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Abstract: We consider 2 types of minimal Poincaré 4-complexes. One is defined with respect to the degree 1-map

order. This idea was already present in our previous papers, and more systematically studied later by Hillman. The

second type of minimal Poincaré 4-complexes was introduced by Hambleton, Kreck, and Teichner. It is not based on an

order relation. In the present paper we study existence and uniqueness questions.
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1. Introduction

Minimal objects are usually defined with respect to a partial order. We consider oriented Poincaré 4-complexes

(in short, PD4 -complexes). If X and Y are 2 PD4 -complexes, we define X ≻ Y if there is a degree 1-map

f : X → Y inducing an isomorphism on the fundamental groups. If also Y ≻ X , well-known theorems imply

that f : X → Y is a homotopy equivalence. So ”≻” defines a symmetric partial order on the set of homotopy

types of PD4 -complexes. A PD4 -complex P is said to be minimal for X if X ≻ P and whenever P ≻ Q , Q

is homotopy equivalent to P . We also consider special minimal objects called strongly minimal. In this paper

we study existence and uniqueness questions. It is an interesting problem to calculate homotopy equivalences

of X relative to a minimal P : that is, if f : X → P is as above, then calculate

Aut(X ≻ P ) = {h : X → X : h homotopy equivalence such that f ◦ h

is homotopic to f}.

Self-homotopy equivalences were studied by various authors (see [12] and references there). Pamuk’s method

can be used to calculate Aut(X ≻ P ).
Constructions of minimal objects were indicated by Hegenbarth, Repovs̆, and Spaggiari in [6] and more

recently by Hillman in [8] and [9]. Degree 1-maps can be constructed from Λ-submodules G ⊂ H2(X,Λ). More

precisely, we have the following (cf. Proposition 2.4 below):

Proposition 1.1 Suppose X is a Poincaré 4-complex, and G ⊂ H2(X,Λ) is a stably free Λ-submodule such

that the intersection form λX restricted to G is nonsingular. Then one can construct a Poincaré 4-complex Y
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and a degree 1-map f : X → Y . Moreover, there is an isomorphism

K2(f,Λ) = Ker(H2(X,Λ)
f∗−−−−→ H2(Y,Λ)) ∼= G

and λX restricted to K2(f,Λ) coincides with λX on G via this isomorphism.

Corollary 1.2 Given any Poincaré 4-complex X , there exists a minimal Poincaré 4-complex P for X .

The above proposition is useful to answer the following 2 basic questions about the minimal objects:

(1) Existence; and

(2) Uniqueness.

A Poincaré 4-complex P is called strongly minimal for π if the adjoint map
∧
λP : H2(P,Λ) →

HomΛ(H2(P,Λ),Λ) of the intersection form λP vanishes [8]. Proposition 1.1 implies that P is minimal. The

same questions arise if we consider the originally defined minimal objects in [5].

Existence of strongly minimal models P is known only for few fundamental groups π (see [5] and [8]). All

these examples satisfy H3(Bπ,Λ) ∼= 0, and hence HomΛ(H2(P,Λ),Λ) ∼= 0 (see below). So all are “trivial” in the

sense that λP is zero because its adjoint
∧
λP : H2(P,Λ) → HomΛ(H2(P,Λ),Λ) maps to the trivial Λ-module.

An interesting question is therefore: Do there exist strongly minimal models P such that H3(Bπ1(P ),Λ) ̸= 0?

We prove the following:

Theorem 1.3 Let π be a finitely presented group such that H2(Bπ,Λ) is not a torsion group. Let P and

P ′ be strongly minimal models for π . Then P and P ′ are homotopy equivalent if the map G : H4(D,Z) →
HomΛ(H

2(D,Λ),H2(D,Λ)) is injective, and if the k -invariants of P and P ′ correspond appropriately.

Here D is a 2-stage Postnikov space and G is defined via cap-products. Apart from the k -invariant,

the injectivity of the map G is an essential condition for uniqueness of strongly minimal models. In Section 4

we consider groups π such that Bπ is homotopy equivalent to a 2-complex and prove that for any element of

KerG one can construct a strongly minimal model. More precisely, we obtain:

Theorem 1.4 Suppose Bπ is homotopy equivalent to a 2-complex, and π2 = H2(Bπ,Λ) is not a torsion

group. Then KerG ∼= Γ(π2) ⊗Λ Z . Moreover, for any strongly minimal model P and any ξ ∈ Γ(π2) , another

strongly minimal model X can be constructed.

