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On the Splitting Problem for Manifold Pairs with Boundaries

By M. CENCELJ, YU. V. MURANOV, and D. REPOVŠ

Abstract. The problem of splitting a homotopy equivalence along a submanifold
is closely related to the surgery exact sequence and to the problem of surgery of
manifold pairs. In classical surgery theory there exist twoapproaches to surgery
in the category of manifolds with boundaries. In the rel∂ case the surgery on a
manifold pair is considered with the given fixed manifold structure on the bound-
ary. In the relative case the surgery on the manifold with boundary is considered
without fixing maps on the boundary. Consider a normal map to amanifold pair
(Y, ∂Y) ⊂ (X, ∂X) with boundary which is a simple homotopy equivalence on
the boundary∂X. This map defines a mixed structure on the manifold with the
boundary in the sense of WALL . We introduce and study groups of obstructions
to splitting of such mixed structures along submanifold with boundary(Y, ∂Y).
We describe relations of these groups to classical surgery and splitting obstruction
groups. We also consider several geometric examples.

1 Introduction

Let (Xn, ∂X) be a compact topologicaln–manifold with boundary. The set
S

CAT(X, ∂X) of CAT-manifold structures (CAT = TOP,PL,DIFF) on (X, ∂X)
consists of the classes of concordance of simple homotopy equivalences of pairs
f : (M, ∂M) → (X, ∂X), where(M, ∂M) is a compactCAT-manifold pair of di-
mensionn with boundary (see [7], [8], and [11]). If∂X already has aCAT-manifold
structure then the set of manifold structures onX which are fixed on the boundary
is denoted bySCAT

∂ (X, ∂X).
Let T

CAT(X, ∂X) be the set of classes of normal bordisms of normal maps to
the pair(X, ∂X) andT

CAT
∂ (X, ∂X) the set of rel∂ classes of normal bordisms of

normal maps (see [7], [8] and [11]).
Let Y ⊂ X be a submanifold of a closed manifoldXn of codimensionq. Given

a normal map( f,b) : Mn → Xn, there is a problem of finding a simple homotopy
equivalenceg : M1 → X in the class of normal bordism [( f,b)], which is transver-
sal toY and such thatN = g−1(Y) is a submanifold ofM1 and the restrictions

g|N : N → Y, g|M1\N : M1 \ N → X \ Y (1.1)
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are simple homotopy equivalences. The obstruction group for doing such surgery is
denoted byLPn−q(F) (see [11] and [8]), where

F =



π1(S(ξ)) → π1(X \ Y)

↓ ↓

π1(D(ξ)) → π1(X)


 (1.2)

is a pushout square of fundamental groups with orientationsandS(ξ) is the bound-
ary of a tubular neighborhoodD(ξ) of Y in X.

If f : M → X is a simple homotopy equivalence then the obstruction to finding
a map in the homotopy class of the mapf with properties (1.1), which is transversal
to Y, lies in the splitting obstruction groupLSn−q(F) (see [11], §11 and [8], §7.2).

Let (Y, ∂Y) ⊂ (X, ∂X) be a codimensionq manifold pair with boundary. In the
rel∂ case the setT CAT

∂ (X, ∂X) of tangent structures consists of classes of concor-
dance rel boundary of normal maps

( f, ∂ f ) : (M, ∂M) → (X, ∂X)

with a fixedCAT-isomorphism

∂ f : ∂M → ∂X

which is already split on the boundary. We have a map

T
CAT
∂ (X, ∂X) → LPn−q(F) (1.3)

which is given by mapping the obstruction to surgery to the normal map of manifold
pairs rel boundary.

In a similar way we have a map

S
CAT
∂ (X, ∂X) → LSn−q(F) (1.4)

to the splitting obstruction group.
It follows from [11], §11, page 136 (see also [12]) that for the relative case we

have maps
T

CAT(X, ∂X) → LPn−q(F∂ → F) (1.5)

similarly to (1.3) and (1.4) and

S
CAT(X, ∂X) → LSn−q(F∂ → F) (1.6)

to the relative obstruction groups whereF∂ is a pushout square for a splitting prob-
lem of the pair∂Y ⊂ ∂X.

In accordance with WALL [11], §10, p. 116 (see also [3]), it is possible to intro-
duce a mixed type of structures on a manifold with boundary(X, ∂X). Consider a
normal map

( f, ∂ f ) : (M, ∂M) → (X, ∂X)

for which the map
∂ f : ∂M → ∂X

is a simple homotopy equivalence. Two such maps are concordant if they are nor-
mally bordant by a bordism for which a restriction to bordismbetween the bound-
aries is an equivalence inSCAT(∂X). Denote the set of concordance classes by
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T S
CAT(X, ∂X). The elements ofT S

CAT(X, ∂X) are called mixed structures on
(X, ∂X).

In the present paper we shall work inTOP-category and simple surgery obstruc-
tion groups (see [7] and [8]). We think of all surgery and splitting obstruction groups
as decorated by an "s" although we do not write it.

We introduce groupsLPS∗(F∂ → F) and define a map

ψ : T S(X, ∂X) → LPS∗(F∂ → F)

which gives an obstruction to finding a map in the class of concordance which is
split along the submanifold pair(Y, ∂Y) ⊂ (X, ∂X).

We study properties of the introduced groups and their relations to surgery and
splitting obstruction groups. The main results are given bybraids of exact se-
quences. Then we consider several geometric examples in which we compute the
introduced groups and natural maps.

In Section 2 we give explicit definitions of several structure sets and recall the
necessary technical results about the algebraic surgery exact sequences of RANICKI

and the surgeryL-spectrum.
In Section 3 we recall main properties of splitting obstruction groups and intro-

duceLPS∗-groups. These groups are realized as homotopy groups of a spectrum.
We describe algebraic properties of these groups and relations of these groups to
surgery and splitting obstruction groups and to surgery exact sequence.

