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Abstract

Let X be a metric space with metric d, ¢(X) denote the family of all nonempty compact subsets of X
and, given F, G € ¢(X), let e(F, G) = sup, ¢ infyei d(x, y) be the Hausdorff excess of F over G. The
excess variation of a multifunction F : [a, b] — ¢(X), which generalizes the ordinary variation V of single-
valued functions, is defined by V4 (F, [a, b]) = sup, ;":l e(F(t;_1), F(t;)) where the supremum is taken
over all partitions 7w = {t; };”:0 of the interval [a, b]. The main result of the paper is the following selection
theorem: If F:[a, b] — c(X), V4 (F,[a,b]) < 0o, tg € [a, b] and xo € F(ty), then there exists a single-
valued function f:[a,b] — X of bounded variation such that f(t) € F(t) for all t € [a, b], f(tg) = xg,
V(f,la,tg)) < V4 (F,la, tg)) and V(f, [tg, b]) < V4(F, [tg, b]). We exhibit examples showing that the
conclusions in this theorem are sharp, and that it produces new selections of bounded variation as compared
with [V.V. Chistyakov, Selections of bounded variation, J. Appl. Anal. 10 (1) (2004) 1-82]. In contrast to
this, a multifunction F satisfying e(F (s), F(¢t)) < C(t — s) for some constant C > 0 and all s, ¢ € [a, b]
with s < ¢ (Lipschitz continuity with respect to e(-,-)) admits a Lipschitz selection with a Lipschitz constant
not exceeding C if ) = a and may have only discontinuous selections of bounded variation if a < 5 < b.
The same situation holds for continuous selections of F :[a, b] — c¢(X) when it is excess continuous in the
sense that e(F (s), F(t)) > 0ass —t — 0 forall r € (a,b] and e(F(t), F(s)) —> 0 as s — ¢ 4+ 0 for all
t € [a, b) simultaneously.
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* This research was supported by the Slovenian Research Agency Grants P1-0292-0101-04 and BI-RU/05-07-004.
* Corresponding author.
E-mail addresses: czeslaw @mail.ru (V.V. Chistyakov), dusan.repovs @fmf.uni-1j.si (D. Repovs).

0022-247X/$ — see front matter © 2006 Elsevier Inc. All rights reserved.
doi:10.1016/j.jmaa.2006.09.004



874 V.V. Chistyakov, D. Repovs / J. Math. Anal. Appl. 331 (2007) 873-885

Keywords: Hausdorft excess; Metric space; Compact set; Multifunction; Selection; Bounded variation; Lipschitz
continuity; Pointwise convergence

1. The main result

We begin by reviewing certain preliminary definitions and facts needed for our results.
Throughout the paper X will denote a metric space with metric d.

A function f:T — X on a nonempty set T C R is said to be of bounded variation if its total
Jordan variation V (f, T') given by

m
V(. T)=Va(f, T)=supy_d(f@), fGi-D) (V(f.9)=0)
o=l
is finite, the supremum being taken over all partitions 7 = {£;}/", of the set T', i.e., m € N and
{t:}/Ly C T such that t; y < for all i € {l,...,m}. The two well-known properties of the
variation V (e.g., [5]) are the additivity in the second argument: V(f, T) =V (f, (—oo,t]1NT) +
V(f,[t,00) NT) for all t € T, and the sequential lower semicontinuity in the first argument:
if a sequence of functions {f,};2 , mapping T into X converges pointwise on 7' to a function
[T — X (e, lim,00d(fu(t), f(t)) =0forallt € T),then V(f, T) < liminf,, 00 V(f5, T).
Given two nonempty sets F, G C X, the Hausdorff excess of F over G is defined by (see,
e.g., [2, Chapter II]):

e(F,G)=¢eq(F,G)=supdist(x, G), where dist(x,G) = inf d(x, y).

xeF yeG
The following properties of the excess function e(-,-) are well known: if F, G and H are non-
empty subsets of X, then (i) e(F, G) =0 if and only if F C G where G is the closure of G in X;
(i) e(F,G) <e(F,H)+e(H, G); (iii) the value e(F, G) is finite if F' and G are bounded and,
in particular, closed and bounded, or compact.

Another, more intuitive, definition of e(F, G) can be given as follows. If B.(x) = {y € X:
d(y, x) < e} is the open ball of radius ¢ > 0 centered at x € X and O, (G) = {x € X: dist(x, G) <
e} = U, eq Bs(x) is the open e-neighbourhood of G, then e(F, G) =inf{e > 0: F C O,(G)}.

The Hausdorff distance between nonempty sets F' and G from X is defined as follows (e.g.,
[2, Chapter II]):

D(F,G)=max{e(F,G),e(G, F)} =inf{e > 0: F C O.(G) and G C Ox(F)}.

