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a b s t r a c t

Westudy the perturbation by a critical term and a (p−1)-superlinear subcritical nonlinear-
ity of a quasilinear elliptic equation containing a singular potential. Bymeans of variational
arguments and a version of the concentration-compactness principle in the singular case,
we prove the existence of solutions for positive values of the parameter under the principal
eigenvalue of the associated singular eigenvalue problem.
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1. Introduction

Let Ω ⊆ R be an arbitrary open set, 1 < p < N , and let D
1,p
0 (Ω) denote the completion of D(Ω) with respect to the

norm ∥u∥ := (


Ω
|∇u|pdx)1/p. Let V ∈ L1loc(Ω) be a function which may have strong singularities and an indefinite sign.

Smets was interested in [1] in finding nontrivial weak solutions for the following nonlinear eigenvalue problem:
−div (|∇u|p−2

∇u) = λ V (x)|u|p−2u in Ω

u ∈ D
1,p
0 (Ω).

(1)

Problems of this type are in relationship with the study of the standing waves in the anisotropic Schrödinger or Klein–
Gordon equations, cf. Reed and Simon [2], Strauss [3], and Wang [4]. Eq. (1) is also considered a model for several physical
phenomena related to the equilibrium of anisotropic media that possibly are somewhere perfect insulators or perfect
conductors, see Dautray and Lions [5, p. 79].We point out that degenerate or singular problems have been intensively studied
starting with the pioneering paper by Murthy and Stampacchia [6].

Problem (1) is in relationship with several papers dealing with nonlinear anisotropic eigenvalue problems, see Brown
and Tertikas [7], Rozenblioum and Solomyak [8]. Szulkin andWillem generalize in [9] several earlier results concerning the
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existence of an infinite sequence of eigenvalues. The main hypothesis on the potential V in [9] is the following:
V ∈ L1loc(Ω), V+

= V1 + V2 ≠ 0, V1 ∈ LN/p(Ω),

for every y ∈ Ω, lim
x→y,x∈Ω

|x − y|pV2(x) = 0 and

lim
x→∞,x∈Ω

|x|pV2(x) = 0.
(2)

Under assumption (2), the mapping D
1,p
0 (Ω) ∋ u −→


Ω
V+

|u|pdx is weakly continuous, so the problem is not affected
by a lack of compactness. In [1] the case of indefinite potential functions V is studied for which no a priori compactness is
assumed. The corresponding hypotheses extend condition (2), nonetheless they are not directly linked to punctual growths
of V . Due to the presence of a singular potential, the classical methods cannot be applied directly, so the existence can
become a delicate matter.

Consider the minimization problem

SV := inf


Ω

|∇u|pdx; u ∈ D
1,p
0 (Ω),


Ω

V (x)|u|pdx = 1


. (3)

As established in [1] with standard constrained minimization arguments, minimizers of problem (3) correspond to weak
solutions of (1), with λ appearing as a Lagrange multiplier (that is, λ = SV ). Such a parameter λ is called the principal
eigenvalue for problem (1).

In order to have SV ≠ 0 and well defined, we assume that V = V+
− V−, V+

≠ 0, and that there exists c > 0 such that
for all u ∈ D

1,p
0 (Ω),

c


Ω

V+
|u|pdx ≤


Ω

|∇u|pdx. (4)

By Hardy’s inequality it follows that potentials with point singularities and decay at infinity both at most as O(|x|−p) satisfy
hypothesis (4).

SinceΩ is not necessarily bounded and V can have singularities, it is not clear that the infimum in problem (3) is achieved
without imposing additional conditions that allow the analysis ofminimizing sequences. For all x ∈ Ω and r > 0, we denote
by Br(x) the open ball centered at x and of radius r and by Br the closed ball centered at the origin (we can assume without
any loss of generality that 0 ∈ Ω). We introduce the following quantities:

Sr,V := inf


Ω

|∇u|pdx; u ∈ D(Ω \ Br),


Ω

V+(x)|u|pdx = 1


;

S∞,V := sup
r>0

Sr,V = lim
r→∞

Sr,V ;

Sxr,V := inf


Ω

|∇u|pdx; u ∈ D(Ω ∩ Br(x)),


Ω

V+(x)|u|pdx = 1


;

SxV := sup
r>0

Sxr,V = lim
r→0

Sxr,V ;

S∗,V := inf
x∈Ω

SxV ;

ΣV := {x ∈ Ω; SxV < ∞}.

