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1. Introduction

In this paper we shall prove the existence of solutions to the following free boundary value problem:

⎧⎪⎪⎨
⎪⎪⎩

−Lu = λ(u− 1)2+f, in Ω \H(u),

|∇Gu
+|2 − |∇Gu

−|2 = 2, in H(u),

u = 0, on ∂Ω.

(1.1)

Here, λ > 0, (u − 1)+ = max{u − 1, 0}, and H(u) = ∂{u > 1}. Also, ∇Gu
± are the limits of ∇Gu for the 

sets {u > 1} and {u ≤ 1}◦, respectively. Next, f ∈ L∞(Ω) is a positive bounded function. The domain 
Ω ⊂ G is bounded, where G is a stratified Lie group. Finally, L is the sub-Laplacian which will be defined 
in Section 2.

The study of elliptic free boundary value problems (FBVPs) has recently gained momentum, owing to its 
rich mathematical content besides its physical applications. A naturally occurring free boundary condition 
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can be found in the classical problem in fluid dynamics to model a 2-dimensional ideal fluid in terms of 
its stream function (see Dipierro et al. [11]). Interested readers can also check Batchelor [4,5] for the 
Prandtl-Batchelor free boundary.

From a mathematical point of view, the problem
⎧⎪⎪⎨
⎪⎪⎩

−Δu = 0, in Ω \G(u),

|∇u+|2 − |∇u−|2 = 2, on G(u),

u = 0, on ∂Ω

(1.2)

has been studied by Alt-Caffarelli [2], Alt et al. [3], Caffarelli et al. [6,7], and Weiss [28,29]. 
Later on, Jerison-Perera in [19,20] considered the problem

−Δu = (u− 1)p−1
+ , in Ω \G(u), (1.3)

in particular with the same boundary conditions as in (1.2), with G(u) = ∂{u > 1}, thus pioneering the 
study of the existence of a mountain pass point at which the associated energy functional has a higher value 
compared to the global minimum (see [18, Definition 1]). Such a critical point was referred by them as a 
higher critical point. A slightly more general problem was considered by Perera in [24], as follows

⎧⎪⎪⎨
⎪⎪⎩

−Δu = αχ{u>1}(x)f(x, (u− 1)+), in Ω \G(u),

|∇u+|2 − |∇u−|2 = 2, on G(u),

u = 0, on ∂Ω.

(1.4)

This problem was also studied by Elcrat-Miller [12] and Jerison-Perera [19] for the case N = 2. 
The main result of [24] is the establishment of a higher critical point. Some of the important works in the 
Euclidean setting have been documented in Dipierro et al. [11] and Perera [24], and the references 
therein.

Motivated by the above mentioned works, albeit in the Euclidean setting, we consider (1.1) in the non-
Euclidean setup. One key work in this direction is Ferrari-Valdinoci [13], in which a free boundary 
value problem was studied on the Heisenberg group, and the authors established some density estimates for 
local minima. The problem which we shall study in this paper is classical, however its consideration over a 
stratified Lie group is new since the Heisenberg group is also a particular kind of a stratified Lie group.

We now state the main result of this paper pertaining to the existence of solutions to problem (1.1):

Theorem 1.1. There exists λ∗ > 0 such that for any 0 < λ < λ∗, there exists a positive solution u to problem 
(1.1) with the following properties:

(i) u is a critical point of I;
(ii) u satisfies the free boundary condition in the sense of viscosity.

Remark 1.2. Notice that by a nontrivial solution to (1.1) we mean u > 0 on Ω and u > 1 on a nonempty 
open subset of Ω on which −Lu = λ(u − 1)2f holds.

The organization of the paper is as follows. In Section 2 we recall the preliminaries of the stratified Lie 
group and the space description. In addition, we prepare the necessary tools required to attack problem 
(1.1). In Section 3 we prove a monotonicity lemma (Lemma 3.1). In Section 4 we prove a convergence lemma 
(Lemma 4.1). In Section 5 we prove the main result of this paper (Theorem 1.1). Finally, in Section 6 we 
prove an auxilliary lemma on the Radon measure (Lemma 6.1).
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2. Preliminaries

This section includes the necessary tools to study problem (1.1). For all other background information 
we refer to the comprehensive handbook [23]. We begin by the definition of a homogeneous Lie group.

Definition 2.1. A Lie group G, on RN is said to be homogeneous, if for any μ > 0 there exists an automor-
phism Tμ : G → G defined by

Tμ(x) = (μr1x1, μ
r2x2, · · · , μrNxN ), ri > 0, i = 1, 2, · · · , N.

The map Tμ is called a dilation on G. Here, x = (x1, x2, · · · , xN ).

It is worth noting that N represents the topological dimension of G, whereas D = r1 + r2 + · · · + rN
represents the homogeneous dimension of the homogeneous Lie group G. The symbol dx will serve as 
our notation for the Haar measure, which is the standard Lebesgue measure on RN . The following is the 
definition of a stratified Lie group.

Definition 2.2. A homogeneous Lie group G = (RN , ∗) is called a stratified Lie group (or a homogeneous 
Carnot group) if the following two conditions are satisfied:

(i) The decomposition RN = RN1 × RN2 × · · · × RNk holds for some natural numbers N1, N2, · · · , Nk

such that N1 + N2 + · · · + Nk = N . Furthermore, for each μ > 0 there exists a dilation of the form 
Tμ(x) = (μx(1), μ2x(2), · · · , μkx(k)) which is an automorphism of the group G. Here, x(i) ∈ RNi for 
each i = 1, 2, · · · , k.

