

Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Research Article

Turk J Math (2014) 38: 535 – 557 © TÜBİTAK doi:10.3906/mat-1211-54

On minimal Poincaré 4-complexes

Alberto CAVICCHIOLI¹, Friedrich HEGENBARTH², Dušan REPOV $\breve{S}^{3,*}$

¹Department of Mathematics, University of Modena and Reggio Emilia, Modena, Italy ²Department of Mathematics, University of Milan, Milan, Italy ³Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia

Received: 28.11.2012		Accepted: 25.06.2013	٠	Published Online: 14.03.2014	٠	Printed: 11.04.2014
----------------------	--	----------------------	---	------------------------------	---	----------------------------

Abstract: We consider 2 types of minimal Poincaré 4-complexes. One is defined with respect to the degree 1-map order. This idea was already present in our previous papers, and more systematically studied later by Hillman. The second type of minimal Poincaré 4-complexes was introduced by Hambleton, Kreck, and Teichner. It is not based on an order relation. In the present paper we study existence and uniqueness questions.

Key words: Poincaré 4-complex, equivariant intersection form, degree 1-map, k-invariant, homotopy type, obstruction theory, homology with local coefficients, Whitehead's quadratic functor, Whitehead's exact sequence

1. Introduction

Minimal objects are usually defined with respect to a partial order. We consider oriented Poincaré 4-complexes (in short, PD₄-complexes). If X and Y are 2 PD₄-complexes, we define $X \succ Y$ if there is a degree 1-map $f: X \to Y$ inducing an isomorphism on the fundamental groups. If also $Y \succ X$, well-known theorems imply that $f: X \to Y$ is a homotopy equivalence. So " \succ " defines a symmetric partial order on the set of homotopy types of PD₄-complexes. A PD₄-complex P is said to be *minimal* for X if $X \succ P$ and whenever $P \succ Q$, Q is homotopy equivalent to P. We also consider special minimal objects called *strongly minimal*. In this paper we study existence and uniqueness questions. It is an interesting problem to calculate homotopy equivalences of X relative to a minimal P: that is, if $f: X \to P$ is as above, then calculate

 $\operatorname{Aut}(X \succ P) = \{h : X \to X : h \text{ homotopy equivalence such that } f \circ h\}$

is homotopic to f.

Self-homotopy equivalences were studied by various authors (see [12] and references there). Pamuk's method can be used to calculate $Aut(X \succ P)$.

Constructions of minimal objects were indicated by Hegenbarth, Repovš, and Spaggiari in [6] and more recently by Hillman in [8] and [9]. Degree 1-maps can be constructed from Λ -submodules $G \subset H_2(X, \Lambda)$. More precisely, we have the following (cf. Proposition 2.4 below):

Proposition 1.1 Suppose X is a Poincaré 4-complex, and $G \subset H_2(X, \Lambda)$ is a stably free Λ -submodule such that the intersection form λ_X restricted to G is nonsingular. Then one can construct a Poincaré 4-complex Y

^{*}Correspondence: dusan.repovs@guest.arnes.si

²⁰¹⁰ AMS Mathematics Subject Classification: 57 N 65, 57 R 67, 57 Q 10.

and a degree 1-map $f: X \to Y$. Moreover, there is an isomorphism

$$K_2(f,\Lambda) = \operatorname{Ker}(H_2(X,\Lambda) \xrightarrow{f_*} H_2(Y,\Lambda)) \cong G$$

and λ_X restricted to $K_2(f, \Lambda)$ coincides with λ_X on G via this isomorphism.

Corollary 1.2 Given any Poincaré 4-complex X, there exists a minimal Poincaré 4-complex P for X.

The above proposition is useful to answer the following 2 basic questions about the minimal objects:

- (1) Existence; and
- (2) Uniqueness.

A Poincaré 4-complex P is called *strongly minimal* for π if the adjoint map $\widehat{\lambda}_P : H_2(P, \Lambda) \to$ Hom_{Λ}($H_2(P, \Lambda), \Lambda$) of the intersection form λ_P vanishes [8]. Proposition 1.1 implies that P is minimal. The same questions arise if we consider the originally defined minimal objects in [5].

Existence of strongly minimal models P is known only for few fundamental groups π (see [5] and [8]). All these examples satisfy $H^3(B\pi, \Lambda) \cong 0$, and hence $\operatorname{Hom}_{\Lambda}(H_2(P, \Lambda), \Lambda) \cong 0$ (see below). So all are "trivial" in the sense that λ_P is zero because its adjoint $\stackrel{\wedge}{\lambda}_P : H_2(P, \Lambda) \to \operatorname{Hom}_{\Lambda}(H_2(P, \Lambda), \Lambda)$ maps to the trivial Λ -module. An interesting question is therefore: Do there exist strongly minimal models P such that $H^3(B\pi_1(P), \Lambda) \neq 0$?

We prove the following:

Theorem 1.3 Let π be a finitely presented group such that $H^2(B\pi, \Lambda)$ is not a torsion group. Let P and P' be strongly minimal models for π . Then P and P' are homotopy equivalent if the map $G : H_4(D, \mathbb{Z}) \to$ $\operatorname{Hom}_{\Lambda}(H^2(D, \Lambda), \overline{H}_2(D, \Lambda))$ is injective, and if the k-invariants of P and P' correspond appropriately.

Here D is a 2-stage Postnikov space and G is defined via cap-products. Apart from the k-invariant, the injectivity of the map G is an essential condition for uniqueness of strongly minimal models. In Section 4 we consider groups π such that $B\pi$ is homotopy equivalent to a 2-complex and prove that for any element of Ker G one can construct a strongly minimal model. More precisely, we obtain:

Theorem 1.4 Suppose $B\pi$ is homotopy equivalent to a 2-complex, and $\pi_2 = H^2(B\pi, \Lambda)$ is not a torsion group. Then Ker $G \cong \Gamma(\pi_2) \otimes_{\Lambda} \mathbb{Z}$. Moreover, for any strongly minimal model P and any $\xi \in \Gamma(\pi_2)$, another strongly minimal model X can be constructed.

Examples are given by solvable Baumslag–Solitar groups (see [5]), or by surface fundamental groups. In Section 5 we construct non-homotopy equivalent strongly minimal models for these fundamental groups.

2. Construction of degree 1-maps

In this section we are going to prove Proposition 1.1 announced in Section 1. First we mention a result of Wall [14].

Lemma 2.1 Let $f: X \to Y$ be a degree 1-map between Poincaré 4-complexes and suppose that $f_*: \pi_1(X) \to \pi_1(Y)$ is an isomorphism. Then $K_2(f, \Lambda) = \text{Ker}(H_2(X, \Lambda) \to H_2(Y, \Lambda))$ is a stably Λ -free submodule of $H_2(X, \Lambda)$ and λ_X restricted to $K_2(f, \Lambda)$ is nonsingular. Also, $K_2(f, \Lambda) \subset H_2(X, \Lambda)$ is a direct summand.

This section is devoted to proving a converse statement to Lemma 2.1.

First we will show Proposition 2.2. Before that, let us note that Λ has an anti-involution that permits a switch from Λ -left to Λ -right modules and to introduce compatible Λ -module structures on Hom-duals, etc. We follow Wall's convention and consider Λ -right modules.

Proposition 2.2 Let X be a Poincaré 4-complex and $G \subset H_2(X, \Lambda)$ a Λ -free submodule so that λ_X restricts to a nonsingular Hermitian pairing on G. Then there exist a Poincaré 4-complex P and a degree 1-map $f: X \to P$ such that $f_*: \pi_1(X) \to \pi_1(P)$ is an isomorphism and $K_2(f, \Lambda) \cong G$.

Proof We recall that λ_X is defined as the composite map

$$\begin{array}{ccc} H^2(X,\Lambda) \times H^2(X,\Lambda) & \longrightarrow & H^4(X,\Lambda \otimes_{\mathbb{Z}} \Lambda) \cong H_0(X,\Lambda \otimes_{\mathbb{Z}} \Lambda) \cong \mathbb{Z} \otimes_{\Lambda} (\Lambda \otimes_{\mathbb{Z}} \Lambda) \\ & \cong \uparrow & & \uparrow \cong \\ H_2(X,\Lambda) \times H_2(X,\Lambda) & \xrightarrow{\lambda_X} & & \Lambda \cong \Lambda \otimes_{\Lambda} \Lambda \end{array}$$

and

$$\stackrel{\wedge}{\lambda}_X: H_2(X, \Lambda) \to \operatorname{Hom}_{\Lambda}(H_2(X, \Lambda), \Lambda)$$

is the adjoint map of λ_X .

To construct P, we consider a Λ -base a_1, \ldots, a_r of $G \subset H_2(X, \Lambda) \cong \pi_2(X)$, and

$$\varphi_1, \ldots, \varphi_r : \mathbb{S}^2 \to X$$

representatives of a_1, \ldots, a_r , respectively. Then P is obtained from X by adjoining 3-cells along $\varphi_1, \ldots, \varphi_r$. So $X \subset P$, and

$$H_p(P,X,\Lambda) \cong \left\{ \begin{array}{ll} G & p=3\\ 0 & \text{otherwise} \end{array} \right. \qquad H^p(P,X,\Lambda) \cong \left\{ \begin{array}{ll} G^* = \operatorname{Hom}_\Lambda(G,\Lambda) & p=3\\ 0 & \text{otherwise} \end{array} \right.$$

Moreover, the sequence

$$0 \longrightarrow H_3(P, X, \Lambda) \xrightarrow{\partial_*} H_2(X, \Lambda) \longrightarrow H_2(P, \Lambda) \longrightarrow 0$$

is exact because $\partial_* : H_3(P, G, \Lambda) \to G \subset H_2(X, \Lambda)$ is an isomorphism.

