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One-relator groups and
proper 3-realizability

Manuel Cárdenas, Francisco F. Lasheras, Antonio Quintero
and Dušan Repovš

Abstract

How different is the universal cover of a given finite 2-complex
from a 3-manifold (from the proper homotopy viewpoint)? Regard-
ing this question, we recall that a finitely presented group G is said
to be properly 3-realizable if there exists a compact 2-polyhedron K
with π1(K) ∼= G whose universal cover K̃ has the proper homotopy
type of a PL 3-manifold (with boundary). In this paper, we study
the asymptotic behavior of finitely generated one-relator groups and
show that those having finitely many ends are properly 3-realizable,
by describing what the fundamental pro-group looks like, showing a
property of one-relator groups which is stronger than the QSF prop-
erty of Brick (from the proper homotopy viewpoint) and giving an
alternative proof of the fact that one-relator groups are semistable at
infinity.

1. Introduction

The following question was formulated in [22] for an arbitrary finitely pre-
sented group G: does there exist a compact 2-polyhedron K with π1(K) ∼= G
whose universal cover K̃ is proper homotopy equivalent to a 3-manifold ?
If so, the group G is said to be properly 3-realizable. Recall that two spaces
are said to be proper homotopy equivalent if they are homotopy equivalent
and all homotopies involved are proper maps, i.e., they have the property
that the inverse image of every compact subset is compact. It is a fact that
one can get the above universal cover K̃ of K proper homotopy equiva-
lent to a 4-manifold, as one can take K to be the Cayley complex associated
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to a (finite) group presentation of G, which can easily be embedded in R
4.

Moreover, it is known that the proper homotopy type of any locally finite
2-dimensional CW -complex can be represented by a subpolyhedron in R

4

(see [4]). The question whether or not one can do better than this, i.e.,
whether or not a given finitely presented group G is properly 3-realizable, is
of interest as it has implications in the theory of cohomology of groups: if G is
properly 3-realizable then for some (equivalently any) compact 2-polyhedron
K with π1(K) ∼= G the group H2

c (K̃; Z) is free abelian (by manifold duality
arguments), and hence so is H2(G; ZG) (see [18]). It is a long standing con-
jecture (attributed to Hopf) that H2(G; ZG) is free abelian for every finitely
presented group G. Observe that there are examples of locally compact,
simply connected 2-polyhedra X for which H2

c (X; Z) is not free abelian, but
they are known not to be covering spaces of compact polyhedra (see [4, 22]).
There are several results in the literature regarding properly 3-realizable
groups (see [1, 5, 7, 8, 23]). An example of a non-3-manifold group which
has this property is already pointed out in [22]. It is worth mentioning that
we have recently found that there are groups which are 1-ended and semi-
stable at infinity but not properly 3-realizable (see [6, 13]). The main result
of the present paper is:

Theorem 1.1. Every finitely generated one-relator group G with finitely
many ends is properly 3-realizable.

Recall that, given a compact 2-polyhedron K with π1(K) ∼= G and K̃ as
its universal cover, the number of ends of G equals the number of ends of K̃
which in turn equals 0, 1, 2 or ∞ (see [17, 31]).

Proof of Theorem 1.1. Given a one-relator group G and a presentation
P of G with a single defining relation, it is shown in Proposition 2.7 below
that we can alter (within its proper homotopy type) the universal cover K̃P

of the standard 2-complex KP associated to this presentation so as to get
a new 2-complex K̂P together with a filtration Ĉ1 ⊂ Ĉ2 ⊂ · · · ⊂ K̂P of
compact simply connected subcomplexes such that (for any given base ray

in K̂P ) the tower of groups, pro− π1(K̂P ),

{1} ← π1(K̂P − int(Ĉ1))← π1(K̂P − int(Ĉ2))← · · ·

is a telescopic tower, i.e., it is a tower of finitely generated free groups of
increasing bases where the bonding maps are projections (see §5). Thus,
pro−π1(K̃P ) (and hence the fundamental pro-group of G) is also of that type,
up to pro-isomorphism. In the 1-ended case it is known that a group with
such a fundamental pro-group is properly 3-realizable (see [23, Thm. 1.2]).
Note that we are already done in the 0-ended or 2-ended case as the 0-ended
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case corresponds to finite cyclic groups, and in the 2-ended case we only
have to deal with the group Z of integers, which is the only one-relator
group having Z as a subgroup of finite index. See also ([1], Cor. 1.2). �
Remark 1.2. Observe that the proof of Theorem 1.1 given above shows that
the group G is semistable at infinity (cf. [30]). See §5.

It is worth noting that if P is any finite group presentation of G with
a single defining relation and KP is the standard 2-complex (with a single
vertex and a single 2-cell) associated to this presentation, then Theorem 1.1
together with ([1], Prop. 1.3) yields that the universal cover of KP ∨ S2

is proper homotopy equivalent to a 3-manifold. In fact, we conjecture that
we may disregard the 2-sphere, having the universal cover of KP proper
homotopy equivalent to a 3-manifold itself.

Corollary 1.3. Every torsion-free finitely generated one-relator group G is
properly 3-realizable.