(ii) Let N1 be the same as in the above decomposition of RN and let X1, X2, · · · , XN1 be the left invari-
ant vector fields on G such that Xi(0) = ∂

∂xi
|0 for i = 1, 2, · · · , N1. Then the Hörmander condition 

rank(Lie{X1, X2, · · · , XN1}) = N holds for every x ∈ RN . Roughly speaking, the Lie algebra corre-
sponding to the Lie group G is spanned by the iterated commutators of X1, X2, · · · , XN1 .

Here, k is called the step of the homogeneous Carnot group. In the case of a stratified Lie group, the 
homogeneous dimension becomes D =

∑k
i=1 iNi. Throughout the paper, we set N = N1 in Definition 2.2. 

We call a curve γ : [0, 1] → R admissible if there exists ci : [0, 1] → R, for i = 1, 2, · · · , N such that

γ′(t) =
N∑
i=1

ci(t)Xi(γ(t)),
N∑
i=1

ci(t)2 ≤ 1.

Here, γ′ is the derivative with respect to t. The functions ci may not be unique since the vector fields Xi

may not be linearly independent. For any x, y ∈ G, the Carnot-Carathéodory distance is defined by

dcc(x, y) = inf{l > 0 : there exists an admissible γ : [0, l] → G such that γ(0) = x, γ(l) = y}.

If no such curve exists, dcc(x, y) is set to 0. Although dcc is not a metric in general, the Hörmander condition 
over the vector fields X1, X2, · · · , XN1 ensures that it is. The space (G, dcc) is then referred to as the Carnot-
Carathéodory space. The definition of the homogeneous quasi-norm on the homogeneous Carnot group G
is another important entity that will be used in the course of this work. See Ghosh et al. [15, Definition 
2.3] for a definition of a homogeneous quasi-norm.

Furthermore, the sub-Laplacian, the horizontal gradient and the horizontal divergence on G is defined as

L := X2
1 + X2

2 + · · · + X2
N , ∇G := (X1, X2, · · · , XN1), divGv := ∇G · v,
1
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respectively. The sub-Laplacian on the stratified Lie group G is defined as ΔGu := divG(∇Gu).
Now, let S be a Haar measurable subset of G. Then H(Tμ(S)) = μDM(S), where H(S) is the Haar 

measure of Ω. A quasi-ball of radius r and centered at x ∈ G is defined by B(x, r) = {y ∈ G : |y−1 ∗x| < r}
with respect to the quasi-norm | · |.

We define the Sobolev space, which is very essential in order to venture into this problem. For 1 < p < ∞, 
the Sobolev space W 1,p(Ω) on a stratified Lie group is defined as

W 1,p(Ω) := {u ∈ Lp(Ω) : |∇Gu| ∈ Lp(Ω)}. (2.1)

A norm on this space is given by ‖u‖1,p := ‖u‖p + ‖u‖. Here,

‖u‖p =

⎛
⎝∫

Ω

|u(x)|pdx

⎞
⎠

1/p

, ‖u‖ :=

⎛
⎝∫

Ω

|∇Gu(x)|pdx

⎞
⎠

1/p

.

We define the space W 1,p
0 (Ω) as follows:

W 1,p
0 (Ω) = {u ∈ W 1,p(Ω) : u = 0 on ∂Ω},

where u = 0 on ∂Ω is in the usual trace sense. We note that W 1,p
0 (Ω) is a real separable and uniformly 

convex Banach space (see [14,26,27,30]). The following embedding result follows from [10, (2.8) ], [14], and 
[17, Theorem 8.1]. We also suggest the reader to check [8, Theorem 2.3].

Lemma 2.3. Let Ω ⊂ G be a bounded domain with piecewise smooth and simple boundary and assume 
1 < p < ν. Then W 1,p

0 (Ω) is continuously embedded in Lq(Ω) for every q ∈ [1, ν∗], where ν∗ = νp
ν−p . 

Moreover, the embedding is compact for every 1 ≤ q < ν∗.

The following proposition, due to Ruzhansky-Suragan [25], will be used on a regular basis. It is an 
analogue of the divergence theorem in the Euclidean setup.

Proposition 2.4. Let fn ∈ C1(Ω) ∩ C(Ω̄), n = 1, 2, · · · , N1. Then for each n = 1, 2, · · · , N1, we have
∫
Ω

Xnfndν =
∫
∂Ω

fn〈Xn, dν〉.

Consequently,

∫
Ω

N1∑
n=1

Xnfndν =
∫
∂Ω

N1∑
n=1

fn〈Xn, dν〉.

Throughout the paper we shall assume that H(Ω) < ∞. We define an energy functional associated to 
problem (1.1) as follows

I(u) =
∫
Ω

|∇Gu|2
2 dx +

∫
Ω

χ{u>1}(x)dx− λ

3

∫
Ω

(u− 1)3+fdx.

