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ABSTRACT

A solenoid is an inverse limit of circles. When a solenoid is embedded in three space,
its complement is an open three manifold. We discuss the geometry and fundamental
groups of such manifolds, and show that the complements of different solenoids (arising
from different inverse limits) have different fundamental groups. Embeddings of the same
solenoid can give different groups; in particular, the nicest embeddings are unknotted at
each level, and give an Abelian fundamental group, while other embeddings have non-
Abelian groups. We show using geometry that every solenoid has uncountably many
embeddings with nonhomeomorphic complements.

Keywords: Solenoid; 3-manifold; inverse limit; embedding; fundamental group; knot com-
plement; braid; Jaco–Shalen–Johannson decomposition; Mostow–Prasad rigidity.
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1. Introduction

In this paper we study 3-manifolds which are complements of solenoids in S3. This
theory is a natural extension of the study of knot complements in S3; many of the
tools that we use are the same as those used in knot theory and braid theory.

We will mainly be concerned with studying the geometry and fundamental
groups of 3-manifolds which are solenoid complements. We review basic information
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about solenoids in Sec. 1. In Sec. 2 we discuss the calculation of the fundamen-
tal group of solenoid complements. In Sec. 3 we show that every solenoid has an
embedding in S3 so that the complementary 3-manifold has an Abelian fundamen-
tal group, which is in fact a subgroup of Q (Theorem 3.5). In Sec. 4 we show that
each solenoid has an embedding whose complement has a non-Abelian fundamental
group (Theorem 4.3). In Sec. 5 we take a more geometric approach, and show that
each solenoid admits uncountably many embeddings in S3 with nonhomeomorphic
complements (Theorem 5.4). We achieve this by showing that these complements
have distinct geometries using JSJ theory, and thus by Mostow–Prasad rigidity are
distinct manifolds.

A solenoid is a topological space that is an inverse limit of circles. Let {ni} be
a sequence of positive integers, and let fi : S1 → S1 be defined by fi(z) = zni ,
where S1 is thought of as the unit circle in the complex plane. Then we define the
solenoid

Σ({ni}) = lim←−(S1, fi).

If the tail of the sequence is 1, 1, 1, . . . , then the solenoid is just a circle. If the
sequence ends in 2, 2, 2, . . . , then we have what is called the dyadic solenoid, Σ2.
We will use the dyadic solenoid for specific examples throughout this paper.

We note that multiple sequences {ni} can determine the same solenoid, up to
homeomorphism. For instance, we may assume each ni is prime by replacing any
composite number by the sequence of its prime factors. We may also remove any
finite initial segment of the sequence, and we may reorder the sequence (infinitely).
Bing notes that if we remove a finite number of elements from two sequences so that
in the remainders, every prime occurs the same number of times, then the solenoids
are topologically equivalent; he also says that perhaps the converse is true [4]. The
converse is confirmed by McCord [11]. A few other references discussing solenoids
are [7, 10, 16, 17].

As solenoids are obtained via an inverse limit construction of compact topolog-
ical groups S1, we get the standard result that solenoids are also compact topo-
logical groups. Additionally, it is standard that a solenoid has uncountably many
path components, each of which is dense in the solenoid, and also that solenoids are
not locally connected, nor are its path components. However, the path components
are fairly nice in that they are bijective images of open arcs. In particular, there
is a continuous bijection from the real line onto each path component. This bijec-
tion however is not a homeomorphism, as small neighborhoods in the solenoid path
component are not locally connected. A lift of a small neighborhood to the real
line contains infinitely many small disjoint neighborhoods centered at a collection
of points unbounded on the line.

While these standard facts together with the inverse limit construction give some
nice properties of solenoids, they do not make it apparent that all solenoids embed
in S3. To see this, we will construct the solenoid Σ({ni}) as a nested intersection
of solid tori. Take a solid torus T0 with cross-sectional diameter d0 in S3, using
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Fig. 1. Embedding the dyadic solenoid in S3. Begin with a standard unknotted solid torus T0

(top left). Then embed a second torus T1 inside T0, wrapping around the longitude of T0 twice
(top right). A third torus T2 is shown wrapping twice inside T1 (bottom left). The solenoid is the
infinite intersection of such nested tori (bottom right).

the standard metric from S4. Embed a solid torus T1 with cross-sectional diameter
d1 < d0/2 inside of T0 that wraps around T0 n1 times. Continue this process,
embedding a solid torus Ti with cross-sectional diameter di < di−1/2 inside of Ti−1,
which wraps around Ti−1 ni times. The nested intersection ∩Ti is an embedding of
Σ({ni}) in S3. See Fig. 1 for an example with the dyadic solenoid (where ni ≡ 2).

We note that while this nested intersection construction may seem canonical,
there are in fact many ways to embed each Ti inside of Ti−1, even if we require
that Ti never “folds back” on itself (i.e. Ti is embedded in a monotone fashion
inside Ti+1). In the simple case where ni≡ 2, Ti can have any odd number of half
twists with itself; when ni > 2, there can be much more complicated braiding.
While this does not change the topology of the solenoid itself, this does change its
complement significantly. This is analogous to knot theory: while every knot is itself
a circle, knot complements are quite different. Thus, we could consider the study
of solenoid embeddings and their complements as solenoid knot theory. This is also
quite related to braid groups, as each sufficiently nice embedding of Ti into Ti−1 can
be represented by a braid on ni strands that gives a transitive permutation of the
strands (otherwise the closed braid will result in a link with multiple components).
This issue will be discussed further in the following sections, and some diagrams
are given in Fig. 3.