Applying Hardy’s inequality
RN

|u|p

|x|p
dx ≤


N

N − p

p 
RN

|∇u|pdx,

we observe that under assumption (2) introduced in [9], we have S∞,V = S∗,V = +∞. As argued in [1, p. 475], the condition
S∞,V = S∗,V = +∞ is equivalent to the weak continuity of the mapping u −→


Ω
V+(x)|u|pdx.

We make the following hypothesis:

the closure of ΣV is at most countable. (5)

In particular, condition (5) excludes the presence of strong spikes on a dense subset of Ω .
For V ∈ L1loc(Ω) satisfying assumptions (4) and (5), Smets proved in [1] that the singular eigenvalue problem (1) admits

a principal eigenvalue, provided that SV < S∞,V and SV < S∗,V . This result extends and simplifies the work of Tertikas [10],
which deals with the positive linear case for Ω = RN . We point out (see [1, p. 472]) that the condition p < N is necessary
only if Ω is unbounded, otherwise one can work in the standard Sobolev spaceW 1,p

0 (Ω).
We are interested in studying what happens if problem (1) is affected by certain perturbations. This is needed in several

applications and the idea of using perturbation methods in the treatment of nonlinear boundary value problems was
introduced by Struwe [11]. Existence results for nonautonomous perturbations of critical singular elliptic boundary value
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problems were established by Rădulescu and Smets [12]; in their case, the singular weight allows for unbounded domains
as cones and gives rise to a different noncompactness picture, as was first remarked by Caldiroli and Musina [13].

Let M(RN) denote the Banach space of finite Radon measures over RN endowed with the norm

∥µ∥ := sup
φ∈C0(RN ),|φ|∞≤1

|µ(φ)|.

By definition, a sequence (µn) ⊂ M(RN) weakly converges to µ ∈ M(RN) if µn(φ) → µ(φ) for all φ ∈ C0(RN). The
Banach–Alaoglu theorem implies that every bounded sequence (µn) ⊂ M(RN) contains a weakly convergent subsequence.
We denote by M+(RN) the cone of positive Radon measures over RN and by δx the Dirac mass at the point x.

2. Effects of a double perturbation

In the present paper, we are concerned with a perturbation of problem (1) and we are interested in the combined effects
of a (p − 1)-superlinear subcritical nonlinearity and a critical Sobolev term. To fix the ideas, we consider Ω = RN but the
arguments can be adapted to any open set in RN . More precisely, we study the nonlinear problem

−div (|∇u|p−2
∇u) = λ V (x)|u|p−2u + a(x)|u|r−2u + b(x)|u|p

∗
−2u in RN

u ∈ D1,p(RN),
(6)

where p∗
= Np/(N − p) stands for the critical Sobolev exponent.

This problem can be viewed as a prototype of pattern formation in biology and is related to the steady-state problem for
a chemotactic aggregation model introduced by Keller and Segel [14]. Problem (6) also plays a crucial role in the analysis of
activator–inhibitor systems modeling biological pattern formation, cf. Gierer and Meinhardt [15].

Problem (6) is related to the Brezis–Nirenberg problem

− ∆u = λu + u(N+2)/(N−2) in Ω ⊂ RN , (7)

where Ω is an open bounded set with smooth boundary. Brezis and Nirenberg [16] showed that, contrary to intuition,
the critical problem with small linear perturbation can provide solutions. More precisely, Brezis and Nirenberg proved that
problem (7) admits a positive solution vanishing on ∂Ω if and only if 0 < λ < λ1 (if N ≥ 4), where λ1 is the first eigenvalue
of the Laplace operator in H1

0 (Ω). In [16], other results are also established (for instance, if N = 3 or when λ is replaced by
g(x, u) satisfying an appropriate growth condition) and pioneering techniques in nonlinear analysis are introduced.

Our assumptions are the following:

p < r < p∗
; (8)

a ∈ Ls(RN) with s =
Np

Np − r(N − p)
, a(x) ≥ 0 a.e. x ∈ RN , a ≠ 0; (9)

b ∈ L∞(RN), b(0) = ∥b∥L∞(RN ), b(x) = b(0) + o(|x|η) as x → 0, (10)

where

η =
N(s − 1)
(p − 1)s

if N <
pr

r + 1 − p
;

η =
N
s

if N ≥
pr

r + 1 − p
.

