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Abstract. We describe spectral sequences of K-groups which can be con-
structed for a twisted quadratic extension of antistructures. These spectral se-
quences are based on Tate cohomology groups of the groups $K_{i}(R),$ $i\in\{0,1\}$ .
The existence of such spectral sequences follows from an earlier work by Muranov
if one uses the methods of construction of spectral sequences originally due to
Hambleton and Kharshiladze. We describe the first differentials in these spectral
sequences and then give some examples related to surgery.

1. Introduction

The concept of the antistructure was introduced by Wall [12] as a natural
generalization of a ring with involution and as a more general object for study-
ing Hermitian forms. In geometric applications, antistructures appear in con-
siderations of the Browder-Livesay groups $LN_{*}(\pi\rightarrow G)\cong L_{*}(\mathbb{Z}\pi, \alpha, u)$ , where
$i$ : $\pi\rightarrow G$ is an inclusion of groups of index 2 and $(\alpha, u)$ is the antistructure
on the ring $\mathbb{Z}\pi$ (see [1, 9, 13]). The twisted quadratic extension was introduced
by Ranicki [10] for construction of the algebraic version of the two-folded Wall
diagram for antistructures [13]. This diagram can be written in the following
form:

$L_{n}(\pi)$ $\rightarrow$ $L_{n}(G)$ $\rightarrow$ $LN_{n-2}(\pi\rightarrow G)$

$\searrow$ $\nearrow$ $\searrow$ $\nearrow$

(1. 1)
$\nearrow\searrow L_{n}(i^{!})$ $\nearrow\searrow L_{n}(i_{!})$

$LN_{n-1}(\pi\rightarrow G)$ $\rightarrow$ $L_{n-1}(G^{-})$ $\rightarrow$ $L_{n-1}(\pi)$

and it connects Wall groups and Browder-Livesay groups by natural maps, e.g.
transfer, induced maps, and others. Recently, using diagram (1.1), Hamble-
ton and Kharshiladze constructed a spectral sequence in surgery theory and
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described connections between differentials in the spectral sequence and the it-
erated Browder-Livesay invariants [2]. However, as it follows from $[5, 7]$ , there
exist diagram analogues of (1.1) for the Tate cohomology groups in the case of
the quadratic extension of antistructures $R\leftrightarrow S$ . Then a diagram analogous
to (1.1) connects Tate cohomology groups $H^{n}(X_{R}/Y_{R})$ and $H^{n}(X_{S}/Y_{S})$ , where
$Y_{R}\subset X_{R}\subset K_{i}(R),$ $Y_{S}\subset X_{S}\subset K_{i}(S),$ $i\in\{0,1\}$ , are subgroups which sat-
isfy some additional conditions. In this case Ranicki L-spectrum [3] gives us a
possibility of constructing certain spectral sequences. In the present paper we
construct such spectral sequences for the Tate cohomology groups of the twisted
quadratic extensions and consider some examples.

One possible motivation for such an approach is a connection between Tate
cohomology groups of the ring $\hat{\mathbb{Z}}_{2}\pi$ , where $\hat{\mathbb{Z}}_{2}$ are the 2-adic integers, and Wall
surgery obstruction groups $L_{n}^{Y}(\mathbb{Z}\pi)$ (see below). So it is interesting to know
which effects on surgery spectral sequence come from Tate cohomology and which
ones from the relative part $L_{*}(\mathbb{Z}\pi\rightarrow\hat{\mathbb{Z}}_{2}\pi)$ . This is also interesting because Tate
cohomology does not give any contribution to the group $L^{p}$ . Hence, the spectral
$seq\iota ience$ of Tate cohomology groups can provide new information about distinct
Wall groups with various decorations.

2. The twisted quadratic extension of a ring with antistructure

In this section we collect the necessary definitions and describe some prop-
erties of the rings with antistructures [9]. Let $R$ be a ring with a unit. An
antistructure is a triple $(R, \alpha, u)$ , where $u\in R^{x}$ is a unit and $\alpha$ : $R\rightarrow R$ is an
antiautomorphism of the ring $R$ such that

$\alpha(u)=u^{-1}$ and $\alpha^{2}(x)=uxu^{-1}$ ,

for every $x\in R$ . A ring homomorphism $f$ : $R\rightarrow R^{\prime}$ gives a morphism of
antistructures $(R, \alpha, u)\rightarrow(R^{\prime}, \alpha^{\prime}, u^{\prime})$ provided that

$f(u)=u^{\prime}$ and $\alpha^{\prime}of=fo\alpha$ .
To define a twisted quadratic extension [10] we need a structure on a ring $R$ , i.e.
a pair $(\rho, a)$ , where $\rho$ : $R\rightarrow R$ is an automorphism and $a\in R^{\times}$ is a unit such
that

$\rho(a)=a$ and $\rho^{2}(x)=axa^{-1}$

for every $x\in R$ . Then a twisted quadratic extension of $R$ is defined as the ring
$S=R[t]/(t^{2}-a)$

with $t$ being an independent element over $R$ such that $\rho(x)=txt^{-1}$ , for every
$x\in R$ . To extend an antiautomorphism $\alpha$ over the ring $S$ we need the following
conditions:
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(i) $\alpha(t)\cdot t\in R\subset S$ ; and
(ii) $\alpha^{2}(t)=utu^{-1}\in S,$ $u\in R$ .