The functional I exhibits the mountain pass geometry. Let

Λ := {ψ ∈ C([0, 1];W 1,2
0 (Ω)) : ψ(0) = 0, I(ψ(1)) < 0}
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which consists of paths joining u = 0 and the set of points {u ∈ W 1,2
0 (Ω) : I(u) < 0}. We further define

c := inf
ψ∈Λ

max
u∈ψ([0,1])

I(u).

However, this functional is not even differentiable and hence is an ineligible candidate to fit into the realm 
of the variational setup. We first define a smooth function g : R → [0, 2] as follows

g(t) =

⎧⎪⎪⎨
⎪⎪⎩

0, if t ≤ 0
a positive function, if 0 < t < 1
0, if t ≥ 1

and 
∫ 1
0 g(t)dt = 1. We further let G(t) =

∫ t

0 g(t)dt. Clearly, G is smooth and nondecreasing function such 
that

G(t) =

⎧⎪⎪⎨
⎪⎪⎩

0, if t ≤ 0
a positive function < 1, if 0 < t < 1
1, if t ≥ 1.

Finally, inspired by the work of Jerison-Perera [19], we approximate I using the following functionals 
which vary with respect to a parameter, α > 0,

Iα(u) =
∫
Ω

|∇Gu|2
2 dx +

∫
Ω

G

(
u− 1
α

)
dx− λ

3

∫
Ω

(u− 1)2+fdx.

An essential condition in variational techniques which a functional J : X → R requires to satisfy is the 
Palais-Smale (PS) condition. It states that if J(wn) → c and J ′(un) → 0 in X∗, the dual of X, then there 
exists a subsequence of (wn) which strongly converges to, say w, in X. We shall prove that both functionals 
I, Iα defined above satisfy the (PS) condition.

3. Monotonicity lemma

Following the argument in Caffarelli et al. [6, Theorem 5.1], we shall prove an important mono-
tonicity result stated below. We refer to the monograph by Nagel [22, Section 1.2] for the background 
regarding our proof in a non-Euclidean setup. Most of our modifications are required by the differences 
from the Euclidean setting.

Lemma 3.1. Let u > 0 be a Lipschitz continuous function on the unit ball B1(0) ⊂ G, satisfying the 
distributional inequalities

±Lu ≤
(
λ

α
χ{|u−1|<α}(x)F(|∇Gu|) + A

)
, (3.1)

for constants A > 0, 0 < α ≤ 1. Suppose further that F is a continuous function such that F(t) = o(t2) near 
infinity. Then there exist C = C(N, A) > 0 and 

∫
B1(0) u

2dx, but not on α, such that

esssup
x∈B 1 (0)

{|∇Gu(x)|} ≤ C.
2
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Proof. Let u be a Lipschitz continuous function on the unit ball B1(0) ⊂ G. Denote

v(x) = 15
α
u
( α

15x
)
, v1 = v + max

B1/4
{v−}.

Since the proof is quite technical in nature, before giving the proof we sketch the idea. The primary challenge 
is to prove that |∇v| is bounded on, say B1/32. In Step 1 we shall establish the L∞ bound on v1, where 
v1 is a perturbation of v. Next, we shall show in Step 2 that a uniform bound on |∇v| exists and this 
depends on the bound on v and (3.1). This step is also essential to establish an interior regularity estimate 
for the semilinear equation independent of the monotonicity theorem. The monotonicity theorem also helps 
to produce an L∞ bound on v. A meticulous choice of β > 0 has to be made so that F(t) ≤ βt2 + A(β).
Step 1: Since u is a Lipschitz continuous function on the unit ball, it is also bounded on it by a constant say, 
M0. By Magnani-Rajala [21, Theorem 1.1], u is also differentiable a.e. on B1(0). Therefore, 0 ≤ v1 ≤ M1.
Step 2: Let us choose a function η ∈ C∞

0 (B1/4) such that 0 ≤ η ≤ 1 in B3/4 and η = 1 in B1/2. Furthermore, 
for any β ∈ (0, 1] we have a positive finite number A(β) such that

F(t) ≤ A(β) + βt2. (3.2)

Thus by testing with η2v1, we have
∫
Ω

η2|∇Gv1|2 = −
∫
Ω

(2v1η(∇̃v1η) + η2v1Lv1dx)dx

≤1
2

∫
Ω

η2|∇Gv1|2dx + 2
∫
Ω

v2
1 |∇Gη|2dx + AM1

∫
Ω

η2 (A(β) + β|∇Gv1|2
)
dx

≤1
2

∫
Ω

η2|∇Gv1|2dx + pM2
1

∫
Ω

|∇Gη|2dx + M1

∫
Ω

η2 (β|∇Gv1|2 + A(β)
)
dx.

(3.3)

Here, ∇̃v1η =
∑N1

k=1 Xkv1Xk. It is thus established that

1
2

∫
B1/2

|∇Gv1|2dx ≤ M2. (3.4)

We define the maximal operator by

Mf(x) = sup
0<r<1/100

1
|Br(x)|

∫
Br(x)

f(y)dy. (3.5)

For μ > 0, we further denote

Sμ = {x ∈ B1/32 : M(|∇Gv1|2)(x) > μ}.