In Section 4 we consider geometric examples in which we computeLPS∗-groups
and natural maps between introduced groups and classical obstruction groups which
arise naturally in the considered problem.

2 Structure sets and surgery exact sequence

For definitions of structure sets we shall follow RANICKI [8]. Let Xn be a closed
topological manifold. At-triangulation ofX is a topological normal map (see [8],
§1.2)

( f,b) : M → X,

whereM is a closedn-dimensional topological manifold. Twot-triangulations

( fi ,bi ) : Mi → X, i = 0,1

are concordant [8], §7.1 if there exists a topological normal map of triads

((g, c); ( f0,b0), ( f1,b1)) : (W; M0,M1) → (X × I ; X × {0}, X × {1})

whereI = [0,1] andW is a compact(n + 1)-dimensional manifold with boundary
∂W = M0 ∪ M1. The set of concordance classes oft-triangulations ofX is denoted
by T

TOP(X). Note that we shall consider the case of a manifoldX and hence the
setT TOP(X) will be nonempty.

An s-triangulation of a closed topological manifoldXn is a simple homotopy
equivalencef : M → X, whereM is a closed topologicaln-dimensional manifold.

Two s-triangulations

( fi ,bi ) : Mi → X, i = 0,1
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are concordant [8], §7.1 if there exists a simple homotopy equivalence of triads

(g; f0, f1) : (W; M0,M1) → (X × I ; X × {0}, X × {1})

whereW is a compact(n + 1)-dimensional manifold with the boundary∂W =

M0 ∪ M1. The set of concordance classes ofs-triangulations ofX is denoted by
S

TOP(X). This set is called thetopological manifold structure set. As before, the
setSTOP(X) will be nonempty. These sets fit in the surgery exact sequence(see [8],
§7 and [11])

· · · Ln+1(π1(X)) → S
TOP(X) → T

TOP(X) → Ln(π1(X)) (2.1)

whereL∗(π1(X)) are surgery obstruction groups.
Now consider the case of a compactn-dimensional manifoldX with the bound-

ary ∂X. First, we consider the case of structures which are fixed on the boundary.
This is the rel∂ case. At∂ -triangulation of(X, ∂X) is a topological normal map of
pairs (see [8], §7.1)

(( f,b), (∂ f, ∂b)) : (M, ∂M) → (X, ∂X)

with a homeomorphism∂ f : ∂M → ∂X. Two t∂ -triangulations

(( fi ,bi ), (∂ fi , ∂bi )) : (Mi , ∂Mi ) → (X, ∂X), i = 0,1

are concordant if there exists a topological normal map

((h,d); (g, c), ( f0,b0), ( f1,b1)) :

(W; V,M0,M1) → (X × I ; ∂X × I , X × {0}, X × {1})

with
V = ∂M0 × I , ∂V = ∂M0 ∪ ∂M1

and
(g, c) = ∂ f0 × I : V → ∂X × I .

The set of concordance classes is denoted byT
CAT
∂ (X, ∂X) (see [11], §10 and [8],

§7.1).
An s∂ -triangulation of(X, ∂X) is a simple homotopy equivalence of pairs (see

[8], §7.1)
( f, ∂ f ) : (M, ∂M) → (X, ∂X)

with a homeomorphism∂ f : ∂M → ∂X. Two s∂ -triangulations

( fi , ∂ fi ) : (Mi , ∂Mi ) → (X, ∂X), i = 0,1

are concordant if there exists a simple homotopy equivalence of 4-ads

(h; g, f0, f1) : (W; V,M0,M1) → (X × I ; ∂X × I , X × {0}, X × {1})

with
V = ∂M0 × I , ∂V = ∂M0 ∪ ∂M1

and
g = ∂ f0 × I : V → ∂X × I .

The set of concordance classes is denoted byS
CAT
∂ (X, ∂X) (see [11], §10 and [8],

§7.1).
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These sets fit in the surgery exact sequence (see [11], §10 and[8], §7)

· · · → Ln+1(π1(X)) → S
TOP
∂ (X, ∂X) → T

TOP
∂ (X, ∂X) → Ln(π1(X)). (2.2)

Now consider the relative case of structures on a manifold with boundary. A
t-triangulation of(X, ∂X) is a topological normal map of pairs (see [8], §7.1)

(( f,b), (∂ f, ∂b)) : (M, ∂M) → (X, ∂X).

Two t-triangulations

(( fi ,bi ), (∂ fi , ∂bi )) : (Mi , ∂Mi ) → (X, ∂X), i = 0,1

are concordant if there exists a topological normal map of 4-ads

((h,d); (g, c), ( f0,b0), ( f1,b1)) :

(W; V,M0,M1) → (X × I ; ∂X × I , X × {0}, X × {1})

with
∂V = ∂M0 ∪ ∂M1.

The set of concordance classes is denoted byT
CAT(X, ∂X) (see [11], §10 and [8],

§7.1).
An s-triangulation of(X, ∂X) is a simple homotopy equivalence of pairs (see

[8], §7.1)
( f, ∂ f ) : (M, ∂M) → (X, ∂X).

Two s-triangulations

( fi , ∂ fi ) : (Mi , ∂Mi ) → (X, ∂X), i = 0,1

are concordant if there exists a simple homotopy equivalence of 4-ads

(h; g, f0, f1) : (W; V,M0,M1) → (X × I ; ∂X × I , X × {0}, X × {1})

with
∂V = ∂M0 ∪ ∂M1.