In this case, $(S, \alpha, u)$ is an antistructure and the inclusion $i$ : $R\rightarrow S$ gives a
morphism of antistructures $(R, \alpha, u)\rightarrow(S, \alpha, u)$ , where for simplicity, we denote
the extended antiautomorphism by $\alpha$ .

An automorphism $\rho$ : $R\rightarrow R$ can be extended to an automorphism of the
ring $S$ by setting $\rho(x+yt)=t(x+yt)t^{-1}$ , for every $x,$ $y\in R$ . There also exists an
automorphism $\gamma$ of the ring $S$ over $R$ , which is defined by $\gamma(x+yt)=x-yt$ , for
every $x,$ $y\in R$ . If $(R, \alpha, u)\rightarrow(S, \alpha, u)$ is a quadratic extension of antistructures
there exists by [10] another quadratic extension $(R,\tilde{\alpha},\tilde{u})\rightarrow(S,\tilde{\alpha},\tilde{u})$ , where
$\tilde{\alpha}=\rho\gamma\alpha$ and $\tilde{u}=-t\alpha(t^{-1})u$ . Both quadratic extensions are equal as the
quadratic extensions of the rings.

We will consider only projective right R-modules. The antiautomorphism
$\alpha$ on the rings $R,$ $S$ induces involutions $T$ on groups $K_{i}(R)$ and $K_{i}(S)$ , for
$i\in\{0,1\}$ . For the ring $R$ , this involution is generated by a map $M\vdash+M^{\alpha}=$

$Hom_{R}(M, R)$ , where the right multiplication $M^{\alpha}\times R\rightarrow M^{\alpha}$ is given by $(g\cdot$

$r)(x)=\alpha(r)g(x)$ , for any $x\in M,$ $g\in M^{\alpha},$ $r\in R$ , where $M$ is an R-module.
The antiautomorphism $\tilde{\alpha}$ induces an involution $\tilde{T}$ on groups $K_{i}(R)$ and $K_{i}(S)$ ,
$i\in\{0,1\}$ , in the same way.

3. Quadratic extensions and Tate cohomology for K-groups

For every subgroup $X\subset K_{j}(R),$ $j\in\{0,1\}$ , invariant with respect to the
involution $T$ , decorated Wall groups $L_{n}^{X}(R, \alpha, u)$ are defined so that for any two
invariant subgroups $X\subset X^{\prime}\subset K_{j}(R),$ $j\in\{0,1\}$ , there is the Rothenberg exact
sequence

(3. 1) $\ldots\rightarrow L_{n}^{X}(R, \alpha, u)\rightarrow L_{n}^{X^{\prime}}(R, \alpha, u)\rightarrow H^{n}(X^{\prime}/X)\rightarrow L_{n-1}^{X}(R, \alpha, u)\rightarrow\ldots$

The Tate cohomology in (3.1) is defined for every additively written group $A$

with an involution $T$ by

$H^{n}(A, T)=\frac{\{a=(-1)^{n}Ta|a\in A\}}{\{b+(-1)^{n}Tb|b\in A\}}$ , $n\in\{0,1\}$ .

The quadratic extension of antistructures $i$ : $(R, \alpha, u)\rightarrow(S, \alpha, u)$ gives an in-
duced map $i_{*}$ : $K_{j}(R)\rightarrow K_{j}(S),$ $j\in\{0,1\}$ , given on modules by $M\leftrightarrow M\otimes_{R}S$ ,
where $M$ is any R-module. The map

$i^{*}$ : $K_{j}(S)\rightarrow K_{j}(R)$ , $j\in\{0,1\}$

$isgivenonmodulesastherestrictionoftheS- actionontoR\subset S$ .
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Maps $i_{*}$ and $i^{*}$ commute with the involution $T[10]$ and hence they induce
maps of Tate cohomology which we will denote by $i_{1}$ and $i^{!}$ :

$i_{!}$ : $H^{n}(K_{j}(R), T)\rightarrow H^{n}(K_{j}(S), T)$

and
$i^{!}$ : $H^{n}(K_{j}(S),T)\rightarrow H^{n}(K_{j}(R), T)$ ,

respectively. Analogously, these maps commute with the involution $\tilde{T}$ . In addi-
tion, one can verify that

$i_{*}T=\tilde{T}i_{*},$ $i^{*}\tilde{T}=Ti^{*}$ ,

and
$i_{*}\tilde{T}=Ti_{*},$ $i^{*}T=\tilde{T}i^{*}$ .