All of the embeddings of solenoids that we will consider here will be obtained as
nested intersections of solid tori, where each torus is a closed braid in the previous
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torus. We note that similar work has been done in [10], where they discuss what they
call tame embeddings, similar to our braided embeddings. In [10] they are concerned
with what they call equivalent embeddings, that is, an ambient homeomorphism of
S3 taking one embedded solenoid to the other. We are mainly concerned with
the homeomorphism type of the complement, and we believe this to be a distinct
question than the notion of equivalent embeddings in [10].

It is also interesting to note that solenoids arise in the theory of dynamical
systems. In the case where the sequence ni is constant, the solenoid can be a
hyperbolic attractor of a dynamical system. These solenoids as attractors were
first studied by Smale, and are sometimes called Smale attractors. A discussion of
solenoids as hyperbolic attractors can be found in many books on dynamics, see for
instance [8]. A recent result of Brown [6] shows that generalized solenoids (classified
by Williams [19]) are the only one-dimensional topologically mixing hyperbolic
attractors in 3-manifolds.

2. Fundamental Groups

When a solenoid Σ is embedded in S3, the complement Σc = S3 − Σ is an open
3-manifold. As these manifolds are the complement of a nonlocally connected space,
they have a complicated structure “at infinity”, and are not the interior of a compact
manifold with boundary. We will discuss the fundamental groups of such manifolds,
which will depend on the particular embedding chosen for the solenoid. Recall that
we are starting with an embedding of the solenoid as a nested intersection of solid
tori, each of which is a closed braid in the previous torus:

T0 ⊃ T1 ⊃ T2 ⊃ · · · ; Σ = ∩Ti.

This gives us that the solenoid complement is an increasing union of torus comple-
ments:

(S3 − T0) ⊂ (S3 − T1) ⊂ (S3 − T2) ⊂ · · · ; Σc = ∪(S3 − Ti).

These torus complements are in fact knot complements, where the knots will gen-
erally be satellite knots, assuming there is some knotting in the embedding (see the
following sections).

The fundamental group of the solenoid complement is then the direct limit of the
fundamental groups of the knot complements. This direct limit is in fact injective,
i.e. each group injects into the final direct limit, so that it is in fact a union of knot
groups, as given by the following lemmas. Note that our embeddings of solenoids as
nested closed braids ensure that the core curve of each torus links the meridional
curve of the previous solid torus with linking number ni �= 0.

Lemma 2.1. Suppose that T1, T2 are solid tori in R3 with T2 ⊂ int(T1) and such
that the core curve J of T2 links the meridional curve K of ∂T1 having linking
number lk(J, K) �= 0. Then the map π1(R3 − T1)→ π1(R3 − T2) is injective.
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Proof. Suppose to the contrary that there is a loop � in R3 − T1 that is not
nulhomotopic in R3− T1 but is nulhomotopic in R3 − T2. Let D : B2 → R3 − T2 be
a singular disk in R3 − T2 bounded by �.

Put D in general position with respect to ∂T1. By cut and paste, remove all
curves of intersection with ∂T1 that are nulhomotopic in ∂T1. Since the core curve
J is not nulhomotopic in R3 − T1, at least one curve of intersection must remain.

Take such a curve whose preimage is innermost in the domain B2 of D. This
curve is essential in ∂T1 but trivial either in R3 − int(T1) or in T1 − T2. The loop
theorem thus supplies a nonsingular disk D′ whose boundary is nontrivial in ∂T1

but whose interior either lies in R3 − T1 or in T1 − T2.
In the latter case, ∂D′ must be the meridian of ∂T1, hence must link the core

curve J of T2, and D′ must intersect J , which is a contradiction. Hence D′ ⊂
R3 − int(T1), ∂D′ must be the longitude of T1, and T1 must be unknotted.

But that implies that � is a multiple m ·K of the meridional curve K of ∂T1,
hence must have linking number m · lk(J, K) �= 0 with J , hence cannot be nulho-
motopic missing T2, which is a contradiction.

Lemma 2.2. Let Σ = ∩Ti be the intersection of nested solid tori Ti in S3, such that
for each i, the core curve J of Ti+1 links the meridional curve K of ∂Ti having link-
ing number lk(J, K) �= 0. Then for every i, the map ι∗ : π1(S3 − Ti)→ π1(S3 −Σ)
induced by inclusion is injective, and π1(S3−Σ) = lim−→i

π1(S3−Ti) =
⋃

i π1(S3−Ti).

Proof. Let γ be a nulhomotopic loop in S3 − Σ, and let H be a nulhomotopy of
γ in S3 − Σ. As Σ and the images of γ, H are compact, we see that there must
be indices i, k such that the image of γ lies in S3 − Ti, and the image of H lies in
S3−Ti+k. As long as k > 0, we have im γ ⊂ S3−Ti ⊂ S3−Ti+k−1, and we may use
Lemma 2.1 to see that γ is nulhomotopic in S3 − Ti+k−1. Repeating this process k

times shows that γ is in fact nulhomotopic in S3−Ti. Thus each π1(S3−Ti) injects
into π1(S3 − Σ), and the lemma is proven.

Recall that S3 is the union of two solid tori; we will embed a solenoid into one
of these. In order to calculate the fundamental group of the solenoid complement,
we will cut the space along the tori {Ti}, to get pieces Ti−1 − Ti that are each
a solid torus minus a braid, together with one piece that is simply a solid torus
(the initial complementary solid torus in S3). We will calculate the fundamental
group of each piece, and then use the Seifert Van Kampen Theorem to get relations
between the pieces, as the outer torus of one piece is the inner torus, or braid, in
the previous piece. The union of all of these groups and the Van Kampen relations
will give a presentation for the fundamental group by Lemma 2.2.