The set of concordance classes is denoted byS
CAT(X, ∂X) (see [11], §10 and [8],

§7.1).
These sets fit in the surgery exact sequence (see [11], §10 and[8], §7)

· · · → S
TOP(X, ∂X) → T

TOP(X, ∂X) → Ln (π1(∂X) → π1(X)) . (2.3)

Now we define mixed structures on a manifold with boundary (see [11], page 116
and [3]). A ts-triangulation of(X, ∂X) is a topological normal map of pairs

(( f,b), (∂ f, ∂b)) : (M, ∂M) → (X, ∂X)

such that∂ f : ∂M → ∂X is ans-triangulation. Twots-triangulations

(( fi ,bi ), (∂ fi , ∂bi )) : (Mi , ∂Mi ) → (X, ∂X), i = 0,1

are concordant if there exists a topological normal map

((h,d); (g, c), ( f0,b0), ( f1,b1)) :

(W; V,M0,M1) → (X × I ; ∂X × I , X × {0}, X × {1})
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with
∂V = ∂M0 ∪ ∂M1

andg : V → ∂X × I is a concordance ofs-triangulations∂ f0 and∂ f1. The set of
concordance classes is denoted byT S

TOP(X, ∂X) (see [11], page 116).
It follows from definitions (see also [3]) that the followingnatural forgetful maps

T S
TOP(X, ∂X) → T

TOP(X, ∂X),

S
TOP(X, ∂X) → T S

TOP(X, ∂X), (2.4)

T S
TOP(X, ∂X) → S

TOP(∂X)

are well–defined.
The maps in (2.4) fit in the following exact sequences (see [11], page 116, [8],

§7, and [3])

· · · → Ln(π1(∂X)) → T S
TOP(X, ∂X) → T

TOP(X, ∂X) → Ln−1(π1(∂X)),
(2.5)

· · · → Ln+1(π1(X)) → S
TOP(X, ∂X) → T S

TOP(X, ∂X) → Ln(π1(X)), (2.6)

and

· · · → T
TOP
∂ (X, ∂X) → T S

TOP(X, ∂X) → S
TOP(∂X). (2.7)

We now recall the necessary results concerning the application of homotopy cat-
egory of spectra to surgery theory (see [1], [2], [4], [5], [6], and [7]). A spectrumE

is given by a collection ofCW-complexes{(En, ∗)}, n ∈ Z, together with cellular
maps{εn : SEn → En+1}, whereSEn is the suspension of the spaceEn (see [11]).
A spectrumE is an�-spectrum if the adjoint mapsε′n : En → �En+1, n ∈ Z are
homotopy equivalences.

In the category of spectra the suspension functor6 and iterated functors6k,
k ∈ Z are well-defined (see [10]). For every spectrumE we have an isomorphism
of homotopy groupsπn(E) = πn+k(6

k
E). Recall that in the homotopy category of

spectra the concepts of pull-back and push-out squares are equivalent.
In accordance with [7], [8], and [11] the surgery obstruction groupsLn(π) and

such natural maps as induced by inclusion and transfer are realized on the spectrum
level. That is, for every groupπ with a homomorphism of orientationω : π → {±1}

there exists an�-spectrumL(π, ω) with homotopy groups

πn(L(π, ω)) = Ln(π, ω).

In what follows we shall not include homomorphism of orientation in our notation
and will assume that all groups are equipped with such a homomorphism and all
homomorphisms of groups preserve orientation. Any homomorphism of groups
f : π → G induces a cofibration of spectra

L(π) → L(G) → L( f ) (2.8)

whereL( f ) is the spectrum for the relativeL-groups

Ln( f ) = Ln(π → G) = πn(L( f )).
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We have a similar situation for the transfer map (see for example, [11] and [12]).
Let X be a topological space. An algebraic surgery exact sequenceof RANICKI

(see [7] and [8])

· · · → Ln+1(π1(X)) → Sn+1(X) → Hn(X,L•) → Ln(π1(X)) → · · · (2.9)

is defined. HereL• is the 1-connected cover of the surgery�-spectrumL(1) with
{L•}0 ' G/TOP. The algebraic surgery exact sequence (2.9) is the homotopylong
exact sequence of the cofibration

X+ ∧ L• → L(π1(X)). (2.10)

By definition, we haveSi (X) = πi (S(X)) for the homotopy cofiberS(X) of the
map in (2.10). For a closedn-dimensional topological manifoldX we have

πn+1(S(X)) = Sn+1(X) ∼= S
TOP(X), T (X) ∼= Hn(X; L•), (2.11)

and the surgery exact sequence (2.1) is isomorphic to the left part of the algebraic
surgery exact sequence (2.9) (see [8], Proposition 7.1.4).

For the case of a compact topological manifoldX with boundary∂X the alge-
braic surgery exact sequences for the relative case and for the rel∂ case are contained
in the following commutative diagram (see [7] and [8], §7)

...
...

...
...

↓ ↓ ↓ ↓

· · · Ln+1(π) → S
∂
n+1(X, ∂X) → Hn(X; L•) → Ln(π) · · ·

↓ ↓ ↓ ↓

· · · Lrel
n+1 → Sn+1(X, ∂X) → Hn(X, ∂X; L•) → Lrel

n · · ·

↓ ↓ ↓ ↓

· · · Ln(ρ) → Sn(∂X) → Hn−1(∂X; L•) → Ln−1(ρ) · · ·

↓ ↓ ↓ ↓
...

...
...

...

(2.12)

whereπ = π1(X), ρ = π1(∂X), and Lrel
∗ = L∗(ρ → π). Diagram (2.12) is

realized on the spectrum level (see [8], [1], and [3]). We denote byS(X, ∂X) the
homotopical cofiber of the map

(X/∂X)+ ∧ L• → L(ρ → π),

and byS
∂(X, ∂X) the homotopical cofiber of the map

X+ ∧ L• → L(π).

We have
πi (S

∂(X, ∂X)) = S
∂
i (X, ∂X)

and
πi (S(X, ∂X)) = Si (X, ∂X).