Claim 3.2. There exists a constant C1 such that for any ε > 0 there exists a finite positive number μ0 such 
that for any μ ≥ μ0,

1. |Sμ ∩Q0| ≤ |Sμ0 ∩Q0| < ε|Q0|, where Q0 is a cube with side length 2−10−10N and Q0 ∩B1/32 �= ∅.
2. If Q is a dyadic subcube of Q0 for which |SC1μ∩Q| ≥ ε|Q|, then Q ⊂ Q∗ ⊂ Sμ, where Q is an immediate 

dyadic subcube of Q∗.
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Proof. We only sketch the proof of the claim as the ideas are borrowed from [6]. Assertion (1) follows from 
the argument given in [6].

Suppose now that Assertion (2) fails to hold. Then one can find a cube Q such that |Sμ ∩ Q| ≥ ε|Q|
and y ∈ Q∗, however M(|∇Gv1|2)(y) ≤ μ. Let ρ be 26N times the length of the side of Q and consider 
Mρ/4(|∇Gv1|2)(0), with the supremum taken over (0, ρ/4). Since M(|∇Gv1|2)(y) ≤ μ, there exists a constant 
C2 such that for any x ∈ Q,

M(|∇Gv1|2)(x) ≤ max{Mρ/4(|∇Gv1|2)(x), C2μ}. (3.6)

Let φ be such that

−Lφ = 0 in Bρ(y)

φ = v1 on ∂Bρ(y).
(3.7)

Since φ is a minimizer of the functional 1
2
∫
Bρ(y) |∇Gφ|2dx, we have

∫
Bρ(y)

|∇Gφ|2dx ≤
∫

Bρ(y)

|∇Gv1|2dx ≤ μ|Bρ(y)|. (3.8)

Of course, we have the mean value property at our disposal (see Adamowicz-Warhurst [1, Condition 1]) 
to establish that

sup
Bρ/2(y)

{|∇Gφ|2} ≤ C3μ. (3.9)

On choosing C1 = 15 max{C2, C3} we have

A := {x ∈ Q : Mρ/4(|∇Gv1|2)(x) > C1μ} = {x ∈ Q : M(|∇Gv1|2)(x) > C1μ} =: B. (3.10)

If x ∈ A, then it is easy see that x ∈ B. Thus A ⊂ B. Suppose that x ∈ B. Then M(|∇Gv1|2)(x) > C1μ. 
However, by (3.6) and by the choice of C1 we have that x ∈ A.

Also observe that

{x ∈ Q : Mρ/4(|∇Gφ|2)(x) > C1μ/4} = ∅.

For if not, then there exists x ∈ Q such that M(|∇Gφ|2)(x) > Cμ/4. One can thus produce r ∈ (0, ρ/4)
such that

C1μ

4 <
1

|Br(x)|

∫
Br(x)

|∇Gφ|2dy ≤ C1μ

15 .

This is a contradiction since this leads to an absurdity 4 > 15. Therefore,

|{x ∈ Q : Mρ/4(|∇Gv1|2) > C1μ}|
≤ |{x ∈ Q : Mρ/4(|∇G(v1 − φ)|2) + Mρ/4(|∇Gφ|2) > C1μ/2}|
≤ |{x ∈ Q : Mρ/4(|∇G(v1 − φ)|2) > C1μ/4}| + |{Mρ/4(|∇Gφ|2) > C1μ/4}|
= |{x ∈ Q : Mρ/4(|∇G(v1 − φ)|2) > C1μ/4}|.

(3.11)
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Thus there exists a constant C4, which follows by the weak (1, 1) inequality for M, such that

C4μ
−1

∫
Bρ(y)

|∇G(v1 − φ)|2dx ≥ |{x ∈ Q : Mρ/4(|∇G(v1 − φ)|2) > C1μ/4}|. (3.12)

Furthermore, by the maximum principle we have |v1 − φ| ≤ C on the ball Bρ(y). By the weak formulation 
of problem (3.7), we have

0 =
∫

Bρ(y)

∇̃φ(v1 − φ)dx. (3.13)

Furthermore,

−
∫

Bρ(y)

Lv1(v1 − φ)dx = −
∫

Bρ(y)

(Lv1 − Lφ)(v1 − φ)dx. (3.14)

Thus we have

C5

∫
Bρ(y)

|∇G(v1 − φ)|2dx =
∫

Bρ(y)

∇̃(v1 − φ)(v1 − φ)dx

≤ −
∫

Bρ(y)

(Lv1 − Lφ)(v1 − φ)dx = −
∫

Bρ(y)

(Lv1)(v1 − φ)dx

≤
∫

Bρ(y)

C
(
β|v1|2 + A(β)

)
dx.

(3.15)

Using inequality (3.12), we get

|{x ∈ Q : Mρ/4(|∇Gv1|2) > C1μ}| ≤ C6

(
β + A(β)

μ

)
|Q|. (3.16)

Thus, for a sufficiently small δ > 0 and large μ > 0, we have

C6δ < ε/3 C6A(β)/μ < ε/3.