Note that there is a natural homomorphism

$$\mu: H^2(X, \Lambda) \to \operatorname{Hom}_{\Lambda}(H_2(X, \Lambda), \Lambda)$$

such that the diagram

$$\begin{array}{ccc} H^{2}(X,\Lambda) & \stackrel{\mu}{\longrightarrow} & \operatorname{Hom}_{\Lambda}(H_{2}(X,\Lambda),\Lambda) \\ & & & & \\ \cap [X] & & & \\ H_{2}(X,\Lambda) & \stackrel{\hat{\lambda}_{X}}{\longrightarrow} & \operatorname{Hom}_{\Lambda}(H_{2}(X,\Lambda),\Lambda) \end{array}$$

commutes. Let $[P] = f_*[X]$, where $f: X \subset P$ is the inclusion. Consider the diagrams

$$\begin{array}{ccc} H^{2}(X,\Lambda) & & \stackrel{\delta^{*}}{\longrightarrow} & H^{3}(P,X,\Lambda) \\ & \mu \\ & \mu \\ & & \cong \\ Hom_{\Lambda}(H_{2}(X,\Lambda),\Lambda) & \longrightarrow & Hom_{\Lambda}(H_{3}(P,X,\Lambda),\Lambda) = G^{*} \\ & & \uparrow_{\hat{\lambda}_{X}} & & \uparrow_{\hat{\lambda}_{G}} \\ & & H_{2}(X,\Lambda) & \xleftarrow{\partial_{*}} & H_{3}(P,X,\Lambda) = G. \end{array}$$

Here $\hat{\lambda}_G = \hat{\lambda}_X|_G$. The left-hand square of the first diagram commutes. Combining the right-hand square of the first diagram with the second diagram gives only

$$\mu \circ \delta^* \circ (\cap [X])^{-1} \circ \partial_* = \stackrel{\wedge}{\lambda_G}.$$

However, this is sufficient to deduce that $\cap[P] : H^2(P, \Lambda) \to H_2(P, \Lambda)$ is an isomorphism. It follows from the above short exact sequence that

$$f_*: H_3(X, \Lambda) \xrightarrow{} H_3(P, \Lambda) \qquad f^*: H^3(P, \Lambda) \xrightarrow{} H^3(X, \Lambda)$$

hence we obtain that

$$\cap [P]: H^*(P, \Lambda) \xrightarrow{\sim} H_{4-*}(P, \Lambda)$$

for all *. The map f is obviously of degree 1.

In the sequel we shall need another result of Wall about Poincaré complexes (see for instance [14]).

Lemma 2.3 Any Poincaré 4-complex X is homotopy equivalent to a CW-complex of the form $K \cup_{\varphi} D^4$, where K is a 3-complex and $\varphi : \mathbb{S}^3 \to K$ is an attaching map of the single 4-cell D^4 .

Proposition 2.2 can be improved so that together with Lemma 2.1, we obtain the following:

Proposition 2.4 Let X be a Poincaré 4-complex. There exists a degree 1-map $f: X \to Q$ if and only if there exists a stably free Λ -submodule $G \subset H_2(X, \Lambda)$ so that λ_X restricts to a nonsingular Hermitian form on G. In this case, $G \cong K_2(f, \Lambda)$.

Proof By Lemma 2.3 we can identify $X = K \cup_{\varphi} D^4$. The submodule G is stably free, so $G \oplus H \cong \bigoplus_1^{\ell} \Lambda$, where H is Λ -free. We may assume $H = \bigoplus_1^{2m} \Lambda$. Let $Z = X \# (\#_1^m (\mathbb{S}^2 \times \mathbb{S}^2))$ be the Poincaré 4-complex formed from X by connected sum inside the 4-cell with $\#_1^m (\mathbb{S}^2 \times \mathbb{S}^2)$. Then $G \oplus H \subset H_2(Z, \Lambda)$ and λ_Z restricted to H is the canonical hyperbolic form. If $a_1, \ldots, a_\ell \in G \oplus H$ is a Λ -base, we attach 3-cells to Z along representatives $\varphi_1, \ldots, \varphi_\ell : \mathbb{S}^2 \to X$ as in Proposition 2.2. We obtain a Poincaré 4-complex Q and a degree 1-map $g : Z \to Q$ with $K_2(g, \Lambda) = G \oplus H$. We are going to show that g factors over the collapsing map

$$c: Z = X \# (\#_1^m (\mathbb{S}^2 \times \mathbb{S}^2)) \to X$$

giving a degree 1-map $f: X \to Q$. Note that

$$X # (\#_1^m (\mathbb{S}^2 \times \mathbb{S}^2)) \setminus 4 \text{-cell} \simeq K \lor \{ \lor_1^m (\mathbb{S}^2 \lor \mathbb{S}^2) \}$$

538

and

and the attaching map of the 4-cell of Z is of the following type

$$a \oplus b \in \pi_3(K) \oplus [\pi_3(\vee_1^m(\mathbb{S}^2 \vee \mathbb{S}^2)) \otimes \Lambda] \subset \pi_3(Z \setminus (4$$
gcell)),

where $a = [\varphi]$ and $b = [\psi] \otimes 1$ with $\psi : \mathbb{S}^3 \to \bigvee_1^m (\mathbb{S}^2 \vee \mathbb{S}^2)$ the attaching map of the 4-cell of $\#_1^m (\mathbb{S}^2 \times \mathbb{S}^2)$. Obviously, $a \oplus b$ maps to zero in $\pi_3(Q)$.

Now we apply Whitehead's Γ -functor to

$$\pi_2(Z) \cong \pi_2(K) \oplus H \cong \pi_2(Z \setminus (4\text{-cell})) : \Gamma(\pi_2(Z)) \cong \Gamma(\pi_2(K)) \oplus \Gamma(H) \oplus \pi_2(K) \otimes H$$

The Γ -functor fits into a certain Whitehead's exact sequence (see [1] and [15]) and by naturality one has the following diagram:

Obviously, $b \in \Gamma(H) \subset \pi_3(Z \setminus (4\text{-cell}))$, and hence $b = \sum \lambda_{ij}[e_i, e_j]$, where the set $\{e_1, \ldots, e_{2m}\} \subset H$ is the standard base and $[\cdot, \cdot]$ denotes the Whitehead product. Now $H \subset G \oplus H \subset \pi_2(Z)$ maps to zero under $g_* : \pi_2(Z) \to \pi_2(Q)$, so $b \in \Gamma(\pi_2(K) \oplus H)$ maps to zero in $\Gamma(\pi_2(Q))$, and hence it is zero in $\pi_3(Q)$. Because $a \oplus b$ is zero in $\pi_3(Q)$, $a \in \pi_3(K)$ also maps to zero under $\pi_3(K) \to \pi_3(Q)$. Therefore, the inclusion map $K \subset Q$ extends to $f : X \to Q$, and f induces a map

$$(X, K) \to (Q, Q \setminus (4 - \text{cell})).$$

We also have

$$g: (Z, Z \setminus (4-\text{cell})) \to (Q, Q \setminus (4-\text{cell}))$$

and a collapsing map

$$c: (Z, Z \setminus (4\text{-cell})) \to (X, K).$$

Since Q is obtained from Z by adding 3-cells attached away from the 4-cell, the following diagram commutes:

$$\begin{array}{ccc} H_4(Z, Z \setminus (4\text{-cell}), \mathbb{Z}) & \xrightarrow{c_*} & H_4(X, K, \mathbb{Z}) \\ & & & & \downarrow f_* \\ \\ H_4(Q, Q \setminus (4\text{-cell}), \mathbb{Z}) & \underbrace{\qquad} & H_4(Q, Q \setminus (4\text{-cell}), \mathbb{Z}). \end{array}$$

Because c_* and g_* map the fundamental class to the fundamental class, the degree of f is 1.

Proof of Corollary 1.2 We observe that for any degree 1-map $f: X \to Y$ with $f_*: \pi_1(X) \xrightarrow{\simeq} \to \pi_1(Y)$, one has

$$K_2(f,\Lambda) \otimes_{\Lambda} \mathbb{Z} = K_2(f,\mathbb{Z}) = \operatorname{Ker}(H_2(X,\mathbb{Z}) \to H_2(Y,\mathbb{Z})),$$

and that $H_2(X,\mathbb{Z})$ is finitely generated. By Proposition 2.4 we can successively construct degree 1-maps

$$X \xrightarrow{f} Q, \qquad Q_1 \xrightarrow{f_1} Q_2, \quad \cdots$$

if we find nondegenerate stably free nontrivial submodules in $H_2(Q_k, \Lambda)$, and one has

$$K_2(f_k \circ \cdots \circ f_1 \circ f, \Lambda) \cong K_2(f_k, \Lambda) \oplus \cdots \oplus K_2(f_1, \Lambda) \oplus K_2(f, \Lambda) \subset H_2(X, \Lambda).$$

Now

$$K_2(f_k \circ \cdots \circ f_1 \circ f, \mathbb{Z}) \cong K_2(f_k, \mathbb{Z}) \oplus \cdots \oplus K_2(f_1, \mathbb{Z}) \oplus K_2(f, \mathbb{Z}) \subset H_2(X, \mathbb{Z})$$

is finitely generated. Hence, after certain k, we have

$$K_2(f_{k+1},\Lambda)\otimes_{\Lambda} \mathbb{Z} = K_2(f_{k+1},\mathbb{Z}) = \{0\}.$$

Kaplansky's lemma (see remark below) implies $K_2(f_{k+1}, \Lambda) \cong 0$. Therefore, $g = f_k \circ \cdots \circ f_1 \circ f : X \to Q_k$ is of degree 1, and Q_k is minimal. This completes the proof of Corollary 1.2.