For a topological manifoldX the left part of the upper row of diagram (2.12) is
isomorphic to the exact sequence (2.2). The left part of the middle row of diagram
(2.12) is isomorphic to the exact sequence (2.3).
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In particular, we have the isomorphisms

STOP(X, ∂X) ∼= Sn+1(X, ∂X), STOP
∂ (X, ∂X) ∼= S∂n+1(X, ∂X), (2.13)

and

T
TOP(X, ∂X) ∼= Hn(X, ∂X; L•), T

TOP
∂ (X, ∂X) ∼= Hn(X; L•). (2.14)

Consider the composition

Ln+1(π1(X)) → Ln+1(π1(∂X) → π1(X)) → S
TOP(X, ∂X) (2.15)

where the first map lies in the relative exact sequence ofL-groups for the map
π1(∂X) → π1(X) and the second map lies in (2.3). It follows from (2.12) that the
composition (2.15) is realized by a map of spectra (see also [3])

L(π1(X)) → S(X, ∂X) (2.16)

and the cofiber of the map in (2.16) is denoted byTS(X, ∂X). We shall denote

πn(TS(X, ∂X)) = T Sn(X, ∂X)

and we get an isomorphism [3]

T Sn+1(X, ∂X) ∼= T S
TOP(X, ∂X).

Note that in a similar way (see [3]) it is possible to describethe spectrumTS(X, ∂X)
as the homotopical cofiber of any of the following maps

S(∂X) → 6(X+ ∧ L•) and (X/∂X)+ ∧ L•) → 6L(π1(∂X)). (2.17)

3 Splitting problem for a manifold with boundary

Let (X,Y, ξ) be a codimensionq(= 1,2) manifold pair in the sense of RANICKI

(see [8], page 570), i.e. a locally flat closed submanifoldY is given with a normal
block bundle

ξ = ξY⊂X : Y → B̃TOP(q)

for which we have a decomposition of the closed manifold

X = D(ξ) ∪S(ξ) X \ D(ξ) ,

whereD(ξ) is the total space of the normal block bundle with the boundary S(ξ).
In accordance with [8], p. 570 the pair(X,Y) has an underlying structure of
an (n,n − q)-dimensionalt-normal geometric Poincaré pair with the associated
(Dq, Sq−1) fibration

(Dq, Sq−1) → (D(ξ), S(ξ)) → Y. (3.1)

The fibration (3.1) provides transfer maps on the spectrum level (see [1], [6],
[11], and [12])

p] : L(π1(Y)) → �q
L (π1(S(ξ)) → π1(D(ξ))) (3.2)

and
p]1 : L(π1(Y)) → �q−1

L (π1(S(ξ))) . (3.3)



On the Splitting Problem for Manifold Pairs with Boundaries 43

Transfer maps (3.2) and (3.3) fit in a homotopy commutative diagram of spectra

L(π1(Y))
p]

p]1

�q
L(π1(S(ξ))) π1(D(ξ)) �q

L(π1(X \ Y) π1(X)

�q−1
L(π1(S(ξ))) �q−1

L(π1(X \ Y)),
(3.4)

where the horizontal maps of the right square are induced by the horizontal maps of
F and the vertical maps are the maps from cofibrations of spectra as in (2.8) for the
vertical maps of the squareF .

The spectrumLS(F) for splitting obstruction groups of the manifold pairY ⊂ X
and the spectrumLP(F) for surgery obstruction groups of the manifold pair fit in
the homotopy commutative diagram of spectra

�L(π1(Y))
=

�q+1
L(π1(X \ Y)) π1(X)) LS(F)

�L(π1(Y)) �q
L(π1(X \ Y)) LP(F)

(3.5)

where the left horizontal maps are compositions from diagram (3.4) and the right
square is the pullback (see [1], [10], and [11]). In particular, we have the isomor-
phisms

πn(LS(F)) ∼= LSn(F), πn(LP(F)) ∼= LPn(F).

A topological normal map [8], §7.2

(( f,b), (g, c)) : (M, N) → (X,Y)

to the manifold pair(X,Y, ξ) is represented by a normal map( f,b) to the manifold
X which is transversal toY with N = f −1(Y), and(M, N) is a topological manifold
pair with the normal block bundle

ν : N
f |N

−→ Y
ξ

−→ B̃TOP(q).

Additionally, the following conditions are satisfied:
(i) the restriction

( f,b)|N = (g, c) : N → Y

is a normal map;
(ii) the restriction

( f,b)|P = (h,d) : (P, S(ν)) → (Z, S(ξ))

is a normal map to the pair(Z, S(ξ)), where

P = M \ D(ν), Z = X \ D(ξ);

(iii) the restriction
(h,d)|S(ν) : S(ν) → S(ξ)

coincides with the induced map

(g, c)! : S(ν) → S(ξ),

and( f,b) = (g, c)! ∪ (h,d).
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The normal maps to(X,Y, ξ) are calledt-triangulations of the manifold pair
(X,Y) and the set of concordance classes oft-triangulations of the pair(X,Y, ξ)
coincides with the set oft-triangulations of the manifoldX [8], Proposition 7.2.3.