The function D(:,-) is a metric, called the Hausdor{f metric, on the family of all nonempty closed
bounded subsets of X and, in particular, on the family c¢(X) of all nonempty compact subsets
of X.

By a multifunction from T into X we mean a rule F' assigning to each point ¢ from T a
nonempty subset F () C X. We will mostly be interested in multifunctions of the form F: T —
¢(X). Such a multifunction is said to be of bounded variation (with respect to D) if its total
Jordan variation is finite:

m
Vp(F.T)=sup» D(F(t). F(ti1)) < o.
i=1
A (single-valued) function f:T — X is said to be a selection of F on T provided f(t) € F(t)
forallreT.
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The following theorem on the existence of selections of bounded variation is given in [6,
Theorem 5.1] (the previous special cases of this theorem are contained in [1,4,5,10,11]):

Theorem A. If F: T — c(X), Vp(F,T) < o0, ty € T and xo € F(ty), then there exists a selec-
tion f of F of bounded variation on T such that f(ty) =xoand V(f,T) < Vp(F,T). Moreover,
if F is continuous with respect to D, then in addition a selection f of F may be chosen to be
continuous on T

The aim of this paper is to remove the assumption Vp(F,T) < co from Theorem A and
replace it by a weaker one, V.(F, T) < oo (for more precise condition see below), which, as
we will show, still preserves the existence of selections of F' of bounded variation. In order to
achieve this, we introduce the following definition.

The excess variation to the right V. (F, T) of a multifunction F: T — c¢(X) is

m
Vi(F, T)=sup ) e(F(ti-1), F(t)) (V+(F,9) =0), (1)
i=1
where the supremum is taken over all partitions 7 = {;}_, of T. Analogously, the excess vari-
ation to the left of F is given by

m
VL(F.T)=sup Y e(F(t), F(ti-1)) (V_(F.%)=0).
=1
Note that both V. and V_ are generalizations of the ordinary variation V = V; for single-valued
functions f. Also, the value Vp (F, T) is finite if and only if both values V. (F, T) and V_(F, T)
are finite.

To simplify the matters and make the ideas involved more clear in the rest of the paper (except
Theorem B on p. 878 and Theorem C on p. 883) we assume that T = [a, b), witha e Rand a < b,
is either the closed interval [a, b] with b € R or the half-closed interval [a, b) with b € R U {o0}.
A similar convention applies to the interval T = (a, b]. In their full generality our results are
valid for any nonempty set 7 C R withinf7 € T or supT € T corresponding to [a, b) or (a, D]
under consideration, respectively (cf. [6, Section 5]).

Our main result, an extension of Theorem A to be proved in Section 2, is as follows.

Theorem 1. Suppose that F: T — c¢(X), to € T and xqo € F (ty). We have:

(@) if T =la,b) and Vo (F, T) < 00, then there exists a selection of bounded variation f of F
on T such that f(tg) = xo,

V(f.1a,10) < Vi (F.la, 1), V(f.li0,b) < Vi(F. [0, b)), and
V(£ la,b) = tim d(f(s),30) < Vi (F, [, ) + Ve (F L0, b)) < Vi (F o, b);

(b) if T = (a,b] and V_(F,T) < oo, then there exists a selection of bounded variation f of F
on T such that f(tg) = xo,

V(f. (a.10]) < V_(F, (a. 10]), V(f. (to, b]) < V_(F, (10, b]), and
V(f (a,b]) — 1itm+0d(f(s),xo) < V_(F, (a, 1)) + V_(F, (10, b]) < V_(F, (a, b]).
s—>10
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The case when the multifunction F additionally admits continuous selections of bounded
variation is treated in Section 4 (Theorem 3).

In order to see how Theorem 1 implies Theorem A, assume that T = (a, b) is an in-
terval, which is either open, closed, half-closed, bounded or not, #tp € T, V_(F, (a, tp]) and
V. (F, [tg, b)) are finite (this is the case when Vp(F,T) < oo) and xg € F(#p). Applying The-
orem | we find a selection f_ of F on {(a,fg] such that f_(f9) = xo and V(f_, (a,t]) <
V_(F, (a,t]) and a selection f4 of F on [fg, b) such that fi (tp) = xo and V (f4, [to, b)) <
Vi (F,[to, D)). Defining f:(a,b) - X by f(t) = f_(¢t) if t € {(a,tp] and f(t) = fi(¢) if
t € [t9, b) we obtain a desired selection of F satisfying f(f9) = xo and, by virtue of the addi-
tivity property of V in the second variable,

V(fi(a,b)) =V (f-.(a.tol) + V(fr. [to. b)) < V_(F, (a, to]) + Vi (F, [t0, b)),

which is estimated by Vp (F, (a, to])+ Vp (F, [to, b)) = Vp(F, {(a, b)) if the last quantity is finite.
These arguments also apply to obtain Lipschitz and continuous selections of bounded variation
of F on {a, b) (see Section 4).