Remark In [10, p.122], the following result is stated:

Lemma Let \mathbb{F} be a field of characteristic zero, and π an arbitrary group. Let $A = \mathbb{F}[\pi]$ be the group algebra, and let $u, v \in M_n(A)$ be 2 $(n \times n)$ matrices such that the product vu is the identity matrix I_n . Then $uv = I_n$. It has the following consequence (referred to above as "Kaplansky's lemma"):

Corollary If $K_2(f, \Lambda) \otimes_{\Lambda} \mathbb{Q} \cong 0$, then $K_2(f, \Lambda) \cong 0$.

Proof We know that $K_2 = K_2(f, \Lambda)$ is stably free, i.e. $K_2 \oplus \Lambda^a \cong \Lambda^b$, where a and b are positive integers. Tensoring with \mathbb{Q} implies that a = b. Let $h: K_2 \oplus \Lambda^a \to \Lambda^b$ be an isomorphism, and consider

$$u = h \circ i : \Lambda^a \xrightarrow{\subset} K_2 \oplus \Lambda^a \xrightarrow{h} \Lambda^a$$

and

$$v = \operatorname{pr} \circ h^{-1} : \Lambda^a \xrightarrow{\subset} K_2 \oplus \Lambda^a \xrightarrow{\operatorname{pr}} \Lambda^a$$

Obviously $v \circ u = \text{Id}$, and hence $u \circ v = \text{Id}$. This implies that $K_2 \subset \text{Ker}(u \circ v) \cong 0$.

Note also that $K_2 \otimes_{\Lambda} \mathbb{Q} \cong 0$ is equivalent to $K_2 \otimes_{\Lambda} \mathbb{Z} \cong 0$.

Of course, starting with X one cannot in general assume that there is only one minimal P and degree 1-map $f: X \to P$ with $f_*: \pi_1(X) \xrightarrow{\sim} \pi_1(P)$.

Problem 2.5 Construct examples of X that admit several minimal Poincaré 4-complexes P_i and degree 1-maps $f_i: X \to P_i$ satisfying $f_{i*}: \pi_1(X) \xrightarrow{\sim} \to \pi_1(P_i)$.

The next proposition completes the description of the correspondence between stably free Λ -modules with nondegenerate Hermitian forms and degree 1-maps of Poincaré 4-complexes. However, we have to assume that $\pi_1(X)$ does not contain elements of order 2.

Proposition 2.6 Let X be a Poincaré 4-complex and G a stably free Λ -module with nondegenerate Hermitian form. Then there are a Poincaré 4-complex Y and a degree 1-map $f: Y \to X$ such that $K_2(f, \Lambda) \cong G$, λ_Y restricted to $K_2(f, \Lambda)$ coincides with λ on G under the isomorphism. Moreover, $f_*: \pi_1(Y) \to \pi_1(X)$ is an isomorphism. **Proof** Let first G be free of rank m. The proof proceeds as in [7]. Here we begin with $Y' = X \# (\#_1^m \mathbb{C}P^2)$ and the Hermitian form λ , and continue as in Section 3 of [7] to construct $f: Y \to X$. If G is stably free, that is, $G \oplus H \cong \Lambda^m$, where $H = \Lambda^t$, we begin with $Y' = X \# (\#_1^m \mathbb{C}P^2)$ and the Hermitian form $\lambda' = \begin{pmatrix} \lambda & 0 \\ 0 & 1 \end{pmatrix}$ on $G \oplus H$, and construct a degree 1-map $f'': Y'' \to X$ with $K_2(f'', \Lambda) = G \oplus H$, and $\lambda_{Y''}$ restricted to $K_2(f'', \Lambda)$ is equal to λ' . Now $H \subset H_2(Y'', \Lambda)$ is Λ -free, and $\lambda_{Y''}$ restricted to H is non-singular. As in the proof of Proposition 2.4 we can construct a degree 1-map $f: Y \to X$ with $K_2(f, \Lambda) \cong G$. \Box

3. A general result on the uniqueness of strongly minimal models

Let π be a finitely presented group. Suppose we are given strongly minimal Poincaré 4-complexes P and P' with $\pi_1(P) \cong \pi \cong \pi_1(P')$. For simplicity, we denote $\pi'_1 = \pi_1(P')$, $\pi_1 = \pi_1(P)$, $\Lambda' = \mathbb{Z}[\pi'_1]$, and $\Lambda = \mathbb{Z}[\pi_1]$. Then we have

$$\begin{array}{rcl} p^{*}:H^{2}(B\pi_{1},\Lambda) & & \longrightarrow & H^{2}(P,\Lambda) \\ p^{'*}:H^{2}(B\pi_{1}^{\prime},\Lambda^{\prime}) & & \longrightarrow & H^{2}(P^{\prime},\Lambda^{\prime}) \end{array}$$

where $p: P \to B\pi_1$ and $p': P' \to B\pi'_1$ are the classifying maps. We denote by $\chi: D \to B\pi_1$ and $\chi': D' \to B\pi'_1$ the 2-stage Postnikov fibrations with fibers $K(\pi_2(P), 2)$ and $K(\pi_2(P'), 2)$, respectively. Spaces D and D' are obtained from P and P', respectively, by adding cells of dimension ≥ 4 so that $\pi_q(D) \cong 0 \cong \pi_q(D')$ for every $q \geq 3$, and the inclusions $f: P \to D$ and $f': P' \to D'$ induce isomorphisms $f_*: \pi_i(P) \to \pi_i(D)$ and $f'_*: \pi_i(P') \to \pi_i(D')$, for every i < 3. We shall often write it as diagrams

$P \xrightarrow{f}$	D	$P' \xrightarrow{f'} \longrightarrow$	D'
	$\downarrow \chi$		$\downarrow x'$
$P \xrightarrow{p}$	$B\pi_1$	$P' \xrightarrow{p'} \longrightarrow$	$B\pi'_1.$

We choose an isomorphism $\alpha : \pi_1 \to \pi'_1$. It determines an isomorphism $\Lambda \to \Lambda'$ of rings. For the sake of simplicity we shall identify Λ' with Λ via this isomorphism when we use it as coefficients in (co)homology groups. We define

$$\beta: H_2(P, \Lambda) \to H_2(P', \Lambda)$$

by the following diagram

The next diagram explains the compatibility of the k-invariants $k_P^3 \in H^3(B\pi_1, \pi_2(P))$ and $k_{P'}^3 \in H^3(B\pi'_1, \pi_2(P'))$:

CAVICCHIOLI et al./Turk J Math

$$\operatorname{Hom}_{\Lambda}(H_{2}(P,\Lambda), H_{2}(P,\Lambda)) \longrightarrow H^{3}(B\pi_{1}, H_{2}(P,\Lambda))$$

$$\downarrow^{\beta_{\#}} \qquad \qquad \downarrow^{\beta_{\#}}$$

$$\operatorname{Hom}_{\Lambda}(H_{2}(P,\Lambda), H_{2}(P',\Lambda)) \longrightarrow H^{3}(B\pi_{1}, H_{2}(P',\Lambda))$$

$$\uparrow^{\beta^{\#}} \qquad \uparrow^{(B\alpha)^{*}}$$

$$\operatorname{Hom}_{\Lambda}(H_{2}(P',\Lambda), H_{2}(P',\Lambda)) \longrightarrow H^{3}(B\pi'_{1}, H_{2}(P',\Lambda))$$

$$(3.2)$$

where the top (resp. bottom) horizontal map sends Id into k_P^3 (resp. $k_{P'}^3$), and on the left (resp. right) vertical side we have $\beta_{\#}(\text{Id}) = \beta = \beta^{\#}(\text{Id})$ (resp. $\beta_{\#}(k_P^3) = (B\alpha)^*(k_{P'}^3)$). Therefore, there is a homotopy equivalence $h: D \to D'$ such that the diagram

$$D \xrightarrow{h} D'$$

$$\downarrow \chi \qquad \downarrow$$

$$B\pi_1 \xrightarrow{B\alpha} B\pi'_1$$

commutes (up to homotopy). Furthermore, Diagram (3.1) can be completed to the following diagram

where

Note that all the maps are Λ -isomorphisms.

At this point it is convenient to introduce the map

$$G: H_4(D,\mathbb{Z}) \to \operatorname{Hom}_{\Lambda}(H^2(D,\Lambda),\overline{H}_2(D,\Lambda))$$

using the equivariant cap-product construction, and similarly G' for D'. From Diagram (3.1) we summarize as follows:

Corollary 3.1 Diagram (3.1) commutes, and the composed horizontal homomorphisms (from left to right) are $G(f_*[P])$ and $G'(f'_*[P'])$.