An s-triangulation of a manifold pair(X,Y, ξ) in topological category [8], p. 571
is at-triangulation of this pair for which the maps

f : M → X, g : N → Y, and(P, S(ν)) → (Z, S(ξ)) (3.6)

are simple homotopy equivalences (s-triangulations). The set of concordance
classes ofs-triangulations is denoted bySTOP(X,Y, ξ) (see [8], page 571). Nat-
ural forgetful maps

S
TOP(X,Y, ξ) → S

TOP(X) and S
TOP(X,Y, ξ) → T

TOP(X) (3.7)

are well-defined (see [8], §7.2). We have also the maps of taking obstruction (see
[8], page 572)

S
TOP(X) → LSn−q(F) and T

TOP(X) → LPn−q(F). (3.8)

The maps in (3.7) and (3.8) are realized on the level of spectra (see [1], [8], §7.2,
and [11]). We shall denote byS(X,Y, ξ) the homotopy cofiber of the map

X+ ∧ L• → 6q
LP(F)

and bySi (X,Y, ξ) = πi (S(X,Y, ξ)) its homotopy groups. We have an isomorphism

Sn+1(X,Y, ξ) ∼= STOP(X,Y, ξ). (3.9)

The maps from (3.7) and (3.8) fit in several diagrams of exact sequences which are
given in [8], Proposition 7.2.6. The diagram

→ Ln+1(π1(X)) → LSn−q(F) → Sn(X,Y, ξ) →

↗ ↘ ↗ ↘ ↗ ↘

Sn+1(X) LPn−q(F)
↘ ↗ ↘ ↗ ↘ ↗

→ Sn+1(X,Y, ξ) −→ Hn(X; L•) −→ Ln(π1(X)) →

(3.10)

from [8], Proposition 7.2.6 is realized on the spectrum level with the left part (i ≥ n)
which is isomorphic to a geometrically defined diagram (see [8], page 582) contain-
ing structure setsSTOP(X),STOP(X,Y, ξ),T TOP(X), in accordance with isomor-
phisms (2.11) and (3.9). Note here that the geometric version of diagram (3.10) also
contains the maps from (3.7) and (3.8).

Let
(Y, ∂Y) ⊂ (X, ∂X) (3.11)

be a codimensionq manifold pair with boundary. A manifold pair (3.11) with
boundaries defines a pair of closed manifolds∂Y ⊂ ∂X with a pushout square

F∂ =



π1(S(∂ξ)) → π1(∂X \ ∂Y)

↓ ↓

π1(∂Y) → π1(∂X)


 (3.12)

of fundamental groups for the splitting problem. A natural inclusionδ : ∂X → X
induces a map1 : F∂ → F of squares of fundamental groups.
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In the rel∂-case we considert-triangulations

( f, ∂ f ) : (M, ∂M) → (X, ∂X) (3.13)

which are split on the boundary along∂Y. The classes of concordance relative to
the boundary of such maps give the setT

TOP
∂ (X, ∂X) (see [8], §7.2) and the map

T
TOP
∂ (X, ∂X) → LPn−q(F) (3.14)

defines a rel∂ codimensionq splitting obstruction alongY ⊂ X (see [8], §7.2).
In a similar way (see [8], §7.2) we can consider ans-triangulation of pairs

(3.12) which is split along the boundary. The set of concordance rel∂ classes is
S

TOP
∂ (X, ∂X) and a rel∂ codimensionq splitting obstruction gives a map

S
TOP
∂ (X, ∂X) → LSn−q(F). (3.15)

As in the case of closed manifolds denote byS
TOP
∂ (X,Y, ξ) the set of classes of

concordance rel∂ maps which are split alongY ⊂ X.
The algebraic version of surgery exact sequence (2.2) and algebraic versions of

the maps (3.14) and (3.15) fit in the commutative braid of exact sequences

→ Ln+1(π1(X)) → LSn−q(F) → S
∂
n(X,Y, ξ) →

↗ ↘ ↗ ↘ ↗ ↘

S
∂
n+1(X, ∂X) LPn−q(F)

↘ ↗ ↘ ↗ ↘ ↗

→ S
∂
n+1(X,Y, ξ) −→ Hn(X; L•) −→ Ln(π1(X)) →

(3.16)

Diagram (3.16) is realized on the level of spectra and for∂X = ∅ coincides with the
diagram (3.10). The left part (i ≥ n) of diagram (3.16) is isomorphic to geometri-
cally defined diagram similarly to diagram (3.10). In particular,

S
∂
i (X,Y, ξ) = πi (S

∂(X,Y, ξ)),andS
∂
n+1(X,Y, ξ)

∼= S
TOP
∂ (X,Y, ξ). (3.17)

Denote byLS∗(1) = LS∗(F∂ → F) andLP∗(1) = LP∗(F∂ → F) the relative
groups for the map of squares1 : F∂ → F which is induced by the natural inclusion
δ : ∂X → X. It follows from functoriality of diagram (3.5) that these relative groups
are realized on the level of spectra. We have cofibrations of�-spectra

LS(F∂ ) → LS(F) → LS(1) (3.18)

and

LP(F∂ ) → LP(F) → LP(1) (3.19)

where

πn(LS(1)) ∼= LSn(F∂ → F) and πn(LP(1)) ∼= LPn(F∂ → F).
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These groups fit in the commutative diagram of exact sequences

...
...

...
...

↓ ↓ ↓ ↓

· · · Ln+1(ρ) → LSn−q(F∂ ) → LPn−q(F∂) → Ln(ρ) · · ·

↓ ↓ ↓ ↓

· · · Ln+1(π) → LSn−q(F) → LPn−q(F) → Ln(π) · · ·

↓ ↓ ↓ ↓

· · · Ln+1(ρ → π) → LSn−q(1) → LPn−q(1) → Ln(ρ → π) · · ·

↓ ↓ ↓ ↓
...

...
...

...

(3.20)

whereπ = π1(X) andρ = π1(∂X). Diagram (3.20) is realized on the level of spec-
tra and the two middle columns are homotopy long exact sequences of cofibrations
(3.18) and (3.19).

Now consider relative structure groups for a codimensionq manifold pair with
boundaries (3.11). We have a normal block bundle(ξ, ∂ξ) over the pair(Y, ∂Y) and
a decomposition

(X, ∂X) = (D(ξ) ∪S(ξ) Z, D(∂ξ) ∪S(∂ξ) ∂+Z) (3.21)

where(Z; ∂+Z, S(ξ); S(∂ξ)) is a manifold triad. Note here that

∂+Z = ∂X \ D(∂ξ).