Therefore

{x ∈ Q : M(|∇Gv1|2) > C1μ} < ε|Q|,

which indeed is a contradiction to the hypothesis. Therefore, assertion (2) indeed holds. �
One can now follow verbatim [6] to conclude that assertion (2) leads to

|SCk
1μ

∩Q0| ≤ εk+1|Q0|. (3.17)

We further note from (3.17) that for any 1 < θ < ∞, a sufficiently small ε > 0 can be chosen so that 
M(|∇Gv1|2) is bounded in Lθ(B1/16), i.e.
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∫
B1/16

|∇Gv1|θdx ≤ C7, (3.18)

where C7 is a uniform constant that depends on θ, A, F. On choosing θ = N , we have 2θ > N . Hence we 
obtain from (3.2)

sup
B1/32

{|∇Gv1|} ≤ C8. (3.19)

Reverting back to the variables in terms of u, we get

sup
Bα/320(x)

{|∇Gu|} ≤ C8 for any x ∈ B1/4 such that |{u(x) < α}|, (3.20)

and in order to finally arrive at the conclusion

sup
Br/4(0)

{|∇Gu|} ≤ C9, (3.21)

we follow the proof of [6] again, however with the choice of

w(x) = A0r(rN−2|x|2−N − 1) + A(|x|2 − r2) + O(α).

Therefore sup
Br/2

{|∇Gu|} < ∞. �

Remark 3.3. The above monotonicity bound of the type (3.1) implies uniform Lipschitz continuity of a 
family of solutions to a class of semilinear equations with free boundary conditions. In fact, a very important 
component in the passage to the limit in the proof of Theorem 1.1 in Section 5 will be the uniform Lipschitz 
continuity result derived in the next section.

4. Convergence lemma

Before proving Theorem 1.1, we shall prove the following convergence result, which is also of independent 
interest. It helps us to conclude that the obtained solution is nontrivial in the sense of Remark 1.2.

Lemma 4.1. Let (αj) be a sequence of positive numbers such that αj → 0, as j → ∞, and let uj be a critical 
point of Iαj

. Suppose that (uj) is bounded in W 1,2
0 (Ω) ∩ L∞(Ω). Then there exists a Lipschitz continuous 

function u on Ω̄ such that u ∈ W 1,2
0 (Ω) ∩C2(Ω̄ \H(u)), and for a renamed subsequence the following holds:

(i) uj → u uniformly over Ω̄;
(ii) uj → u locally in C1(Ω̄ \ {u = 1});
(iii) uj → u strongly in W 1,2

0 (Ω); and
(iv) I(u) ≤ lim inf Iαj

(uj) ≤ lim sup Iαj
(uj) ≤ I(u) + |{u = 1}|.

In other words, u is a nontrivial function if lim inf Iαj
(uj) < 0 or lim sup Iαj

(uj) > 0. Furthermore, u
satisfies −Lu(x) = λ(u(x) − 1)2+f(x) classically in Ω \H(u) and u satisfies the free boundary condition in 
the generalized sense and vanishes continuously on ∂Ω. In the case when u is nontrivial, the set {u > 1} is 
nonempty.
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Proof. Let 0 < αj < 1. Consider the sequence of problems (Pj)

−Luj = − 1
αj

g

(
(uj − 1)+

αj

)
+ λ(u− 1)2+f in Ω,

uj > 0 in Ω,

uj = 0 on ∂Ω.

(4.1)

The nature of the problem allows us to conclude by an iterative technique that the sequence (uj) is bounded 
in L∞(Ω). Hence, there exists C0 such that 0 ≤ (uj − 1)2+f ≤ C0. Let ϕ0 be a solution of

−Lϕ0 = λC0 in Ω

ϕ0 = 0 on ∂Ω.
(4.2)

Now, since g ≥ 0, we have that −Luj ≤ λC0 = Lϕ0 in Ω. Therefore by the maximum principle,

0 ≤ uj(x) ≤ ϕ0(x) for all x ∈ Ω. (4.3)

Since {uj ≥ 1} ⊂ {ϕ0 ≥ 1}, it follows that ϕ0 gives a uniform lower bound, say d0, on the distance from 
the set {uj ≥ 1} to ∂Ω. Thus (uj) is bounded with respect to the C2,a norm. Therefore it has a convergent 

subsequence in the C2-norm on 
d0

2 -neighbourhood of the boundary ∂Ω. Obviously, 0 ≤ g ≤ 2χ(−1,1) and 

hence

±Luj = ± 1
αj

g

(
(uj − 1)+

αj

)
∓ λ(uj − 1)2+f

≤ 2
αj

χ{|uj−1|<αj}(x) + λC0.

(4.4)

Since, (uj) is bounded in L2(Ω), there exists by Lemma 3.1, A > 0 such that

esssup
x∈B r

2
(x0)

{|∇Guj(x)|} ≤ A

r
, (4.5)

for a suitable r > 0 for which Br(0) ⊂ Ω. However, since (uj) is a sequence of Lipschitz continuous functions 
which incidentally are also C1 functions a.e., we have

sup
x∈B r

2
(x0)

{|∇Guj(x)|} ≤ A

r
. (4.6)

Therefore (uj) is a sequence of uniformly Lipschitz continuous functions on the compact subsets, say K, of Ω
such that d(K, ∂Ω) ≥ d0

2 . By the Ascoli-Arzela theorem applied to (uj), we get a subsequence, still referred 
to by the same name, that converges uniformly to a Lipschitz continuous function u in Ω which vanishes on 
the boundary ∂Ω. The convergence is strong in C2 on a d0

2 -neighbourhood of ∂Ω. By the Banach-Alaoglu 
theorem we can conclude that uj ⇀ u in W 1,2