The fundamental group π1(Ti−1−Ti) can be calculated by considering the space
Ti−1−Ti as a mapping cylinder over an ni-punctured disk. Thus the group has the
form

π1(Ti−1 − Ti) = 〈t, x1, . . . , xni | t−1xkt = wk(x1, . . . , xni)〉.
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x1

x2

x3

t

Fig. 2. Generators for π1(Ti−1 − Ti).

The xi’s represent free generators of the fundamental group of a punctured disk,
and t represents the longitude of the outer torus Ti−1. Here wk is some word in the
xj ’s, depending on the embedding (braiding) of one solid torus inside the previous.
We note that for each k, if strand k attaches to strand m in the closed braid, then
the word wk is a conjugate of xm. See Fig. 2.

We will apply Seifert Van Kampen to get the relations connecting the various
pieces. As such, we need some notation to differentiate the generators from each
piece (Ti−1 − Ti). The loop x(i)k will be a meridian of the torus Ti, or equivalently
a loop going around one of the strands of the braid inside of Ti−1. The loop t(i) will
be a longitude of Ti. Thus the variables x(i)k, t(i−1) correspond to the fundamental
group of the piece (Ti−1 − Ti) as discussed previously. The word v(i)({x(i)k}) is
determined by the embedding, relating the longitudes ti−1, ti of the tori Ti−1, Ti.
With this notation in place, we use Van Kampen’s theorem to get relations such as

x(i−1)1 =
ni∏

k=1

x(i)k, t(i) = tni

(i−1)v(i)(x(i)1, . . . , x(i)ni
).

Putting all of this together, we get an infinite presentation for π1(Σc). The
generators are t(i), x(i)k from each level i, with k = 1, . . . , ni. The relations come
from each level and Van Kampen’s theorem. Recall that the words w(i)k, v(i) are
dependent on the braided embedding of one torus in the previous. Also note that
t(0) = e, since the longitude of T0 is trivial in S3, as its complement is simply a solid
torus.

π1(Σc) =

〈
t(i), x(i)k

∣∣∣∣ t−1
(i−1)x(i)kt(i−1) = w(i)k({x(i)k}), t(0) = e

x(i−1)1 =
ni∏

k=1

x(i)k, t(i) = tni

(i−1)v(i)({x(i)k})
〉

.

Example 2.3 (Dyadic Solenoid). In the case of the dyadic solenoid with defining
sequence ni ≡ 2, our presentation for π1 simplifies. There are only two x(i)k’s at each
level i, and since x(i−1)1 = x(i)1x(i)2, we do not actually need any of the generators
x(i)2. If we let zi = x(i)1 be the meridian of Ti, and si = t(i) the longitude of Ti, we
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then get a simplified presentation, where R represents relations dependent on the
braiding:

π1 = 〈si, zi | [si, zi] = e, R, s0 = e〉.

3. Unknotted Solenoids

We define an unknotted embedding of any solenoid in S3, and discuss the funda-
mental group of its complement. We will discuss knotted embeddings in the next
section.

Definition 3.1. An embedding of a solenoid as a nested intersection of solid tori
Ti is unknotted if each Ti is unknotted (in S3).

We will show that every solenoid has an unknotted embedding, and that the
complement of an unknotted embedding has Abelian fundamental group.

While there are many braids on n strands that give the unknot, the simplest is
probably b(n) =

∏
σi = σ1σ2 · · ·σn−1, in terms of the standard braid generators

σi. Note that we could just as easily have reversed the order, or used inverses (σ−1
i ).

These closed braids just wrap around (n−1) times without any crossings, and then
take the first (or last) strand over (or under) all of the other strands.

There is an obvious way to try to embed the next level in this one: thicken each
strand to a tube, draw ni parallel strands in each tube (crossing all of the strands
in one tube over all of the strands in another when the tubes cross), and put the
braid for the next level in one tube in some portion where there are no crossings of
the tubes. Unfortunately, this obvious way to iterate this process does not produce
an unknot. This is due to the fact that there is some inherent twisting in each stage
that will show up in the following stages, if not dealt with carefully.

As an example, consider just two levels, where both n1, n2 = 2. On the first
level, we have two strands, and we will use b(1) = σ1 as our braid (if we had chosen
to use inverses for b(n) the following works out similarly). On the next level, we have
four strands. If we start with σ1, and then just follow the previous stage with the
strands parallel to each other, the resulting knot is actually a trefoil, rather than
the unknot. However, if we instead start with σ−1

1 (or even σ−3
1 ), we do get the

unknot. It is more enlightening to say that if we begin with σε
1σ

−2
1 we get the

unknot, if ε = ±1. This is true because unwinding the doubled structure from
the first level cancels out the σ−2

1 , leaving σε
1, which is the unknot. We leave it to

the reader to verify that the given braids yield the specified knots. These braids
and the resulting knots are shown in Fig. 3.