Examples are given by solvable Baumslag–Solitar groups (see [5]), or by surface fundamental groups. In

Section 5 we construct non-homotopy equivalent strongly minimal models for these fundamental groups.

2. Construction of degree 1-maps

In this section we are going to prove Proposition 1.1 announced in Section 1. First we mention a result of Wall

[14].

Lemma 2.1 Let f : X → Y be a degree 1-map between Poincaré 4-complexes and suppose that f∗ : π1(X)→
π1(Y ) is an isomorphism. Then K2(f,Λ) = Ker(H2(X,Λ) → H2(Y,Λ)) is a stably Λ-free submodule of

H2(X,Λ) and λX restricted to K2(f,Λ) is nonsingular. Also, K2(f,Λ) ⊂ H2(X,Λ) is a direct summand.
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This section is devoted to proving a converse statement to Lemma 2.1.

First we will show Proposition 2.2. Before that, let us note that Λ has an anti-involution that permits

a switch from Λ-left to Λ-right modules and to introduce compatible Λ-module structures on Hom-duals, etc.

We follow Wall’s convention and consider Λ-right modules.

Proposition 2.2 Let X be a Poincaré 4-complex and G ⊂ H2(X,Λ) a Λ-free submodule so that λX restricts

to a nonsingular Hermitian pairing on G . Then there exist a Poincaré 4-complex P and a degree 1-map

f : X → P such that f∗ : π1(X)→ π1(P ) is an isomorphism and K2(f,Λ) ∼= G .

Proof We recall that λX is defined as the composite map

H2(X,Λ)×H2(X,Λ)
∪−−−−→ H4(X,Λ⊗Z Λ) ∼= H0(X,Λ⊗Z Λ) ∼= Z⊗Λ (Λ⊗Z Λ)

∼=
x x∼=

H2(X,Λ)×H2(X,Λ)
λX−−−−→ Λ ∼= Λ⊗Λ Λ

and
∧
λX : H2(X,Λ)→ HomΛ(H2(X,Λ),Λ)

is the adjoint map of λX .

To construct P , we consider a Λ-base a1 , . . . , ar of G ⊂ H2(X,Λ) ∼= π2(X), and

φ1, . . . , φr : S2 → X

representatives of a1 , . . . , ar , respectively. Then P is obtained from X by adjoining 3-cells along φ1 , . . . ,

φr . So X ⊂ P , and

Hp(P,X,Λ) ∼=
{
G p = 3
0 otherwise

Hp(P,X,Λ) ∼=
{
G∗ = HomΛ(G,Λ) p = 3
0 otherwise.

Moreover, the sequence

0 −−−−→ H3(P,X,Λ)
∂∗−−−−→ H2(X,Λ) −−−−→ H2(P,Λ) −−−−→ 0

is exact because ∂∗ : H3(P,G,Λ)→ G ⊂ H2(X,Λ) is an isomorphism.

Note that there is a natural homomorphism

µ : H2(X,Λ)→ HomΛ(H2(X,Λ),Λ)

such that the diagram

H2(X,Λ)
µ−−−−→ HomΛ(H2(X,Λ),Λ)

∩[X]

y ∥∥∥
H2(X,Λ)

∧
λX−−−−→ HomΛ(H2(X,Λ),Λ)

commutes. Let [P ] = f∗[X] , where f : X ⊂ P is the inclusion. Consider the diagrams

0 −−−−→ H2(P,Λ)
f∗

−−−−→ H2(X,Λ)
δ∗−−−−→ H3(P,X,Λ)

µ−−−−→∼=
HomΛ(H3(P,X,Λ),Λ) = G∗

∩[P ]

y y∩[X]

x∧
λG

0 ←−−−− H2(P,Λ)
f∗←−−−− H2(X,Λ)

∂∗←−−−− H3(P,X,Λ) = G G ←−−−− 0
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and

H2(X,Λ)
δ∗−−−−→ H3(P,X,Λ)

µ

y ∼=
yµ

HomΛ(H2(X,Λ),Λ) −−−−→ HomΛ(H3(P,X,Λ),Λ) = G∗x∧
λX

x∧
λG

H2(X,Λ)
∂∗←−−−− H3(P,X,Λ) = G.