Proof. Observe that, in general, if a group has infinitely many ends then
Stallings’ theorem tells us that it splits as an amalgamated free product
or an HNN-extension over a finite group (see [31, 17]), and Dunwoody’s
accessibility result [11] shows that the process of further factorization of
the group in this way must terminate after a finite number of steps, and
each of the factors can have at most one end. In the torsion-free case, the
above translates into a decomposition of G into a free product of a free
group with a one-relator group, the latter having at most one end. The
conclusion now follows from Theorem 1.1 and the fact that free groups are
properly 3-realizable, and free products of properly 3-realizable groups are
again properly 3-realizable (see ([1], Thm. 1.4)). �

On the other hand, a conjecture of the following type was stated in [14]:
if a torsion-free one relator group decomposes as a certain amalgamated free
product A ∗C B over a free group C, then each of the factors A and B must
be either a free group or a one-relator group. In fact, it was proved in [14]
that this is so from the homology viewpoint. We hereby pose the following
conjecture:

Conjecture 1.4. If a one-relator group with torsion decomposes as an amal-
gamated free product A ∗C B (resp. an HNN-extension A∗C) over a finite
group C (which is necessarily cyclic, see [21, 25]), then each of the factors
A and B (resp. the base group A) must be either a one-relator group or a
free product of one-relator groups (with torsion).

Observe that if this conjecture is true then, using the results of Stallings
and Dunwoody (as in Corollary 1.2), the problem of showing that all fi-
nitely generated one-relator groups are properly 3-realizable can be reduced
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to the 1-ended case, by ([1, Thm. 1.4]), and hence completely solved by
Theorem 1.1. Thus, we conjecture the following:

Conjecture 1.5. The “finitely many ended” hypothesis in Theorem 1.1 can
be omitted.

2. One-relator groups and their structure at infinity

The purpose of this section is to obtain some asymptotic properties of one-
relator groups, which will be essential for our proof of Theorem 1.1. From
now on, all complexes will be assumed to be PL CW-complexes (in the sense
of ([20], §1.4)).

Given a finitely presented group G and a finite 2-dimensional CW-com-
plex X with π1(X) ∼= G, we recall that G is said to be QSF (i.e., quasi
simply filtered) if the universal cover X̃ of X admits an exhaustion which
can be “approximated” by finite simply connected CW-complexes, i.e., for
every finite subcomplex A ⊂ X̃ there is a cellular map f : Y −→ X̃ from
a finite simply connected CW-complex Y which is a homeomorphism on
f−1(A). On the other hand, G is said to be WGSC (i.e., weakly geometrically
simply connected) if X̃ has in fact an exhaustion by finite simply connected
subcomplexes.

It was shown in [2] that all one-relator groups are QSF. Furthermore, the
properties QSF and WGSC have recently been shown to be equivalent (see
[15, 16]). Next, in Proposition 2.7 below, we shall demonstrate a stronger
property of one-relator groups (from the proper homotopy viewpoint) giving
also an alternative proof of the fact that one-relator groups are semistable
at infinity (see [30]). We shall need the following:

Definition 2.1. Let X be a 2-dimensional (PL) CW-complex and let dn, en+1

⊂ X be cells of X, d being a free face of e when considered as a subcomplex
of X. An elementary internal collapse (e, d) in X consists of “collapsing”
the cell e through its face d, even if d is not a free face of e within the entire
complex X. Of course, this implies dragging all the material adjacent to
that face thus producing a new CW-complex proper homotopy equivalent
to X. We will refer to any of the inverses of an elementary internal collapse
as an elementary internal expansion.

Definition 2.2. We say that two (possibly non-compact) 2-complexes X
and Y are strongly proper homotopy equivalent if one is obtained from the
other by a (possibly infinite) sequence of elementary internal collapses and/or
expansions, in such a way that the resulting homotopy equivalence is a
proper homotopy equivalence.
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Definition 2.3. Let X be a 2-dimensional simply connected CW-complex.
We will say that a filtration C1 ⊂ C2 ⊂ · · · ⊂ X of compact subcom-
plexes is nice if each Cn is simply connected and, for any choice of base ray
[0,∞) −→ X, the fundamental pro-group

{1} ← π1(X − int(C1))← π1(X − int(C2))← · · ·
is a tower of finitely generated free groups of increasing bases where the
bonding maps are projections.

Lemma 2.4. Let X be a 2-dimensional simply connected CW-complex to-
gether with a nice filtration C1 ⊂ C2 ⊂ · · · ⊂ X, and let Ti, i ∈ I, be a (locally

finite) collection of trees inside X. We can get a new 2-complex X̂ (strongly
proper homotopy equivalent to X) still containing the Ti’s and a nice filtra-

tion Ĉ1 ⊂ Ĉ2 ⊂ · · · ⊂ X̂ such that each intersection Ĉn ∩ Ti (n ≥ 1, i ∈ I)
is either empty or a connected subtree (and hence contractible).