Even though the obvious method does not work, it is possible to keep track
of the twists in such a way to get an unknotted embedding of the solenoid. This
basically amounts to adding some amount of extra full twists (of all the strands) to
correct for the twisting from the previous level. In the case of the braids b(n) which
we have chosen above, this ends up being precisely (n− 1) full twists. The case of
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Fig. 3. Two levels of the dyadic solenoid embedded as the trefoil (top row), the unknot (middle
row), and another version of the unknot (bottom row). The diagrams on the right show the
corresponding braids.

the dyadic solenoid with ni ≡ 2 amounts to adding one full twist, and three levels
of this embedding are shown in Fig. 4. This twisting will also become apparent as
we discuss the algebraic structure later, particularly in the example of the dyadic
solenoid (see Example 3.2).

We note here that this process of constructing unknotted braids can be continued
indefinitely, thus providing an embedding of the solenoid. At first there may seem
to be a difficulty due to the fact that our embedding requires nested tori, while our
braid construction here does not obviously satisfy that condition. However, one can
check that each level of our braid construction does nicely embed in the previous.
For example, in Fig. 4, taking a tubular neighborhood of the four strands on the left
and the four strands on the right gives a 2-braid with one crossing, just as in the
top left single crossing in the diagram. Also, taking a neighborhood of two strands
at a time gives a 4-braid that is the same as the top left portion of the diagram
(above the full twist on four strands).

1550069-8
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Fig. 4. Multiple levels of unknotted braids.

We briefly describe one other way to see that this always works, even for more
complicated braids that may represent the unknot. Start with one level embedded
in S3 as a torus, which has an ambient isotopy h to the standard unknotted torus.
Embed the next desired level in the interior of the standard unknotted torus, and
then composing with h−1 gives the desired embedding of the next level. While this
process works for any braid representation for the unknot, our chosen simple braids
b(n) admit a formulaic description. We will proceed using our chosen braids b(n),
and at the end of the section we will comment on the general case.

To compute the fundamental group of the solenoid complement, we first compute
the fundamental group of a solid torus minus the chosen closed braid b(n) =

∏
σi.

As in the previous section, we can present the fundamental group of this piece
as G(n)= 〈t, x1, x2, . . . , xn |R〉, where xi represents the loop going around the ith
puncture once, t represents the longitude of the solid torus. The relators R are
determined by the braid b(n) as follows: for i > 1, we have t−1xit = xi−1, together
with the relation t−1x1t = x1x2 · · ·xn−1xnx−1

n−1x
−1
n−2 · · ·x−1

1 . Note that if we kill
t (i.e. set t = e), then these relators become xi = xi−1, and thus the quotient
G(n)/<t> = 〈x1〉 = Z. This should be expected, as this is equivalent to gluing in a
solid torus to get S3 minus the braid b(n), which was the unknot. In the following,
it will be convenient to set x0 =

∏
xi, which satisfies the relation t−1x0t = x0.
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Now we consider the Seifert Van Kampen relations. As we only are looking at two
levels for the moment, we will denote the elements of the inner piece with “primes”
(as in x′

k compared to xk for the outer piece) to avoid the more cumbersome notation
x(i)k used previously for the complete presentation of the solenoid complement
fundamental group. Then the relations determined by the meridian and longitude
of the intersection torus are x1 = x′

0 =
∏

x′
k, and t′ = tn1w(xk), where w is some

word in the xk’s.
This is where the issue of twisting comes into play. By considering a diagram,

one can see that w = x0 does work (it is useful to remember that x0 commutes with
t). While not every other word in xk will work, we can match this longitude of the
intersection torus with any longitude t′(x′

0)
m of the inner torus, perhaps wrapping

around more (or fewer) times than we think we should. As x′
0 = x1, we see that we

can append any number of x1’s at the end of w. In order to get the unknot at this
second level, we choose w = x0x

−n1
1 . Thus when we set t = e, we get that xi = xj ,

so that x0 = xn1
1 and w = e. Then t′ = e, and we similarly have x′

i = x′
j . Also,

x1 = x′
0 =

∏
x′

i = (x′
1)n2 . Thus the fundamental group is generated by x′

1, where
the generator x1 from the previous step satisfies x1 = (x′

1)n2 . Therefore the second
stage is unknotted, being a knot with fundamental group Z, and the fundamental
group from the first stage embeds via the map Z→ Z : 1 �→ n2.

We can continue this process of inserting unknotted solid tori Ti, and we get
that each fundamental group π1(S3−Ti) is cyclic. If we call the generators from two
consecutive stages a, a′, then we have a = (a′)nk . Thus we see that the fundamental
group of the complement of the unknotted solenoid Σ({ni}) is the direct limit
G({ni}) = lim−→(Z, fi : 1 �→ ni). This group can be described more directly as
follows, since we are allowed to divide by any of the ni:

G({ni}) =

{
p

q
∈ Q

∣∣∣∣∣ q =
k∏

i=1

ni for some k

}
.

The element 1 in this group represents the meridian loop of the initial torus T0

in the construction, and 1/n1 represents the meridian loop of the torus T1, or going
around one strand of the braid in the first level (T0 − T1). At each stage we can
divide by ni, and in general 1/(Πkni) represents a loop going around a strand of
the braid on the kth level (Tk−1 − Tk), or equivalently, a meridian of the torus Tk.
Since any loop can only come to within a finite (nonzero) distance of the solenoid,
this gives us all loops in the fundamental group.

Example 3.2 (Dyadic Solenoid). If Σ is the dyadic solenoid with defining
sequence ni ≡ 2, then this tells us that the fundamental group is the direct limit
lim−→(Z, 2), which is just the dyadic rationals G = {p/2k}.

This can also be seen from the presentation as given in Example 2.3. For each
level being unknotted we get the following presentation, where we have filled in the
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relations R from the presentation earlier.