0 (Ω).
We now prove that u satisfies

−Lu = λ(u− 1)2+f (4.7)
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on the set {u �= 1}. Let ϕ ∈ C∞
0 ({u > 1}). Thus u ≥ 1 + 2δ on the support of ϕ for some δ > 0. By using 

the convergence of uj to u uniformly on Ω, we conclude that |uj − u| < δ. Thus for any sufficiently large j
with δj < δ we have uj ≥ 1 + δj on the support of ϕ. Testing (4.7) with ϕ yields

∫
Ω

∇̃ujϕdx = λ

∫
Ω

(uj − 1)2+fϕdx. (4.8)

By passing the limit j → ∞ to (4.7), we obtain
∫
Ω

∇̃uϕdx = λ

∫
Ω

(u− 1)2+fϕdx. (4.9)

In order to obtain (4.9) we have used the weak and uniform convergence of uj to u in W 1,2
0 (Ω) and Ω, 

respectively. Therefore u is a weak solution of −Lu = λf in {u > 1}. Similarly, by choosing ϕ ∈ C∞
0 ({u <

1}), we can similarly find a δ > 0 such that u ≤ 1 − 2δ due to which uj < 1 − δ.
We now analyze the nature of u on the set {u ≤ 1}◦. Testing (4.7) with any nonnegative function, passing 

to the limit j → ∞ and using the fact that g ≥ 0, G ≤ 1, it can be shown that u satisfies

Lu ≤ λ(u− 1)2+f in Ω (4.10)

in the sense of distribution. Furthermore, μ = L(u −1)− is a positive Radon measure supported on Ω ∩∂{u <
1} (the reader can refer to Lemma 6.1 in Section 5). From (4.10), μ > 0 and the usage of the regularity result 
by Gilbarg-Trudinger [16, Section 9.4] we establish that u ∈ W 2,2

loc ({u ≤ 1}◦). Hence M is supported on 
Ω ∩ ∂{u < 1} ∩ ∂{u > 1} and u satisfies Lu = 0 on the set {u ≤ 1}◦.

To prove (ii), we shall show that uj → u locally in C1(Ω \{u = 1}). We have already proved that uj → u

with respect to the C2 norm in a neighbourhood of ∂Ω of Ω̄. Let M ⊂⊂ {u > 1}. In this set M we have 
u ≥ 1 + 2δ for some δ > 0. Hence, for sufficiently large j, with δj < δ, we have |uj − u| < δ in Ω and hence 
uj ≥ 1 + δj in M . From (4.1) we have

Luj = λ(u− 1)2f in M.

This analysis says something more stronger - since Luj = λ(u − 1)2f in M , we have that uj → u in 
W 2,2(M). By the embedding W 2,2(M) ↪→ C1(M) for p > 2, we have uj → u in C1(M). This proves that 
uj → u in C1({u > 1}). Similarly, we can also show that uj → u in C1({u < 1}).

We shall now prove (iii). Since uj ⇀ u in W 1,p
0 (Ω), we have by the weak lower semicontinuity of the 

norm ‖ · ‖,

‖u‖ ≤ lim inf ‖uj‖.

It suffices to prove that lim sup ‖uj‖ ≤ ‖u‖. To this end, we multiply (4.1) with (uj − 1) and then integrate 

by parts. We shall also use that tg
(

t
δj

)
≥ 0 for any t ∈ R. This yields

∫
Ω

|∇Guj |2dx ≤ λ

∫
Ω

(uj − 1)2+fdx−
∫
∂Ω

uj〈Xi, dn〉dS

→ λ

∫
Ω

(u− 1)2+fdx−
∫
∂Ω

u〈Xi, dn〉dS
(4.11)

as j → ∞.
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We choose �ϕ ∈ C1
0 (Ω, G) such that u �= 1 a.e. on the support of �ϕ. Multiplying by 

∑N
k=1 ϕkXkun the 

weak formulation of (4.1) and integrating over the set {1 − ε− < un < 1 + ε+}, we get

∫
{1−ε−<un<1+ε+}

[
−ΔGun + 1

αn
g

(
un − 1
αn

)] N∑
k=1

ϕkXkundx

= λ

∫
{1−ε−<un<1+ε+}

(un − 1)2+f
N∑

k=1

ϕkXkundx.

(4.12)

The term on the left hand side of (4.12) can be expressed as follows:

∇G ·
(

1
2 |∇Gun|2�ϕ− (

N∑
k=1

Xkunϕk)∇Gun

)
+

N∑
k=1

N∑
l=1

XlϕkXlunXkun

− 1
2 |∇Gun|2∇G · �ϕ +

N∑
k=1

ϕkXkG

(
un − 1
αn

)
.

(4.13)

Using (4.13) and on integrating by parts, we obtain

∫
{un=1+ε+}∪{un=1−ε−}

[
1
2 |∇Gun|2

N∑
k=1

ϕk〈Xk, dn〉 − (
N∑

k=1

Xkunϕk)
N∑
l=1

Xlun〈Xl, dn〉

+G

(
un − 1
αj

) N∑
k=1

ϕk〈Xk, dn〉
]

=
∫

{1−ε−<un<1+ε+}

(
1
2 |∇Gun|2

N∑
k=1

Xkϕk −
N∑

k=1

N∑
l=1

XkϕlXlunXkun

)
dx

+
∫

{1−ε−<un<1+ε+}

[
G

(
un − 1
αn

) N∑
k=1

Xkϕk + λ(un − 1)2+f
N∑

k=1

Xkϕk

]
dx.