For more motivation, historical comments and possible applications of the results of this paper
we refer to [1,4-6,10].

The paper is organized as follows. In Section 2 we study properties of the excess variation V4
and prove Theorem 1. In Section 3 we present an example of a multifunction, for which The-
orem 1 is applicable while Theorem A is not, and show that the conclusions of Theorem 1 are
sharp. Section 4 is devoted to the existence and non-existence of Lipschitz and continuous selec-
tions of bounded variation.

2. Proof of the main result

Since assertions (a) and (b) in Theorem 1 are completely similar, we concentrate on (a). In
the proof of this theorem we will need Lemmas 1 and 2 and Theorem B presented below in this
section.

In the next two lemmas we gather several properties of the excess variation V_ (the properties
of the excess variation V_ are similar).

Lemma 1. Let F :[a, b) — c(X) and Vi (F,[a, b)) < co. We have:

(@) V4(F,la,b)) =0ifand only if F(s) C F(t) forall s,t € [a, D), s <t.
(b) Ifs,t €la,b), s<t, then VL.(F,|a,s])+ Vi (F,[s,t]) = Vi (F, [a, t]).
(©) limg—;—o Vi (F,[a,s]) = Vi(F,la,t)) foreach t € (a, b).

Proof. (a) This is a consequence of the definition of V, and property (i) of the excess func-
tion e(-,-) from Section 1 on closed or compact subsets of X.

(b) First, note that if a new point is inserted into a given partition 7 = {;}7";, of T, the sum
under the supremum sign in (1) will not decrease: in fact, suppose s € T and ;1 < s < f for
some k € {1, ..., m}, then applying property (ii) of e(-,-) from Section 1, we get

e(F(tx—1), F(tx)) < e(F (tk—1), F(s)) +e(F(s), F(t)), (2

and the assertion for the sums follows. This observation implies that in order to calculate the
value V, (F, T) from (1), instead of all partitions of 7" we may consider only those that contain
an a priori fixed finite number of points from 7.
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So,leta=1ty<t) <--- <typ_1 <t =s be apartition of [a,s] and s =1, <ty41 <--- <
th—1 < t, =t be a partition of [s, ]. We have:

n

e(F(ti-), F))+ Y e(Ftj-1), F(t))) < Vi(F,[a, 1),

1 j=m+1

NE

Taking the supremum over all partitions of [a,s] and [s,?], we arrive at the inequality
Vi(F,la,s]) + Vi (F,[s,t]) < V4 (F, [a,1]).

Now, leta =1y <t] <--- < tyy—1 <ty = b be a partition of [a, #] and assume that #;_1 <
s <ty for some k € {1, ..., m}. By virtue of (2), we find

e(F(ti—1), F(t)) < Vi(F.la,s]) + V4 (F, [s,1]),

o

1

and it remains to take the supremum over all partitions of [a, t].
(c) The definition of V. implies that, given ¢ > 0, there exists a partitiona =19 <71 <--- <
T, <t of [a, ) (depending on ¢) such that

m

Vi(F,la,0) —e <Y e(F(ri-1), F(t)) < Vi (F, la, tn)).
i=1

It follows that for any 7, <s <t we get:
Vi(F,la,0)) —e < Vi (F, la, tn]) < Vi(F, la,s]) < V4 (F,[a, 1)),

which proves (c) and completes the proof of our lemma. O

Lemma 2. Let F:[a,b) — c(X) and Vi (F,|a,b)) < co. Define the V.-variation function
v:la,b) — [0,00) by v(t) = Vi (F,[a,t]) fort € [a,b). Then

1imoe(F(s), F(t)) =v({)—v(@—0) forallte (a,b) 3
s—>t—
and

liItIJere(F(t), F(s)) =v(+0)—v(t) foralltela,b), ()

where v(t — 0) and v(t + 0) are the left and right limits of v at t, respectively.

Proof. After the property of Lemma 1(b) has been proved, this lemma might be considered as a
consequence of [5, Lemma 4.2]. However, in that reference functions under consideration were
assumed to take their values in a metric space where the distance function is symmetric. In our
case the excess function e(-,-) is not symmetric (for e(F, G) # e(G, F) in general), and so, we
have to take care of that. For the reader’s convenience we reproduce the proof from the above
reference in a somewhat shortened form.