The asymptotic decay of the potential b described in condition (10) compensates for the critical behavior of the corre-
sponding nonlinearity and it provides a sufficient condition for the existence of the ‘‘valley’’ in the mountain pass theorem.

The solutions of problem (6) correspond to nontrivial critical points of the energy functional E : D1,p(RN) → R defined
by

E(u) =
1
p


RN

|∇u|pdx −
λ

p


RN

V (x)|u|pdx −
1
r


RN

a(x)|u|rdx −
1
p∗


RN

b(x)|u|p
∗

dx.

Let λ1 denote the principal eigenvalue of problem (1), namely λ1 = SV in the minimization problem (3). As remarked
in [1, p. 464], hypothesis (4) implies that λ1 > 0. Our main result asserts that the perturbed problem (6) admits nontrivial
solutions for all positive parameters λ less than the principal eigenvalue of problem (1).

Theorem 2.1. Let V ∈ L1loc(R
N) satisfy SV < S∞,V , SV < S∗,V , and hypotheses (4), (5). Assume that conditions (8)–(10) are

fulfilled. Then problem (6) admits at least one nontrivial solution for all positive parameters with λ < λ1.

For c ∈ R, we recall that E satisfies the localized Palais–Smale (PS)c-condition if every sequence (un) ⊂ D1,p(RN) with
E(un) → c and E ′(un) → 0 in (D1,p(RN))′, has a convergent subsequence in D1,p(RN).

The main idea of the proof of Theorem 2.1 is to apply the mountain pass theorem. Note that p∗ is the limiting Sobolev
exponent for the embedding D1,p(RN) ⊂ Lp

∗

(RN). Since this embedding is not compact, the functional E does not satisfy
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the Palais–Smale condition. By using the V -dependent concentration-compactness principle of Smets [1, Lemma 2.1], we
show that E satisfies the localized (PS)c-condition for certain values of c . In the final part of the proof, we argue that the
geometric hypotheses of the mountain pass theorem are also fulfilled.

3. The localized Palais–Smale condition

In this section we assume that the hypotheses of Theorem 2.1 are satisfied andwe are interested to find a range of values
for c > 0 such that E satisfies the Palais–Smale (PS)c-condition. An important role in this choice of c is played by the Sobolev
constant

S := inf


RN
|∇u|pdx; u ∈ W 1,p(RN),


RN

|u|p
∗

dx = 1


. (11)

This corresponds to the best constant for the Sobolev embedding W 1,p(RN) ⊂ Lp
∗

(RN). We recall (see Brezis and
Nirenberg [16, p. 443]) some basic properties of this constant:

(i) S can be defined for any open set Ω , is independent of Ω , and depends only on N .
(ii) The infimum in (11) is never achieved in the case of bounded open sets.
(iii) For the whole Euclidean space, the infimum in (11) is achieved by the function

uε(x) = Cε


εp/(p−1)

+ |x|p/(p−1)− N−p
p , (12)

for all ε > 0, where Cε is a positive constant depending on ε.

Let (un) ⊂ D1,p(RN) be such that E(un) → c and E ′(un) → 0 in (D1,p(RN))′. We find an interval (0, c0) such that (un)
contains a convergent subsequence, provided that c ∈ (0, c0). For this purpose we use some ideas found in the paper by
Guedda and Véron [17]. We have

1
p


RN

|∇un|
pdx −

λ

p


RN

V (x)|un|
pdx −

1
r


RN

a(x)|un|
rdx

−
1
p∗


RN

b(x)|un|
p∗

dx = c + o(1) as n → ∞ (13)

and 
RN

|∇un|
pdx − λ


RN

V (x)|un|
pdx −


RN

a(x)|un|
rdx −


RN

b(x)|un|
p∗

dx = o(∥un∥) as n → ∞. (14)

Relations (13) and (14) yield
1 −

p
r

 
RN

a(x)|un|
rdx +


1 −

p
r∗

 
RN

b(x)|un|
p∗

dx = O(1) + o(∥un∥) as n → ∞. (15)

Using hypothesis (8) in conjunction with the fact that the potentials a and b are positive, relation (15) implies
RN

a(x)|un|
rdx = O(1) + o(∥un∥) as n → ∞ (16)

and 
RN

b(x)|un|
p∗

dx = O(1) + o(∥un∥) as n → ∞. (17)

Inserting (16) and (17) in relation (14) we find
RN

|∇un|
pdx − λ


RN

V (x)|un|
pdx = O(1) + o(∥un∥) as n → ∞.