(4.14)

The integral on the left of equation (4.14) converges to

∫
{u=1+ε+}∪{u=1−ε−}

[
1
2 |∇Gu|2

N∑
k=1

ϕk〈Xk, dn〉 − (
N∑

k=1

Xkuϕk)
N∑
l=1

Xlu〈Xl, dn〉

+
∫

{u=1+ε+}

N∑
k=1

ϕk〈Xk, dn〉

⎤
⎥⎦

=
∫

{u=1+ε+}∪{u=1−ε−}

⎡
⎣(1 − 1

2 |∇Gu|2
) N∑

k=1

ϕk〈Xk, dn〉 −
∑

k �=l;1≤k,l≤N

ϕkXluXku〈Xl, dn〉

⎤
⎦

=
∫

{u=1+ε+}

⎡
⎣(1 − 1

2 |∇Gu|2
) N∑

k=1

ϕk〈Xk, dn〉 −
∑

k �=l;1≤k,l≤N

ϕkXluXku〈Xl, dn〉

⎤
⎦

(4.15)



D. Choudhuri, D.D. Repovš / J. Math. Anal. Appl. 518 (2023) 126677 13
−
∫

{u=1−ε−}

⎡
⎣(1

2 |∇Gu|2
) N∑

k=1

ϕk〈Xk, dn〉 −
∑

k �=l;1≤k,l≤N

ϕkXluXku〈Xl, dn〉

⎤
⎦

=
∫

{1−ε−<u<1+ε+}

(
1
2 |∇Gu|2

N∑
k=1

Xkϕk −
N∑

k=1

N∑
l=1

XkϕlXluXku

)
dx

+
∫

{1−ε−<u<1+ε+}

[
N∑

k=1

Xkϕk + λ(un − 1)2+f
N∑

k=1

Xkϕk

]
dx,

as n → ∞.
Note that the normal vector at the point P on the set {u = 1 + ε+} ∪ {u = 1 − ε−} is n = ± ∇Gu(P )

|∇Gu(P )| . 
Thus equation (4.15) under the limit ε → 0 becomes

0 =lim
ε→0

∫
{u=1+ε+}

[(
1 − 1

2 |∇Gu|2
) N∑

k=1

ϕk〈Xk, dn〉
]

− lim
ε→0

∫
{u=1−ε−}

[(
1
2 |∇Gu|2

) N∑
k=1

ϕk〈Xk, dn〉
]
.

(4.16)

This proves that u satisfies the free boundary condition in the sense of viscosity. The solution cannot be 
trivial since u ∈ C1({u > 1}) and it satisfies the free boundary condition. �
Remark 4.2. Notice that Iα satisfies the Palais-Smale (PS) condition. To prove this, we define

u+
n (x) := max{un(x), 0}, u+ + u− := (u− 1)+ + [1 − (u− 1)−] = u.

Notice that

Iα(un) ≥ 2−1‖un‖2 − λ

3

∫
Ω

f(u+
n )3dx

〈I ′α(un), un〉 ≤ ‖un‖2 − λ

∫
Ω

f(u+
n )3dx + 2

α
|Ω|.

(4.17)

Let c ∈ R and consider

c + σ‖un‖ + o(1) ≥ Iα(un) − 1
3 〈I

′
α(un), un〉 ≥ 6−1‖un‖2 − 2

α
|Ω|. (4.18)

This implies that (un) is bounded in W 1,2
0 (Ω). This implies that there exists a subsequence of (un) such 

that un ⇀ u in W 1,2
0 (Ω), un → u in L3(Ω) and un(x) → u(x) a.e. in Ω. Since 〈I ′α(un), v〉 → 0 as n → ∞ we 

have

lim
n→∞

∫
Ω

∇̃unvdx = lim
n→∞

⎡
⎣∫

Ω

1
α
g

(
un − 1

α

)
vdx + λ

∫
Ω

(un − 1)2+vfdx

⎤
⎦ for all v ∈ W 1,2

0 (Ω). (4.19)

We choose v = un − u in (4.19) to obtain
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lim
n→∞

∫
Ω

∇̃un(un − u)dx = lim
n→∞

⎡
⎣∫

Ω

1
α
g

(
un − 1

α

)
(un − u)dx + λ

∫
Ω

(un − 1)2+(un − u)fdx

⎤
⎦

= 0.

(4.20)

This implies that un → u in W 1,2
0 (Ω). Hence Iα satisfies the (PS) condition.

5. Proof of the main theorem

Before we prove the existence of a solution to the problem (1.1), we develop a few tools which will be 
used in the proof. We observe that

Iα(u) ≤ I(u) in W 1,2
0 (Ω).

