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FOUR-MANIFOLDS WITH SURFACE FUNDAMENTAL GROUPS

ALBERTO CAVICCHIOLI, FRIEDRICH HEGENBARTH, AND DUSAN REPOVS

ABSTRACT. We study the homotopy type of closed connected topological 4-
manifolds whose fundamental group is that of an aspherical surface F'. Then we
use surgery theory to show that these manifolds are s-cobordant to connected
sums of simply-connected manifolds with an S2-bundle over F.

1. INTRODUCTION

In this paper we shall study closed connected oriented topological 4-manifolds
M* such that IT; (M) = TI;(F), where F is a closed oriented aspherical surface,
ie. F'= K(II;,1) = BII;. The easiest examples of such manifolds are connected
sums of the type E#M’, where E — F is an S?-bundle over F and M’ is a
simply-connected 4-manifold. There are reasons to conjecture that any such man-
ifold is topologically homeomorphic to some E#M’. Other natural examples of
4-manifolds with surface fundamental groups are given by certain elliptic surfaces
as communicated to us by Matsumoto in [9]. Recall that a compact complex man-
ifold of complex dimension two is said to be an elliptic surface if it is fibered over a
Riemann surface with general fiber an elliptic curve, i.e. a 2-torus 72 = S! x S'. It
may admit certain (possibly multiple) singular fibers (for details see [10]). It was
proved in [10] that an elliptic surface is a 4-manifold whose fundamental group is
isomorphic to that of a closed surface if it has positive Euler number and does not
have multiple fibers (see [10], Remark 2, p. 563).

For simplicity, we will assume that M is a spin manifold, i.e. we(M) = 0, where
wy denotes the second Stiefel-Whitney class. As a consequence, the sphere-bundle
E will be trivial. However, a condition weaker than wy(M) = 0 would suffice to
prove Theorem 1.1 below; in fact, we(u) = 0 is sufficient. Here u € Ho(M;Z) is
defined in Section 2.

The referee suggested that we treat also the case wa(u) # 0. The proof is similar
to that of Theorem 1.1, but for technical reasons we will give it in the appendix.

In Section 2 we define a map of degree 1, 1: M — F x S2, which gives rise to
the split exact sequence

0 — Ka(,A) — Ho(M;A) — Ho(F x S*);A) — 0,
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where A = Z[IT; (M)] is the integral group ring.
Similarly, there is a split exact sequence

0 — Ka(¢,Z) — Hy(M;Z) — Ho(F x S*;7Z) — 0.

The splittings respect the intersection pairings. By the result of M. Freedman (see
[4] and [5]) the induced intersection form on K2 (1), Z) can be realized as intersection
form of a closed simply-connected topological 4-manifold M’. Let M; denote the
connected sum of F' x S? and M’, and let

c: My = (FxSH#M' — F x §?

be the collapsing map. Since c is of degree 1, we have short split exact sequences
as above; in particular,

0 — Ko(c, A) — Ho(Mi;A) — Hy(F x S*;A) — 0.

In Section 2 we are going to construct a map from the 3-skeleton of M; into M.
Furthermore, we prove that it can be extended over Mj if the A-interesection forms
on Kz(¢,A) and on Ks(c, A) coincide.

More precisely, we have

Theorem 1.1. Let M* be a closed connected oriented TOP 4-manifold with wa(M)
=0 and Iy (M) 2 11, (F), where F is a closed aspherical surface. Then M is simple
homotopy equivalent to the connected sum My = (F x S?*)#M’ if and only if the
A-intersection forms on Ka(,A) and on Ks(c, A) are isomorphic.

In particular, if x(M) = 2x(F), then K2(¢, A) 220, hence M is simple homotopy
equivalent to F x S?.

We observe that in our case any homotopy equivalence is simple because the
Whitehead group of II; (F) vanishes (see [11]). Furthermore, the manifold M’ is
unique, up to TOP homeomorphism, because its intersection form over Z must be
even (see for example [5]). We also note that the second part of the statement in
Theorem 1.1 gives a simple alternative proof of Theorem 3 of [6].

Using recent results of Hillman ([6], [7]) and of Cochran and Habegger ([3]), we
also prove that the homotopy type classifies our manifolds, up to TOP s-cobordism.