We again invoke Wall's theorem (Lemma 2.3) and identify

$$P = K \cup_{\varphi} D^4 \qquad P' = K' \cup_{\varphi'} D'^4$$

where K and K' are 3-complexes, and $\varphi : \mathbb{S}^3 \to K$ and $\varphi' : \mathbb{S}^3 \to K'$ are the attaching maps of the 4-cells D^4 and $D^{'4}$, respectively. Hence, (D, K) and (D', K') are relative CW–complexes with cells in dimensions $k \ge 4$, that is, $D^{(3)} = K$ and $D'^{(3)} = K'$. Approximate $h : D \to D'$ by a cellular map (again denoted by h). Then

$$h^{(3)} = h|_K : K \to K'$$

and

$$D \xrightarrow{h} D'$$

$$i \uparrow \qquad \uparrow i'$$

$$K \xrightarrow{h^{(3)}} K'$$

commutes, where $i: K \subset D$ and $i': K' \subset D'$ are the inclusion maps.

Proposition 3.2 (a) $h^{(3)}: K \to K'$ extends to $\phi: P \to P'$ if $h_*f_*[P] = \ell f'_*[P'] \in H_4(D', \mathbb{Z})$ for some $\ell \in \mathbb{Z}$; and

(b) If $f'_*: H_4(P',\mathbb{Z}) \to H_4(D',\mathbb{Z})$ is injective and $\ell = \pm 1$, then ϕ is of degree ± 1 ; hence, it is a homotopy equivalence.

Proof (a) The obstruction to extending $h^{(3)}$ belongs to

$$H^{4}(P,\pi_{3}(P')) \cong H_{0}(P,\pi_{3}(P')) \cong \mathbb{Z} \otimes_{\Lambda} \pi_{3}(P') \cong \mathbb{Z} \otimes_{\Lambda} \pi_{4}(D',P')$$
$$\cong \mathbb{Z} \otimes_{\Lambda} H_{4}(D',P',\Lambda) = H_{4}(D',P',\mathbb{Z})$$

(one applies among others: $\pi_3(D') = \pi_3(D) = 0$ and the Hurewicz theorem). The obstruction in $\mathbb{Z} \otimes_{\Lambda} \pi_3(P')$ is given by the image of $[h^{(3)} \circ \varphi] \in \pi_3(K')$ under the composite map

$$\pi_3(K') \longrightarrow \pi_3(P') \longrightarrow \pi_3(P') \otimes_{\Lambda} \mathbb{Z}.$$

The obstruction in $H_4(D', P', \mathbb{Z})$ is given by the induced map of the composition

$$(D^4, \mathbb{S}^3) \xrightarrow{\varphi} (P, K) \subset (D, K) \xrightarrow{h} (D', K') \subset (D', P')$$

and hence it is the image of $[P] \in H_4(P, \mathbb{Z})$ under the composition on the bottom horizontal row in the following diagram:

Hence, the obstruction vanishes if and only if $h_*f_*[P] = \ell f'_*[P']$ for some $\ell \in \mathbb{Z}$.

(b) If $\phi: P \to P'$ exists, then it is such that the diagram

commutes. Hence, $f'_*\phi_*[P] = h_*f_*[P] = \pm f'_*[P']$ implies $\phi_*[P] = \pm [P']$ since f'_* is injective. Using the Poincaré duality one obtains

$$\phi_*: H_*(P, \Lambda) \xrightarrow{\simeq} H_*(P', \Lambda).$$

Because $\phi_* : \pi_1(P) \to \pi_1(P')$ is an isomorphism, the map $\phi : P \to P'$ is a homotopy equivalence by the Hurewicz–Whitehead theorem.

Proof of Theorem 1.3 We have a commutative diagram (up to homotopy)

$$D = D \xrightarrow{h} D' = D'$$

$$f \uparrow \qquad \downarrow \qquad \uparrow f'$$

$$P \xrightarrow{p} B\pi_1 \xrightarrow{B\alpha} B\pi'_1 \xleftarrow{p'} P'$$

where $h: D \to D'$ is a homotopy equivalence. Consider the diagram

$$\begin{array}{cccc} H_4(D,\mathbb{Z}) & \stackrel{G}{\longrightarrow} & \operatorname{Hom}_{\Lambda}(H^2(D,\Lambda),\overline{H}_2(D,\Lambda)) \\ & & & & & \downarrow_T \\ H_4(D',\mathbb{Z}) & \stackrel{G'}{\longrightarrow} & \operatorname{Hom}_{\Lambda}(H^2(D',\Lambda),\overline{H}_2(D',\Lambda)) \end{array}$$

$$(3.5)$$

where $\cap z$ is the cap product with $z \in H_4(D, \mathbb{Z})$. Similarly, \cap' . The map T is defined by $T(\xi) = h_* \circ \xi \circ h^*$. Note that T is an isomorphism. \Box

Lemma 3.3 Diagram (3.5) commutes.

Proof Given $x \in H_4(D, \mathbb{Z})$ and $u' \in H^2(D', \mathbb{Z})$, then we have

$$TG(x)(u') = h_*(h^*(u') \cap x) = u' \cap h_*(x) = G'h_*(x)$$

as required.

Now consider the diagram

$$\begin{array}{cccc} H_4(P,\mathbb{Z}) & \stackrel{f_*}{\longrightarrow} & H_4(D,\mathbb{Z}) & \stackrel{G}{\longrightarrow} & \operatorname{Hom}_{\Lambda}(H^2(D,\Lambda),\overline{H}_2(D,\Lambda)) \\ & & & & & \downarrow^T \\ & & & & \downarrow^T \\ H_4(P',\mathbb{Z}) & \stackrel{f'_*}{\longrightarrow} & H_4(D',\mathbb{Z}) & \stackrel{G'}{\longrightarrow} & \operatorname{Hom}_{\Lambda}(H^2(D',\Lambda),\overline{H}_2(D',\Lambda)). \end{array}$$

544

It follows from Corollary 3.1 that

$$TGf_*[P] = G'f'_*[P'],$$

and from $TG = G'h_*$ we get $G'h_*f_*[P] = G'f'_*[P']$; hence, $h_*f_*[P] = f'_*[P']$. So Proposition 3.2 (a) holds with $\ell = 1$.

A similar diagram as (5) holds for the space P':

$$\begin{array}{ccc} H_4(P',\mathbb{Z}) & \xrightarrow{G''} & \operatorname{Hom}_{\Lambda}(H^2(P',\Lambda),\overline{H}_2(P',\Lambda)) \cong \operatorname{Hom}_{\Lambda}(\overline{H}_2(P',\Lambda),\overline{H}_2(P',\Lambda)) \\ & f'_* \Big| & & & & \\ H_4(D',\mathbb{Z}) & \xrightarrow{G'} & & \operatorname{Hom}_{\Lambda}(H^2(D',\Lambda),\overline{H}_2(D',\Lambda)) \end{array}$$

with $T(\xi) = f_* \circ \xi \circ f^*$. Since T is an isomorphism, f'_* is injective if and only if the map G'' is injective. Now observe that under the maps the generator [P'] goes to Id. The upper right isomorphism is induced by Poincaré duality. Hence G'' is injective if and only if Id is not of finite order. Now $H_2(P', \Lambda) \cong H^2(B\pi'_1, \Lambda) \cong$ $H^2(B\pi_1, \Lambda)$. The claim now follows from Proposition 3.2(b).

4. Construction of strongly minimal models

The principal examples of fundamental groups π admitting a strongly minimal model P are discussed in [5]. These are groups of geometric dimension equal to 2, i.e. $B\pi$ is a 2-dimensional aspherical complex. It is easy to see that the boundary of a regular neighborhood N of an embedding $B\pi \subset \mathbb{R}^5$ is a strongly minimal model for π (see [5]). Here we show that the map G is not injective, and hence we cannot expect uniqueness up to homotopy equivalence. In fact, we are going to classify all strongly minimal models fixing π by elements of the kernel of G. Note that all k-invariants vanish since $B\pi$ is a 2-complex. We assume $H_4(P, \Lambda) \cong 0$, i.e. that π is infinite (which holds for the known examples).

4.1. Computation of KerG

We fix π as above, and for convenience also one strongly minimal model P, say $P = \partial N$. We have the following 2-stage Postnikov system.

$$D \xrightarrow{\chi} B\pi$$

$$f \uparrow \qquad \uparrow^{p}$$

$$P = P$$

Lemma 4.1 There is an exact sequence

$$0 \longrightarrow \Gamma(\pi_2) \otimes_{\Lambda} \mathbb{Z} \longrightarrow H_4(D, \mathbb{Z}) \longrightarrow H_2(B\pi, H_2(D, \Lambda)) \longrightarrow 0$$

where $\pi_2 = \pi_2(P) \cong \pi_2(D)$.

Proof This follows from the spectral sequence

$$E_{pq}^2 = H_p(B\pi, H_q(D, \Lambda)) \underset{p+q=n}{\Longrightarrow} H_n(D, \mathbb{Z}).$$

Taking n = 4, we have $E_{pq}^2 = E_{pq}^\infty = [F_p H_4(D, \mathbb{Z})]/[F_{p-1}H_4(D, \mathbb{Z})]$ with filtration

$$0 \cong F_{-1}H_4 \subset F_0H_4 \subset F_1H_4 \subset F_2H_4 \subset F_3H_4 \subset F_4H_4(D,\mathbb{Z}) = H_4(D,\mathbb{Z}).$$

The result follows since $E_{22}^2 = H_2(B\pi, H_2(D, \Lambda)), E_{04}^2 = H_0(B\pi, H_4(D, \Lambda)) = H_4(D, \Lambda) \otimes_{\Lambda} \mathbb{Z}$, and $E_{pq}^2 \cong 0$ else for p + q = 4.