Furthermore, we have

Iα(u) ≥ 1
2‖u‖

2 − λ

3

∫
Ω

|u|3fdx

≥ 1
2‖u‖

2 − Cλ

3 ‖f‖∞‖u‖3

(5.1)

by Lemma 2.3. Therefore, there exists r0 = r0(ν, λ, ‖f‖∞) > 0 such that

Iα(u) ≥ 1
4‖u‖

2 (5.2)

for ‖u‖ ≤ r0. Furthermore, for a fixed nonzero u we have Iα(tu) → −∞ as t → ∞ and hence there exists a 
function v0 such that Iα(v0) < 0 = Iα(0). This indicates that the set

Λα := {ψ ∈ C([0, 1];W 1,2
0 (Ω)) : ψ(0) = 0, Iα(ψ(1)) < 0}

is nonempty. Hence by the Mountain pass theorem we have

cα := inf
ψ∈Λα

max
u∈ψ([0,1])

Iα(u). (5.3)

By the definition of the set Λα we have Λ ⊂ Λα and

cα ≤ max
u∈ψ([0,1])

Iα(u) ≤ max
u∈ψ([0,1])

I(u) (5.4)

for all ψ ∈ Λ. This implies that cα ≤ c.

Remark 5.1. Let φ1 be the first eigenfunction pertaining to the first eigen value λ1 (see Proposition 3.1 [9]). 
Notice that

I(tφ) → −∞ as t → ∞. (5.5)

Thus there exists t∗ > 0 such that I(t∗φ1) < 0. Consider the path which is defined by ψ(t) = tφ1 for 
t ∈ [0, t∗]. Then ψ yields a path from Λ on which
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I(tφ1) ≤ C := sup
t≥0

∫
Ω

(
λ1

2 t2φ1 + 1
)
dx. (5.6)

Therefore c ≤ C.

Proof of Theorem 1.1. From Remark 5.1 we conclude that cα ≤ c ≤ C. Since Iα obeys the (PS) condition, 
it follows that a limit of the (PS) sequence, say uα, can be shown to be a critical point of Iα. Hence we have 
Iα(uα) = cα.

Now consider a sequence αn which converges to zero and name uαn
as un and cαn

as cn. By Lemma 4.1
(i) − (ii), we know that a subsequence of (un), still denoted by the same name, converges uniformly in Ω̄, 
locally in C1(Ω̄ \ {u = 1}), and strongly in W 1,2

0 (Ω), to a locally Lipschitz function u ∈ W 1,2
0 (Ω) ∩ C2(Ω̄ \

H(u)). Moreover, by (5.2) in Remark 4.2 we have lim sup Iαn
(un) = lim sup cn ≥ r0

4 > 0. This indicates 
that one of the limit conditions lim sup Iαn

(un) > 0 or lim inf Iαn
(un) < 0 in Lemma 4.1 indeed holds.

Hence by the paragraph after Lemma 4.1 (iv), we can conclude that u is nontrivial. Furthermore, by 
Lemma 4.1, u is a classical solution of Lu = λ(u − 1)2+f in Ω \ ∂{u > 1} and the free boundary condition 
|∇Gu

+|2 − |∇Gu
−|2 = 2 in the sense of (4.16), plus it vanishes on the boundary ∂Ω. �

Remark 5.2. We note that the limiting conditions in Lemma 4.1 are still an open problem, which is sublinear 
in its nature.

6. Appendix: Radon measure lemma

Lemma 6.1. u ∈ W 1,p
loc (Ω) and the Radon measure M = Lu is nonnegative and supported on Ω ∩ {u < 1}.

Proof. We follow the idea of the proof in Alt-Caffarelli [2]. Choose δ > 0 and a test function ϕpχ{u<1−δ}, 
where ϕ ∈ C∞

0 (Ω). Then

0 =
∫
Ω

∇̃u∇(ϕ2 min{u− 1 + δ, 0})dx

=
∫

Ω∩{u<1−δ}

∇̃u(ϕ2 min{u− 1 + δ, 0})dx

=
∫

Ω∩{u<1−δ}

|∇Gu|2ϕ2dx +
∫

Ω∩{u<1−δ}

ϕ(u− 1 + δ)∇̃uϕdx,

(6.1)

and so by the Caccioppoli like estimate, we have

∫
Ω∩{u<1−δ}

|∇Gu|2ϕ2dx = −2
∫

Ω∩{u<1−δ}

ϕ(u− 1 + δ)∇̃uϕdx

≤ c

∫
Ω

u2|∇Gϕ|2dx.
(6.2)

Since 
∫
Ω |u|2dx < ∞, by passing the limit δ → 0, we can conclude that u ∈ W 1,2

loc (Ω). Furthermore, for a 
nonnegative ζ ∈ C∞

0 (Ω) we have
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−
∫
Ω

∇̃uζdx =

⎛
⎜⎝ ∫

Ω∩{0<u<1−2δ}

+
∫

Ω∩{1−2δ<u<1−ε}

+
∫

Ω∩{1−δ<u<1}

+
∫

Ω∩{u>1}

⎞
⎟⎠

[
∇̃u

(
ζ max

{
min

{
2 − 1 − u

δ
, 1
}
, 0
})]

dx

≥
∫

Ω∩{1−2δ<u<1−δ}

[
∇̃u

(
2 − 1 − u

δ

)
ζ + ζ

δ
|∇Gu|2

]
dx ≥ 0.

(6.3)

On passing to the limit δ → 0, we obtain L(u − 1)− ≥ 0 in the distribution sense. Therefore there exists a 
Radon measure, say M, such that M = L(u − 1)− ≥ 0. �
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