By virtue of Lemma 1(b), the function v is nondecreasing and, hence, regulated, i.e., it has
the left limit v(z — 0) at all points ¢ € (a, b) and the right limit v(¢ + 0) at all points ¢ € [a, b).
The existence of the limits at the left-hand sides of (3) and (4) can be proved in exactly the same
way as in [5, Lemma 4.1] by using the Cauchy criterion if we take into account property (ii) of
the excess function from Section 1.
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Proof of (3). By Lemma 1(b), for ¢ € (a, b) and s € [a, t) we have:
e(F(s), F(1)) < VL(F,[s,1]) = v(t) — v(s),

and so,as s — t — 0, limg_,,_ge(F(s), F(t)) <v(t) —v(t — 0). To prove the reverse inequality,
by the definition of V. (F, [a, t]) for any & > 0 we choose a partition {t;}7* , U {t} of [a, ¢] with
tm <t such that

m

Vi(F.la.t]) <Y _e(F(ti—1). F(t) +e(F(tn). F(1)) +&.

i=l1
If's € [1m, 1), noting that e(F (), F (1)) < €(F (tm), F(5)) +-e(F (s), F(1)), we get:
Vi(F,la,1]) < V4 (F, [a, s]) +e(F(s), F(1)) + ¢,

which implies v(t) — v(s) < e(F(s), F(t)) + ¢, and it remains to pass to the limit as s — ¢ — 0
and take into account the arbitrariness of ¢ > 0. O

Proof of (4). Givent € [a, b) and s € (¢, b), we have:
e(F (1), F(s)) < VL(F, [t,s]) = v(s) — v(2),

and so, lims_,,ge(F (¢), F(s)) <v(t+0) — v(z). The reverse inequality will follow if we show
that for any ¢ > 0 there exists o = #y(¢) € (¢, b) such that

v(s) —v() < e(F(t), F(s)) +¢& forallt <s <1, )

then let s go to t + 0 and note that ¢ > 0 is arbitrary. To prove (5), we note that V (F, [t, b)) <
Vi(F,la,b)) < 0o, and so, there exists a partition {t} U {#;}{"; (depending on ¢) of [t, b) with
t < tg such that

Vi (F. [t tw]) S Vi (F,[1,5)) < e(F(0), F(t9)) + Y _e(F(ti—1), F(1;)) +e.
i=1

If t <5 <ty, wehave e(F (1), F(ty)) <e(F (), F(s)) +e(F(s), F(ty)), and so,
Vi(F,[1,tm]) <e(F (1), F(9)) 4 Vi (F. s, tn]) + &,

implying, by Lemma 1(b),
Vi(F.la,s]) = V4(F,la,1]) = Vo (F, [t, tm]) — Vi (F. [s, tn]) <e(F (), F(5)) + &,

which is precisely (5) according to the definition of v. O

In order to formulate Theorem B, we recall the notion of the modulus of variation of a function

f:T — X due to Chanturiya [3] (see also [9, Section 11.3]): this is the sequence of the form
{vik, f, T)},‘{";1 where v(k, f, T) = sup Zle d(f(b;), f(a;)) and the supremum is taken over
all collections ay, ..., ax, by, ..., by of 2k numbers from T such thata; < b; <ax <by <--- <
ay < bi. The following theorem is a pointwise selection principle in terms of the modulus of
variation [7, Theorem 1]:
Theorem B. Suppose that a sequence of functions {f,};° | mapping T into X is such that
(a) limg— oo (limsup,,_, . v(k, fu, T)/k) =0, and (b) the closure of the set { f, (t)};’loz1 in X is
compact for each t € T. Then there exists a subsequence of { fu},> |, which converges pointwise
on T to afunction f:T — X satisfying limy_. o v(k, f, T)/k =0.
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Now we are in a position to prove our main result. In the proof we employ several ideas from
[1,5] and [6, Section 5].

Proof of Theorem 1(a). For the sake of clarity we divide the proof into four steps. In the first
two steps we prove the theorem for 7' = [a, b] and #y = a, in the third step—for T = [a, b) and
to = a, and in the fourth step—for T = [a, b) and 1y € [a, b) with y > a.

Step 1. Suppose that T = [a, b] and ty = a, so that xo € F(a) by the assumption. Since the
V4 -variation function v : [a, b] — [0, oo) from Lemma 2 is regulated, the set of its discontinuities
is at most countable. Putting

Tvz{te(a,b]: v(t—0)= lim v(s):v(t)]
s—t—0

and

Tr = {t €(@bl: lim e(F(s). F()) =o},

we have, by virtue of Lemma 2, Tr = T, and so, the set [a,b] \ TFr = [a,b] \ T, is at most
countable. We set

S = {a, b} U (QN[a,b]) U ([a, b]\ Tr),

where Q is the set of all rational numbers, and note that S is dense in [a, b] and at most countable.
We enumerate the points in S arbitrarily and, with no loss of generality, suppose that S is count-
able, say, S = {t;}7°, with o = a. Then for any n € N the set 7, = {tl} U {b}isa part1t10n of
[a, b]. Ordering the points in 7, in strictly ascending order and denotmg them by m, = {#!'}7_,
we find

a=ty <t/ <---<ty_, <ty =b, and (6)
Vt € S dng=np(t) e N suchthat rem, foralln>ng. (7

We now construct an approximating sequence for the desired selection. Given n € N, we first
define elements x}' € F(¢]') fori € {0, 1, ..., n} inductively as follows:

(i) we set x;j = xg, and
(i) if i € {1,...,n} and x]' ;| € F(¢'_ ) is already chosen, we pick x € F(¢) such that
d(x!_,x!') = dlst(xl_l, F@")).