Remark Similarly one gets the exact sequence

$$0 \longrightarrow H_1(P, H_3(P, \Lambda)) \longrightarrow H_4(P, \mathbb{Z}) \longrightarrow H_2(B\pi, H_2(P, \Lambda)) \longrightarrow 0.$$

In particular, $H_2(B\pi, H_2(D, \Lambda))$ is a quotient of \mathbb{Z} because $H_2(D, \Lambda) \cong H_2(P, \Lambda)$ and $H_4(P, \mathbb{Z}) \cong \mathbb{Z}$.

Lemma 4.2 The kernel of

$$G: H_4(D, \mathbb{Z}) \to \operatorname{Hom}_{\Lambda - \Lambda}(H^2(D, \Lambda), \overline{H}_2(D, \Lambda))$$

is $\Gamma(\pi_2) \otimes_{\Lambda} \mathbb{Z}$.

Proof The map $\chi^* : H^2(B\pi, \Lambda) \to H^2(D, \Lambda)$ is an isomorphism, and $H^2(B\pi, \Lambda) \cong [\operatorname{Hom}_{\Lambda}(C_2(\widetilde{B\pi}), \Lambda)]/[\operatorname{Im} \delta^1]$, where

$$\delta^1 : \operatorname{Hom}_{\Lambda}(C_1(B\pi), \Lambda) \to \operatorname{Hom}_{\Lambda}(C_2(B\pi), \Lambda)$$

is the co-boundary map. The composition

$$\operatorname{Hom}_{\Lambda-\Lambda}(H^{2}(B\pi,\Lambda),\overline{H}_{2}(D,\Lambda)) \longrightarrow \operatorname{Hom}_{\Lambda}(\operatorname{Hom}_{\Lambda}(C_{2}(B\pi),\Lambda),\overline{H}_{2}(D,\Lambda))$$
$$\cong \uparrow$$
$$\operatorname{Hom}_{\Lambda}(H^{2}(D,\Lambda),H_{2}(D,\Lambda))$$

is obviously injective. Because $C_2(\widetilde{B\pi})$ is Λ -free, there is a canonical isomorphism

$$\operatorname{Hom}_{\Lambda-\Lambda}(\operatorname{Hom}_{\Lambda}(C_2(\widetilde{B\pi}),\Lambda),\overline{H}_2(D,\Lambda)) \cong C_2(\widetilde{B\pi}) \otimes_{\Lambda} H_2(D,\Lambda)$$

Composing all these maps gives an injective map

$$\operatorname{Hom}_{\Lambda-\Lambda}(H^2(D,\Lambda),\overline{H}_2(D,\Lambda))\to C_2(\widetilde{B\pi})\otimes_{\Lambda}H_2(D,\Lambda).$$

The composition with G gives a map $H_4(D,\mathbb{Z}) \to C_2(\widetilde{B\pi}) \otimes_{\Lambda} H_2(D,\Lambda)$ with image of the 2-cycle subgroup of the complex $C_*(\widetilde{B\pi}) \otimes_{\Lambda} H_2(D,\Lambda)$, i.e. $H_2(B\pi, H_2(D,\Lambda))$. This is the map $H_4(D,\mathbb{Z}) \to H_2(B\pi, H_2(D,\Lambda))$ of Lemma 4.1. In other words, we have the following commutative diagram:

$$\operatorname{Hom}_{\Lambda-\Lambda}(H^{2}(D,\Lambda),\overline{H}_{2}(D,\Lambda)) \longrightarrow H_{2}(B\pi,H_{2}(D,\Lambda))$$

$$\stackrel{G}{\uparrow} \qquad \qquad \uparrow$$

$$H_{4}(D,\mathbb{Z}) \longrightarrow H_{4}(D,\mathbb{Z})$$

where the horizontal map is injective. The result now follows from Lemma 4.1.

Supplement to Lemma 4.1. If P and P' are 2 strongly minimal models for π , let

$$P \xrightarrow{f} D \qquad P \xrightarrow{f'} D'$$

$$\parallel \qquad \qquad \downarrow^{\chi} \qquad \parallel \qquad \qquad \downarrow^{\chi'}$$

$$P \xrightarrow{p} B\pi \qquad P' \xrightarrow{p'} B\pi$$

be the 2 associated 2-stage Postnikov systems. Let $h: D \to D'$ be the homotopy equivalence constructed in Section 3. Then the diagram

$$\begin{array}{cccc} H_4(D,\mathbb{Z}) & \longrightarrow & H_2(B\pi,H_2(D,\Lambda)) \\ & & & & \downarrow \\ & & & & \downarrow \\ H_4(D',\mathbb{Z}) & \longrightarrow & H_2(B\pi,H_2(D',\Lambda)) \end{array}$$

commutes. The right vertical map is induced by $h_*: H_2(D, \Lambda) \to H_2(D', \Lambda)$.

4.2. Construction of strongly minimal models

We choose a strongly minimal model P for π . By Wall's theorem [13], P is homotopy equivalent to $K \cup_{\varphi_1} D^4$, where K is a 3-complex, and $\varphi_1 : \mathbb{S}^3 \to K$ is the attaching map of the only 4-cell. This representation is unique, i.e. given a homotopy equivalence

$$K_1 \cup_{\varphi_1} D^4 \xrightarrow{h} K_2 \cup_{\varphi_2} D^4$$

there is a homotopy equivalence of pairs $(K_1, \varphi_1(\mathbb{S}^3)) \to (K_2, \varphi_2(\mathbb{S}^3))$ (see [13, p.222]). We simply write $P = K \cup_{\varphi_1} D^4$ and change the attaching map $[\varphi_1] \in \pi_3(K)$ by an element $[\varphi] \in \Gamma(\pi_2)$, i.e. $[\varphi] \in \Gamma(\pi_2) = \text{Im}(\pi_3(K^{(2)}) \to \pi_3(K))$, and we consider $X = K \cup_{\varphi_2} D^4$, where $\varphi_2 = \varphi_1 + \varphi$ and $\varphi : \mathbb{S}^3 \to K^{(2)}$. Let $q: X \to B\pi$ be the classifying map. It follows that $q^* : H^2(B\pi, \Lambda) \to H^2(X, \Lambda)$ is an isomorphism. If X is a Poincaré 4-complex, then X is a strongly minimal model for π .

4.3. Proof of the Poincaré duality

(I) We have an isomorphism $\pi_4(X, K) \to H_4(X, K, \Lambda) \cong \Lambda$. Let us consider the diagram of Whitehead's sequences:

One has a similar diagram if we replace X by P. Under the Hurewicz map, $[\varphi_1]$ and $[\varphi_2]$ go to the same element in $H_3(K, \Lambda)$, which coincides with the images of the generators of $H_4(P, K, \Lambda)$ resp. $H_4(X, K, \Lambda)$ under the connecting homomorphism, and hence $H_3(X, \Lambda) \cong H_3(P, \Lambda)$. Moreover, this gives us the following:

Lemma 4.3 $H_4(X,\mathbb{Z})\cong\mathbb{Z}$

Proof Tensoring with $\otimes_{\Lambda} \mathbb{Z}$ the upper part of the above diagram gives

and similarly for X replaced by P (we do not claim the exactness of the lower row). Now $H_4(P, K, \mathbb{Z}) \to H_3(K, \mathbb{Z})$ is the zero map. By the argument above, $[\varphi_1] \otimes_{\Lambda} 1$ and $[\varphi_2] \otimes_{\Lambda} 1$ map to the same element in $H_3(K, \Lambda) \otimes_{\Lambda} \mathbb{Z}$, and hence the generators of $H_4(X, K, \mathbb{Z})$ resp. $H_4(P, K, \mathbb{Z})$ map to the same element in $H_3(K, \mathbb{Z})$ under the connecting homomorphisms. Thus, $H_4(X, K, \mathbb{Z}) \to H_3(K, \mathbb{Z})$ is the zero map. Therefore, there is an isomorphism $H_4(X, \mathbb{Z}) \to H_4(X, K, \mathbb{Z}) \cong \mathbb{Z}$.

Let $[X] \in H_4(X, \mathbb{Z})$ be a generator. We have to study

$$\cap [X]: H^p(X, \Lambda) \to H_{4-p}(X, \Lambda).$$

To examine the cases p = 1 and p = 3, we introduce an auxiliary space $Y = K \cup_{\varphi_1,\varphi} \{D^4, D^4\}$, obtained from K by attaching two 4-cells with attaching maps φ_1 and φ . Note that $Y = P \cup_{\varphi} D^4$.