Theorem 1.2. With the above motation, if M is simple homotopy equivalent to
EH#M’', then M and E#M’' are topologically s-cobordant.

The assertion was first proved for the case when M is simple homotopy equivalent
to E by Hillman (see [6]). We also note that TOP s-cobordant 4-manifolds M and
N are stably homeomorphic (see for example [5]), i.e. M#Kk(S* x S?) is TOP
homeomorphic to N#4(S? x S?) for some integers k,¢ > 0. Thus Theorem 1.2
extends a well-known result of Wall (see [12]) to the non-simply-connected case.

In a particular case, i.e. II1 (M) = Z & Z, the fact that the fundamental group is
elementary amenable implies that s-cobordisms are always topologically products
(see [5]). Thus we have the following characterization result.

Theorem 1.3. Let M* be a closed connected oriented TOP 4-manifold with 11y (M)
> Z®7Z. Let M' be the simply-connected 4-manifold defined in the discussion
preceding the statement of Theorem 1.1. Then M is TOP homeomorphic to the
connected sum of M’ with an S%-bundle over the torus if and only if the homological
condition of Theorem 1.1 holds.

If further x(M) = 0, then Ko(1),A) = 0, hence M is homeomorphic to an S?-
bundle over the torus.
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Although we work in the topological category, we occasionally use “transversal-
ity” and “regular values”. This is possible by for example [5]. Moreover, we assume
that M has a CW-structure. For a general reference on combinatorial homotopy of
4-complexes see [1]. For surgery theory we refer to [2] and [13].

2. HOMOTOPY TYPE

Let M* be a manifold with the properties described in Section 1. Since F is an
aspherical closed surface, we have that F = K(II;(F),1) = BII;(F). For the proof
of Theorem 1.1 it will not be important which isomorphism IT; (M) = I1; (F) one
chooses. This isomorphism is realized by a classifying map f : M — F, ie. f
classifies the universal covering M of M.

Lemma 2.1. There ezists a map j : F — M such that the composition
foj: F—F

is homotopic to the identity.

Proof. There is an embedding jo : F\D? ~ \/S! — M such that fojo is homotopic
29

o
to the inclusion F\D? — F. Here g denotes the genus of F. The obstruction to
extending jo is the homotopy class [jo|lgp2] € I1(M), and it is mapped to the
obstruction to extending f o jo via the isomorphism f. : II; (M) — II;(F); hence
it must be zero. Therefore jy extends to a map j : F — M. It is now easy to see
that deg(f o j) = 1; hence f o j is homotopic to the identity map of F. |

We define two elements of Hy(M), by setting u = j.[F] and v = [F'], where
[F] € Hy(F) is the fundamental class of F, F' = f~(xg) and z¢ € F is a regular
value of f.

Lemma 2.2. The homology classes u, v € Hy(M) have the following intersection
numbers:

(1) uov=1; and

(2) vov=0.

Proof. (1) Let PD : H?(M) — H2(M) denote the Poincaré duality isomorphism
and let wrp € H2(F) be the dual class of [F]. Then we have that

PD™'(v) = PD7MF'] = f*(wr).
So we obtain that
wov = (PD™(u) UPD™}(v)) N[M] = PD™}(v) N ju[F] = f*(wr) N ju[F]
=j o f"(wr)N[F] =1,

since j* o f* = (f o j)* = identity.
(2) Choosing a regular value z{, near to zq yields [f~!(zf)] = [f~!(z0)] = v. But
obviously, f=*(z) N f~1(zo) is empty, hence vov = 0. O

Set a = u o u. The intersection matrix of the pair (u,v) is

(i o)
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The hypothesis wo(M) = 0 implies that a = 0 (mod 2), i.e. a = 2k, for some
integer k. The change u — u — kv produces the intersection matrix

(1 o)

Lemma 2.3. There exists a map j' : F — M with the following properties:
(1) f oy’ is homotopic to the identity; and
(2) JL[F) = u— k.