It suffices to prove only the first two results since the other two are proved
analogously. Let us denote by $\rho$ an involution of the groups $K_{i}(R),$ $i\in\{0,1\}$ ,
which is given on the modules in the following way. For any R-module $M$ we
denote by $\rho M$ the module with the same additive group as $M$ and with the right
multiplication, given by the rule:

$(m, r)=m\cdot\rho(r)$ , for every $m\in M$ , $r\in R$ .

Analogously, let $\gamma$ be an involution of the groups $K_{i}(S),$ $i\in\{0,1\}$ . For an
S-module $M$ we denote by $\gamma M$ the module with the same additive group as $M$

and with the right multiplication given by

$(m, r)=m\cdot\gamma(r)$ , for every $m\in M$ , $r\in R$ .

In accordance with [7], we have $i_{*}\rho=i_{*},$ $\gamma i_{*}=i_{*},$ $\rho T=\tilde{T}$ on $K_{n}(R),$ $n\in\{0,1\}$ ,
and $\gamma T=\tilde{T}$ on $K_{n}(S),$ $n\in\{0,1\}$ . Now the result follows.

Let $X\subset X^{\prime}\subset K_{j}(R)$ and $Y\subset Y^{\prime}\subset K_{j}(S),$ $j\in\{0,1\}$ , be $T$ and $\tilde{T}$ invariant
subgroups. We suppose that $i_{*}(X)\subset Y,$ $i_{*}(X^{\prime})\subset Y^{\prime},$ $i^{*}(Y)\subset X,$ $ i^{*}(Y^{\prime})\subset$

$X^{\prime}$ . Denote $A=X^{\prime}/X$ and $B=Y^{\prime}/Y$ . The maps $i^{*}$ and $i_{*}$ induce maps of
quotient groups obtained above and these maps commute with involutions $T$

and $\tilde{T}$ analogously as in the preceding case. So we obtain induced maps of Tate
cohomology groups which we will denote by $i^{!}$ and $i_{!}$ respectively. Relative Tate
cohomolog groups are defined as follows:

$H^{n}(i_{*} : (A,T)\rightarrow(B,T))=H^{n}(i_{*}^{+})$ ,

and
$H^{n}$ $(i^{*} : (B,T)\rightarrow(A, T))=H^{N}(i_{+}^{*})$ ,
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which fit into exact sequences [9]:

(3.2) .. . $\rightarrow H^{n}(A, T)\rightarrow i,$ $ H^{n}(B,T)\rightarrow H^{n}(i_{*}^{+})\rightarrow\ldots$

and

.. . $\rightarrow H^{n}(B,T)\rightarrow|^{\prime}\cdot H^{n}(A,T)\rightarrow H^{n}(i_{+}^{*})\rightarrow\ldots$

Analogous exact sequences exist for other cases of pairs of involutions in
which maps $i_{*}$ and $i^{*}$ commute with involutions on $A$ and $B$ . We will denote

$H^{n}(i_{-}^{*})=H^{n}(i^{*} : (B,\tilde{T})\rightarrow(A,T))$

and
$H^{n}(i_{*}^{-})=H^{n}(i^{*} : (A, T)\rightarrow(B,\tilde{T}))$ .

Theorem 3.1. [7]. Let $i:(R, \alpha, u)\rightarrow(S, \alpha, u)$ be a twisted quadratic exten-
sion of antistructures. Then under the hypothesis above we have a commutative
bra $id$ of exact sequences

. $..\rightarrow H^{n}(B,\tilde{T})$
$\rightarrow*!$

$H^{n}(A,T)$
$\rightarrow i$

,
$H^{n}(B, T)$ $\rightarrow*^{:}H^{n}(A,\tilde{T})\rightarrow\ldots$

(3.3)
$ H^{n-1}(i_{*}^{+})\searrow\nearrow$

$\searrow\nearrow$

$ H^{n}(i_{*}^{+})\searrow\nearrow$

$ H^{n}(i_{-}^{*})\nearrow\searrow$

$\nearrow\searrow$ $\nearrow\searrow$

$...\rightarrow H^{n-1}(B, T)$
$\rightarrow|!$ $H^{n-1}(A,\tilde{T})\rightarrow:,$ $H^{n-1}(B,\tilde{T})\rightarrow i^{\prime}H^{n-1}(A, T)\rightarrow.\cdot.$ .

for $n\in\{0,1\}$ .

We denote the diagram above by (D). In (D) we use the isomorphisms [7]:

$H^{n}(i_{*}^{+})\cong H^{n-1}(i_{*} : (A,\tilde{T})\rightarrow(B,\tilde{T}))$ ,

and
$H^{n}(i_{-}^{*})=H^{n-1}(i^{*} : (B, T)\rightarrow(A,\tilde{T}))$ .