π1 = 〈si, zi | [si, zi] = e, si
−1zi+1si = zi+1

−1zi, si+1 = si
2zizi+1

−2, s0 = e〉.
Notice that on any level, if si = e, then zi+1

2 = zi, and then si+1 = s2
i = e. Thus

this group becomes 〈zi | z2
i+1 = zi〉 = lim−→(Z, 2).

Similarly, for an n-adic solenoid, where ni ≡ n, we get the (noncomplete) n-adic
rationals {p/q | q = nk}. In general, the group G can be any nontrivial subgroup of
Q. We characterize the subgroups of Q in Lemma A.1; we restate the lemma here
for convenience, and give a proof in the appendix. We then describe how to achieve
those as the fundamental group of a specific solenoid complement.

Note that for additive subgroups of Q, multiplication by a constant is an iso-
morphism, so that we may assume that the subgroup contains 1. In the lemma, the
numbers ki represent the number of times (plus 1) that the prime pi is allowed to
appear in the denominators of the subgroup elements.

Lemma A.1. Let {ki} be a sequence in N ∪∞. Define

Q({ki}) =

{
p

q
∈ Q

∣∣∣∣∣ q =
m∏

i=1

pni

i for some ni < ki and some m

}
,

where pi denotes the ith prime number.
Then Q({ki}) is a subgroup of Q containing 1. Furthermore, every subgroup

G ≤ Q containing 1 is equal to Q({ki}) for some sequence {ki}.
For a solenoid with defining sequence {ni}, the fundamental group is G({ni})

as mentioned above, which can also be described as the subgroup Q({kj}) from
Lemma A.1 by setting kj to be one more than the cumulative number of times
the jth prime occurs as a factor in the sequence {ni} (where kj might be infinite).
For example, if the sequence {ni} begins with 2, 4, 6, 8, 5, . . . , where the tail of
the sequence consists of odd numbers, then for i = 1, we have pi = 2, and ki =
1+(1+2+1+3+0) = 8, as we add one to the sum of the powers of 2 that appear
in the ni.

From this, it is now easy to see that given any subgroup Q({kj}) ≤ Q, there is a
solenoid Σ and an unknotted embedding into S3 such that π1(S3 − Σ) = Q({kj}).
The defining sequence {ni} can be chosen in various ways, but the homeomorphism
type of the solenoid described is uniquely determined. One construction that will
always work is as follows:

ni =
i∏

j=1

p
mij

j , where mij = 1 if i− j < kj − 1 and 0 otherwise.

This construction may have some ni = 1, and these may be removed if the tail
of the sequence ni is not identically 1. In the case where the ni are eventually 1, the
subgroup Q({kj}) is cyclic (∼= Z), and the required solenoid is the circle S1 (with
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ni≡ 1). The circle is not always considered a solenoid, being trivially so. If not
considering S1 to be a solenoid, then any subgroup of Q that is neither {0} nor Z

may be obtained as the fundamental group of a solenoid complement.
As mentioned earlier, any finite segment of {ni} does not change the solenoid

Σ(ni). It also does not change the fundamental group of the unknotted complement.
If G({ni}) is the group for the sequence {ni}, and G({ni}, k) is the group where we
start the sequence at i = k, then we have the isomorphism ϕ : G({ni})→ G({ni}, k)
defined by ϕ(x) = x · ( ∏k−1

i=1 ni

)
.

Also notice that any reordering of {ni}, or replacing a term nj by a sequence
of its prime factorization, will also not change the group (here the isomorphism is
the identity map).

In the previous discussion, we considered a particular unknotted embedding,
based on a choice of braids b(n) that give the unknot. There are obviously many
other choices of braids that give the unknot; for example, the combined braid from
the first and second stages described above is an unknot on n1n2 strands, which
differs from our chosen b(n1n2). However, the results stated above still hold. Given
any unknotted embedding, we have π1(S3 − Σ) = lim−→π1(S3 − Ti) = lim−→Z, as each
Ti is unknotted. The bonding maps are still fi : 1 �→ ni, resulting in the same
fundamental group.

While, for a given solenoid, the fundamental group of the complement of any
unknotted embedding is the same, one may ask the following question.

Question 3.3. Are all unknotted embeddings of a given solenoid equivalent?

Here we might take equivalent to mean that there is an ambient isotopy, or perhaps
ambient homeomorphism (possibly orientation preserving) between the two embed-
dings, or perhaps just requiring that the complements in S3 be homeomorphic.

As noted above, changing any finite segment of the ni’s does not change the
fundamental group, but additionally in this case the complements are homeomor-
phic, as we may “unwind” the first k levels of unknotted tori, with an ambient
isotopy. Similarly, any finite reordering of the ni or replacement by factorizations
or products will also give ambient isotopic embeddings. Additionally, changes in
the unknotted embeddings chosen at finitely many levels will also give ambient iso-
topic embeddings. To ensure equivalent embeddings, we only need to require that
there are only finitely many changes in the sequence {ni} and in the unknotted
embeddings. If there are infinitely many of these changes made, it is no longer clear
whether this changes the homeomorphism type of the complement.

It seems likely that infinitely many changes will result in different complements,
or at least embeddings that are not ambient isotopic, and that there should be
uncountably many inequivalent unknotted embeddings for any solenoid.

Conjecture 3.4. For every solenoid, there are uncountably many inequivalent
unknotted embeddings in S3.
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We summarize the results of this section in the following theorem.

Theorem 3.5. For any solenoid Σ, there exists an embedding Σ ⊂ S3 such that
π1(S3 − Σ) is Abelian, and in fact a subgroup of Q.