Proof. First, we represent the homology class v = [F’] by an immersed 2-sphere
@ : §2 — M. We choose a collection of embedded circles in F’ whose homology
classes form a symplectic basis for Hi(F’). Then from this basis we choose a
single generator for each handle of F’. Next, we note that ITy (F') — II; (M) is the
trivial homomorphism. Therefore, by the general position each of the chosen circles
bounds a 2-disc immersed into M (see [5]). We use these immersed discs to surger
F’ and the result is an immersed sphere X2 which represents the homology class v.
Then j(F)#k(—X?) is the image of a map j' : F — M which satisfies properties
(1) and (2) of the statement. If ¢ : S? — M represents the immersed 2-sphere
Y2 C M, we have j' = j#ky as required. O

Remark. Obviously, we can always assume that the map j : F — M is an immer-
sion. Thus %2 C M is an algebraic dual of j(F).

From now on we shall assume that j : F© — M is already chosen so that it
satisfies the properties of the following corollary.

Corollary 2.4. There is a map j : F' — M such that:
(1) f oj is homotopic to the identity; and
(2) the intersection matriz of the pair u = j.[F|, v =[F'] is

(?aﬁw@Zomw(}@#ww:L

Recall that PD™!(v) = f*(wr) and f.(u) = [F]. The next goal is to construct
amap g : M — S? such that g.(v) = [S?] generates Ho(S?). But the property
g+ (v) = [$?] follows from the relation g*(ws2) = PD™!(u), where wse € H2(S?) is
the dual of [S?]. This holds because

l=wuov=(PD ' (u)UPD '(v))N[M] =PD ' (u) Nv = g*(wg) Nw
= gx(9" (ws2) Nw) = ws2 N g« (v),
i.e. g«(v) =[S?] (note that g*(wsz) Nv € Ho(M) and g, = Id : Ho(M) — Hy(S?)).
Lemma 2.5. There exists a map g : M — S such that g*(ws2) = PD™!(u), where
wge is the generator of H?(S?).

Proof. Let ¢ : M — K(Z,2) = CP* be a map which represents the cohomology
class PD™'(u) € H*(M) = [M,K(Z,2)]. Since M has dimension four, we can
assume g’ : M — CP? = CP' U, D*, where 5 : S* — CP! = S? is the Hopf map.
Now PD™!(u?) = awys = 0, where wyy is the dual of the fundamental class of M.
Thus ¢’ factors over g : M — CP! = §2%. O

Note that the map ¢ = f x ¢ : M — F x S? has degree one. We use this map
to prove the following result.
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Proposition 2.6. There exists a map o : F x S2\D* — M such that 1) o « is
homotopic to the inclusion F x S?\D* — F x §%.

Proof. Recall that we have constructed j : F' — M and ¢ : S? — M, i.e. we have
amap j Ve : FVS? — M. The first obstruction to extending j V ¢ to F' x S?
lies in the cohomology group H3(F x S?;TI3(M)) with local coefficients. Poincaré
duality now implies that H?(F x S%;1I5(M)) = Hy(F x S%;1I5(M)). By a result of
Hillman (see [6], p. 279), one has that
Mo (M) = Hay(M; A) =2 Ext} (Ho(M; A), A) @ Ext (Ho(M;A), A)
~ H%(F) @ Ext} (Ho(M;A), A),

where the A-module Q = Ext{ (Hy(M;A),A) is stably A-free. Here A is as usual
the group ring Z[II; (M)]. The fact that Ker (¢, : Hao(M;A) — Hy(F x S%;A)) is
stably A-free follows from [13]. Since @ is stably A-free, we have

H,(F x $% Q) = Tor)(Z,Q) = 0.
Hence we obtain

Hi(F x S* 112 (M)) = Hy(F x S*; H*(F)) = H,(F x $*;Z),
ie. H3(F x S%;1I5(M)) & H3(F x S%;Z). Since F is aspherical, I(F x §?) & Z
and so the map 9 : M — F x S? induces an isomorphism
Yy + H3(F x S*To(M)) — H?*(F x S*; TI(F x §%)).

By naturality, the image of the obstruction under 1, is the obstruction to extending
Yo (jVey): FVS? — F x S% But the last obstruction vanishes as 1 o (j V ¢)
is homotopic to the inclusion map (use Corollary 2.4). Therefore j V ¢ extends to

the 3-skeleton (F x §?)®) ~ F x S\ D*, and the extension a : F x S2\D* — M
satisfies the property 1 o a =~ inclusion. O

Since the map ¢ : M — F x S? has degree one, it induces a splitting of the
integral intersection form Ay : Ho(M) x Ho(M) — Z, i.e.