Proof. We shall reroute certain 2-cells of Ci up on “bridges” doubling
a subforest of

⋃
Tj in order to get connected intersections Ci ∩ Tj . For

this, consider C1 ⊂ X and let Ti1 , . . . , Tir ⊂ X be those trees of the given
collection which intersect C1. We denote by Z1,m ⊂ Tim (1 ≤ m ≤ r) the
smallest connected subtree containing C1 ∩ Tim , and let n(1) ≥ 1 be such
that Z1,m ⊂ Cn(1), for every 1 ≤ m ≤ r. Let Ti1 , . . . , Tir , Tir+1, . . . , Tis be
those trees of the collection which intersect Cn(1), and take Zn(1),m ⊂ Tim to
be either the connected subtree satisfying Z1,m ⊂ Zn(1),m ⊂ Cn(1) ∩ Tim if
1 ≤ m ≤ r, or any component of Cn(1)∩Tim otherwise. We will perform in X
a sequence of elementary internal expansions, one for each k-cell (k = 0, 1)
of Γ =

⋃s
m=1(Cn(1) ∩ Tim − Zn(1),m) as follows. First, we introduce for each

1-cell d1 ⊂ Γ a new 2-cell e2 having its boundary divided into two arcs, one
of them corresponding to the old d1 and the other being such that every
2-cell of Cn(1) containing d1 in the original complex is now being attached
along this new arc. Any other 2-cell containing d1 in the original complex is
still attached along d1 (see figure 1).

Figure 1.
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These elementary internal expansions (leaving the trees Tim unaltered)
yield a complex X ′ in which Cn(1) is transformed into a new subcomplex
C ′n(1) ⊂ X ′ which meets each Tim ⊂ X ′ outside Zn(1),m in a finite number of

vertices in Γ∩Tim . Next, we introduce for each of these vertices d0 ∈ Γ∩Tim

a new 1-cell e1 with distinct boundary points, one of them corresponding to
the old d0, and such that every 2-cell outside C ′n(1) containing a 1-cell of Tim

adjacent to d0 is now also being attached along e1, as shown in figure 2.
Thus we get a new complex X̂(1) (strongly proper homotopy equivalent

to X ′) in which C ′n(1) turns into a subcomplex Ĉ1 ⊂ X̂(1) which contains
C1 and has connected intersection with each Tim , 1 ≤ m ≤ s. Observe that
X̂(1)− int(Ĉ1) is strongly proper homotopy equivalent to X − int(Cn(1)), by
construction.

Figure 2.

Let C
(1)
1 ⊂ C

(1)
2 ⊂ · · · ⊂ X̂(1) be the obvious filtration obtained from

C1 ⊂ C2 ⊂ · · · ⊂ X (i.e., each Cn “expands” to C
(1)
n ), and take N ≥ 1 such

that Ĉ1 ⊂ C
(1)
N . We apply to C

(1)
N ⊂ X̂(1) the same argument we applied

to C1 ⊂ X so as to get a new complex X̂(2) (via a strong proper homotopy

equivalence with X̂(1) which leaves fixed a compact subcomplex containing
C

(1)
N ⊃ Ĉ1) and a subcomplex Ĉ2 ⊃ C

(1)
N ⊃ Ĉ1 with the required properties.

Iterating this process we obtain the desired 2-complex X̂ (as the limit of the

complexes X̂(i), i ≥ 1) and a nice filtration Ĉ1 ⊂ Ĉ2 ⊂ · · · ⊂ X̂. �
Remark 2.5. Note that the strong homotopy equivalence X −→ X̂ obtained
in Lemma 2.4 maps every tree in X to another tree in X̂, by construction.

Next we introduce some notation. Let G be a finitely generated one-
relator group and P = 〈X; R〉 be any (finite) presentation of G with a single
defining relation R = Qs (s maximal) which is assumed to be a cyclically
reduced word. We denote by KP the standard (compact) 2-dimensional
CW-complex associated to this presentation. Note that K1

P is a bouquet of
circles consisting of a 1-cell ei for each element of the basis xi ∈ X, all of
them sharing the single vertex in KP . Finally, KP is obtained from K1

P by
attaching a 2-cell d via a PL map S1 −→ K1

P which is the composition of
the map z ∈ S1 �→ zs ∈ S1 and a PL map fQ : S1 −→ K1

P which spells out
the word Q.
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Remark 2.6. Note that every lift in the universal cover d̃ ⊂ K̃P of the
2-cell d ⊂ KP is a disk (as R is cyclically reduced). Moreover, by the
Magnus’ Freiheitssatz (see [25, 27]) every subcomplex of the 1-skeleton K1

P

not containing all the 1-cells involved in the relator R lifts in the universal
cover K̃P to a disjoint union of trees.

Proposition 2.7. Given any finite one-relator group presentation P as
above, the universal cover K̃P of the standard 2-complex KP is strongly
proper homotopy equivalent to another 2-complex K̂P which admits a nice
filtration Ĉ1 ⊂ Ĉ2 ⊂ · · · ⊂ K̂P .