A topological normal map (3.13) of manifold pairs with boundaries provides a
normal block bundle(ν, ∂ν) over the pair(N, ∂N), where (see [8], p. 570)

(N, ∂N) = ( f −1(Y), (∂ f )−1(∂Y)).

We have the following decomposition

(M, ∂M) = (D(ν) ∪S(ν) P, D(∂ν) ∪S(∂ν) ∂+ P) (3.22)

where(P; ∂+ P, S(ν); S(∂ν)) is a manifold triad.
Let

( f, ∂ f ) : (M, ∂M) → (X, ∂X)

be a normal map of a codimensionq pair with boundary(N, ∂N) ⊂ (M, ∂M)
to a codimensionq pair (Y, ∂Y) ⊂ (X, ∂X). It is an s-triangulation if the maps
f : M → X and∂ f : ∂M → ∂X ares-triangulations of corresponding codimen-
sionq pairs. We shall denote the set of concordance classes ofs-triangulations of
the codimensionq manifold pair (3.11) by

S
TOP(X,Y; ∂) = S

TOP(X, ∂X; Y, ∂Y; ξ, ∂(ξ)).

The relative surgery theory (see [8], §7.2, [10], §11, and [11]) guarantees that this
structure set fits in the following exact sequences.

· · · → S
TOP(X,Y; ∂) → T

TOP(X, ∂X) → LPn−q(1) (3.23)
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and

· · · → S
TOP(X,Y; ∂) → S

TOP(X, ∂X) → LSn−q(1) (3.24)

Proposition 1. There exists an�-spectrumS(X,Y; ∂) with homotopy groups

Si (X,Y; ∂) ∼= πi (S(X,Y; ∂)) and Sn+1(X,Y; ∂) ∼= S
TOP(X,Y; ∂)). (3.25)

There are algebraic versions of exact sequences (3.23) and (3.24)

· · · → Sn+1(X,Y; ∂) → Hn(X, ∂X; L•)
λ

−→ LPn−q(1) → · · · (3.26)

and

· · · → Sn+1(X,Y; ∂) → Sn+1(X, ∂X) → LSn−q(1) → · · · (3.27)

which are realized on the spectrum level by cofibrations

(X/∂X)+ ∧ L• → 6q
LP(1) → S(X,Y; ∂) (3.29)

and

S(X, ∂X) → 6q+1
LS(1) → 6S(X,Y; ∂), (3.30)

respectively.

Proof. Commutative diagram (2.12) is generated by a homotopy commutative dia-
gram of spectra

...
...

...

↓ ↓ ↓

· · · → (∂X)+ ∧ L• → L(ρ) → S(∂X) → · · ·

↓ ↓ ↓

· · · → X+ ∧ L• → L(π) → S
∂(X, ∂X) → · · ·

↓ ↓ ↓

· · · → (X/∂X)+ ∧ L• → L(ρ → π) → S(X, ∂X) → · · ·

↓ ↓ ↓
...

...
...

(3.31)

in which each row and column is a cofibration sequence. Commutative diagram
(3.20) is generated by a homotopy commutative diagram of spectra

...
...

...

↓ ↓ ↓

· · · → LS(F∂ ) → LP(F∂) → 6−q
L(ρ) → · · ·

↓ ↓ ↓

· · · → LS(F) → LP(F) → 6−q
L(π) → · · ·

↓ ↓ ↓

· · · → LS(1) → LP(1) → 6−q
L(ρ → π) → · · ·

↓ ↓ ↓
...

...
...

(3.32)
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in which each row and column is a cofibration sequence. Consider a homotopy
commutative square of spectra

(∂X)+ ∧ L• → 6q
LP(F∂ )

↓ ↓

X+ ∧ L• → 6q
LP(F)

(3.33)

in which the vertical maps are induced by the inclusionδ and the horizontal maps
follows from diagram (3.10) of the manifold pair∂Y ⊂ ∂X and from diagram
(3.16), respectively. Denote byS(X,Y; ∂) a spectrum fitting in the diagram extend-
ing the square (3.33) by cofibration sequences

...
...

...

↓ ↓ ↓

· · · → (∂X)+ ∧ L• → 6q
LP(F∂ ) → S(∂X, ∂Y, ∂ξ) → · · ·

↓ ↓ ↓

· · · → X+ ∧ L• → 6q
LP(F) → S

∂(X,Y, ξ) → · · ·

↓ ↓ ↓

· · · → (X/∂X)+ ∧ L• → 6q
LP(1) → S(X,Y; ∂) → · · ·

↓ ↓ ↓
...

...
...

(3.34)

LetSi (X,Y; ∂) = πi (S(X,Y; ∂)). The papers [7], [8], §7.2, and [11], §17A provide
commutative squares

Hn+k(X; L•)

t ∼=

LPn−q+k(1)

=

T
TOP(X × Dk, ∂(X × Dk)) LPn−q+k(1)

and

Hn(X, ∂X; L•)

t ∼=

LPn−q(1)

=

T
TOP(X, ∂X) LPn−q(1).

Note that the exact sequence (3.26) is obtained by applying the functorπ0 to the bot-
tom cofibration in (3.34). Now, using geometric descriptionof surgery spectra (see
[7] and [8]), an elementx ∈ Sn+1(X,Y, ∂) is defined by a pair(y, z), consisting of
a normal map bordism classy ∈ Hn(X, ∂X; L•), for whichλ(y) = 0 ∈ LPn−q(1),

and a particular solutionz of the associated surgery problem for manifold pairs with
boundaries that defines a class of equivalence

{( f : M → X)} ∈ S
TOP(X,Y, ∂).