0 1 /

Av = (1 0) DA
By Freedman’s theorems (see [4] and [5]) we can realize A" as the intersection
form of a topological simply-connected 4-manifold M’, i.e. A" = Apz. Recall that

Hy(M; A) = Hy(F) @ ExtQ (Ho(M; A), A), where Q = Ext} (Hy(M;A), A) is stably
A-free. Using the universal coefficient spectral sequence
Tor) (Hy(M;A), Z) = Hy1q(M;Z),
we obtain that
Hy(M;Z) = Tory (Ha(M; A), Z) & Tory (Ho(M; A), Z)

> Ho(M;A) @0 Z ® Ho(114;Z)

~ (Hy(F;Z) @ Q) QN Z @ Hy(F;Z) X Z DL D Q R4 L.
Note that Q ®p Z = @,Z, where r = rank Q). In particular, we have

Q@nZ=Hy (M Z),
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FIGURE 1

and the above decomposition of Ho(M;Z) into a direct sum gives the splitting

0 1

of the intersection form over Z. In summary, we have

IL(M)®2Z = (Z& Q) @5 Z=Z & Hy(M'),
i.e. the r generators of Ha(M') can be represented by maps of 2-spheres. In
other words, we have a map [ : M’\DQ4 ~\/,S* - M. Now we observe that

((F x S?)#M")\ D* is homotopy equivalent to the wedge (F x S?\D*) v (M’\D*%),
as shown in Figure 1.

Thus the map a#8 ~ aV 3 : (F x S?#M’)\D* — M induces isomorphisms
on IT; and on Hy(;Z). Let us denote My = F x S?#M’. The above arguments
also imply that the A-ranks of Ho(M;A) and Ho(M; A) coincide. Next we want

to extend a#3 : M;\D* — M to a map M; — M. The obstruction for extending
a#0 is
_ Sy a#s

i.e. 0 is the homotopy class of the restriction of a#f to the boundary of M;\D*.
Obviously, 6 is the image of the generator of
I, (M, My \D*) = Hy(My, M;\D* A) = A
under the composition
4 o. G4y (a#B)-
H4(M1,M1\D ) — Hg(Ml\D ) — Hg(M)

Therefore the existence of an extension h : My — M of a# follows from the
following result.

Proposition 2.7. With the above notation, the composition (a#3)s o Ox is the
trivial homomorphism.

Using this proposition, we can complete the proof of Theorem 1.1.

Proof of Theorem 1.1. Since the obstruction 6 is zero, there exists a map
h: M; — M which extends a#(3. Obviously, A induces an isomorphism on II;. It
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suffices to prove that h, : Hy(M71;A) — Hy(M; A) is an isomorphism for ¢ = 2, 3,4.
Since

he : Ho(My;Z) — Ha(M;Z)

and Hy(M;Q) # 0, the map h has degree one if one chooses the appropriate
orientations. Hence h, : Hy(My;A) — Hy(M;A) is onto. The kernel Ka(h, A) of
he @ Ha(My;A) — Ha(M; A) is A-projective (see [13]); in fact, it is stably A-free.
Since the A-ranks of Ha(My;A) and Ha(M; A) coincide, the A-rank of Ks(h, A) is
zero. Therefore Ko(h,A) = 0, by Kaplansky’ s lemma (see for example [6] and
[8]). By Poincaré duality we obtain isomorphisms for all ¢, i.e. h is a homotopy
equivalence, as asserted. O

Proof of Proposition 2.7. Note first that a#3 : M;\D* — M factors over the
3-skeleton of M, i.e.

a#tf : M\D* — M\D* C M.

Here we have used the identifications M\D* = M®) and M;\D* = 1(3), where

M@ and Ml(q) denote the g-skeletons of M and Mj, respectively. We can also
assume that a#g is a cellular map. Consider the following diagram

I (M, M\D*) —% s T(M\D*) ——— T5(M,\D*) —— TIy(M))
(/) (a#ﬁ)*l l(a#ﬁ)* l'y

H4(M,M\DO4) " Hg(M\DO4) —  II3(M)

I (M).