Furthermore, for every nontrivial subgroup G ≤ (Q, +), there exist a solenoid Σ
and an embedding Σ ⊂ S3 such that π1(S3 − Σ) ∼= G.

4. Knotted Solenoids

In the previous section, we took care to ensure that each torus in the nested intersec-
tion construction was unknotted in S3. First, we used a braid b(n) that represents
the unknot, and then we took care how we glued in the next stage, with respect to
twisting. Relaxing these conditions, we will consider any braid b on n strands that
is transitive on the strands; transitivity gives us a knot instead of a link.

Again, the fundamental group of a solid torus minus this closed braid will have
the form G(b) = 〈t, x1, . . . , xn |R〉. The relators in R are of the form t−1xit = wi,
where the word wi can be determined directly from the braid. We only mention
here that if the braid b sends strand i to strand j, then the corresponding relator
has the form t−1xit = g−1xjg, where g is some word in the xk’s, dependent on the
braiding. Then due to the transitivity, we see that after Abelianization, the relators
give xi = xj for all i, j.

To connect two such tori, we need the extra relations x1 = x′
0 =

∏
x′

i, and
t′ = tn1w(xi). By careful consideration of a braid diagram, one can determine a
suitable word wb for a given braid. Again, we may allow w = wbx

k
1 for any k (since

we are not worried about extra twisting anymore).
After Abelianization, these relations become x1 = (x′

1)
n2 , and t′ = tn1w(xi). At

each level, we get a Z generated by x′
1, and while t′ might not equal zero, it can be

written as a word in x′
1 as the previous t could be written as a word in x1. We note

here that we can always take the first solid torus T0 to be standardly embedded,
so that the longitude t0 = e. This follows from a theorem of Alexander [1], which
states that every knot (or link) can be represented as a closed braid. Then the maps
from Z → Z are again multiplication by ni. Thus the Abelianization of all these
groups depends only on the solenoid, not the embedding.

The preceding fact is actually a simple consequence of Alexander duality.

Theorem 4.1 (Alexander Duality). For a compact set K ⊂ Sn, Hi(Sn−K) ∼=
Ȟn−i−1(K).

In our setting, this tells us that the first homology, or the Abelianization of
the fundamental group, of the complement of an embedded solenoid is equal to
the first Čech cohomology of the solenoid, which is independent of the embedding:
(π1)Ab = H1(S3 − Σ) = Ȟ1(Σ). Of course, the Čech cohomology of Σ({ni}) must
then be the group G({ni}) as discussed in the previous section, since in that case
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the fundamental group is the first homology group, being Abelian. That this group
is in fact the Čech cohomology of the solenoid is discussed and shown in [11].

Example 4.2 (Dyadic Solenoid). Again, consider the dyadic solenoid with
ni ≡ 2. On each level we will use the braid σ1

3, which gives the trefoil knot.
In this case the presentation for the fundamental group becomes:

π1 = 〈si, zi | [si, zi] = e, si
−1zi+1si = zi

−1zi+1
−1zi

2,

si+1 = si
2zi

3zi+1
−6, s0 = e〉.

Note that if we Abelianize, then z2
i+1 = zi, and then si+1 = s2

i = e as before.
This gives us that H1 = (π1)Ab is the dyadic rationals.

However, this fundamental group is non-Abelian. This follows from Lemma 2.2
and the fact that the trefoil group is non-Abelian. This can also be seen directly
from the presentation, as the fundamental group maps onto the infinite alternating
group A∞. To see this, map each generator zi to the 3-cycle (i(i + 1)(i + 2)), and
map each si to the identity. It is straightforward to check that the relations are
satisfied in A∞; the only one of these that is not immediate follows since consecutive
3-cycles satisfy the relation zi+1 = zi

−1zi+1
−1zi

2.

While the homology of a solenoid complement only depends on the solenoid,
the fundamental groups can be quite different. However, it is still difficult to tell
them apart. We have given a way to present these groups, but our presentations are
infinite, which makes it difficult to determine when two groups are isomorphic; in
fact it is even difficult to tell when two finite presentations give isomorphic groups.
For instance, if we take a dyadic solenoid with ni = 2, at any level we may either
use the unknotted embedding from Example 3.2, or the trefoil embedding from
Example 4.2. The presentation will look similar to those in the examples, using the
relations from one or the other at different levels i depending on which embedding
was chosen. While it seems very likely that these give different fundamental groups,
it is hard to prove that for these given infinite presentations, especially as they have
isomorphic Abelianizations (see [1, 5]).

However, despite these difficulties, we can tell some of these embeddings apart
via the fundamental group. Lemma 2.2 tells us that the fundamental groups of the
various stages inject into the fundamental group of the entire complement. A stan-
dard result from knot theory states that the fundamental group of the complement
of any knot other than the unknot is non-Abelian. Thus if there is any knotting in
our embedding of the solenoid, π1(S3 − Σ) will be non-Abelian, in contrast to the
unknotted embeddings which always have Abelian fundamental groups.

There are many knotted embeddings of any solenoid, which seemingly should
all be different. As fundamental groups determine knots (up to chirality), it seems
that if there is any substantial difference in the knottings, the fundamental groups
should differ. Unfortunately, it is hard to show this given our infinite presentations.

We summarize the results of this section in the following theorem and conjecture.
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Theorem 4.3. For every solenoid Σ, there are knotted embeddings Σ ⊂ S3, and
such embeddings have π1(S3 − Σ) non-Abelian. These embeddings are inequivalent
to unknotted embeddings, whose complements have Abelian fundamental groups.