Another diagram $(\tilde{D})$ is obtained if we use isomorphisms

$H^{n}(i_{+}^{*})\cong H^{n-1}(i^{*} : (B,\tilde{T})\rightarrow(A,\tilde{T}))$ ,

and
$H^{n}(i_{*}^{-})=H^{n-1}(i_{*} : (A,\tilde{T})\rightarrow(B,T))$ .

In fact, diagram (3.3) is a relative version of the diagram of Ranicki [10], since
Tate cohomologies are naturally isomorphic to relative Wall groups for the iden-
tity map of ring considered with distinguished decorations.
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4. Spectral sequences

Let $i:(R, \alpha, u)\rightarrow(S, \alpha, u)$ be a quadratic extension of antistructures which
corresponds to the structure $(\rho, a)$ on $R$ . We will preserve the notation of the
preceding section. There exist simplicial $\Omega$-spectra such that all exact sequences
of diagrams (D) and $(\tilde{D})$ are induced by fibrations of spectra [3]. We denote by
$\mathbb{H}(B,T)$ the spectrum for which $\pi_{n}(\mathbb{H}(B, T))=H^{n}(B, T)$ and analogously for
other groups in diagrams $(\tilde{D})$ and (D). So exact sequences (3.2) are induced by
fibrations of spectra
(4. 1) $\mathbb{H}(A,T)\rightarrow \mathbb{H}(B,T)\rightarrow \mathbb{H}(i_{*}^{+})$

and

$\mathbb{H}(B, T)\rightarrow \mathbb{H}(A, T)\rightarrow \mathbb{H}(i_{+}^{*})$ .

We suppose that the spectrum $\mathbb{H}$ consists of the collection of spaces $\mathbb{H}_{k}$ such
that $\mathbb{H}_{k}=\Omega \mathbb{H}_{k+1},$ $k\geq 0[8]$ .

Now we can use the method of Hambleton and Kharshiladze [2] to construct a
spectral sequence in the considered case. Commutative diagram (D) is generated
by the pull-back square of the spectra [5]:

$\mathbb{H}(B, T)$

$\nearrow$ $\searrow$

(4. 2) $\mathbb{H}(i_{-}^{*})$ $\mathbb{H}(i_{*}^{+})$

$\searrow$ $\nearrow$

$\Sigma \mathbb{H}(B,\tilde{T})$

where $\Sigma$ denotes a functor which is defined on each spectra A $=\{A_{n}\}$ by
$((\Sigma A)_{n})=A_{n+1}$ . If we consider analogous square for diagram $(\tilde{D})$ we can
construct a diagram, consisting of two pull-back squares:

$\mathbb{H}(B, T)$

$\nearrow$ $\searrow$

$\mathbb{H}(i_{-}^{*})$ $\mathbb{H}(i_{*}^{+})$

$\searrow$ $\nearrow$

(4. 3) $\Sigma \mathbb{H}(B,\tilde{T})$

$\nearrow$

$\searrow\Sigma \mathbb{H}(i_{*}^{-})$

$\Sigma \mathbb{H}(i_{+}^{*})\searrow\nearrow\Sigma^{2}\mathbb{H}(B,T)$

If we continue this procedure we obtain the vertical row of pull-back squares.
The diagram consists of $\Omega$-spectra; hence for simplicity we can write it on the
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space level. We will use notation analogous to that in [2]. Let

$X_{0,0}=\mathbb{H}_{0}(B, T)$ ,
$X_{1,1}=\mathbb{H}_{1}(B,\tilde{T})$ ,

$X_{2k+1,2k+1}=\mathbb{H}_{2k+1}(B,\tilde{T})$ ,
$X_{1,0}=\mathbb{H}_{0}(i_{-}^{*})$ ,

$X_{2k+1,2k}=\mathbb{H}_{2k}(i_{-}^{*})$ ,
$X_{0,1}=\mathbb{H}_{0}(i_{*}^{+})$ ,

$X_{2k,2k+1}=\mathbb{H}_{2k}(i_{*}^{+})$ ,

$X_{2,2}=\mathbb{H}_{2}(B, T)$ ,
$X_{2k,2k}=\mathbb{H}_{2k}(B, T)$ ,

$X_{2,1}=\mathbb{H}_{1}(i_{+}^{*})$ ,
$X_{2k,2k-1}=\mathbb{H}_{2k-1}(i_{+}^{*})$ ,

$X_{1,2}=\mathbb{H}_{1}(i_{*}^{-})$ ,
$X_{2k-1,2k}=\mathbb{H}_{2k-1}(i_{*}^{-})$ .

