �due to local nite�
ness of the family fZ�g��A��

�d� The family f*�g��A is inscribed into fV�g��A� and
�e� The mapping f� � X � Y � dened by letting

f�j�� � y�x��

is the desired ���continuous ��selection of F �

A selection theorem on the existence of a Castaing representation of F
by a sequence of ���continuous selections can also be proved for perfectly
normal domains �see ��	��� A theorem on �avoiding F��sets� type was proved
for ���continuous selection in ����� We suppose that an analogue of Theorem
������ can be also proved for normal as well as collectionwise normal domains�

���
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