The proof will be completed once we construct a homomorphism
v H3(My) — II3(M)

such that the diagram (/) commutes. For this, we consider the Whitehead exact
sequence for a 4-dimensional CW-complex X (see [1], [14] and [15]):

Hy(X) —— T(Iy(X)) — M5(X) — H3(X) — 0.

This sequence is natural with respect to maps X — Y. Here X is the universal
covering of X, II3(X) — Hs(X) is the Hurewicz homomorphism and I' denotes
the quadratic functor on abelian groups. We recall that T'(TIz(X)) is equal to
Im (M5(X®) - II3(X®)). In our case, we have Hy (M) = Hy(M;) = 0 because
IT; (M) =2 II;(M,) is an infinite group. Moreover,

Hs(M) = Hy(M; A) = H'(M;A) = H'(II;; A) = HY(F;A) = Hy (F;A) 20

as F' is an aspherical surface. Similarly, Hg(Ml) = (. Hence the above sequence
implies that I'(Ila(M)) — II3(M) and I'(IIa(M1)) — II3(M;1). Now the map

a#B : M;\D* — M induces (a#03). : Ilo(My) = Iy (M;\D*) — Iy(M), hence
(a#8)sx : T(MIa(M7)) — I'(TIo(M)). Then the homomorphism ~ is defined by the
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following diagram:

A B) xx
(o#B).., ['(Ig(M))

H3(M1) T H3(M

The commutativity of (/) follows from the second interpretation of I'(Ily) looking
at the diagram shown below:

My(MP) —— T(M\DY) —— Tg(Mi) —=— Tm(ITs(M{?) — 3(M{?))
l(a#ﬁ)* l(a#ﬁ)* vl l(a#m**

Mg (M®) — Ty(M\D") ——— Tis(M) —— Im (Hg(M(z))—>H3(M(3)))

This completes the proof. O

Remarks. (1) As a corollary we obtain that in the decomposition Ily(M) 2 Z & Q,
the A-module @ is actually free. This improves the result of Hillman [6].

(2) The proof of Proposition 2.7 shows that v : II3(M;) — I5(M) is an isomor-
phism, and hence the sequence

(a#3)x
—_—

T, (M, My\D*) —% s II;(M;\D*) I3(M) — 0

is exact.
(3) The proof of Proposition 2.7 can be most easily seen as follows. We write
the obstruction 8 = 61 + 0 + 03 according to the splitting
II5(M) = T(IIy(F x §%)) & Ia(F x §%) @ Ka (4, A) & T(K2(¥, A))

induced by HQ(M, A) = HQ(F X SQ, A) D KQ(1/),A)

Now 6; € I'(TIo(F x S?)) is zero because it is the obstruction for extending 1o,
hence vanishes by Proposition 2.6.

The addendum 0y € Tlo(F xS?)® K2 (1), A) is determined by intersection numbers
of elements of the submodule A, generated by Im(a.) C Ha(M;A), and elements
of Ka(¢),A). But they are all zero by construction.

Finally, 05 € T'(K2(%, A)) is zero by hypothesis.

3. s-COBORDISM TYPE

In this section we are going to prove Theorem 1.2. In Section 2 we have con-
structed a simple homotopy equivalence h : M — F x S?#M’. To obtain Theorem
1.2, it suffices to prove the following two results.

Proposition 3.1. The pair (M, h) is normally cobordant to a self-homotopy equiv-
alence

g: FxS*#M' — F x S*#M'.
The following is well-known (see [6], Lemma 6, p. 282).
Proposition 3.2. The surgery obstruction map
0 : [(FxS*#M') x I,(F x S*#M') x 9I,G/ TOP] — Ls(I1;)

18 surjective.
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Now one can use the 5-dimensional surgery theory to construct an s-cobordism
between M and M; = F x S?#M’. In fact, let W — M; x I be a normal cobor-
dism between (M, h) and (M, g) guaranteed by Proposition 3.1, i.e. the normal
invariants of (M, h) and (M, g) coincide. Using the surgery sequence (see [5] and
[13]) and Proposition 3.2, it follows that M; and M are topologically s-cobordant.
This proves Theorem 1.2.