We obtain the map

σ : Sn+1(X,Y, ∂) → S
TOP(X,Y, ∂).
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Recall, that in geometrically defined exact sequence (3.23)the mapLPn−q+1(1) →

S
TOP(X,Y, ∂) is an action. Now from the definition of the mapσ follows the com-

mutative diagram (see [7] and [10])

LPn−q+1(1)

=

Sn+1(X,Y, ∂)
σ

Hn(X, ∂X; L•)

t ∼=

LPn−q+1(1) S
TOP(X,Y, ∂) T

TOP(X, ∂X).

Using the Five Lemma we obtain an isomorphism between (3.23)and (3.26). The
case of exact sequence (3.27) follows from a homotopy commutative diagram of
cofibrations

...
...

...

↓ ↓ ↓

· · · → S(∂X, ∂Y, ∂ξ) → S(∂X) → 6q+1
LS(F∂ ) → · · ·

↓ ↓ ↓

· · · → S
∂(X,Y, ξ) → S

∂(X, ∂X) → 6q+1
LS(F) → · · ·

↓ ↓ ↓

· · · → S(X,Y; ∂) → S(X, ∂X) → 6q+1
LS(1) → · · ·

↓ ↓ ↓
...

...
...

(3.35)

which is similar to (3.34). Diagram (3.35) follows from consideration of the cofi-
bration sequences of the right upper square in (3.35).

Consider the composition

LS∗(F∂) → LP∗(F∂) → LP∗(F) (3.36)

of geometrically defined maps from diagram (3.20). The composition (3.36) is re-
alized by a map of spectra

LS(F∂ ) → LP(F) (3.37)

which is the composition of maps from diagram (3.32). We denote the homotopical
cofiber of the map (3.37) byLPS(1) and its homotopy groups by

LPSi (1) = πi (LPS(1)). (3.38)

In particular, we have a cofibration

LS(F∂ ) → LP(F) → LPS(1). (3.39)
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Theorem 2. There exists the following cofibration of spectra

S(X,Y, ∂) → TS(X, ∂X) → 6q+1
LPS(1). (3.40)

Proof. Consider the following homotopy commutative diagram of spectra

S(∂X, ∂Y, ∂ξ) S
∂ (X,Y, ξ) S(X,Y; ∂)

S(∂X) 6(X+ ∧ L•) TS(X, ∂X)

6q+1
LS(F∂ ) 6q+1

LP(F) 6q+1
LPS(1)

(3.41)

in which all rows and columns are cofibration sequences. The left bottom square of
(3.41) follows from the commutative diagram

S(∂X, ∂Y, ∂ξ)
'

S(∂X, ∂Y, ∂ξ) S
∂(X,Y, ξ)

S(∂X) 6((∂X)+ ∧ L•) 6(X+ ∧ L•)

6q+1
LS(F∂ ) 6q+1

LP(F∂ ) 6q+1
LP(F)

(3.42)

in which the commutative part consisting of the two left squares follows from the
diagram (3.10) on the spectrum level for the manifold pair∂Y ⊂ ∂X and the com-
mutative part consisting of the two right squares fits in (3.34). The vertical columns
of (3.42) are cofibrations. The left column of (3.41) coincides with the left column
of (3.42), and the middle column of (3.41) coincides with theright column of (3.42).
The right vertical maps in (3.41) are defined as map of cofibersof horizontal maps in
accordance with (2.17), (3.35), and (3.39). The left upper horizontal map in (3.41)
is the composition

S(∂X, ∂Y, ∂ξ)
'

−→ S(∂X, ∂Y, ∂ξ) → S
∂(X,Y, ξ) (3.43)

from the diagram (3.42). The right column of cofibration (3.41) is cofibration (3.40).

Corollary 3. There exists the following long exact sequence

· · · → Sn(X,Y; ∂) → T Sn(X, ∂X) → LPSn−q−1(1) → · · · (3.44)

Proof. The exact sequence (3.44) is the homotopy long exact sequence of the cofi-
bration (3.40).
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Corollary 4. There is a map

2 : T S
TOP(X, ∂X) → LPSn−q(1)

of obstructions to splitting along the submanifold with boundary (Y, ∂Y). For a
representative z= (( f,b), (∂ f, ∂b))we have2(z) = 0 if and only if the class of z in
T S

TOP(X, ∂X) contains a representative which is split along(Y, ∂Y) ⊂ (X, ∂X).

Proof. We have the commutative diagram

Sn+1(X,Y, ∂) → S
TOP(X,Y; ∂)

↓ ↓

T Sn+1(X, ∂X) → T S
TOP(X, ∂X)

(3.45)

in which the horizontal maps are isomorphisms, the right vertical map is a natural
forgetful map, and the left vertical map follows from (3.41). Now the diagram (3.41)
and the exact sequence (3.44) provide the result of the Corollary.

From now on we describe algebraic properties ofLPS∗-groups and their relations
to splitting and surgery obstruction groups.

Theorem 5. There exists a braid of exact sequences

→ LPn+1(1) → Ln+q(ρ) → LSn−1(F∂ ) →

↗ ↘ ↗ ↘ ↗ ↘

LPn(F∂) LPSn(1)

↘ ↗ ↘ ↗ ↘ ↗

→ LSn(F∂) −→ LPn(F) −→ LPn(1) →,

(3.46)

→ Ln+q+1(π) → LSn(1) → LPn(1) →

↗ ↘ ↗ ↘ ↗ ↘

Ln+q+1(ρ → π) LPSn(1)

↘ ↗ ↘ ↗ ↘ ↗

→ LPn+1(1) −→ Ln+q(ρ) −→ Ln+q(π) →,

(3.47)

and

→ LSn(F∂ ) → LPn(F) → Ln+q(π) →

↗ ↘ ↗ ↘ ↗ ↘

LSn(F) LPSn(1)

↘ ↗ ↘ ↗ ↘ ↗

→ Ln+q+1(π) −→ LSn(1) −→ LSn−1(F∂ ) →,

(3.48)

whereρ = π1(∂X) andπ = π1(X). Diagrams (3.46)–(3.48) are realized on the
spectrum level.