Conjecture 4.4. If a solenoid is embedded in two “different ” knotted ways, the
fundamental groups of the complements are different.

5. Distinguishing Non-Abelian Complements

As discussed in the previous sections, for any solenoid there is an embedding with
a non-Abelian fundamental group, which is clearly not equivalent to the Abelian
embeddings. As knots are essentially determined by the fundamental group of their
complements (up to an issue of chirality), it seems that unknotted embeddings
of a solenoid that are knotted in different ways should give different fundamental
groups. Unfortunately, the result for knots does not easily carry over to solenoids,
as the fundamental groups are now ascending unions of knot groups, and it is not
clear whether two ascending unions could be equal in the end, yet differ at every
finite stage.

In order to distinguish non-Abelian embeddings of a given solenoid, we consider
the geometry of the complements. A standard tool we will use is the JSJ-decomposi-
tion, cutting the manifold along incompressible tori. As the JSJ-decomposition only
applies to compact manifolds, we will generalize it to apply to a certain class of
embeddings of solenoids. The following statement is taken from Hatcher’s notes on
3-manifolds [9], from the section on Torus Decomposition.

Theorem 5.1 (JSJ-Decomposition). A compact irreducible orientable 3-mani-
fold has a minimal collection of disjoint incompressible tori such that each compo-
nent of the complement of the tori is either atoroidal or Seifert fibered. This minimal
collection is unique up to isotopy.

To generalize this result for solenoid embeddings, we need to consider embed-
dings such that infinitely many of the “solid torus minus a braid” pieces are hyper-
bolic. As long as the braid has at least three strands, this should generically be the
case. If there are only two strands, the piece will always be Seifert fibered.

Proposition 5.2. Given n ≥ 3, there exist (at least) two n-braids B(n, i) in a solid
torus T such that the complements T − B(n, i) have distinct hyperbolic structures
for i = 1, 2.

Proof. An n-braid in a solid torus is the mapping torus of an n-punctured disk
B2. Thurston [14, 15] proves that such manifolds are hyperbolic precisely when the
monodromy is pseudo-Anosov, and states that this is in fact the generic case (see
[15, Theorem 0.1]).
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Table 1. Braids in a solid torus with
distinct hyperbolic volumes.

n Braid Hyperbolic volume

3 σ−1
1 σ2 4.05

σ−3
1 σ2 5.97

4 σ−1
1 σ2σ3 4.85

σ−1
1 σ2σ−1

3 7.51

5 σ−1
1 σ2σ3σ4 5.08

σ−1
1 σ−1

2 σ3σ4 5.90

σ−1
1 σ2σ−1

3 σ4 11.2

The proof above using Thurston’s results only shows that an n-braid in a solid
torus will generically give a hyperbolic 3-manifold with two cusps, without con-
structing specific examples. For a fixed choice of n, we can construct specific exam-
ples with different hyperbolic structures quite easily, and in Table 1 we present
a few specific braids for n = 3, 4, 5 in terms of the standard braid generators σi.
In general, it seems that the braids

∏n−1
i=1 σei

i , where ei = ±1, each give different
volumes, unless there is either some obvious symmetry (i.e. −++ gives the same as
++−, +−− and −−+), or if it is Seifert fibered (i.e. −−− or +++). Of course,
for n = 3 we must add extra twisting, since there are only two generators σi, which
only gives one hyperbolic 3-braid knot with two crossings, up to symmetry. The
hyperbolic volumes given in Table 1 were calculated using SnapPea [18].

Recall that hyperbolic structures on 3-manifolds are in fact topological invari-
ants, as given by Mostow–Prasad rigidity [12, 13].

Theorem 5.3 (Mostow–Prasad Rigidity). If a 3-manifold admits a complete
hyperbolic structure with finite volume, then that structure is unique up to isometry.

Using Mostow–Prasad rigidity and Proposition 5.2, we are able to prove the
existence of inequivalent non-Abelian embeddings for any given solenoid.

Theorem 5.4. For any solenoid, there exist uncountably many inequivalent non-
Abelian embeddings, i.e. such that the complements are different manifolds.

Proof. Choose a defining sequence ni for the solenoid Σ, with the condition that
ni �= 2. If necessary, we may take the product of consecutive terms ni to ensure
that ni �= 2.

We will construct different non-Abelian embeddings of Σ. Let T0 be a knot-
ted solid torus with cross-sectional diameter 1 in S3. To the complement of T0,
glue in either T − B(n1, 1) or T − B(n1, 2), one of the hyperbolic manifolds from
Proposition 5.2. Continue attaching either T − B(ni, 1) or T − B(ni, 2). As we fill
in the braids, make sure that the cross-sectional diameter of each braid is less than
half the diameter of the previous level. This will embed the solenoid Σ({ni}). As
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we have two choices at each stage, there are uncountably many ways of doing this.
It remains to show that these each give different complements.

We will use the JSJ-decomposition. Take any incompressible torus T ∗ in S3−Σ.
This cuts S3 into a compact piece and a noncompact piece, because Σ is connected.
There is a small torus Tk in our construction that lies inside the noncompact piece,
as T ∗ is bounded away from Σ, and we ensured that the tori Ti had cross-sectional
diameter less than 2−i. This torus Tk then cuts S3 into two new pieces, again one
compact and one not, with the originally chosen incompressible torus T ∗ in the
compact piece. Now apply the JSJ-decomposition (Theorem 5.1) to the compact
piece. As the pieces T 2 − B(n, i) in our construction were chosen to be hyperbolic
they are atoroidal, and thus the torus T ∗ must be isotopic to one of our defining
tori Ti.