Since Proposition 3.2 is well-known, it only remains to prove Proposition 3.1. In
the case M’ = S*) the result was proved by Hillman (see [7]). To prove Proposition
3.1 we use this result and “paste it together” with the corresponding result for
simply-connected topological 4-manifolds (see [3]).

Let us first recall the description of normal invariants (for more details we refer
to [2]). Let 6 : My = F x S’#M’ — BTOP be the classifying map of the stable
normal (micro) bundle of M; and let p : BTOP — BG be the principal fibration
with fiber G/ TOP. Here BG is the classifying space of stable spherical fibrations,
ie. £=pod : M; — BG classifies the Spivak fibration of the Poincaré 4-complex
M. Any normal cobordism class of normal maps N — M is determined by a
linearization of £, i.e. by a lifting § of E=pod

M, — . BTOP

H l

M, —— BG
§

via the Thom construction. This means, fixing the lifting § , that the normal cobor-
dism classes of normal maps correspond uniquely to the elements of [M;, G/ TOP],
ie &8 (x) = g(x)6(zx) with g : M; — G/TOP. Let 3 € M; = F x S®#M’ be
the 3-sphere along which the manifolds F' x S? and M’ are glued together. Then
[g]s:] € II3(G/ TOP) = 0. Consequently, g|FXs2\Do4 and g|Ml\[;4 extend to maps

g1 : FxS? — G/TOP and g, : M’ — G/TOP, respectively. The values of g;
and g coincide on the 4-ball D*. Two extensions of g|ss over the 4-ball D* differ
by an element of II4(G/ TOP) = Z. We use the unique extension of g|ss such that
the surgery obstruction of go is zero. In other words, we have constructed a map

p: [FxS*#M',G/TOP] — [F x §*,G/ TOP] @ [M’', G/ TOP]

which sends [g] into ([g1], [g2])-
On the other hand, attaching a 4-ball D* to X3 yields a map

t: FXS*#M — F x S?#M'Uss D* ~ F x S v M’
which induces

t. : [FxS*v M G/TOP] = [F x S*,G/TOP] @ [M’,G/ TOP]
— [F x S*#M’,G/ TOP].

Now it is very easy to see that ¢, o p is the identity, hence t, is surjective. On
the other hand, the connected sum with (M’, g2) gives the following commutative
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diagram

[F xS2,G/TOP] —% L)

(/) #ar' ) | H
[F x S%M',G/ TOP] —— Lu(IL).

The map induced on L4(IIy) is the identity because the surgery obstruction of
(M, go) is zero. If g : F x S’#M’' — G/ TOP is the normal invariant of a given
(simple) homotopy equivalence h : M — F x S?#M’ and u([g]) = ([g1], [g2]), then
61(g1) = 0. This follows from the diagram (//) and the fact that 65(g2) = 0, where
02 : [M',G/TOP] — Ly(1).

In summary, we have proved the following result.

Proposition 3.3. Any element [g] € [F x S*’#M’, G/ TOP], coming from a (sim-
ple) homotopy equivalence h : M — F x S2#M’, belongs to Imt,.
More precisely, there are elements

[91] € Ker(8; : [F x S?,G/ TOP] — Ly(IL;)),
[gg] S Ker(@z : [M/,G/ TOP] — L4(1))

such that t.([¢1], [g2]) = [9]-

To finish the proof of Proposition 3.1 we recall that the elements of Ker(6;) and
Ker(f2) come from elements of HEq(F x S?) and HEq(M'), respectively (see [3]
and [7]). Here HE[q denotes the set of homotopy classes of simple self-homotopy
equivalences inducing the identities on II; and on H,. More precisely, the proofs
of the results of the quoted papers show that there are representatives in HEq
leaving a 4-ball fixed. Therefore, if hy : F x S?2 — F x S% and hy : M’ — M’ are
such representatives of g; and g, then h;] pi = identity for ¢ = 1,2. Thus we can
form the map hi1#hs : M1 — M;. Obviously, h and h;#hs have the same normal
invariants. This proves Proposition 3.1.

In this section we did not use the hypothesis that we(M) = 0. In fact, our
arguments prove the following more general result.