Proof. The proof is modelled after ([12], Thm. 2.1), and the method we use
goes back to Magnus [26]. With the notation above, we set n = length(Q).
Note that if n = 1 then R = xi0

±s for some xi0 ∈ X, and K̃P is the
universal cover of the bouquet KZs ∨ (∨i�=i0ei), where KZs is the standard
2-complex associated to the obvious presentation of Zs. The 2-complex
K̂P = K̃P clearly satisfies the required properties, and its fundamental pro-
group corresponds to the trivial tower. As an example, the universal cover
K̃P is depicted in figure 3 for the presentation P = 〈a, b; a2〉 of Z ∗ Z2,
indicating in dark color the first two subcomplexes of a (nice) filtration

Ĉ1 ⊂ Ĉ2 ⊂ · · · ⊂ K̃P .

Figure 3.

Assume inductively the following two statements hold for any (finite) group
presentation P ′ = 〈X ′; R′〉 with a single defining relation R′ = Q′s (s maxi-
mal) which is a cyclically reduced word with k = length(Q′) ≤ n− 1:

(Case 1)k: If there is xi0 ∈ X ′ which occurs in Q′ with exponent sum
σQ′(xi0) = 0 then the conclusion of Proposition 2.7 follows for K̃P ′.

(Case 2)k: If the word Q′ contains no generators with exponent sum zero
then the conclusion of Proposition 2.7 follows for K̃P ′.
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Furthermore, we assume in addition that for any such P ′ the following
condition is satisfied:

(*) Every tree in the 1-skeleton of K̃P ′ gets mapped (under the strong proper

homotopy equivalence) to another tree in the final 2-complex K̂P ′.

Next we proceed to show case k = n by proving that the statements
(Case 1)n and (Case 2)n are true as well as condition (*) in each of them.
Due to the rather long proofs of both cases we deal with them separately in
the two subsequent sections. �
Remark 2.8. It is well-known that if the one-relator G is torsion-free then
the universal cover K̃P of KP is a contractible 2-dimensional CW -complex,
by a result of Dyer and Vasquez [12] which can be thought of as a geometric

version of Lyndon’s Identity Theorem [24] (see also [10]). Therefore, K̂P

is also contractible and Ĉ1 ⊂ Ĉ2 · · · ⊂ K̂P is a nice filtration consisting of
compact simply connected acyclic, and hence contractible, subcomplexes.

In case G has torsion we still find a contractible subcomplex L̂P ⊂ K̂P

carrying the fundamental pro-group (i.e., pro − π1(L̂P ) ∼= pro − π1(K̂P ))

and a nice filtration L̂1 ⊂ L̂2 ⊂ · · · ⊂ L̂P consisting of compact contractible
subcomplexes. Indeed, fix a lift d̃ ⊂ K̃P of the 2-cell d ⊂ KP , and observe
that d̃ and all its translates d̃ · g ⊂ K̃P (by the G-action) are copies of the
disk D2 (as R is cyclically reduced), which come together in subcomplexes
Lk = d̃ · gk ∪ d̃ · (gkQ) ∪ · · · ∪ d̃ · (gkQ

s−1) ⊂ K̃P , gk ∈ G, consisting of s
disks attached along their boundaries via the identity map. It is worth
noting that the only non-trivial 2-cycles in K̃P are those which are (finite)
combinations of non-trivial 2-cycles in some of the Lk’s. This is due to
the fact that the relation module (associated with the given presentation
of G) is a cyclic ZG-module with one obvious relation (see [9, 3]). Next, we
consider a subcomplex LP ⊂ K̃P containing only one 2-cell from each of the
subcomplexes Lk ⊂ K̃P described above. Note that then LP is contractible,
and one can check that the proof of Proposition 2.7 produces a new 2-
complex L̂P ⊂ K̂P (strongly proper homotopy equivalent to LP ) together

with a nice filtration Ĉ1 ∩ L̂P ⊂ Ĉ2 ∩ L̂P ⊂ · · · ⊂ L̂P consisting of compact
contractible subcomplexes.

3. Proof that (Case 1)≤n−1 + (Case 2)≤n−1⇒ (Case 1)n

The purpose of this section is to prove (Case 1)n. In fact, we shall prove the
conclusion is true for any (finite) one-relator group presentation P = 〈X; R〉,
R = Qs (s maximal), assuming R is cyclically reduced and there is xi0 ∈ X
which occurs in Q with exponent sum σQ(xi0) = 0 such that the word
obtained from Q by deleting the symbols xi0 and x−1

i0
has length ≤ n− 1.
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We shall divide the proof into the following four steps (we keep the
notation for the cells of KP from §2).