Thus we get a canonical JSJ-decomposition of our solenoid complement, with
every incompressible torus in the complement being isotopic to one of the defining
tori. In particular, the incompressible tori cut S3 −Σ into pieces, one of which has
one cusp (the original knot complement), and all the rest having two cusps. These
pieces may be ordered by taking the piece with one cusp as the first, and then
considering which other pieces share a common boundary. So we have a canonical
way of cutting up the solenoid complement into these ordered pieces. If any of the
pieces are different at any spot in the sequence, the resulting manifolds are distinct,
which proves the theorem.

Corollary 5.5. Let {ni} be any defining sequence of a solenoid, other than a
sequence that is eventually 2 for the dyadic solenoid. Then there are uncountably
many inequivalent embeddings of the solenoid using the sequence ni.

Proof. Proceed with the construction as in the proof of the theorem, except when
ni = 2, fill in with any Seifert fibered 2-braid. In fact, all we need is that infinitely
many of the pieces are hyperbolic. Then to get the generalized JSJ-decomposition,
when given an incompressible torus T ∗, choose the small torus Tk such that Tk

represents the inner braid in one of the hyperbolic pieces. Again we may apply the
standard JSJ-decomposition to the compact complementary component of Tk. This
gives us that T ∗ is either one of our defining tori Ti, or that T ∗ lies in one of the
Seifert fibered pieces.

Again, we get a canonical JSJ-decomposition, where on each compact piece we
take the minimal collection of tori guaranteed by the standard JSJ-decomposition.
As we have infinitely many hyperbolic pieces, as we can choose to fill in with
nonisometric pieces, we get uncountably many distinct complements.

Note that this proof cannot be extended to the defining sequence ni ≡ 2, as the
homeomorphism type of a solid torus minus any 2-braid is only dependent on the
number of components. As we have only been considering knots, we will always have
one component, thus one homeomorphism type of a solid torus minus a 2-braid.
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Appendix. Subgroups of Q

This lemma characterizes the additive subgroups of the rational numbers. We note
that these subgroups were previously discussed and characterized in [2, 3], but we
give our own proof here. Note that for additive subgroups of Q, multiplication by
a constant is an isomorphism, so that we may assume that the subgroup contains
1. In the lemma, the numbers ki represent the number of times (plus 1) that the
prime pi is allowed to appear in the denominators of the subgroup elements.

Lemma A.1. Let {ki} be a sequence in N ∪∞. Define

Q({ki}) =

{
p

q
∈ Q

∣∣∣∣∣ q =
m∏

i=1

pni

i for some ni < ki and some m

}
,

where pi denotes the ith prime number.
Then Q({ki}) is a subgroup of Q containing 1. Furthermore, every subgroup

G ≤ Q containing 1 is equal to Q({ki}) for some sequence {ki}.

Proof. Since the definition does not require the fraction p/q to be in lowest terms,
Q({ki}) is clearly closed under addition and inverses, and is thus a subgroup con-
taining 1.

Let Q be any subgroup of Q containing 1. Let D be the set of denominators of
elements of Q when written in lowest terms, i.e. D = {q | p/q ∈ Q in lowest terms}.
Note that for every q ∈ D, we must have 1/q ∈ Q, since p/q ∈ Q with (p, q) = 1,
so that if we multiple p/q by the multiplicative inverse of m mod q we get mp/q =
M +1/q. Since 1 ∈ Q, then 1/q ∈ Q. Then also a/q ∈ Q for every a ∈ Z and q ∈ D,
and in fact Q is the set of all such numbers {a/q}, as every element of Q is equal
to a reduced fraction with denominator q ∈ D.

Define the number ki ∈ N ∪ ∞ to be one more than the maximum number
of times the prime pi appears in an element of D; ki = sup{1 + k | pi

k divides q

for some q ∈ D}. We first show that Q ⊂ Q({ki}). Let a/q ∈ Q, where q ∈ D.
Consider the prime factorization q =

∏m
i=1 pni

i , where ni < ki by the definition
of ki. Thus a/q ∈ Q({ki}) for every a/q ∈ Q.

It remains to show Q({ki})⊂Q. Note that Q({ki}) is generated by elements
of the form 1

/∏m pni

i . In fact, we can take elements of the form 1/pni

i as our
generating set: since the pni

i are relatively prime, we may choose ai so that∑
(ai/pni

i ) = 1
/ ∏m

pni

i . Thus it suffices to show that 1/pni

i ∈ Q if ni < ki. By the
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definition of ki, we know that there is an element a/(bpni

i ) ∈ Q in reduced form.
As before, since a is relatively prime to the denominator q, we may multiply by
the inverse of a mod q and thus assume that a = 1. Then multiplying by b gives
1/pni

i ∈ Q.
Therefore every subgroup of Q is of the form Q({ki}) for some sequence {ki}.

We note that while different sequences {ki} give distinct subsets of Q, they do
not always give nonisomorphic subgroups. This is due to the fact that multiplication
gives isomorphisms of subgroups of Q. Thus if two sequences {ki}, {k′

i} differ in only
finitely many spots by a finite amount (i.e. if whenever ki �= k′

i then both are finite),
then the subgroups are isomorphic by multiplication/division by

∏
p

ki−k′
i

i . This is
in fact the only way differing sequences can give isomorphic groups.
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