One should observe that the maps $X_{k+1,k}\rightarrow X_{k,k},$ $X_{k+1,k}\rightarrow X_{k+1,k+1},$ $ X_{k,k}\rightarrow$

$X_{k,k+1},$ $X_{k,k}\rightarrow X_{k-1,k}$ induce the maps of diagram (4.3).
We now extend this diagram using the pull-back squares on the left and push-

out squares on the right. To obtain the space $X_{k,k-2}$ we consider the already
known maps

$X_{k-1,k-2}\rightarrow X_{k-1,k-1}\leftarrow X_{k,k-1}$ .

Then $X_{k,k-2}$ is the space which gives the pull-back square

$X_{k,k-2}$ $\rightarrow$ $X_{k-1,k-2}$

$X_{k,k-1}$ $\rightarrow$ $X_{k-1,k-1}$ .

By extending this process we obtain the diagram

$\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$

$...\rightarrow$ $X_{3,0}$ $\rightarrow$

$X_{2,0 ,\downarrow}$

$\rightarrow$

$X_{1,0 ,\downarrow}$ $\rightarrow*$ $X_{0,0 ,\downarrow}$

$\rightarrow$

$ x_{-1,0}\downarrow$

$\rightarrow\cdots$

(4.4)
$...\rightarrow$

$X_{3,1,\downarrow}$

$\rightarrow$

$X_{2,1,\downarrow}$ $\rightarrow*$ $X_{1,1,\downarrow}$

$\rightarrow$

$X_{0,1,\downarrow}$

$\rightarrow$

$ X_{-1,1}\downarrow$

$\rightarrow\cdots$

$...\rightarrow$ $X_{3,2}$ $\rightarrow$ $X_{2,2}$ $\rightarrow$ $X_{1,2}$ $\rightarrow$ $X_{0,2}$ $\rightarrow$ $X_{-1,2}$ $\rightarrow\cdots$

$\downarrow$ $*$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$

$...\rightarrow$

$X_{3,3 ,\downarrow}$

$\rightarrow$

$X_{2,3 ,\downarrow}$

$\rightarrow$

$X_{1,3 ,\downarrow}$

$\rightarrow$

$X_{0,3 ,\downarrow}$

$\rightarrow$

$ X_{-1,3}\downarrow$

$\rightarrow\cdots$

Squares of diagram (4.3) are placed in (4.4) on the diagonal and we denote them
by $*$ . This diagram plays the role of diagram [2; (3)]. Hence, we can use the
filtration

. $..\rightarrow X_{3,0}\rightarrow X_{2,0}\rightarrow X_{1,0}\rightarrow X_{0,0}\rightarrow X_{-1,0}\rightarrow\ldots$ .

to define a spectral sequence similar to the one given in [2]. Let

$E_{1}^{p,q}=\pi_{q-p}(X_{p,0}, X_{p+1,0})=\pi_{q-p}(X_{p,i}, X_{p+1,i})$
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and let the differential
$ff_{1’}^{q}$ : $E_{1}^{p,q}\rightarrow E_{1}^{p+1,q}$

be the natural map

$\pi_{q-p}(X_{p,p},X_{p+1,p})$

$\downarrow$
$\cong$

$\pi_{q-p}(X_{p,p+1}, X_{p+1,p+1})$ $\rightarrow\pi_{q-p-1}(X_{p+1,p+1}, X_{p+2,p+1})$ ,

where the vertical map is an isomorphism since we consider the pull-back (and
hence push-out) squares of spectra.

From (4.1) and (4.2) we obtain that

$E_{1}^{p,q}=\pi_{q-p}(X_{p)p},X_{p+1,p})=\pi_{q-p}(\mathbb{H}_{p}(A,\tilde{T}))=H^{q}(A,\tilde{T})$

and
$E_{1}^{p+1,q}=\pi_{q-p-1}(X_{p+1,p+1}, X_{p+2,p})=H^{n}(A,\tilde{T})$ ,

and that, for $p$ even and $q\in\{0,1\}$ , the map $d_{1}^{p,q}$ coincides with the composition

$H^{q}(A,\tilde{T})\rightarrow i\prime H^{q}(B,\tilde{T})\rightarrow|^{\prime}H^{q}(A,\tilde{T})$ ,

where the map $i_{!}$ lies in diagram (D) and the map $i^{!}$ lies in diagram $(\tilde{D})$ . For $p$

odd and $q\in\{0,1\},$ $d_{1}^{p,q}$ coincides with the composition

$H^{q}(A,\tilde{T})\rightarrow i\prime H^{q}(B, T)\rightarrow i^{\prime}H^{q}(A,\tilde{T})$ ,

where the map $i_{1}$ lies in $(\tilde{D})$ and $i^{!}$ lies in (D). We denote by $\rho$ the involution of
the group $H^{q}(A,\tilde{T})$ , induced by the involution $\rho$ of $K_{i}(R),$ $i\in\{0,1\}$ .