Now, since λ < λ1 and using the minimization problem (3), we deduce that (un) is bounded in D1,p(RN). Thus, up to a
subsequence, we can assume that (un) weakly converges to some u in D1,p(RN) and in Lp

∗

(RN),

|∇un|
p−2

∇un ⇀ T in (Lp
′

(RN))N

and, by hypothesis (8),

un → u in Lploc(R
N) and Lrloc(R

N).

Moreover, T and u satisfy

− div T = λV (x)|u|p−2u + a(x)|u|r−2u + b(x)|u|p
∗
−2u in (D1,p(RN))′. (18)
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By lower semicontinuity we find

λ


RN

V (x)|un|
pdx +


RN

a(x)|un|
rdx → λ


RN

V (x)|u|pdx +


RN

a(x)|u|rdx =: A as n → ∞.

Relation (13) and our hypothesis 0 < λ < λ1 imply that A ≥ 0. We claim that A > 0, provided that c > 0 is small enough.
Indeed, we first observe that relation (14) yields

RN
|∇un|

pdx =


RN

b(x)|un|
p∗

dx + A + o(∥un∥) as n → ∞. (19)

But relation (13) in combination with our assumption λ ∈ (0, λ1) imply that

ℓ := lim
n→∞


RN

|∇un|
pdx > 0.

Arguing by contradiction and assuming that A = 0, relation (19) yields
RN

b(x)|un|
p∗

dx → ℓ as n → ∞.

Returning to (13) we find that c = ℓ/N . On the other hand, using the definition of the best Sobolev constant S, we have

ℓ ≥ S lim
n→∞


RN

|un|
p∗

dx
p/p∗

= S lim
n→∞


RN

|un|
p∗

dx
(N−p)/N

≥ S ∥b∥(p−N)/N
L∞(RN )

lim
n→∞


RN

b(x)|un|
p∗

dx
(N−p)/N

= S ∥b∥(p−N)/N
L∞(RN )

ℓ(N−p)/N ,

hence

ℓ ≥ SN/p
∥b∥(p−N)/p

L∞(RN )
.

Since ℓ = cN , in order to yield a contradiction with our assumption A = 0, it suffices to choose c ∈ (0, c0), where

c0 :=
SN/p

N
∥b∥(p−N)/p

L∞(RN )
. (20)

Fixing c ∈ (0, c0) we have A > 0. Thus for some R > 0,

lim
n→∞

sup
z∈RN


BR(z)


λV (x)|un|

p
+ a(x)|un|

r dx > 0.

We have already seen that un ⇀ u in D1,p(RN) and un → u almost everywhere. Passing again to a subsequence, we can
assume that |∇un − ∇u|p ⇀ µ in M+(RN), V+

|un − u|p ⇀ ν in M+(RN), |∇un|
p ⇀ µ̃ in M+(RN), and |un|

p∗

⇀ ν̃ in
M+(RN). Set

µ∞ := lim
R→∞

lim sup
n→∞


RN∩(|z|>R)

|∇un|
pdx

and

ν∞ := lim
R→∞

lim sup
n→∞


RN∩(|z|>R)

V |un|
pdx.

Then by Lemma 2.1 in [1],

(i) µ∞ ≥ S∞,V · ν∞.
(ii) ν =


i∈I νiδxi for some xi ∈ ΣV , νi > 0, µ ≥


i∈I νiS

xi
V δxi , µ̃ ≥ |∇u|p +


i∈I νiS

xi
V δxi , and ν̃ = |u|p

∗

+


j∈J αjδxj with
αj > 0 (I and J are at most countable).

(iii) lim supn→∞


RN V (x)|un|

pdx =


RN V (x)|u|pdx + ∥ν∥ + ν∞.
(iv) lim supn→∞


RN |∇un|

pdx =


RN |∇u|pdx+∥µ∥+µ∞ if p = 2 and lim supn→∞


RN |∇un|

pdx ≥


RN |∇u|pdx+S∗,V∥ν∥+

µ∞ otherwise.