(II) Case p = 1

Let $i: P \to Y$ be the inclusion, and $j: X \to Y$ be the map induced by $K \subset Y$ and

$$\varphi_2 = \varphi_1 + \varphi : \mathbb{S}^3 \longrightarrow \mathbb{S}^3 \vee \mathbb{S}^3 \xrightarrow{\varphi_1 \vee \varphi} K.$$

We have the following maps of pairs:

$$\begin{array}{cccc} (D^4, \mathbb{S}^3) & \xrightarrow{\overline{i} \circ \bar{\varphi}_1} & (Y, K) & (D^4, \mathbb{S}^3) & \xrightarrow{\overline{j} \circ \bar{\varphi}_2} & (Y, K) \\ \\ \hline \bar{\varphi}_1 & & \uparrow_{\overline{i}} & & \bar{\varphi}_2 & & \uparrow_{\overline{j}} \\ (P, K) & = & (P, K) & (X, K) & = & (X, K) \end{array}$$

and $\bar{\varphi} : (D^4, \mathbb{S}^3) \to (Y, K)$. Obviously, $\bar{\varphi}_2 = \bar{\varphi}_1 + \bar{\varphi} : (D^4, \mathbb{S}^3) \to (Y, K)$ is the 4-cell $[\varphi_1]$ "slided" over $[\varphi]$. Since $[\bar{\varphi}] \in \Gamma(\pi_2)$, $\bar{\varphi}$ factors as follows:

$$\begin{array}{ccc} (D^4, \mathbb{S}^3) & \xrightarrow{\overline{k} \circ \overline{\varphi}} & (Y, K) \\ & & & & \uparrow \overline{k} \\ (K^{(2)} \cup_{\varphi} D^4, K^{(2)}) & = & (K^{(2)} \cup_{\varphi} D^4, K^{(2)}) \end{array}$$

From this one sees that $\overline{j}_*[\overline{\varphi}_2] - \overline{i}_*[\overline{\varphi}_1]$ belongs to

$$\operatorname{Im}(H_4(K^{(2)} \cup_{\varphi} D^4, K^{(2)}) \to H_4(Y, K)).$$

The diagram

as well as injectivity of $H_4(Y) \to H_4(Y, K)$ and the isomorphism

$$H_4(K^{(2)} \cup_{\varphi} D^4) \to H_4(K^{(2)} \cup_{\varphi} D^4, K^{(2)})$$

prove the following:

Lemma 4.4 $j_*[X] - i_*[P]$ belongs to $\operatorname{Im}(H_4(K^{(2)} \cup_{\varphi} D^4) \to H_4(Y))$.

Corollary 4.5 Taking cap-products with $i_*[P]$ and $j_*[X] : H^1(Y, \Lambda) \to H_3(Y, \Lambda)$ gives the same map. **Proof** Let $\theta \in H_4(K^{(2)} \cup_{\varphi} D^4)$ map to $j_*[X] - i_*[P]$. Then the diagram

$$\begin{array}{ccc} H^1(Y,\Lambda) & \xrightarrow{\cap j_*[X] - \cap i_*[P]} & H_3(Y,\Lambda) \\ \cong & & \uparrow \\ H^1(K^{(2)} \cup_{\varphi} D^4,\Lambda) & \xrightarrow{\cap \theta} & H_3(K^{(2)} \cup_{\varphi} D^4,\Lambda) \cong 0 \end{array}$$

commutes.

Lemma 4.6 $i_*: H_3(P, \Lambda) \to H_3(Y, \Lambda)$ is an isomorphism.

Proof Since $Y = P \cup_{\varphi} D^4$, i_* is surjective. Let us consider the diagram

$$\begin{array}{cccc} H_4(K^{(2)} \cup_{\varphi} D^4, K^{(2)}, \Lambda) & \longrightarrow & H_4(Y, P, \Lambda) & \longrightarrow & H_3(P, \Lambda) \\ & \cong \uparrow & & & \uparrow & & \uparrow \\ H_4(K^{(2)} \cup_{\varphi} D^4, \Lambda) & & \xrightarrow{\cong} & H_4(K^{(2)} \cup_{\varphi} D^4, K^{(2)}, \Lambda) & \longrightarrow & H_3(K^{(2)} \cup_{\varphi} D^4, \Lambda), \end{array}$$

which shows that $H_4(Y, P, \Lambda) \to H_3(P, \Lambda)$ is the zero map.

Lemma 4.7 $j_*: H_3(X, \Lambda) \to H_3(Y, \Lambda)$ is an isomorphism.

549

Proof The map j_* is surjective because $Y^{(3)} = K = X^{(3)}$. We identify $H_4(Y, K, \Lambda) \equiv \Lambda \oplus \Lambda$ according to the diagram

where $\bar{i}_*[\bar{\varphi}_1] = (1,0) \in \Lambda \oplus \Lambda$ and $\bar{k}_*[\bar{\varphi}] = (0,1) \in \Lambda \oplus \Lambda$. The map $\bar{k}_*\bar{\varphi}_*$ defines a splitting of $H_4(Y,P,\Lambda) \to H_4(Y,K,\Lambda)$. Since: $H_4(Y,\Lambda) \to H_4(Y,P,\Lambda)$ is an isomorphism (here we use our assumption $H_4(P,\Lambda) \cong 0$ and Lemma 4.6), the image of $H_4(Y,\Lambda)$ in $H_4(Y,K,\Lambda) \equiv \Lambda \oplus \Lambda$ is generated by (0,1). Thus, we can write the following diagram.

$$\begin{array}{cccc} H_4(Y,\Lambda) \\ & & \downarrow \\ \Lambda & \longrightarrow & \Lambda \oplus \Lambda & \longrightarrow & (\Lambda \oplus \Lambda)/\Lambda(1,1) \\ \\ \| & & \| \\ \Lambda & \longrightarrow & \Lambda \oplus \Lambda & \longrightarrow & \Lambda \end{array}$$

The map \overline{j}_* corresponds to $\Lambda \to \Lambda \oplus \Lambda$ defined by $1 \to (1,1)$. Hence, the map $H_4(Y,\Lambda) \to H_4(Y,X,\Lambda)$ corresponds to the isomorphism $\Lambda \to (\Lambda \oplus \Lambda)/\Lambda(1,1)$ defined by $1 \to [(0,1)]$, the class of (0,1) in the quotient. Therefore, we have an isomorphism $H_3(X,\Lambda) \to H_3(Y,\Lambda)$.

Lemma 4.8 The map $\cap[X] : H^1(X, \Lambda) \to H_3(X, \Lambda)$ is an isomorphism. **Proof** This follows from the diagram

$$\begin{array}{ccc} H^1(X,\Lambda) & \stackrel{\cap[X]}{\longrightarrow} & H_3(X,\Lambda) \\ j^* & \cong & \swarrow j_* \\ H^1(Y,\Lambda) & \stackrel{\cap j_*[X]}{\longrightarrow} & H_3(Y,\Lambda) \\ i^* & & \cong & \uparrow i_* \\ H^1(P,\Lambda) & \stackrel{\cap[P]}{\cong} & H_3(P,\Lambda) \end{array}$$

 $\text{ and } \cap j_*[X] = \cap i_*[P]: H^1(Y,\Lambda) \to H_3(Y,\Lambda)\,.$

(III) Case p = 3

Now we look N at the case $\cap[X] : H^3(X, \Lambda) \to H_1(X, \Lambda) \cong 0$, i.e. we have to show that $H^3(X, \Lambda) \cong 0$. Note that the sequence

$$0 \longrightarrow H^3(K,\Lambda) \longrightarrow H^4(P,K,\Lambda) \longrightarrow H^4(P,\Lambda) \longrightarrow 0$$

is exact. Since $H^4(P,\Lambda) \cong H_0(P,\Lambda) \cong \mathbb{Z}$, this sequence coincides with

$$0 \longrightarrow I(\Lambda) \longrightarrow \Lambda \xrightarrow{\epsilon} \mathbb{Z} \longrightarrow 0$$

where ϵ is the augmentation, and $I(\Lambda) = \operatorname{Ker} \epsilon$. Let us consider the following diagram.

The 2 vertical maps split $H^4(Y, K, \Lambda) \cong \Lambda \oplus \Lambda$ so that

$$\overline{i}^*: H^4(Y, K, \Lambda) \cong \Lambda \oplus \Lambda \to \Lambda \cong H^4(P, K, \Lambda)$$

projects onto the first component and $H^4(Y, K, \Lambda) \to H^4(Y, P, \Lambda) \cong \Lambda$ projects onto the second component. Since the composition $H^3(K, \Lambda) \to H^4(Y, P, \Lambda)$ is the zero map, we can identify the image of $H^3(K, \Lambda) \to H^4(Y, K, \Lambda)$ with $(I(\Lambda), 0) \subset \Lambda \oplus \Lambda$. The map \overline{j}^* is the sum $\Lambda \oplus \Lambda \to \Lambda$ since the generator of $H^4(X, K, \Lambda) \cong \Lambda$ maps under

$$\bar{\varphi}_1^* + \bar{\varphi}^* : H^4(X, K, \Lambda) \to H^4(D^4, \mathbb{S}^3, \Lambda) \cong \Lambda$$

to a generator. Hence, the image of

$$H^3(K,\Lambda) \xrightarrow{\quad \ \ } H^4(Y,K,\Lambda) \xrightarrow{\quad \ \ } H^4(X,K,\Lambda)$$

is $I(\Lambda) \subset \Lambda$, i.e. $H^3(K, \Lambda) \to H^4(X, K, \Lambda)$ is injective. The long exact sequence of the pair (X, K) implies $H^3(X, \Lambda) \cong 0$.

(IV) Case p = 4

Remark The last argument also implies $H^4(X, \Lambda) \cong \Lambda/I(\Lambda) \cong \mathbb{Z}$. We have proven the first part of the following:

Lemma 4.9 $H^3(X,\Lambda) \cong 0$, $H^4(X,\Lambda) \cong \mathbb{Z}$, and $\cap [X] : H^4(X,\Lambda) \to H_0(X,\Lambda)$ is an isomorphism.

Proof The second part follows from the well-known property of cap-products indicated in the following diagram:

$$\mathbb{Z} \cong H^4(X, \Lambda) \xrightarrow{\cap [X]} H_0(X, \Lambda) \cong \mathbb{Z}$$

$$\stackrel{\epsilon}{\uparrow} \qquad \qquad \uparrow \epsilon$$

$$\Lambda \cong H^4(X, K, \Lambda) = \operatorname{Hom}_{\Lambda}(C_4(\widetilde{X}, \widetilde{K}), \Lambda) \xrightarrow{A} C_0(\widetilde{X}) \cong \Lambda$$

Here $A(\alpha) = \alpha(1), \ 1 \in C_4(\widetilde{X}, \widetilde{K})$ being the generator. Observe that $H_0(X, \Lambda) = C_0(\widetilde{X})/\partial_1 C_1(\widetilde{X})$, so ϵ corresponds to the canonical map $C_0(\widetilde{X}) \to C_0(\widetilde{X})/\partial_1 C_1(\widetilde{X})$ (we may assume that X has one 0-cell).