1. Notation and some preliminaries. For each integer k, let Jk be a
copy of the bouquet ∨i�=i0ei ⊂ KP (with the 0-cell of KP as base point) and
take L to be the space obtained by attaching the space Jk to the real line
R at each integer point k (through its base point). Let h : L −→ L be the
PL homeomorphism which takes a point of Jk to the corresponding point of
Jk+1 and sends x ∈ R to x + 1 ∈ R, and denote by p : L −→ L/H ≡ K1

P

the resulting covering map, where H is the infinite cyclic subgroup of self-
homeomorphisms generated by h. Moreover, one can check that there is a
pointed PL map f ′ : S1 −→ L (taking 0 ∈ R as the base point of L) such
that pf ′ = fQ (=the given PL map S1 −→ K1

P which spells out the word Q)
and f ′ spells out a cyclically reduced word Q′ (with length(Q′) < n) in the
free group F (Y ), where Y is the set of generators for π1(L, {0}) obtained
from those for each space Jk via the obvious base point changes (see [12]).
Let u, v ∈ Z be the integers such that [u, v] ⊂ R is the smallest interval
satisfying f ′(S1) ⊂ R ∪ ⋃

k∈[u,v] Jk. Let K ′P be the space obtained from L

by gluing disks D2
k via the composition f ′′k of the map z �→ zs with the PL

map f ′k = hkf ′ : S1 −→ L, k ∈ Z. We keep denoting by H the infinite cyclic
subgroup of self-homeomorphisms of K ′P generated by the obvious extension
of h. Thus, we have an (intermediate) covering space p : K ′P −→ K ′P /H ≡
KP (corresponding to the kernel of the homomorphism F (X)/N(R) −→ Z

induced by F (X) −→ Z, w �→ σw(xi0)), and we denote by q : K̃P −→ K ′P
the corresponding universal covering map. Let K ′m ⊂ K ′P be the subcomplex

consisting of the real line R together with D2
m ∪f ′′

m

(⋃
k∈[u+m,v+m] Jk

)
. Note

that, as the interval [u+m, v+m] can be shrunk to a point, K ′m is homotopy
equivalent to the wedge KP ′ ∨ R where KP ′ is the standard 2-dimensional
CW-complex associated to a group presentation P ′ = 〈X ′; Q′s〉 where Q′

is as above and X ′ ⊂ Y is the subset consisting of those generators contained
in K ′m.

2. The structure of the universal cover K̃P . It follows from ([12],
Sublemma 3.2.2) that the inclusion K ′m ⊂ K ′P (m ∈ Z) induces an injection
of fundamental groups (this need not hold if R = Qs has not been cyclically
reduced, see Remark 3.2). In this way, each component of the preimage

q−1(K ′m) ⊂ K̃P is a copy of the universal cover of K ′m. On the other hand,

as K ′P =
⋃

m∈Z
K ′m, it is not hard to see that the universal cover K̃P then

consists of collections of copies of the universal covers of the spaces K ′m
(m ∈ Z), appropriately glued together along a certain collection of trees.
More precisely, observe that for every m > n, K ′m∩K ′n = R if m−n > v−u;
otherwise, K ′m ∩K ′n ⊂ R ∪ Ju+m ∪ · · · ∪ Jv+n is a graph with the property



748 M. Cárdenas, F.F. Lasheras, A. Quintero and D. Repovš

that the inclusion K ′m∩K ′n ⊂ K ′m (or K ′n) induces an injection of the funda-
mental groups, by the choice of the integers u, v. Thus, each component of
the preimage q−1(K ′m∩K ′n) ⊂ K̃P is a copy of the universal cover of K ′m∩K ′n
which is a tree by an application of the Magnus’ Freiheitssatz to the presen-
tation P ′ = 〈X ′; Q′s〉, as the generators of X ′ which occur in K ′m ∩K ′n are
not all of those involved in the relator (see Remark 2.6). Moreover, if more
than two copies of the universal covers of some of the subcomplexes K ′m
have non-empty intersection in K̃P then this intersection must be a subtree
of the intersection of any two of them.
3. Altering K̃P within its (strong) proper homotopy type. Next we
check that the universal cover of each complex K ′m is strongly proper homo-

topy equivalent to another 2-complex K̂ ′m which admits a nice filtration. To

this end, observe that the universal cover K̃P ′ of KP ′ (P ′ as in Step 1) has
this property by the inductive hypothesis. Moreover, the universal cover of
K ′m is obtained from the universal cover of KP ′ ∨ R by ”expanding” in an
appropriate way each vertex to an interval [u + m, v + m] so as to recover
the subgraph K ′m ∩ L.

We perform in K̃P all the elementary internal collapses and/or expan-
sions needed for passing from each copy of the universal cover of K ′m (m ∈ Z)

inside K̃P to the corresponding 2-complex K̂ ′m. In this way we obtain a new

2-complex K̂ ′P (strongly proper homotopy equivalent to K̃P and still contain-
ing a copy of q−1(R)) which consists of collections of copies of the complexes

K̂ ′m (m ∈ Z) glued together appropriately along the corresponding collection

of trees obtained from those in the construction of K̃P , according to condi-
tion (*) of the inductive hypothesis (see §2). For every m ∈ Z and every

copy of K̂ ′m inside K̂ ′P we consider a nice filtration C1,m ⊂ C2,m ⊂ · · · ⊂ K̂ ′m
and denote by T1, T2, . . . , Ts those trees along which the given copy of K̂ ′m
intersects with a copy (inside K̂ ′P ) of any other subcomplex K̂ ′n (n �= m). Let

Ĉ1,m ⊂ Ĉ2,m ⊂ · · · ⊂ K̂m be the 2-complex and the nice filtration obtained

from C1,m ⊂ C2,m ⊂ · · · ⊂ K̂ ′m and the collection of trees T1, T2, . . . , Ts

proceeding as in Lemma 2.4. In particular, each intersection Ĉn,m ∩ Ti

(n ≥ 1, 1 ≤ i ≤ s) is either empty or connected (and hence contractible).