Here
∧
λG =

∧
λX |G . The left-hand square of the first diagram commutes. Combining the right-hand square of

the first diagram with the second diagram gives only

µ ◦ δ∗ ◦ (∩[X])−1 ◦ ∂∗ =
∧
λG.

However, this is sufficient to deduce that ∩[P ] : H2(P,Λ) → H2(P,Λ) is an isomorphism. It follows from the

above short exact sequence that

f∗ : H3(X,Λ) −−−−→∼=
H3(P,Λ) f∗ : H3(P,Λ) −−−−→∼=

H3(X,Λ)

hence we obtain that

∩[P ] : H∗(P,Λ) −−−−→∼=
H4−∗(P,Λ)

for all ∗ . The map f is obviously of degree 1. 2

In the sequel we shall need another result of Wall about Poincaré complexes (see for instance [14]).

Lemma 2.3 Any Poincaré 4-complex X is homotopy equivalent to a CW–complex of the form K∪φD4 , where

K is a 3-complex and φ : S3 → K is an attaching map of the single 4-cell D4 .

Proposition 2.2 can be improved so that together with Lemma 2.1, we obtain the following:

Proposition 2.4 Let X be a Poincaré 4-complex. There exists a degree 1-map f : X → Q if and only if there

exists a stably free Λ-submodule G ⊂ H2(X,Λ) so that λX restricts to a nonsingular Hermitian form on G .

In this case, G ∼= K2(f,Λ) .

Proof By Lemma 2.3 we can identify X = K∪φD4 . The submodule G is stably free, so G⊕H ∼= ⊕ℓ1Λ, where

H is Λ-free. We may assume H = ⊕2m
1 Λ. Let Z = X#(#m

1 (S2×S2)) be the Poincaré 4-complex formed from

X by connected sum inside the 4-cell with #m
1 (S2 × S2).Then G ⊕H ⊂ H2(Z,Λ) and λZ restricted to H is

the canonical hyperbolic form. If a1 , . . . , aℓ ∈ G⊕H is a Λ-base, we attach 3-cells to Z along representatives

φ1 , . . . , φℓ : S2 → X as in Proposition 2.2. We obtain a Poincaré 4-complex Q and a degree 1-map g : Z → Q

with K2(g,Λ) = G⊕H . We are going to show that g factors over the collapsing map

c : Z = X#(#m
1 (S2 × S2))→ X

giving a degree 1-map f : X → Q . Note that

X#(#m
1 (S2 × S2))\4–cell ≃ K ∨ {∨m1 (S2 ∨ S2)}
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and the attaching map of the 4-cell of Z is of the following type

a⊕ b ∈ π3(K)⊕ [π3(∨m1 (S2 ∨ S2))⊗ Λ] ⊂ π3(Z\(4ğcell)),

where a = [φ] and b = [ψ] ⊗ 1 with ψ : S3 → ∨m1 (S2 ∨ S2) the attaching map of the 4-cell of #m
1 (S2 × S2).

Obviously, a⊕ b maps to zero in π3(Q).

Now we apply Whitehead’s Γ-functor to

π2(Z) ∼= π2(K)⊕H ∼= π2(Z\(4–cell)) : Γ(π2(Z)) ∼= Γ(π2(K))⊕ Γ(H)⊕ π2(K)⊗H.

The Γ-functor fits into a certain Whitehead’s exact sequence (see [1] and [15]) and by naturality one has the

following diagram:

0 −−−−→ Γ(π2(K)⊕H) −−−−→ π3(Z\(4–cell)) −−−−→ H3(Z\(4–cell),Λ) −−−−→ 0∥∥∥ ∥∥∥
0 −−−−→ Γ(π2(K))⊕ Γ(H)⊕ π2(K)⊗H −−−−→ π3(Z\(4–cell)) −−−−→ H3(K,Λ) −−−−→ 0y y y

H4(Q,Λ) −−−−→ Γ(π2(Q)) −−−−→ π3(Q) −−−−→ H3(Q,Λ) −−−−→ 0.

