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1 Introduction

We shall denote by CAT the category PL of piecewise-linear manifolds or the category DIFF
of smooth manifolds (all assumed to be finite dimensional).

Let Embm
CAT(Nn) be the set of all CAT embeddings, Nn → Rm, of a closed (i.e. compact,

connected and without boundary) n-dimensional CAT manifold, Nn, into the m-dimensional
Euclidean space Rm, modulo an ambient CAT isotopy. Then the standard inclusion, i : Rm ↪→
Rm+k, induces the map

i∗ : Embm
CAT(Nn) → Embm+k

CAT (Nn).

The study of this map is a classical problem in the topology of manifolds (see [1–6] and [7]).
The case when Np+q = Sp × Sq is known to be of particular interest because it sheds light on
the general phenomena. The following summarizes the main known results on this problem:

Theorem 1.1 The inclusion-induced mapping,

i = im,m+k
p,q : Embm

CAT(Sp × Sq) → Embm+k
CAT (Sp × Sq) :

(1) is trivial for q > p, m = 2q and k = p + 1 (cf. [6]; Theorem 4) ;

(2) is trivial for m = p + 2q, k = 1, 2 ≤ p ≤ q and q even ≥ 4 (cf. [7]) ;

(3) is non-trivial for q ∈ {1, 3, 7}, p = q − 1 = k and m = 2q + 1 (cf. [1]) ;

(4) is non-trivial for k = p ≤ ρ(q) − 1, and m = 2q + 1, where ρ(q) = 2c + 8d for
q + 1 = (2a + 1) · 24d+c, c ∈ {0, 1, 2, 3} (cf. [6]) ; and

(5) is surjective for m = p + 2q, k = 1, 2 ≤ p ≤ q and q odd (cf. [7]).
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The purpose of this note is to obtain a new result on the embeddings of tori in Euclidean
spaces (stated below); more precisely—we obtain new information on the above map i∗ for
the case of knotted tori. This is done by applying recent results from [8], which relate the set
of embeddings of a torus in a Euclidean space, modulo ambient isotopies, with the homotopy
groups of Stiefel manifolds.

Theorem 1.2 Assume that :

(∗) 1 ≤ p ≤ q, m ≥ 2p + q + 2 and 2m ≥ 3q + 2p + 4 or 2m ≥ 3q + 3p + 4 in the PL or
DIFF category, respectively.

Let πS
∗ denote the stable homotopy groups of spheres.

(a) If πS
2q+1−m = πS

2q+1+p−m = 0, then the inclusion-induced map,

im,m+1
p,q : Embm

CAT(Sp × Sq) −→ Embm+1
CAT(Sp × Sq),

is a monomorphism.

(b) If πS
2q−m = πS

2q+p−m = 0, then the inclusion-induced map,

im,m+1
p,q : Embm

CAT(Sp × Sq) −→ Embm+1
CAT(Sp × Sq),

is an epimorphism.

By [9], the hypotheses of Theorem 1.2.(a) are fulfilled if, e.g.:

(1) m = 2q − 3, p = 1 and q ≥ 10 or q ≥ 11 for CAT=PL or CAT=DIFF, respectively.

(2) m = 2q − 3, p = 8 and q ≥ 26 or q ≥ 34 for CAT=PL or CAT=DIFF, respectively.

(3) m = 2q − 4, p = 7 and q ≥ 26 or q ≥ 33 for CAT=PL or CAT=DIFF, respectively.

By [9], the hypotheses of Theorem 1.2.(b) are fulfilled if, e.g.:

(1) m = 2q − 4, p = 1 and q ≥ 12 or q ≥ 13 for CAT=PL or CAT=DIFF, respectively.

(2) m = 2q − 4, p = 8 and q ≥ 28 or q ≥ 36 for CAT=PL or CAT=DIFF, respectively.

(3) m = 2q − 5, p = 7 and q ≥ 28 or q ≥ 35 for CAT=PL or CAT=DIFF, respectively.

Theorem 1.3 The inclusion-induced map,

i = ip+2q,p+2q+1
p,q : Embp+2q

CAT (Sp × Sq) → Embp+2q+1
CAT (Sp × Sq),

is trivial for q even, p ≥ 1 and p ≤ q − 2 or p ≤ q − 4 in the PL or DIFF category, respectively.

Theorem 1.3 is the non-simply connected version of Theorem 1.1 (2) above (cited from [7];
note that in [7] a more general situation than that of knotted tori was considered). Our proof
of Theorem 1.3 also provides a new proof of Theorem 1.1 (2) for p ≤ q − 4.

2 Proof of Theorems

Proposition 2.1 Under the hypotheses (∗) of Theorem 1.2 there is a commutative diagram
of groups

Embm
CAT(Sp × Sq) −→ Embm+k

CAT (Sp × Sq)
∼=↓ ↓∼=

πq(Vm−q,p+1) −→ πq(Vm−q+k,p+1),
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where the lower horizontal map is induced by the natural inclusion between the Stiefel manifolds.

Proof For a manifold N let Ñ = (N × N) \ ∆, where ∆ is the diagonal of the product. Then
there is a natural Z2 action on Ñ . Let πm

eq(Ñ) denote the set of all equivariant homotopy
classes of the equivariant maps Ñ → Sm. Under the assumptions (∗) of Theorem 1.2 there are
one-to-one correspondences (cf. [8, 10, 11]):

Embm
CAT(Sp × Sq)

∼=−→ πm−1
eq ( ˜Sp × Sq)

∼=−→ πq(Vm−q,p+1) ,

where Vk,l denotes the Stiefel manifold of l-frames in Rk (cf. [12]). Moreover, the first two of the
sets above have group structures such that these one-to-one correspondences are isomorphisms
(cf. [13]). It is easy to see that the isomorphisms above (under the condition (∗)) are natural
with respect to the inclusions Rm ↪→ Rm+k. This implies the assertion.

Proof of Theorem 1.3 It is easy to check that the conditions (∗) are fulfilled, so we can apply
Proposition 2.1. Since q is even, m = 2q+p and p ≥ 1, by [14] it follows that πq(Vm−q+1,p+1) ∼= Z

and that πq(Vm−q,p+1) is finite (because q − 1 �= 2 for p + 1 = 2). Thus Theorem 1.3 follows by
Proposition 2.1.

Proof of Theorem 1.2 The inclusion i : Vm−q,p+1 ↪→ Vm−q+1,p+1 is homotopic to the map
which preserves the first p vectors of the (p + 1)-frame and maps the last vector of the frame
to (0, . . . , 0, 1) ∈ Rm−q+1. Therefore one obtains the following commutative diagram:

Here the NW-SE sequence and the SW-NE sequence are parts of the respective fibration se-
quences.

Since 2m ≥ 3q + 2p + 4, it follows that all the homotopy groups of spheres in the diagram
are stable. Therefore under the assumption of (a) the homomorphism i∗ : πq(Vm−q,p+1) →
πq(Vm−q+1,p+1) is a monomorphism, while under the assumption of (b) the homomorphism
i∗ : πq(Vm−q,p+1) → πq(Vm−q+1,p+1) is an epimorphism. Hence Theorem 1.2 follows by Propo-
sition 2.1.
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