Let K̂P be the 2-complex (strongly proper homotopy equivalent to K̂ ′P
and hence to K̃P ) obtained from collections of copies of the complexes K̂m

(m ∈ Z) glued together as follows : a copy of K̂m is being glued to a copy

of K̂n along a tree T whenever the corresponding copies of K̂ ′m and K̂ ′n in-

side K̂ ′P are glued together along the corresponding copy of the same tree T .

Note that in the process of altering K̃p to K̂P we have used inductive
hypothesis and applications of Lemma 2.4. This way we ensure that condi-
tion (*) gets satisfied (see Remark 2.5).
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4. Building the required filtration for K̂P . We must now build a nice
filtration for K̂P , and this will finish the proof. We keep the notation from
Step 3. Fix m ∈ Z and a copy of K̂m in K̂P , and consider Ĉ1,m ⊂ K̂m. By

abuse of notation, we will denote by K̂m(1), . . . , K̂m(p1) those different copies

in K̂P of the corresponding complexes which intersect the chosen copy of
K̂m at points of Ĉ1,m (i.e., if m(i) = m(j) for some 1 ≤ i < j ≤ p1, the

complexes K̂m(i), K̂m(j) above are considered different copies of the same

complex). Take N1 ≥ 1 such that ĈN1,m(j) ∩ K̂m ⊃ Ĉ1,m ∩ K̂m(j) (both
intersections being connected subtrees by hypothesis), 1 ≤ j ≤ p1. Set

Ĉ1 = Ĉ1,m ∪
(⋃p1

j=1 ĈN1,m(j)

)
⊂ K̂P which is easily shown to be simply

connected, as the simply connected compact subcomplexes Ĉα,β intersect
each other along connected subtrees of those trees used in the construction of
K̂P (see Step 3). Moreover, by the generalized Van Kampen’s argument, as

Ĉ1,m and each ĈN1,m(j) are members of a nice filtration of the corresponding

copy of K̂m and K̂m(j) respectively and (every copy of) any other subcomplex

K̂λ ⊂ K̂P is simply connected, one can check that (choosing base points

on any given base ray in K̂P ) the fundamental group of K̂P − int(Ĉ1) is

indeed a free product of the fundamental groups of K̂P − int(Ĉ1,m) and

K̂P − int(ĈN1,m(j)) together with an extra free group (of finite rank) coming

from the intersection of Ĉ1,m and each ĈN1,m(j) with any other subcomplex

K̂λ ⊂ K̂P .
Consider now Ĉ2,m ⊂ K̂m. We denote by K̂m(1), . . . , K̂m(p2) (p2 ≥ p1)

those different copies in K̂P of the corresponding complexes which intersect
the given copy of K̂m at points of Ĉ2,m, and take N2 ≥ N1 such that ĈN2,m(j)∩
K̂m ⊃ Ĉ2,m ∩ K̂m(j) (both being connected subtrees), 1 ≤ j ≤ p2. Next, for

each 1 ≤ j ≤ p2, we denote by K̂m(j,1), . . . , K̂m(j,qj) those different copies

in K̂P of the corresponding complexes which intersect the given copy of
K̂m(j) at points of ĈN2,m(j), and take N3 ≥ N2 such that ĈN3,m(j,l) ∩ K̂m(j) ⊃
ĈN2,m(j) ∩ K̂m(j,l) (both being connected subtrees), 1 ≤ l ≤ qj . Set Ĉ2 =

Ĉ2,m∪
(⋃p2

j=1 ĈN2,m(j)

)
∪

(⋃p2

j=1

⋃qj

l=1 ĈN3,m(j,l)

)
⊂ K̂P which is again simply

connected and contains Ĉ1, by construction.
As before, one can also check that the fundamental group of K̂P−int(Ĉ2)

is finitely generated and free. Finally, repeating this process (starting off

with the successive Ĉn,m ⊂ K̂m and going each time one step further inside

K̂P ) we get a filtration Ĉ1 ⊂ Ĉ2 ⊂ · · · ⊂ K̂P of compact simply connected
subcomplexes. Moreover, choosing base points on any given base ray, one
can easily check that rank(π1(K̂P − int(Ĉn+1))) ≥ rank(π1(K̂P − int(Ĉn)))
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and the homomorphism π1(K̂P − int(Ĉn+1)) −→ π1(K̂P − int(Ĉn)) can be
taken to be a projection between finitely generated free groups.

Remark 3.1. Notice that the argument used for the (inductive) proof of

(Case 1)n shows that the inverse image (q ◦ p)−1(ei0) ⊂ K̃P of the 1-cell

ei0 ⊂ KP in Step 1 remains as a subcomplex of the final 2-complex K̂P .