Theorem 4.1. The differential $d_{1}^{p,q}$ : $E_{1}^{pq}$
) $\rightarrow E_{1}^{p,q+1}$ does not depend on $p$

and $q$ and it coincides with the map $ 1+\rho$ .

Proof. Obviously $ff_{1’}^{q}=i^{!}\circ i_{!}$ and maps $i^{!}$ and $i_{t}$ of homology groups are
induced by chain maps of chain complexes. Now the result follows from [10],
where $ i^{1}oi_{1}=1+\rho$ was obtained (see also [6]). $\blacksquare$

Corollary 4.2. Let $i$ : $(R, \alpha, u)\rightarrow(S, \alpha, u)$ be the untwisted quadratic ex-
tension, $i.e$ , the element $t$ commutes with all elements of ring R. Then the
diffeoential $ff_{1}^{q}$ of the obtained spectral sequence is trivial.

Proof. Clear, since in this case $\rho=1$ and all elements of Tate cohomology
groups have order 2. $\blacksquare$
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The map $ 1+\rho$ : $H^{q}(A,\tilde{T})\rightarrow H^{q}(A,\tilde{T})$ is a differential of this group, i.e.
$(1+\rho)^{2}=0$ . The term $E_{2}^{p,q}$ of the spectral sequence is now defined as

$E_{2}^{p,q}\cong\frac{Ker(1+\rho)}{{\rm Im}(1+\rho)}$

and it does not depend on $q$ .
We considered the spectral sequence which corresponds to the filtration given

by the horizontal rows of diagram (4.4). Analogously, there exists a spec-
tral sequence which corresponds to the filtration given by the columns of dia-
gram (4.4). The situation here is analogous to the considered case. We only
remark that for this spectral sequence we have that $E_{1}^{p,q}\cong H^{q}(A, T)$ , but
$ff_{1’}^{q}$ : $H^{q}(A,T)\rightarrow H^{q}(A,T)$ coincides with the map $ 1+\rho$ as in the case of
the first spectral sequence.

In addition, two more spectral sequences are obtained analogously if, instead
of (4.2), we use the following universal square of spectra:

$\mathbb{H}(A, T)$

$\nearrow$ $\searrow$

(4. 5) $\Sigma \mathbb{H}(i_{*}^{+})$ $\mathbb{H}(i_{-}^{*})$

$\searrow\nearrow\Sigma \mathbb{H}(A,\tilde{T})$

In this case we obtain two spectral sequences. For the first one we have that
$E_{1}^{p,q}\cong H^{q}(B,\tilde{T})$ with $d_{1}^{p,q}=1+\gamma=i_{!}i^{!}$ and for the second one we have
$E_{1}^{p,q}\cong H^{q}(B, T)$ , with the same $d_{1}^{p,q}$ . For the last two cases the first differential
cannot vanish even for the untwisted quadratic extensions. The authors do not
presently know of any example of a spectral sequence with a nontrivial second
differential. (For the $spectral\backslash $ sequence in surgery such an example was given in
[2].)

We give some examples of spectral sequences with a nontrivial first differ-
ential. The main intermediate step in the calculation of surgery obstruction
groups [11] is a group $L_{*}^{Y}(\hat{\mathbb{Z}}_{2}\pi)$ , which is connected with Tate cohomology group
$H^{*}(K_{1}(\hat{\mathbb{Z}}_{2}\pi/Y)$ by means of the Rothenberg exact sequence

. . . $\rightarrow L_{*}^{Y}(\hat{\mathbb{Z}}_{2}\pi)\rightarrow L_{n}^{K}(\hat{\mathbb{Z}}_{2}\pi)\rightarrow H^{n}(K_{1}(\hat{\mathbb{Z}}_{2}/\pi)/Y)\rightarrow\ldots$

Here $\hat{\mathbb{Z}}_{2}$ is the ring of 2-adic integers, $Y=\{\pm\pi\}+\{Ker(K_{1}(\hat{\mathbb{Z}}_{2}\pi)\rightarrow K_{1}(\hat{\mathbb{Q}}_{2}\pi))\}$

and involution of $K_{1}(\hat{\mathbb{Z}}_{2}\pi)$ is induced by the standard involution of $\hat{\mathbb{Z}}_{2}\pi$ , given
by