Returning to relations (13) and (14), we obtain

1
p


RN

|∇u|pdx +
1
p


i∈I

νiS
xi
V ≤ c +

λ

p


RN

V (x)|u|pdx +
λ

p
∥ν∥ +

λ

p
ν∞

+
1
r


RN

a(x)|u|rdx +
1
p∗


RN

b(x)|u|p
∗

dx +
1
p∗


j∈J

αjb(xj)
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and 
RN

|∇u|pdx +


i∈I

νiS
xi
V ≤ λ


RN

V (x)|u|pdx + λ ∥ν∥ + λ ν∞

+


RN

a(x)|u|rdx +


RN

b(x)|u|p
∗

dx +


j∈J

αjb(xj). (21)

Combining these relations, we obtain

c ≥
1
N


RN

b(x)|u|p
∗

dx +
1
N


j∈J

αjb(xj) +


1
p

−
1
r


RN

a(x)|u|rdx

≥
1
N


RN

b(x)|u|p
∗

dx +
1
N


j∈J

αjb(xj). (22)

Since E ′(un) → 0 in (D1,p(RN))′ we deduce that for all φ ∈ C∞

0 (RN)
RN

uT · ∇φdx +


RN

φdµ̃ =


RN

φbdν̃ + λ


RN

V (x)|u|pdx.

Using now (18) we obtain
RN

(uT · ∇φ + φT · ∇u)dx = λ


RN

V (x)|u|pdx +


RN

a(x)|u|rφdx +


RN

b(x)|u|p
∗

φdx.

Combining these relations we find
RN

φdµ̃ =


RN

φT · ∇udx −


RN

b(x)|u|p
∗

φdx +


RN

φbdν̃

≤


RN

φT · ∇udx +


RN

φbdν̃. (23)

Concentrating φ on each xj, relation (23) yields νj ≤ αjb(xj). But for all j, we have Sαp/p∗

j ≤ νj. We deduce that

αj ≥ SN/p b(xj)−N/p for all j ∈ J.

Thus if J ≠ ∅, then relation (22) implies

c ≥
1
N


j∈J

αjb(xj) ≥
SN/p

N
∥b∥(p−N)/p

L∞(RN )
,

which contradicts (20) and the choice of c ∈ (0, c0). This shows that J is empty, hence


RN |un|
p∗

dx →


RN |u|p
∗

dx. Using
Proposition 3.32 from Brezis [18] (which is a consequence of the Milman–Pettis theorem), we deduce that un → u strongly
in Lp

∗

(RN). We show that this implies the strong convergence of (un) in D1,p(RN). For this purpose we employ an argument
used in Filippucci, Pucci and Rădulescu [19, p. 713]. Consider the following elementary inequality (see formula (2.2) in
Simon [20]): for all ξ, ζ ∈ RN

|ξ − ζ |
p

≤


c(|ξ |

p−2ξ − |ζ |
p−2ζ )(ξ − ζ ) for p ≥ 2;

c⟨|ξ |
p−2ξ − |η|

p−2η, ξ − η⟩
p/2 

|ξ |
p
+ |η|

p(2−p)/2 for 1 < p < 2,
(24)

where c is a positive constant.
Restricting to the case p ≥ 2, inequality (24) implies that for all positive integers n andm,

∥un − um∥ ≤ |E ′(un)(un − um)| + |E ′(um)(un − um)| + |(E ′

0(un) − E ′

0(um))(un − um)|, (25)

where E0 := E(u) − p−1


RN |∇u|pdx. Applying the strong convergence of (un) in Lp
∗

(RN), relation (25) implies that (un)

strongly converges in D1,p(RN). This concludes the proof of the Palais–Smale condition, provided that c ∈ (0, c0). �
Summarizing, in this section we have proved the following result.

Lemma 1. Under the assumptions in Theorem 2.1, the functional E satisfies the Palais–Smale condition (PS) c for all c ∈ (0, c0),
where c0 =

SN/p

N ∥b∥(p−N)/p
L∞(RN )

.