Remark 3.2. Consider the finite group presentation P = 〈a, b; a−1ba−1b−1a〉
with a single defining relation R = a−1ba−1b−1a (R = Q, s = 1) which is
not a cyclically reduced word in the free group F ({a, b}). Let KP be the
standard 2-complex associated with this group presentation, and let K ′P and
K ′m (m ∈ Z) be as above (here, xi0 = b). It is easy to see that in this case

K ′P = K̃P and the inclusion K ′m ⊂ K ′P does not induce an injection between
the fundamental groups (see figure 4). On the other hand, this example
shows a compact 2-dimensional CW-complex KP with π1(KP ) ∼= Z whose
universal cover can not be written as an increasing union of compact simply
connected subcomplexes.

Figure 4.

4. Proof that (Case 1)≤n−1 + (Case 2)≤n−1⇒ (Case 2)n

The purpose of this section is to prove (Case 2)n for any (finite) one-relator
group presentation P = 〈X; R〉 where R = Qs (s maximal) is assumed to
be a cyclically reduced word with length(Q) = n ≥ 2. Thus, suppose Q
contains no generators with exponent sum 0. We divide the proof into the
following three steps.
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1. Notation. Since length(Q) = n ≥ 2 it follows that Q must involve at
least two generators xi0 , xi1 ∈ X. We introduce new symbols A, B /∈ F (X)
and take X ′ = (X − {xi0}) ∪ {A} and X ′′ = (X − {xi0 , xi1}) ∪ {A, B}.
Consider the group presentations P ′ = 〈X ′; Q′s〉 and P ′′ = 〈X ′′; Q′′s〉, where
Q′ is obtained from Q by replacing xi0 with Aq (q = σQ(xi1), the exponent
sum of xi1 in Q), and Q′′ is obtained from Q′ by replacing xi1 with BA−p

(p = σQ(xi0)). The words Q′, Q′′ are not proper powers and σQ′′(A) = 0.
Furthermore, we may assume Q′′ cyclically reduced, since the associated 2-
complex KP ′′ will only change up to homotopy and its universal cover will
only change up to strong proper homotopy.

2. The universal covers K̃P ′, K̃P ′′ and their relation with K̃P . Ob-
serve that the word obtained from Q′′ by deleting the symbols A and A−1

has length less than n = length(Q), and hence the induction hypothesis
together with the argument used in §3 yields that the universal cover of
KP ′′ is strongly proper homotopy equivalent to a 2-complex K̂P ′′ which
admits a nice filtration. According to [12], KP ′ and KP ′′ are homotopy

equivalent, and hence their universal covers K̃P ′ and K̃P ′′ are proper ho-
motopy equivalent. In fact, one can easily describe this proper homotopy
equivalence geometrically as follows (see figure 5). The complex K̃P ′ is ob-

tained from K̃P ′′ by sliding the final endpoint β(1) of each lift β ⊂ K̃P ′′ of
the (oriented) generating circle corresponding to B (dragging the material
of the 2-cells involved, thus substituting the old one) over the edge path

α, α ·A−1, . . . , α ·A−p+1 ⊂ K̃P ′′ , where α is the lift of the inverse path of the
(oriented) generating circle corresponding to A whose initial endpoint α(0)
coincides with β(1). Note that as A generates an infinite cyclic subgroup in
both group presentations P ′ and P ′′, the support of each of the above edge
paths is homeomorphic to a closed interval.

Figure 5.



752 M. Cárdenas, F.F. Lasheras, A. Quintero and D. Repovš

It is not hard to see from this description that K̃P ′ and K̃P ′′ are in fact
strongly proper homotopy equivalent. It remains to show that K̃P indeed
has the required property.

Let ei0 ⊂ KP be the 1-cell corresponding to the generator xi0 , and let
M be the mapping cylinder of a map ei0 −→ S1 of degree q. Then, the
adjunction complex W = KP ∪ei0

M is homotopy equivalent to KP ′ and

hence their universal covers W̃ and K̃P ′ are proper homotopy equivalent. In
fact, W̃ is built from copies of K̃P and Yq ×R glued together appropriately
along Fr(Yq × R), where Yq ⊂ R

2 consists of q segments [u, vi], 1 ≤ i ≤ q,

sharing a common vertex u. From here, one gets the universal cover K̃P ′

by shrinking each copy of Yq ×R to its centerline {u}×R (projecting down
onto the base of M) which gets identified with each connected component of

(q′)−1(A) ⊂ K̃P ′, where q′ : K̃P ′ −→ KP ′ is the universal covering map and
A ⊂ KP ′ is the circle (replacing ei0 ⊂ KP ) representing the basis element
A ∈ X ′ (see figure 6).

Figure 6.

Notice that each component of (q′)−1(A) is a line and the subcomplex

(q′)−1(A) ⊂ K̃P ′ remains unaltered when passing from K̃P ′ to K̃P ′′ and

from K̃P ′′ to K̂P ′′ (see Remark 3.1). It is easy to see that W̃ is strongly

proper homotopy equivalent to K̃P ′.