(V) Case p = 2

Recall the 2-stage Postnikov system for P:

$$\begin{array}{cccc} P & \stackrel{f}{\longrightarrow} & D \\ \\ \| & & & \downarrow^{\chi} \\ P & \stackrel{p}{\longrightarrow} & B\pi. \end{array}$$

Let $f_0 = f|_K$. Given any $\psi : \mathbb{S}^3 \to K$, a canonical map $g : K \cup_{\psi} D^4 \to D$ can be constructed as follows: Let $H : \mathbb{S}^3 \times I \to D$ be the zero homotopy of the composition $f_0 \circ \psi : \mathbb{S}^3 \to D$. It factors over

$$D^4 = (\mathbb{S}^3 \times I) / \mathbb{S}^3 \times \{1\} \xrightarrow{\hat{H}} D.$$

Then $g = f_0 \cup \hat{H} : K \cup_{\psi} D^4 \to D$. Since $\pi_q(D) \cong 0$ for $q \ge 3$, g is unique up to homotopy. In our case, we have $\psi = \varphi_2 = \varphi_1 + \varphi$ with $[\varphi] \in \Gamma(\pi_2)$, where $\varphi : \mathbb{S}^3 \to K^{(2)}$, i.e. we need the zero homotopy of the composition

 $\mathbb{S}^3 \longrightarrow \mathbb{S}^3 \vee \mathbb{S}^3 \xrightarrow{\varphi_1 \vee \varphi} K \vee K^{(2)} \xrightarrow{f_0 \vee f_0} D \vee D \longrightarrow D.$

We take the wedge of the zero homotopies $H : \mathbb{S}^3 \times I \to D$ for $f_0 \circ \varphi_1$ and $H_0 : \mathbb{S}^3 \times I \to D$ for $f_0 \circ \varphi$. This gives us the following:

Lemma 4.10 Let $g_0 = f_0 \cup \hat{H}_0 : K^{(2)} \cup_{\varphi} D^4 \to D$ denote the canonical extension and $\theta \in H_4(K^{(2)} \cup_{\varphi} D^4, \mathbb{Z})$ the canonical generator. Then we have

$$g_*[X] = f_*[P] + (g_0)_*(\theta).$$

Corollary 4.11 $(g_0)_*(\theta) \in \operatorname{Ker} G \subset H_4(D, \mathbb{Z})$. In particular,

$$\cap f_*[P] = \cap g_*[X] : H^2(D, \Lambda) \to H_2(D, \Lambda);$$

that is, the map $\cap [X] : H^2(X, \Lambda) \to H_2(X, \Lambda)$ is an isomorphism.

Proof The above spectral sequence applied to $K^{(2)} \cup_{\varphi} D^4$ gives

$$0 \longrightarrow \mathbb{Z} \otimes_{\Lambda} H_4(K^{(2)} \cup_{\varphi} D^4, \Lambda) \longrightarrow H_4(K^{(2)} \cup_{\varphi} D^4, \mathbb{Z})$$
$$\longrightarrow H_2(B\pi, H_2(K^{(2)} \cup_{\varphi} D^4, \Lambda)) \longrightarrow 0.$$

The first map is an isomorphism, so $H_2(B\pi, H_2(K^{(2)} \cup_{\varphi} D^4, \Lambda)) \cong 0$. Comparison with the exact sequence for D:

gives the result.

Theorem 4.12 Suppose $B\pi$ is homotopy equivalent to a 2-dimensional complex. Let $\pi_2 = H^2(B\pi, \Lambda)$. Then, if we fix one model P, we obtain all models by the above construction.

Proof Fixing P, we constructed for any $[\varphi] \in \pi_2$ a strongly minimal model. Conversely, let $X = K \cup_{\psi} D^4$ be a minimal model, where $\psi: \mathbb{S}^3 \to K$ is the attaching map. The map $f: X \to D$ into the 2-stage Postnikov space D is given by the zero homotopy of

$$\mathbb{S}^3 \xrightarrow{\psi} K \xrightarrow{f_0} D;$$

that is,

$$\begin{array}{cccc} \mathbb{S}^3 \times I & \stackrel{H}{\longrightarrow} & D \\ & & & \uparrow^{\hat{H}} \\ D^4 = (\mathbb{S}^3 \times I) / \mathbb{S}^3 \times \{1\} & = & D^4 \end{array}$$

with $f = f_0 \cup \hat{H}$. Let us consider $\hat{H} : (D^4, \mathbb{S}^3) \to (D, K)$ and let

$$\bar{\psi}: (D^4, \mathbb{S}^3) \to (X, K)$$

be the top cell. The diagram

shows that $f_*[X]$ depends only on $\psi \otimes_{\Lambda} 1 \in \pi_3(K) \otimes_{\Lambda} \mathbb{Z}$. Note that $H_4(D,\mathbb{Z}) \to H_4(D,K,\mathbb{Z})$ is injective. This also demonstrates that the above construction only depends on ξ , not on the choice of $[\varphi] \in \Gamma(\pi_2)$ with $[\varphi] \otimes_{\Lambda} 1 = \xi.$

It remains to be shown that any minimal model X' is homotopy equivalent to some model X obtained by the above construction. Write

$$X' = K' \cup_{\psi} D^4 \xrightarrow{f'} D',$$

where D' is the 2-stage Postnikov space, K' is a 3-dimensional complex, and $\psi : \mathbb{S}^3 \to K'$ is the attaching map. Recall our standard model:

$$P = K \cup_{\varphi_1} D^4 \xrightarrow{f} D.$$

In Section 3 we constructed a homotopy equivalence $h: D' \to D$ sending $K' \to K$. Lemma 3.3 implies

$$h_* f'_*[X'] - f_*[P] \in \operatorname{Ker} G = \Gamma(\pi_2) \otimes_{\Lambda} \mathbb{Z}.$$

By Lemma 4.1 of Section 4 choose $[\varphi] \in \Gamma(\pi_2)$ so that $[\varphi] \otimes_{\Lambda} 1 = h_* f'_*[X'] - f_*[P]$, and $\varphi : \mathbb{S}^3 \to K^{(2)} \subset K$. As in Part V of Section 4, we build $X = K \cup_{\varphi_2} D^4$, with $\varphi_2 = \varphi_1 + \varphi$, and $g : X \to D$. Let $g_0 : K^{(2)} \cup_{\varphi} D^4 \to D$ be the canonically defined map from the zero homotopy of $\mathbb{S}^3 \to K^{(2)} \to D$. Then we have (use Lemma 4.10) $g_*[X] = f_*[P] + (g_0)_*(\theta)$, where $\theta \in H_4(K^{(2)} \cup_{\varphi} D^4, \mathbb{Z})$ is a generator. But $(g_0)_*(\theta) = h_* f'_*[X'] - f_*[P]$, as can be seen from the following diagram:

Therefore, $g_*[X] = h_* f'_*[X']$. By Proposition 3.2 and the proof of Theorem 1.3 (where we have to use that π_2 is not a torsion group) we obtain a homotopy equivalence $X' \to X$.

5. Non-uniqueness of strongly minimal models: examples

In Section 4 we constructed minimal models for all elements of $\Gamma(\pi_2)$. In this section we address the question of uniqueness up to homotopy equivalence. Recall that for 2 models X and X' we have a homotopy equivalence between the 2-stage Postnikov systems (assuming that the first k-invariants are compatible). It is deduced from Diagram (3.2) in Section 3, i.e. we have the diagram

If $X = K \cup_{\varphi} D^4$ and $X' = K' \cup_{\psi} D^4$, then D and D' are constructed from the 3-complexes K and K', respectively, by adjoining cells of dimension greater or equal to 4. Proposition 3.2 defines an obstruction to extending the restriction $h^{(3)} : K \to K'$ to a homotopy equivalence $X \to X'$. Also, if this obstruction does not vanish, it could be that X is homotopy equivalent to X'. We use h to identify $D \to B\pi_1$ with $D' \to B\pi_1$. All this makes sense if $B\pi_1$ is an aspherical 2-complex. From now on we shall consider only Baumslag–Solitar groups $B(k), k \neq 0$, and aspherical surface fundamental groups. For any such model Xwe obtain $H_3(X,\Lambda) \cong H^1(X,\Lambda) \cong H^1(B\pi,\Lambda) \cong 0$ by Lemma 6.2 of [5] (here $\pi = \pi_1$, as usual). Since $H_4(X,\Lambda) \cong 0$, we get an isomorphism from $H_4(X,K,\Lambda)$ onto $H_3(K,\Lambda)$, i.e. $H_3(K,\Lambda) \cong \Lambda$. Furthermore, the canonical generator of $H_4(X,K,\Lambda)$, given by the attaching map φ , defines a generator of $H_3(K,\Lambda)$ and a splitting $s_X : H_3(K,\Lambda) \to \pi_3(K)$ of the Whitehead sequence given by the following diagram:

$$0 \longrightarrow \Gamma(\pi_2) \xrightarrow{i_*} \pi_3(K) \xrightarrow{H} H_3(K,\Lambda) \longrightarrow 0$$

$$\uparrow \qquad \uparrow \cong \pi_4(X,K) \xrightarrow{\cong} H_4(X,K,\Lambda).$$