For each n € N we define a function f;, : [a, b] = X by setting

C[xp ifr=r"andi€{0,1,....n},
fn(t)— xl{q

' ifre @ )andze{l ,n}. 3

i—1° l
Observe that f;,(a) = f,(ty) = x; = xo forall n € N.

Step 2. Now we show that the sequence {f,};°, satisfies the assumptions of Theorem B.
Condition (a) in that theorem is a consequence of the additivity of V, definitions (8) and (ii), the
excess and V,:

v(k, fu, [a,b]) <V (fu, la, b)) Zv (for [t 1 17"] Zd Xy x]
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n n
= dis . F() < Ye(F ). F(7))
i=1 i=1
< V+(F, [a,b]) forall k,n e N, )]
which implies
limsupv(k, s la, b]) < Vi (F, [a, b]) for all k € N.
n—oo

Let us verify condition (b) of Theorem B. We consider two possibilities: (I) # € S, and (I) ¢ €
[a, D]\ S.
(I) Suppose that ¢ € S. By virtue of (7), there exists ng = no(t) € N such that t € 7, for all

n > ng, and so, for each n > ng there exists i =i(n,t) € {0, 1,...,n} such that r = tl?“. It follows
from (8), (i) and (ii) that
@)= fu (tf) =x'e F(tl-") = F(t) foralln > ng, (10)

and it suffices to take into account the compactness of F(¢).
(II) Let r € [a,b] \ S. Then t € (a, b) N TF is irrational and, in particular, by the definition
of Tr we have:

e(F(s), F(1)) = 0 as(a,b)3>s—1—0. (11)

Due to the density of S in [a, b], there exists a sequence of points {s;}7>, C SN (a, t) such that
sy — t as k — oo. Since s; € S for each k € N, we can find, by (7), a number n(k) € N (depend-
ing also on ¢) such that sy € m,x) and, therefore, s; = t;’((,]j)) for some j (k) € {0, 1,...,n(k) —1}.
Again, thanks to property (7), we may assume with no loss of generality that the sequence
{n(k)},f‘;l is strictly increasing. Since sy < ¢, it follows from (6) that there exists a unique number
i(k)e{jk),...,n(k) — 1} such that

Sk = t;?é,’j)) <) <t <idl), forallkeN. (12)
Now this and the property that sy — ¢ as k — 0o give:

t;;gy —t ask— oo. (13)

By the second line of definition (8) and (12), we have
Fato ) =13 € F(/Y)) forall k e N.
For each k € N pick an element xtk € F(t) such that

k .
d(xf((k)), x,k) = dlst(xi"(g{k)), F(t)).
Then (11) and (13) imply

k
d(fato (1), xF) S e(F (/). F()) = 0 ask — oo.
Since the set F(¢) is compact and {xtk},fil C F(t), there exists a subsequence of {xtk},‘zozl, again
denoted by {x,k},fil, and an element x; € F(¢) such that d(xtk, x;) — 0 as k — o0, and so,

d(fuo (0, 1) <d(fa (), xF) +d(xf,x) = 0 ask — oo. (14)

This proves that the closure of the sequence { f,(¢)}72, in X is compact for all ¢ € [a, b].

By Theorem B, there exists a subsequence of {f,}°° |, which we again denote by { fux)}72 ;>
and a function f:[a,b] — X such that d(f,x)(), f(z)) — 0 as k — oo for all ¢ € [a, b].
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Clearly, f(a) = x¢. The inclusion f(¢) € F(¢) for all ¢ € [a, b] is a consequence of the closed-
ness of F(¢), (10) and (14). Finally, the lower semicontinuity of the Jordan variation V and
inequality (9) ensure that

V(f.la,b]) < l}cmian(fn(k), la,b]) < Vi(F,[a,b]). (15)

Thus, our theorem is proved for T = [a, b] and #y = a.