Assuming that 1 < p ≤ N2 and following the same arguments as in the proof of Theorem 3.5 in Guedda and Véron [17],
we can show that E does not satisfy the localized Palais–Smale condition (PS)c if c =

kSN/p

N ∥b∥(p−N)/p
L∞(RN )

, for all positive inte-
gers k.
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4. Proof of the main result

It remains to check the two geometric hypotheses of the mountain pass theorem. We have E(0) = 0 and we argue the
existence of a ‘‘mountain’’ near the origin. For this purpose we first establish that there are positive numbers d and r such
that E(u) ≥ d for all u ∈ D1,p(RN) with ∥u∥ = r . Fix 0 < λ < λ1. Using Theorem 3.1 from Smets [1], there exists δ > 0
such that

RN
|∇u|pdx − λ


RN

V (x)|u|pdx ≥ δ


RN

|∇u|pdx for all u ∈ D1,p(RN). (26)

Taking into account the continuous embeddings of D1,p(RN) into Lr(RN) and Lp
∗

(RN) we obtain for all u ∈ D1,p(RN)

E(u) ≥
δ

p
∥u∥p

− C

∥u∥r

Lr (RN )
+ ∥u∥p∗

Lp∗ (RN )


.

Using assumption (8) we deduce that E(u) ≥ d for all u ∈ D1,p(RN) with ∥u∥ = r , for some positive numbers d and r .
The difficult part is to prove the existence of a ‘‘valley’’ over themountain. This will be achieved by using hypothesis (10),

which describes the decay of the potential b near its maximum point in relationship with the critical nonlinear term. Let
φ ≠ 0 be an arbitrary function in D1,p(RN). Then

E(tφ) =
tp

p


RN

|∇φ|
pdx − λ


RN

V (x)|φ|
pdx


− tp

t r−p

r


RN

a(x)|φ|
rdx +

tp
∗
−p

p∗


RN

b(x)|φ|
p∗

dx


< 0,

for large enough t > 0.
In order to ensure the localized Palais–Smale condition (PS)c , it remains to show that the upper bounds of E are in (0, c0),

where c0 is defined in (20). More precisely, if uε achieves the minimum S in problem (11) (recall that uε is defined in (12)),
then we prove that there exists ε > 0 small enough such that

sup
t>0

E(tuε) < c0 :=
SN/p

N
∥b∥(p−N)/p

L∞(RN )
. (27)

Fix ε > 0. By invariance, we remark that
RN

|∇uε|
pdx =


RN

|∇u1|
pdx and


RN

b(x)uε(x)p
∗

dx =


RN

b(εx)u1(x)p
∗

dx. (28)

As we have just observed, supt>0 E(tuε) > 0 and this is achieved at some t(ε) > 0. We claim that the family {t(ε)}ε>0 is
bounded from below by a positive constant. Indeed, combining E ′(t(ε)uε)(uε) = 0 with relations (26) and (28), we obtain

t(ε)p
∗
−p


RN
b(x)up∗

ε dx + t(ε)r−p


RN
a(x)ur

εdxdx ≥ δ


RN

|∇u1|
pdx > 0.

Using (8), we deduce our claim. A straightforward computation shows that {t(ε)}ε>0 is bounded from above. More precisely,
our assumption (10) implies that there is some R > 0 such that for all ε > 0

t(ε) ≤

 
RN |∇u1|

pdx
2−1b(0)


BR(0) uε(x)p

∗dx

(N−p)/p2

.

We control the behavior of E(t(ε)uε) = supt>0 E(tuε) by observing that

E(t(ε)uε) = Φ1(ε) + Φ2(ε) + Φ3(ε),

where

Φ1(ε) =
t(ε)p

p


RN

|∇u1|
pdx −

t(ε)p
∗

p∗
b(0)


RN

up∗

1 dx;

Φ2(ε) =
t(ε)p

∗

p∗
b(0)


RN

up∗

1 dx −
t(ε)p

∗

p∗


RN

b(εx)up∗

1 dx;

Φ3(x) = −
λt(ε)p

p


RN

V (x)up
εdx −

t(ε)r

r


RN

a(x)ur
εdx.

In what follows we prove that the growth of E(t(ε)uε) is given by Φ1, while Φ2 and Φ3 tend to zero as ε → 0.
Note that the mapping (0, ∞) ∋ s −→ C1sp − C2sp

∗

(where C1, C2 are positive constants) admits a maximum for

s =


C1(N − p)

C2N

(N−p)/p2

.