Obviously, b ∈ Γ(H) ⊂ π3(Z\(4–cell)) , and hence b =
∑
λij [ei, ej ] , where the set {e1, . . . , e2m} ⊂ H is the

standard base and [· , ·] denotes the Whitehead product. Now H ⊂ G ⊕ H ⊂ π2(Z) maps to zero under

g∗ : π2(Z) → π2(Q), so b ∈ Γ(π2(K) ⊕H) maps to zero in Γ(π2(Q)), and hence it is zero in π3(Q). Because

a ⊕ b is zero in π3(Q), a ∈ π3(K) also maps to zero under π3(K) → π3(Q). Therefore, the inclusion map

K ⊂ Q extends to f : X → Q , and f induces a map

(X,K)→ (Q,Q\(4–cell)).

We also have

g : (Z,Z\(4–cell))→ (Q,Q\(4–cell))

and a collapsing map

c : (Z,Z\(4–cell))→ (X,K).

Since Q is obtained from Z by adding 3-cells attached away from the 4-cell, the following diagram commutes:

H4(Z,Z\(4–cell),Z)
c∗−−−−→ H4(X,K,Z)

g∗

y yf∗
H4(Q,Q\(4–cell),Z) H4(Q,Q\(4–cell),Z).

Because c∗ and g∗ map the fundamental class to the fundamental class, the degree of f is 1. 2

Proof of Corollary 1.2 We observe that for any degree 1-map f : X → Y with f∗ : π1(X)→∼= →π1(Y ), one

has

K2(f,Λ)⊗Λ Z = K2(f,Z) = Ker(H2(X,Z)→ H2(Y,Z)),
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and that H2(X,Z) is finitely generated. By Proposition 2.4 we can successively construct degree 1-maps

X
f−−−−→ Q, Q1

f1−−−−→ Q2, · · ·

if we find nondegenerate stably free nontrivial submodules in H2(Qk,Λ), and one has

K2(fk ◦ · · · ◦ f1 ◦ f,Λ) ∼= K2(fk,Λ)⊕ · · · ⊕K2(f1,Λ)⊕K2(f,Λ) ⊂ H2(X,Λ).

Now
K2(fk ◦ · · · ◦ f1 ◦ f,Z) ∼= K2(fk,Z)⊕ · · · ⊕K2(f1,Z)⊕K2(f,Z) ⊂ H2(X,Z)

is finitely generated. Hence, after certain k , we have

K2(fk+1,Λ)⊗Λ Z = K2(fk+1,Z) = {0}.

Kaplansky’s lemma (see remark below) implies K2(fk+1,Λ) ∼= 0. Therefore, g = fk ◦ · · · ◦ f1 ◦ f : X → Qk is

of degree 1, and Qk is minimal. This completes the proof of Corollary 1.2.

Remark In [10, p.122], the following result is stated:

Lemma Let F be a field of characteristic zero, and π an arbitrary group. Let A = F[π] be the group algebra,

and let u , v ∈Mn(A) be 2 (n×n) matrices such that the product vu is the identity matrix In . Then uv = In .

It has the following consequence (referred to above as “Kaplansky’s lemma”):

Corollary If K2(f,Λ)⊗Λ Q ∼= 0 , then K2(f,Λ) ∼= 0 .

Proof We know that K2 = K2(f,Λ) is stably free, i.e. K2 ⊕ Λa ∼= Λb , where a and b are positive integers.

Tensoring with Q implies that a = b . Let h : K2 ⊕ Λa → Λb be an isomorphism, and consider

u = h ◦ i : Λa ⊂−−−−→ K2 ⊕ Λa
h−−−−→ Λa

and

v = pr ◦h−1 : Λa
⊂−−−−→ K2 ⊕ Λa

pr−−−−→ Λa.

Obviously v ◦ u = Id, and hence u ◦ v = Id. This implies that K2 ⊂ Ker(u ◦ v) ∼= 0. 2

Note also that K2 ⊗Λ Q ∼= 0 is equivalent to K2 ⊗Λ Z ∼= 0.

Of course, starting with X one cannot in general assume that there is only one minimal P and degree

1-map f : X → P with f∗ : π1(X)→∼= π1(P ).