Theorem 3.4. Let M* be a closed connected oriented (TOP) 4-manifold homotopy
equivalent to E#M’', where E is an S?-bundle over a closed oriented aspherical
surface F' and M' is a simply-connected 4-manifold. Then M is topologically s-
cobordant to E#M’.

4. APPENDIX

As announced in the introduction, here we will treat the case wa(u) # 0. First
recall that there is only one twisted S?-bundle over an oriented closed surface F),
denoted by F x S2, because these bundles are determined by the first and second

Stiefel-Whitney classes. It can be obtained from (F\D?) x S? by attaching D? x S?
with a map a : 9D? x §2 — dD? x §? associated to the generator of IT; (SO(3)).
The intersection matrix of F' x S? is

1 1

1 0
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with respect to @, y € Ha(F x S?), where y represents the fiber and . (z) = [F],
7w : F x S? — F being the fiber projection.
Proposition 4.1. Let M* be a closed connected oriented 4-manifold with 11y (M) =

II; (F). Assume that we(u) # 0 (notation as in Section 2). Then there is a map
¢ M — F xS? of degree 1.

Proof. Let f : M — F and ¢ : M — CP® be as in the proof of Lemma 2.5.
Then the restriction

fx g/|M\54 : M\D* — F x CP*>
factors as follows:
o Ixg'| °,
M\D* R, FxCp®
gl [

But note that [F x CP>]®) = F x $?\ B*, B* being a 4-ball. Hence we have a map
¢ : M\D* — F x S*\B*.
Obviously ¢’ extends to ¢ : M — (F x S?\ B*)Uy D*, where A = ¢/|5pa. Therefore
it remains to show that (F' x S?\ B*) U, D* is homotopy equivalent to F' x S2. If F
were S2, then (F x S?\B*) Uy D* is a Poincaré complex with intersection matrix
11
1 0/°
It is homotopy equivalent to S? x S2. The general case can be reduced to that of a

sphere S? by considering the collapsing map
c: Fx$S?— (F/(F\D?) x $? = §? x §?.

Here D} C F is a 2-disc which contains in its interior the 2-disc D* C F used at
the beginning of the section to describe

Fx S? ((F\DOQ) x §?) U, (D? x §?).

The general case will follow from the fact that ¢’ can be homotoped in a collar of
the boundary of M\D* such that ¢/(0D*) C D? x S2. To extend ¢'|yps over D*
we need to reglue D? x S C D? x S? by the twist a : D? x §? — 9D? x §?, i.e.

we have to form

Fx §? =~ ((F\DOQ) x §%) U, (D? x S?).
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o
To see that we can assume ¢’ (0D*) C D? xS? we consider the short exact homotopy
sequence (recall that F' is now aspherical, so II3(F x S?) = Z):

0 — T4 (F x $? F x SZ\BO‘*) ~ A — II3(F x 82\304) — TI3(F x §*) = Z — 0.
This sequence splits because
Ext}(Z,A) = HY(F;A) = H,(F;A) 0.
Then we have [A] = [M] + [A2] € A @ Z. Therefore [A2] = k[n], where k € Z,

n : S* — {x} xS? is the Hopf map and * € D3. It follows that Ay(0D*) C D? x 2.
On the other hand we choose B* = D? x D? C F x S?, where D? is the lower

o
hemisphere. Hence a generator 7 of A C II3(F x S?\B*) has image in D? x S2.
Since [A\1] = a7, where a € A, the image of A\; belongs to D? x S?, up to some arcs

running through (F\D?) x S2. This completes the proof. O

Since the other arguments are the same as in the case wa(u) = 0, we have
completed Therorem 1.1 with the following result involving twisted S2-bundles over
aspherical surfaces.

Theorem 1.1'. Let M* be a closed connected oriented 4-manifold with 11, (M) =
I, (F). Assume that wa(u) # 0 (notation as in Section 2). Then M is simple
homotopy equivalent to the connected sum M; = (F x S?)#M’, where M’ is the

simply-connected 4-manifold defined in the discussion preceding the statement of
Theorem 1.1, if and only if the A-intersection forms on Ka(¢,A) and on Ka(c', A)
are isomorphic, where ¢’ denotes the collapsing map from My to F x S?. Moreover,

the manifolds M and (F x S?)#M' are topologically s-cobordant.
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