Step 3. Assume now that T = [a, b) with b € R U {00} and 79 = a. Choose an increasing se-
quence {tn},f(’:l C [a, b) such that t, — b as n — oo. Since V4 (F, [a, t1]) < V4 (F, [a, b)) < 0o,
applying steps 1-2 we get a function fj:[a, ;] — X such that fy(¢) € F(¢) for all ¢ € [a, 1],
fo(a) = xo and V (fo, la, 11]) < V4(F, [a, t1]). Inductively, if n € N and a selection f,_; of F
on [t,—1, t,] is already chosen, we note that V_ (F, [t,, t,+1]) < V4(F,[a, b)) < oo and apply
again steps 1-2 to obtain a selection f, of F on [t,,,+1] such that f,(¢,) = fu—1(t,) and
V(fu, tn, ths1]) < VL(F, [ty, th+1]). Given t € [a, b), so that t € [t,,—1, t,,] for some n € N, we
set f(t) = fu—1(t). Then the function f:[a,b) — X is a selection of F on [a,b), f(ty) =
fo(a) = xp and, by virtue of Lemma 1(b) and (c) we have:

k
V(fla,b)) = lim V(f.la.t]) = lim 3 V(fu-1. a1, ta])
n=1

k
< Jim Z} Vi (F i1, 1a]) = Jim Vi (F, [a, 4]) = Vi (F. [a, b).
n=

Step 4. Now suppose that T = [a,b) and fy € (a,b). Noting that V. (F,[a,ty)) and
V4 (F, [to, b)) do not exceed VL (F,[a,b)) and xo € F(ty), we apply steps 1-3 twice: to F
on [fy, b) in order to find a selection f; of F on [#y, b) such that f(f9) = xo and V (f1, [to, b)) <
Vi (F, [to, b)), and to F on [a, ty) with arbitrary yg € F(a) to obtain a selection f> of F on [a, t()
such that fr(a) = yo and V (f2, [a, tp)) < VL (F,[a, t9)). We set f(t) = fa(¢) for t € [a, tp) and
f@) = fi1(@t) if t € [tg, b). Clearly, f is a selection of F of bounded variation on [a, b) with the
desired properties and such that (cf. the jump relations for functions of bounded variation in [5,
Theorem 4.6(a)])

V(f.la.b)) =V(f.la, 10]) + V(. 10, b))
=V(fala,i0) + tlim d(f(s). f @)+ V(1. [10. b))
SVa(Fola.i0) + lim d(f(s).x0) + Vi (F. [0, b))
< Vi(F,la, b))+ lim Od(f(s),xo) < o0,
S—>10—

where the existence of the limit follows from the fact that f = f, on [a, fy) is of bounded varia-
tion and the Cauchy criterion: if a < s1 < 52 < g, we have:

|d(f2(s1), x0) — d(f2(s2), x0)]
<d(f2(s1), f2(s2)) < V(f2, [s1.52])
=V(fa.la, 1) = V(f2.la.s1]) = V(fo.la. 10)) = V(f2. [a,10)) =0

as sy, 50 — 1o — 0.
This completes the proof of Theorem 1. O
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3. Examples

Example 3.1. In this section we present an example of a multifunction F such that V. (F, [a, b])
is finite, and so Theorem 1 applies, giving selections of bounded variation of F, whereas
V_(F, [a, b]) is infinite, and Theorem A is thus inapplicable.

Let X = ¢!(N) be the Banach space of all summable sequences x :N — R, written as x =
{xi}72,, equipped with the norm || x| = Zl 1 1xi], and let the unit vector u, = {x;}72, in X be
defined as usual by x; =0 if i # n and x,, = 1. Given k € NU {oo}, we set Fy, = {0} U {c,,u,,}
where {c,}°C | is a decreasing sequence of positive numbers such that

n=1"

o0
¢y, —>0 asn— o0 and Zc,,:oo (16)
n=1
(e.g., ¢, = 1/n). Clearly, Fy € c(X) for all k € N, and the first condition in (16) implies F €
c(X) as well. We define a multifunction F : [0, 1] — c(X) as follows:

k— k
F(t)=F if <t<k+1forkeN and F(1) = Fno.

Since Fy C Fy4+1 C Foo for all k € N, then condition 0 < s < ¢ < 1 implies F(s) C F(¢), and
so, by Lemma 1(a), Vi (F, [0, 1]) = 0. In order to show that V_(F, [0, 1]) = oo, we first observe
that if £ € N, then

e(Fi+1, Fr) = sup inf ||x —yll=ck+1+ inf cp=cit1 +ck
x€Fy1 YEFk 1<n<k

and

e(Foo, Fr) = sup (cn + inf ci> = sup ¢, + inf c¢; =cr41+ck-
n>k+1 1<i<k nzk+1 I<i<k

Now for an arbitrary m € N and for the partition 7, of [0, 1] of the form 7,,, = {(k — 1)/ k}ZLl U
{1} we have:

-(r0.> Zl (i) £ (5)) #e(ree (7))