Then s_X defines a splitting $t_X : \pi_3(K) \to \Gamma(\pi_2)$. From the Whitehead sequence of X, we have an isomorphism from $\Gamma(\pi_2)$ onto $\pi_3(X)$, and t_X can also be defined by the following diagram:

Conversely, t_X defines s_X by the well-known procedure using the projection operator $i_* \circ t_X$. If $X = K \cup_{\varphi} D^4$ and $X' = K \cup_{\psi} D^4$ are homotopy equivalent models, there is a homotopy equivalence of pairs (see [13], Theorem 2.4)

$$g: (K, \varphi(\mathbb{S}^3)) \to (K, \psi(\mathbb{S}^3))$$

inducing the diagrams

and

Hence, all splittings t_X , $t_{X'}$, s_X , and $s_{X'}$ commute with the induced homomorphisms g_* . In the following we fix one model $X = K \cup_{\varphi} D^4$. We are going to construct models $X' = K \cup_{\psi} D^4$ that are not homotopy equivalent to X. Let us denote by $1 \in H_3(K, \Lambda)$ the generator defined by X, i.e. $s_X(1) = [\varphi]$. Let $\theta : \Gamma(\pi_2) \to \Gamma(\pi_2)$ be an isomorphism. Then $\theta \circ t_X = t : \pi_3(K) \to \Gamma(\pi_2)$ is a splitting. It defines a splitting $s : H_3(K, \Lambda) \to \pi_3(K)$. Then $s(1) = s_X(1) + i_*(a)$ for some $a \in \Gamma(\pi_2)$. As in Section 4, we construct the model $X' = K \cup_{\psi} D^4$ with $[\psi] = s(1)$.

Proposition 5.1 If θ is not induced by an isomorphism $\pi_2 \to \pi_2$, then X' is not homotopy equivalent to X. **Proof** Any homotopy equivalence $g: X \to X'$ induces

However, $g_* : \Gamma(\pi_2) \to \Gamma(\pi_2)$ is never θ .

Examples Let $X = F \times S^2$, where F is a closed oriented aspherical surface. Then $\pi_2(X) \cong \mathbb{Z}$, $\Gamma(\pi_2) \cong \mathbb{Z}$ and $-\operatorname{Id}: \Gamma(\pi_2) \to \Gamma(\pi_2)$ is not induced by an isomorphism $\pi_2 \to \pi_2$. This easily follows from the Γ -functor property. There are inclusions $\pi_2 \to \Gamma(\pi_2)$ and $\Gamma(\pi_2) \to \pi_2 \otimes \pi_2$ (because π_2 is free abelian) such that the

composition $\pi_2 \to \Gamma(\pi_2) \to \pi_2 \otimes \pi_2$ sends x to $x \otimes x$. In the case when $\pi = B(k)$, π_2 is free abelian (see [5], Lemma 6.2 V), one obtains such θ in this case, too. On the other hand, if θ is induced by an isomorphism $\beta : \pi_2 \to \pi_2$, one needs more to construct a homotopy equivalence. By [15], Theorem 3, one gets a map $g: K \to K$, but the induced maps g_* do not necessarily commute with the splittings s_X and $s_{X'}$.

Supplement to the aspherical surface case. In the example $F \times S^2$ there are 2 models, namely $F \times S^2$ and the non-trivial S^2 -bundle $E \to F$ with the second Stiefel–Whitney class $\neq 0$ (see, for example, [3], Appendix). Here it is also convenient to consider the map

$$F_{\mathbb{Z}}: H_4(D,\mathbb{Z}) \to \operatorname{Hom}_{\mathbb{Z}}(H^2(D,\mathbb{Z}) \otimes H^2(D,\mathbb{Z}),\mathbb{Z})$$

given by

$$F_{\mathbb{Z}}(x)(u \otimes v) := x \cap (u \cup v),$$

where $D = F \times \mathbb{C}P^{\infty}$. Then $F_{\mathbb{Z}}$ is injective. If $f_0 : F \times \mathbb{S}^2 \to D$ and $f_1 : E \to D$ are Postnikov maps, then $F_{\mathbb{Z}}(f_{0*}[F \times \mathbb{S}^2])$ and $F_{\mathbb{Z}}(f_{1*}[E])$ are the integral intersection forms of $F \times \mathbb{S}^2$ and E, respectively. Moreover, these forms are respectively given by the matrices

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \qquad \qquad \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$$

(see [3]). It was shown in [9], Section 5, that $F \times \mathbb{S}^2$ and E are the only models up to homotopy equivalence.

6. Final remarks

The following map was defined in [2]:

$$F: H_4(D,\mathbb{Z}) \to \operatorname{Hom}_{\Lambda-\Lambda}(H^2(D,\Lambda) \otimes_{\mathbb{Z}} \overline{H}^2(D,\Lambda),\Lambda),$$

to classify Poincaré 4-complexes X, where $D \to B\pi$ is a 2-stage Postnikov system for X. Here $H^2(D, \Lambda) \otimes_{\mathbb{Z}} \overline{H}^2(D, \Lambda)$ carries the obvious Λ -bimodule structure. It was proven therein that F is injective for free non-abelian groups π . The maps F and G are related by the following diagram:

$$\begin{array}{cccc} H_4(D,\mathbb{Z}) & \stackrel{G}{\longrightarrow} & \operatorname{Hom}_{\Lambda-\Lambda}(H^2(D,\Lambda),\overline{H}_2(D,\Lambda)) \\ & & & & \downarrow H \\ H_4(D,\mathbb{Z}) & \stackrel{F}{\longrightarrow} & \operatorname{Hom}_{\Lambda-\Lambda}(H^2(D,\Lambda)\otimes_{\mathbb{Z}}\overline{H}^2(D,\Lambda),\Lambda), \end{array}$$

where $H(\varphi)(u \otimes v) = \overline{\hat{u}(\varphi(v))}$, and \hat{u} is the image of u under

$$H^2(D,\Lambda) \to \operatorname{Hom}_{\Lambda}(H_2(D,\Lambda),\Lambda).$$

Obviously, G is injective if F is injective. If $f: X \to D$ is a map such that $f_*: \pi_q(X) \to \pi_q(D)$ is an isomorphism for q = 1, 2, then $F(f_*[X]) \circ (f^* \otimes f^*)$ is the equivariant intersection form on X, and $f_*G(f_*[X])f^*: H^2(X, \Lambda) \to \overline{H}_2(X, \Lambda)$ is the Poincaré duality isomorphism. It is convenient to denote $F(f_*[X])$ as the "intersection type" and $G(f_*[X])$ as the "Poincaré duality type" of X. The Poincaré duality type determines the intersection type. In this sense it is a stronger "invariant". For S²-bundles over aspherical 2-surfaces all intersection types vanish, whereas the Poincaré types are non-trivial.

Acknowledgments

This work was performed under the auspices of the GNSAGA of the CNR (National Research Council) of Italy and partially supported by the MIUR (Ministero per la Ricerca Scientifica e Tecnologica) of Italy, and by the Slovenian Research Agency grants P1–0292–0101 and J1–4144–0101. We thank the referee for comments and suggestions.

References

- [1] Baues, H.J.: Combinatorial Homotopy and 4-Dimensional Complexes. Berlin. Walter de Gruyter 1991.
- [2] Cavicchioli, A., Hegenbarth, F.: On 4-manifolds with free fundamental groups. Forum Math. 6, 415–429 (1994).
- [3] Cavicchioli, A., Hegenbarth, F., Repovš, D.: Four-manifolds with surface fundamental groups. Trans. Amer. Math. Soc. 349, 4007–4019 (1997).
- [4] Hambleton, I., Kreck, M.: On the classification of topological 4-manifolds with finite fundamental group. Math. Ann. 280, 85–104 (1988).
- [5] Hambleton, I., Kreck, M., Teichner, P.: Topological 4-manifolds with geometrically 2-dimensional fundamental group. J. Topology Anal. 1, 123–151 (2009).
- [6] Hegenbarth, F., Piccarreta, S.: On Poincaré 4-complexes with free fundamental groups. Hiroshima Math. J. 32, 145–154 (2002).
- [7] Hegenbarth, F., Repovš, D., Spaggiari, F.: Connected sums of 4-manifolds. Topology Appl. 146–147, 209–225 (2005).
- [8] Hillman, J.A.: *PD*₄-complexes with strongly minimal models. Topology Appl. 153, 2413–2424 (2006).
- [9] Hillman, J.A.: Strongly minimal PD₄-complexes. Topology Appl. 156, 1565–1577 (2009).
- [10] Kaplansky, I.R.: Fields and Rings. Chicago. University of Chicago Press 1969
- [11] MacLane, S., Whitehead, J.H.C.: On the 3-type of a complex. Proc. Nat. Acad. Sci. 36, 41-48 (1950)
- [12] Pamuk, M.: Homotopy self-equivalences of 4-manifolds with PD₂-fundamental group. Topology Appl. 156, 1445– 1458 (2009).
- [13] Wall, C.T.C.: Poincaré complexes. Ann. of Math. 86, 213–245 (1967).
- [14] Wall, C.T.C.: Surgery on Compact Manifolds. London. Academic Press 1970
- [15] Whitehead, J.H.C.: On a certain exact sequence. Ann. of Math. 52 (2), 51–110 (1950).