44 M. Cencelj et al. / Nonlinear Analysis 119 (2015) 37–45

Returning to Φ1 we deduce that

Φ1(ε) ≤
1
N
b(0)(p−N)/p


RN

|∇u1|
pdx
N/p 

RN
up∗

1 dx
(p−N)/p

=
SN/p

N
∥b∥(p−N)/p

L∞(RN )
= c0.

It remains to establish the asymptotic decay of Φ2 and Φ3 as ε → 0. Using hypothesis (10) we obtain, for some C > 0
independent of ε,

Φ2(ε) ≤ Cεη


RN

|x|η

1 + |x|p/(p−1)(p−N)/p

,

which shows that

Φ2(ε) ≤ Cεη if N ≠
pr

r + 1 − p
and

Φ2(ε) ≤ Cεη log
1
ε

if N =
pr

r + 1 − p
.

A similar computation based on assumption (9) shows that

Φ3(ε) ≤ Cεη if N ≠
pr

r + 1 − p
and

Φ3(ε) ≤ Cεη log
1
ε

if N =
pr

r + 1 − p
.

Combining these estimates we obtain (27). This concludes the proof. �

4.1. Final remarks

Due to the singular behavior of the indefinite potential V , we cannot improve the global regularity of the weak solution
u. In the special case when V is bounded (or away from its singularities, in the general case), Theorem 2.2 of Pucci and
Servadei [21] implies that u ∈ L∞

loc(R
N). By the Moser iteration, with the same arguments as in the proof of Theorem 1.1

in Filippucci, Pucci and Rădulescu [19], this implies that u ∈ C1,α(RN
∩ BR), for some α = α(R) ∈ (0, 1). In such a case,

u ∈ Lm(RN) for all p∗ < m < ∞ and lim|x|→∞ u(x) = 0, with the same ideas as in the proof of Lemma 2 in Yu [22], which
is based on Theorem 1 of Serrin [23].

We point out that an existence result in relationshipwith our Theorem 2.1 is proved in Theorem 3.1 of Guedda and Véron
[17] in the case of bounded domains, with only one perturbation term, and with constant positive potentials. In their case, a
positive solution vanishing on the boundary is found, provided that 1 < p2 ≤ N .

The result stated in Theorem 2.1 can be extended with similar arguments in the following three directions:
(i) If the nonlinearity |u|r−2u is replaced by a more general function g(x, u) with upper and lower bounds of the type

g1(x)ur1 and g2(x)ur2 satisfying appropriate technical conditions;
(ii) In the proof of the Palais–Smale condition (PS)c , the fact that any bounded sequence in D1,p(RN) contains a strongly

convergent subsequence can be proved under the stronger assumption that the subcritical term |u|r−2u is replaced by
an almost critical nonlinearity h(x, u), in the sense that h(x, u) = o(|u|p

∗
−1) as |u| → ∞, uniformly for x ∈ RN . Next,

with similar arguments, the conclusion of Theorem 2.1 follows.
(iii) The existence result established in Theorem 2.1 remains valid if problem (6) is replaced with the following quasilinear

singular problem−div (|x|−ap
|∇u|p−2

∇u) − µ
|u|p−2u
|x|p(a+1)

=
|u|q−2u
|x|bq

+ λf (x, u) in Ω

u = 0 on ∂Ω,

(29)

where 0 ∈ Ω ⊂ RN ,N ≥ 3, is a bounded domain and 1 < p < N, a < N/p, a ≤ b < a + 1, λ is a positive
parameter, 0 ≤ µ < µ̄ := [(N − p)/p − a]p, q = p∗(a, b) := Np/(N − pd) is the critical Hardy–Sobolev exponent and
d = a + 1 − b. Note that p∗(0, 0) = p∗

= Np/(N − p). In this case, λ1 is the principal eigenvalue of the differential
operator Lµu := −div (|x|−ap

|∇u|p−2
∇u)−µ |x|−p(a+1)

|u|p−2u and the role of the concentration-compactness principle
of Smets [1] is played by Lemma 2.1 in Liang and Zhang [24].

An interesting open problem is to study if the main result in the present paper remains true if the (p − 1)-superlinear
term |u|r−2u is replaced by a nonlinear term f (u) such that

lim
u→+∞

f (u)
up−1

= +∞.
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