3. Altering K̃P to K̂P and getting a nice filtration. Choose a copy
of K̃P in W̃ and denote by K̂P ⊂ K̂P ′′ the 2-complex that K̃P ends up being
strongly proper homotopy equivalent to when performing all the elementary
internal collapses and/or expansions in order to get W̃ ∼ K̃P ′ ∼ K̃P ′′ ∼
K̂P ′′ (here, “∼” stands for strong proper homotopy equivalence). Observe

that the composition W̃ −→ K̂P ′′ of these strong homootopy equivalences
maps every tree in W̃ to another tree in K̂P ′′ (by construction), and hence

condition (*) gets satisfied (see §2). Finally, given a nice filtration Ĉ ′′1 ⊂
Ĉ ′′2 ⊂ · · · ⊂ K̂P ′′ , we may assume that the intersection of each Ĉ ′′i with every
component of (q′)−1(A) is either empty or connected, by an application of

Lemma 2.4 (and replacing K̂P ′′ if necessary). Given the above, one can get

a nice filtration Ĉ1 ⊂ Ĉ2 ⊂ · · · ⊂ K̂P where each Ĉi can be chosen to be the
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intersection Ĉ ′′i ∩ K̂P , i ≥ 1. Indeed, one can check that the fundamental

group of each component Ĵ of K̂P−int(Ĉi) is a free factor of the fundamental

group of the corresponding component Ĵ ′′ ⊃ Ĵ of K̂P ′′−int(Ĉ ′′i ) (as cl(Ĵ ′′−Ĵ)

intersects Ĵ along a subcomplex of the collection of lines (q′)−1(A)), and
hence it is finitely generated and free by the Grushko-Neumann theorem.
Moreover, choosing base points on any given base ray, it is not hard to
check that rank(π1(K̂P − int(Ĉi+1))) ≥ rank(π1(K̂P − int(Ĉi))) and the

homomorphism π1(K̂P − int(Ĉi+1)) −→ π1(K̂P − int(Ĉi)) can be taken to
be a projection between finitely generated free groups.

5. Appendix

This section is intended to provided the background and notation needed in
this paper, specially the notions of fundamental pro-group and semistability
at infinity. In what follows, we will be working within the category tow−Gr
of towers of groups whose objects are inverse sequences of groups

A = {A0
φ1←− A1

φ2←− A2 ←− · · · }
A morphism in this category will be called a pro-morphism. See [17, 28] for
a general reference.

A tower L is a free tower if it is of the form

L = {L0
i1←− L1

i2←− L2 ←− · · · }
where Li = 〈Bi〉 are free groups of basis Bi such that Bi+1 ⊂ Bi, the
differences Bi − Bi+1 are finite and

⋂∞
i=0 Bi = ∅, and the bonding homo-

morphisms ik are given by the corresponding basis inclusions. On the other
hand, a tower P is a telescopic tower if it is of the form

P = {P0
p1←− P1

p2←− P2 ←− · · · }
where Pi = 〈Di〉 are free groups of basis Di such that Di−1 ⊂ Di, the differ-
ences Di−Di−1 are finite (possibly empty), and the bonding homomorphisms
pk are the obvious projections.

We will also use the full subcategory (Gr, tow −Gr) of Mor(tow − Gr)
whose objects are arrows A −→ G, where A is an object in tow−Gr and G is
a group regarded as a constant tower whose bonding maps are the identity.
Morphisms in (Gr, tow −Gr) will also be called pro-morphisms.

From now on, X will be a (strongly) locally finite CW-complex. A proper
map ω : [0,∞) −→ X is called a proper ray in X. We say that two proper
rays ω, ω′ define the same end if their restrictions ω|N, ω′|N are properly
homotopic. Moreover, we say that they define the same strong end if ω and ω′

are in fact properly homotopic. The CW-complex X is said to be semistable
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at infinity if any two proper rays defining the same end also define the same
strong end.

Given a base ray ω in X and a collection of finite subcomplexes C1 ⊂
C2 ⊂ · · · ⊂ X so that X =

⋃∞
n=1 Cn, the following tower, pro− π1(X, ω),

{π1(X, ω(0))← π1(X − int(C1), ω(t1))← π1(X − int(C2), ω(t2))← · · · }
can be regarded as an object in (Gr, tow − Gr) and it is called the funda-
mental pro-group of (X, ω), where ω([ti,∞)) ⊂ X− int(Ci) and the bonding
homomorphisms are induced by the inclusions. This tower does not depend
(up to pro-isomorphism) on the sequence of subcomplexes {Ci}i. It is worth
mentioning that if ω and ω′ define the same strong end, then pro−π1(X, ω)
and pro−π1(X, ω′) are pro-isomorphic. In particular, we may always assume
that ω is a cellular map. It is known that X is semistable at infinity if and
only if pro− π1(X, ω) is pro-isomorphic to a tower where the bonding maps
are surjections. Moreover, in this case πe

1(X, ω) = lim
←−

pro − π1(X, ω) is a

well-defined useful invariant which only depends (up to isomorphism) on the
end determined by ω (see [19]). In a similar way, one can define objects in
(Gr, tow−Gr) corresponding to the higher homotopy pro-groups of (X, ω).

Finally, given a finitely presented group G and a finite 2-dimensional
CW-complex X with π1(X) ∼= G, we say that G is semistable at infinity
if the universal cover X̃ of X is so, and we will refer to the fundamental
pro-group of X̃ as the fundamental pro-group of G.
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