= Z e(Fi+1, Fr) +e(Foo, Fi)

,_‘

=—c1+cm+1+22ck—> o0 asm —> 00.
k=1

Example 3.2. Multifunction F' from Example 3.1 has two constant selections f () = 0 and
f () = cru; guaranteed by Theorem 1 and satisfying initial conditions f(0) =0 and f(0) =
ciuq, respectively, and V (f, [0, 1]) < V4 (F, [0, 1]) = 0. However, if we assume in Theorem 1
that xo € F(ty) with a < fy < b, then condition V(f, [a, b]) < VL (F, [a, b]) may be violated
for any selection f of F such that f(z)) = xo. To see this, we assume in the previous example
that #o = 1/2 and xo = cpuy. Clearly, xg € F(t9) = F>. If f:]0,1] — X is any selection of F
such that f(1/2) = cpus, then since f(0) € F(0) = F; = {0, ciu}, we have either f(0) =0 or
f(0) =cuy, and so,

V(£10,11) > || f(1/2) = f(O)| = c2 > 0=V, (F, [0, 1]). (17)
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The first inequality in Theorem 1(a) states that V (f, [a, t9)) < V4 (F, [a, tp)). In general it
cannot be replaced by the inequality V (f, [a, to]) < V4 (F, [a, to]) if f(tp) = xo with #p > a; it
suffices to argue as in (17):

V(£10,1/21) 2 | £(1/2) = FO)| = c2 > 0= V4 (F, [0, 1/2]).

This observation also shows that the limit from the left in the third inequality of Theorem 1(a) is
indispensable.

Example 3.3. We note that the inequality V (f, [to, b)) < V4 (F, [ty, b)) from Theorem 1 may
fail even for [#g, b) = [a, b] if at least one value F(¢) of F is only closed and bounded but not
compact. The corresponding example was constructed in [6, Example 5.2].

4. Lipschitz and continuous selections

Recall that a multifunction F : T — c(X) is said to be Lipschitz (with respect to the Hausdorff
metric D) if its minimal Lipschitz constant given by

Lp(F,T)=sup{D(F(t), F(s))/It —s|: s,t €T, s #1}

is finite. If f:7 — X is a single-valued function, we denote its minimal Lipschitz constant by
L(f,T)=La(f, T).

The following theorem on the existence of Lipschitz selections of Lipschitz multifunctions is
valid [6, Section 6] (for particular cases see [1,4,5,8,10], [11, Section Supplement 1], [12, Part C,
Theorem (7.14)], [13]):

Theorem C. If F:T — ¢(X), Lp(F,T) < o0, to € T and xo € F(ty), then there exists a
Lipschitz selection f of F on T such that f(ty) = xo, L(f,T) < Lp(F,T) and V(f,T) <
Vp(F,T).

Note that if in Theorem C the set T is unbounded, it may happen that Vp (F, T') is infinite; if
this is the case, the last condition in this theorem is superfluous.

In order to obtain a version of Theorem C with respect to the excess function, we introduce
the following definition which is parallel to (1).

A multifunction F : T — ¢(X) is said to be excess Lipschitz to the right (or Lip, , for short) if
its minimal excess Lipschitz to the right constant defined by

Ly(F, T)=supl{e(F(s), F1))/(t —s): s,t €T, s <t}

is finite. In a similar manner we define L_(F,T) (as well as Lip_) by replacing the value
e(F(s), F(t)) in the definition of Ly (F,T) by e(F(t), F(s)). Clearly, if T is bounded, then
Vi(F,T) < Ly(F,T) - (supT — infT), and if F = f is single-valued, then L, (f,T) =
L_(f,T)=L(f,T). Multifunction F from Example 3.1 is Lip, on [0, 1].

We have the following counterpart of Theorem C:

Theorem 2. If F : T =[a,b) — c(X), L+ (F,T) < 00, ty = a and xq € F (ty), then there exists
a Lipschitz selection f of F on T such that f(t9) = xo, L(f,T) < Ly (F,T) and V(f,T) <
Vi (F,T). A similar assertion holds if we replace T = [a,b) by T = {(a,b], L+(F,T)—by
L_(F,T), ty=a—byto=band Vo.(F,T)—by V_(F,T).
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Taking into account Theorem 1, the proof of Theorem 2 follows the same lines with obvious
modifications as those in the proof of Theorem 6.1(a) from [6], and so, it is omitted. We note
that, in contrast to Theorem C, Theorem 2 does not hold if 7 € [a, b) and #y > a, that is, F may
have no continuous selections at all. This can be seen from Example 3.2 (cf. (17)) rewritten as

l£(/2) = f)|=c2>0 forallo<s <1/2.