$a=\Sigma n_{g}g\rightarrow\overline{a}=\Sigma n_{g}w(g)g^{-1}$ , $n_{g}\in\hat{\mathbb{Z}}_{2}$ , $ g\in\pi$ ,

and $w$ : $\pi\rightarrow\{\pm 1\}$ is an orientation homeomorphism. We will denote $K=$
$K_{1}(\hat{\mathbb{Z}}_{2}\pi)$ . For a finite abelian 2-group $\pi$ the group $L_{n}^{K}(\hat{\mathbb{Z}}_{2}\pi)\cong \mathbb{Z}/2$ and hence
groups $L_{n}^{Y}(\hat{\mathbb{Z}}_{2}\pi)$ are almost equal to Tate cohomology groups.
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Example 4.3. Let $i$ : $\pi\rightarrow\pi\oplus \mathbb{Z}_{2}=G$ be an inclusion of finite abelian
2-groups, $r$ be the 2-rank of the group $\pi$ and $s$ be the number of summands of
order 2 in $\pi$ . We assume that the orientation homomorphism is trivial on $G$

and $\pi$ . The inclusion $i$ gives a quadratic extension of rings $\hat{\mathbb{Z}}_{2}\pi\rightarrow\hat{\mathbb{Z}}_{2}G$ with a
standard involution and $\rho=Id$ . Denote

$A=(K_{1}(\hat{\mathbb{Z}}_{2}\pi)/\{\pm\pi\})$ and $B=(K_{1}(\hat{\mathbb{Z}}_{2}G)/\{\pm G\})$ .

Observe that in this case, $K_{1}(\hat{\mathbb{Z}}_{2}\pi)=(\hat{\mathbb{Z}}_{2}\pi)^{\times}$ and $K_{1}(\hat{\mathbb{Z}}_{2}G)=(\hat{\mathbb{Z}}_{2}G)^{\times}$ . The
involution $\tilde{T}$ on the group $K_{1}(\hat{\mathbb{Z}}_{2}\pi)$ coincides with the involution $T$ , and $\tilde{T}$ on
the group $K_{1}(\hat{\mathbb{Z}}_{2}G)$ is generated by the involution

$\Sigma n_{g}g\rightarrow\Sigma n_{g}w^{\prime}(g)g^{-1}$ ,

where $w^{\prime}\equiv w$ on the group $\pi$ and $w^{\prime}(t)=-1$ , for every $ t\in G\backslash \pi$ . All Tate
cohomology groups are known [11]:

$H^{1}(A, T)=H^{1}(A,\tilde{T})=H^{1}(B, T)=0$

$H^{2}(B,\tilde{T})\cong(\mathbb{Z}_{2})^{2^{r}-s+1}$

$H^{0}(A, T)=H^{0}(A,\tilde{T})\cong(\mathbb{Z}_{2})^{2^{r}}$

$H^{0}(B, T)=(\mathbb{Z}_{2})^{2^{r}+1}$

$H^{0}(B,\tilde{T})=(\mathbb{Z}_{2})^{2^{r}-s+1}$

Consider the spectral sequence constructed for the square (4.5) with the first
differential

$ d_{1}=1+\gamma$ : $H^{q}(B, T)\rightarrow H^{q}(B, T)$ .

For $q$ odd, $d_{1}$ is obviously trivial, and for $q$ even, we have the following commu-
tative diagram

$(\mathbb{Z}_{2})^{2^{r+1}}=H^{0}(B,T)\searrow i^{!}$

$\rightarrow^{d_{1}}$

$H_{0}(B,T)=(\mathbb{Z}_{2})^{2^{r+1}}\nearrow i_{!}$

$H^{0}(A,\tilde{T})=(\mathbb{Z}_{2})^{2^{r}}$

It follows from [5] that ${\rm Im} i^{t}\cong(\mathbb{Z}_{2})^{s-1}$ and that $i_{!}$ is a monomorphism. Hence
${\rm Im} d_{1}=(\mathbb{Z}_{2})^{s-1}$ and it is nontrivial for $s\geq 2$ . It is necessary to note that for the
spectral sequence with $E_{1}^{p,q}\cong H^{q}(B,\tilde{T})$ the first differential $d_{1}$ is always trivial.
This also follows from results in [5].

Example 4.4. Let $\pi=\mathbb{Z}_{2}^{r}\rightarrow D_{r+1}$ be an inclusion of index 2 of the cyclic
group of order $2^{r}$ into the dihedral 2-group $D_{r+1}=\{x^{2^{r}}=y^{2}=1,$ $y^{-1}xy=$

$x^{-1}\},$ $w=1$ . As in example (4.3), we obtain a twisted quadratic extension of
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antistructures $\hat{\mathbb{Z}}_{2}\pi\rightarrow\hat{\mathbb{Z}}_{2}G$ with standard involutions, but in this case the involu-
tion $\rho$ is given on element $ x\in\pi$ by $\rho(x)=x^{-1}$ . We denote $A=K_{1}(\hat{\mathbb{Z}}_{2}\pi)/Y$ and
$B=K_{1}(\hat{\mathbb{Z}}_{2}D_{r+1})/Y$ . Then $H^{1}(A,T)=H^{1}(A,\tilde{T})=H^{1}(B, T)=H^{1}(B,\tilde{T})=0$ ,
$H^{0}(A,T)=(\mathbb{Z}_{2})^{2},$ $H^{0}(A,\tilde{T})=(\mathbb{Z}_{2})^{2^{r}},$ $H^{0}(B, T)=(\mathbb{Z}_{2})^{2^{r-1}+3}$ , and $H^{0}(B,\tilde{T})=$