Proof. It follows from the definition of spectraLPS and diagram (3.32) that we
have a homotopy commutative diagram of spectra

LS(F∂ )
=

LP(F∂) 6−q
L(ρ)

LS(F∂ ) LP(F) LPS(1)

(3.49)
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where the rows are cofibrations and the right vertical map is induced by the two left
vertical maps (see [10]). The right square in (3.49) is a pullback square since fibers
of horizontal maps are naturally homotopy equivalent. Hence the right square in
(3.49) is a pushout square and homotopy long exact sequencesof this square give
the braid of exact sequences (3.46). From diagram (3.32) and[5], Lemma 2 we
conclude that the spectrumLPS(1) fits in the cofibrations of spectra

6−1
LP(1) → 6−q

L(ρ) → LPS(1)

and

6−q−1
L(π) → LS(1) → LPS(1).

Now the same line of arguments as for the braid of exact sequences (3.46) provides
diagrams (3.47) and (3.48).

Corollary 6. The groups LPS∗(1) fit in the following exact sequences

· · · → LSn(F∂ ) → LPn(F) → LPSn(1) → · · · , (3.50)

· · · → LPn+1(1) → Ln+q(ρ) → LPSn(1) → · · · , (3.51)

and

· · · → Ln+q+1(π) → LSn(1) → LPSn(1) → · · · , (3.52)

which are realized on the level of spectra.

Proof. These sequences fit in the diagrams of Theorem 6.

Corollary 7. Let1 : F∂ → F be an isomorphism of pushout squares. Then we
have isomorphisms

LPSn(1) ∼= Ln+q(ρ) ∼= Ln+q(π).

Proof. The result follows immediately from the exact sequences of Corollary 6.

The next theorem describes relations between the obstruction groupsLPS∗ and
different structure sets which arise naturally for the manifold pair with boundaries.

Theorem 8. There exist the following braids of exact sequences

→ Sn(X,Y; ∂) → T Sn(X, ∂X) → Ln−1(π) →

↗ ↘ ↗ ↘ ↗ ↘

Sn(X, ∂X) LPSn−q−1(1)

↘ ↗ ↘ ↗ ↘ ↗

→ Ln(π) −→ LSn−q−1(1) −→ Sn−1(X,Y; ∂) →

(3.53)
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and

→ Sn+1(X,Y; ∂) → Hn(X, ∂X; L•) → Ln−1(ρ) →

↗ ↘ ↗ ↘ ↗ ↘

T Sn+1(X, ∂X) LPn−q(1)

↘ ↗ ↘ ↗ ↘ ↗

→ Ln(ρ) −→ LPSn−q(1) −→ Sn(X,Y; ∂) →,

(3.54)

whereρ = π1(∂X) andπ = π1(X). Diagrams (3.53) and (3.54) are realized on
the level of spectra.

Proof. Consider a homotopy commutative diagram of spectra

L(π)

=

S(X, ∂X) TS(X, ∂X)

L(π) 6q+1
LS(1)) 6q+1

LPS(X, ∂X)

(3.55)

in which the rows follow from definitions and the columns are obtained from the
natural map of the diagram (3.31) to the diagram (3.32). The right square of (3.55)
is the pullback and the homotopy long exact sequences of thissquare give the com-
mutative diagram (3.53). The case of the diagram (3.54) is similar.

4 Examples

In this section we compute theLPS∗-groups and natural maps for several geometric
examples.

Let (Yn−1, ∂Y) ⊂ (Xn, ∂X), n ≥ 4, be a manifold pair with boundaries, where
X is a non-trivialI -bundle over the real projective spaceRP

n−1 and the submanifold
Y is the restriction of theI -bundle to the projective spaceRP

n−2 ⊂ RP
n−1. The pair

∂Y ⊂ ∂X coincides withSn−2 ⊂ Sn−1. We have isomorphismsπ1(Xn) = Z
+
2 for

n odd andπ1(Xn) = Z
−
2 for n even. The groupZ+

2 is a cyclic group of order 2 with
the trivial homomorphism of orientation andZ−

2 is this group with the nontrivial
homomorphism of orientation. In the considered case the squares (1.2) and (3.12)
are the following squares

F± =




1 → 1
↓ ↓

Z
∓
2 → Z

±
2


 (4.1)

and

F∂ =




1 ∪ 1 → 1 ∪ 1
↓ ↓

1 → 1


 . (4.2)

All horizontal maps in squares (4.1) and (4.2) are isomorphisms.

Theorem 9. In the considered cases the natural maps

LPn(F
±) → LPSn(F∂ → F±)
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fitting in diagrams (3.46) and (3.48) are isomorphisms for n= 0,1,2,3 mod 4.
Hence we have

LPSn(F∂ → F+) ∼= Z2,Z2,Z2,Z (4.3)

and

LPSn(F∂ → F−) ∼= Z,Z2,Z2,Z2 (4.4)

for n = 0,1,2,3 mod 4, respectively.

Proof. It follows from [10], page 153 that

LSn(F∂ ) = L Nn(1 ∪ 1 → 1) = 0

for all n. From this result and the exact sequence (3.50) the first statement of the
theorem follows. We have isomorphisms

LPn(F
±) ∼= Ln+1(i

!
∓)

where
i∓ : 1 → Z

∓
2

is the natural inclusion andLn+1(i !
∓) is the relative group of the transfer map (see,

for example, [6], [8] and [9]). Now isomorphisms (4.3) and (4.4) follow (see, for
example, [9], §3 for the caseF+).
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