In order to cope with continuous selections, we introduce the following definition of continuity
for a multifunction F :[a, b) — c(X): it is said to be excess continuous to the right on [a, b) (or,
briefly, C ) if

limoe(F(s), F(t))=0 forallte€ (a,b) (18)
S—>1—
and
lin}roe(F(t),F(s)) =0 forallt€[a,b) 19)
s—>t

simultaneously. Note thatif F is Lip, on [a, b), thenitis also C,. An example of a multifunction
F:[0, 1] — c(X), which is C4, but not continuous with respect to the Hausdorff metric D, is
constructed in Example 3.1: in fact, since F(s) C F(¢) for all 0 < s <t < 1, conditions (18)
and (19) are satisfied. On the other hand, given k € N, we have, for t, = k/(k + 1),
_l)itm OC(F(tk), F(s)) =e(Fit1, Fi) = cks1 + ¢ > 0.

—

N

The notion of the excess continuity to the left (or C_) for F : (a, b] — ¢(X) is introduced sim-
ilarly to (18) and (19): e(F(¢), F(s)) > Oass —t —0forall # € (a, b] and e(F (s), F(t)) = 0
ass — t + 0 forall ¢t € (a, b) simultaneously.

We point out that condition (18) (as well as (19)) is very weak as compared with the condition
limg—,;—o D(F(s), F(t)) = 0 and, taking into account the second definition of the excess from
Section 1, it amounts to the following: for each ¢ > 0 there exists § = §(¢) > 0 such that for all
selt—4,1) and x € F(s) there exists y € F(t) withd(x, y) <e.

Now we have the following extension of the second part of Theorem A from Section 1 (note
at once that Theorem 3 below does not hold if #) > a as the observation following Theorem 2
shows):

Theorem 3. Let F : T = [a,b) — ¢(X) be C4, VL.(F,T) <00, ty =a and xo € F(ty). Then
there exists a continuous selection of bounded variation f of F on T such that f(tg) = xo and
V(f,T) < Vi(F,T). A similar assertion holds if we replace T = [a,b) by T = {(a,b], C+—
byC_, Vo(F,T)—by V_(F,T) and ty = a—by to = b.

Proof. The idea of the proof comes from the factorization procedure for metric space valued
functions of bounded variation [4], [5, Section 3]. So, by employing a suitable “change of vari-
ables” we reduce Theorem 3 to Theorem 2.

We set £ = V. (F, [a, b)). Since F is Cy, the V, -variation function v maps [a, b) onto [0, £)
continuously by Lemma 2. Given s € [0, £), we denote by v~ (s) = {t € [a, b): v(t) = s} the in-
verse image of the singleton {s} and let 1(s) = minv~!(s), so that v(u(s)) = s, and the function
w: [0, €) — [a, b) is continuous and nondecreasing.

We define a multifunction G : [0, £) — c(X) as follows:

G(s)= ﬂ F(t) forallse]l0,Z). (20)

tev=1(s)
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That G is well defined, i.e., that G (s) # @ (the compactness is immediate) for all values of s, can
be seen from the following: given #1, 1, € vl (s), t1 < t, we have by Lemma 1(b) that

e(F(11), F(12)) < V4 (F, [11,12]) = v(t2) —v(t) =5 — 5 =0,

and so, F (t1) C F(tp). It follows that G(s) = F (u(s)) forall s € [0, £). Also, since t € v @),
(20) implies G(v(t)) C F(t) forall z € [a, b). Clearly, ;£ (0) = a, and so, xg € F(a) = F(u(a)) =
G(0). Moreover, G is Lip, on [0, £): indeed, for s1,s2 € [0,£) with 57 < s we have, by
Lemma 1(b):

e(G(s1), G(s2)) =e(F (1u(s1), F(u(52))) < Vi (F. [ie(s), pe(s2)])
= Vi(F. [a, n(s2)]) = Vi (F. [a, u(sn)])
= v(p(s2)) = v(p(sD) = s2 = s1.
By Theorem 2, there exists a Lipschitz selection g of G on [0, £) such that g(0) = x¢ and
L(g,[0,¢)) < Li(G,0,¢)) < 1. The desired selection f of F is defined as the composed func-

tion f = gow.Itisclear that f:[a,b) — X is continuous as the composition of two continuous
functions, f(a) = g(v(a)) = g(0) = xo,

f®) =gv®)eG(v@)) CFt) foralltela,b)
and, since L(g, [0, ¢)) < 1, we have V(f, [a, b)) < VL (F,[a,b)). O

In Example 3.1 we have v(t) = Vi (F,[a,t]) =0, G:{0} - c¢(X) and G(0) = F(u(0)) =
F(0) = F, and so, we obtain as a continuous selection of F only f(t) =0 if f(0) =0 or
f@) =cruy if f(0) =cru;.
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