$(\mathbb{Z}_{2})^{2^{r-1}-1}[11,4]$ . In this case we have the commutative diagram

$(\mathbb{Z}_{2})^{2^{r}}\cong H^{0}(A,\tilde{T})epi\searrow i^{!}$

$\rightarrow^{d_{1}}$

$H^{0}(A,\tilde{T})\nearrow i_{t}$

$\cong(\mathbb{Z}_{2})^{2^{r}}$

$H^{0}(B,\tilde{T})\cong(\mathbb{Z}_{2})^{2^{r-1}-1}$

The map $i^{!}$ is an epimorphism (see [5]) and rank Ker $i_{!}\leq 2$ , since this map is
from the exact sequence

$\rightarrow H^{0}(A, T)\rightarrow^{i\prime}H^{0}(B,\tilde{T})\rightarrow^{i^{\prime}.}H^{0}(A,\tilde{T})\rightarrow^{i\prime}H^{0}(B,T)\rightarrow i^{\prime}$

(4. 6) $\cong$ $\cong$ $\cong$ $\cong$

$(\mathbb{Z}_{2})^{2}$ $(\mathbb{Z}_{2})^{r^{r-1}-1}$ $(\mathbb{Z}_{2})^{2^{r}}$ $(\mathbb{Z}_{2})^{2^{r-1}+3}$

which is a row of diagram $(\tilde{D})$ . The other row is trivial, since all odd dimensional
Tate cohomology groups vanish. So in this case we obtain that:

2$r-1-1\geq rank({\rm Im} d_{1})\geq 2^{r-1}-3$ .

We remark that the result about $d_{1}$ can give helpful information about natural
maps of Tate cohomology groups. In our case diagram (D) is described in full
$[4, 5]$ , but the maps of diagram $(\tilde{D})$ are unknown.

Theorem 4.5. The map $i^{!}$ : $H^{0}(B, T)\rightarrow H^{0}(A,T)$ in $(4,\theta)$ is an epimor-
phism.

Proof. For the calculation of $d_{1}$ : $H^{0}(B, T)\rightarrow H^{0}(B,T)$ we can use two
commutative diagrams

$(\mathbb{Z}_{2})^{2^{r-1}+3}\cong H^{0}(B,T)$
$\rightarrow^{d_{1}}$ $H^{0}(B, T)\cong(\mathbb{Z}_{2})^{2^{r-1}+3}$

(4. 7) ? $\searrow i^{!}$ $\nearrow i_{!}$ mono
$H^{0}(A, T)\cong(\mathbb{Z}_{2})^{2}$

and
$(\mathbb{Z}_{2})^{2^{r-1}+3}\cong$ $H^{0}(B, T)$

$\rightarrow^{d_{1}}$ $H^{0}(B,T)\cong(\mathbb{Z}_{2})^{2^{r-1}+3}$

(4. 8) rank ${\rm Im} i^{!}=2^{r-1}+1\searrow i^{!}$ $?\nearrow i_{1}$

$H^{0}(A,\tilde{T})\cong(\mathbb{Z}_{2})^{2r}$

In (4.7) and (4.8) we marked by ? the unknown maps from diagram $(\tilde{D})$ . It
follows from (4.7) that rank $({\rm Im} d_{1})\leq 2$ .
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From $(\tilde{D})$ we conclude that rank ${\rm Im} i_{!}\geq 2^{r-1}+1$ , hence rank Ker $i_{1}\leq 2^{r-1}-1$

in (4.8). But in this case it follows from (4.8) that rank ${\rm Im} d_{1}\geq 2$ . If we compare
results obtained from (4.7) and (4.8) we obtain that ${\rm Im} d_{1}\cong(\mathbb{Z}_{2})^{2}$ in this case.
It thus follows that the map $i^{1}$ in (4.7) is an epimorphism. $\blacksquare$

By this theorem we can immediately obtain all maps from $(\tilde{D})$ . Moreover,
we have an exact description of the differential

$d_{1}$ : $H^{0}(A,\tilde{T})\rightarrow H^{0}(A,\tilde{T})$

which is given by

${\rm Im} d_{1}\cong{\rm Im}(i_{!} : H^{0}(B,\tilde{T})\rightarrow H^{0}(A,\tilde{T}))\cong H^{0}(B,\tilde{T})\cong(\mathbb{Z}_{2})^{2^{r-1}-1}$ .

This information on maps of $(\tilde{D})$ gives new information about natural maps of
Wall groups [5].
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