Problem 2.5 Construct examples of X that admit several minimal Poincaré 4-complexes Pi and degree 1-

maps fi : X → Pi satisfying fi∗ : π1(X)→∼= →π1(Pi) .

The next proposition completes the description of the correspondence between stably free Λ-modules

with nondegenerate Hermitian forms and degree 1-maps of Poincaré 4-complexes. However, we have to assume

that π1(X) does not contain elements of order 2.

Proposition 2.6 Let X be a Poincaré 4-complex and G a stably free Λ-module with nondegenerate Hermitian

form. Then there are a Poincaré 4-complex Y and a degree 1-map f : Y → X such that K2(f,Λ) ∼= G , λY

restricted to K2(f,Λ) coincides with λ on G under the isomorphism. Moreover, f∗ : π1(Y ) → π1(X) is an

isomorphism.
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Proof Let first G be free of rank m . The proof procedes as in [7]. Here we begin with Y ′ = X#(#m
1 CP 2)

and the Hermitian form λ , and continue as in Section 3 of [7] to construct f : Y → X . If G is stably free, that

is, G ⊕ H ∼= Λm , where H = Λt , we begin with Y ′ = X#(#m
1 CP 2) and the Hermitian form λ′ =

(
λ 0
0 1

)
on G ⊕ H , and construct a degree 1-map f

′′
: Y

′′ → X with K2(f
′′
,Λ) = G ⊕ H , and λY ′′ restricted to

K2(f
′′
,Λ) is equal to λ′ . Now H ⊂ H2(Y

′′
,Λ) is Λ-free, and λY ′′ restricted to H is non-singular. As in the

proof of Proposition 2.4 we can construct a degree 1-map f : Y → X with K2(f,Λ) ∼= G . 2

3. A general result on the uniqueness of strongly minimal models

Let π be a finitely presented group. Suppose we are given strongly minimal Poincaré 4-complexes P and P ′

with π1(P ) ∼= π ∼= π1(P
′). For simplicity, we denote π′

1 = π1(P
′), π1 = π1(P ), Λ′ = Z[π′

1] , and Λ = Z[π1] .
Then we have

p∗ : H2(Bπ1,Λ) −−−−→∼=
H2(P,Λ)

p
′∗ : H2(Bπ′

1,Λ
′) −−−−→∼=

H2(P ′,Λ′)

where p : P → Bπ1 and p′ : P ′ → Bπ′
1 are the classifying maps. We denote by χ : D → Bπ1 and χ′ : D′ → Bπ′

1

the 2-stage Postnikov fibrations with fibers K(π2(P ), 2) and K(π2(P
′), 2), respectively. Spaces D and D′ are

obtained from P and P ′ , respectively, by adding cells of dimension ≥ 4 so that πq(D) ∼= 0 ∼= πq(D
′) for

every q ≥ 3, and the inclusions f : P → D and f ′ : P ′ → D′ induce isomorphisms f∗ : πi(P ) → πi(D) and

f ′∗ : πi(P
′)→ πi(D

′), for every i < 3. We shall often write it as diagrams

P
f−−−−→ D∥∥∥ yχ

P
p−−−−→ Bπ1

P ′ f ′

−−−−→ D′∥∥∥ yχ′

P ′ p′−−−−→ Bπ′
1.

We choose an isomorphism α : π1 → π′
1 . It determines an isomorphism Λ → Λ′ of rings. For the sake

of simplicity we shall identify Λ′ with Λ via this isomorphism when we use it as coefficients in (co)homology

groups. We define

β : H2(P,Λ)→ H2(P
′,Λ)

by the following diagram

H2(Bπ1,Λ)
p∗−−−−→∼=

H2(P,Λ)
∩[P ]−−−−→∼=

H2(P,Λ)

(Bα)∗
x yβ

H2(Bπ′
1,Λ)

p
′∗

−−−−→∼=
H2(P ′,Λ)

∩[P ′]−−−−→∼=
H2(P

′,Λ).

(3.1)

The next diagram explains the compatibility of the k -invariants k3P ∈ H3(Bπ1, π2(P )) and k
3
P ′ ∈ H3(Bπ′

1, π2(P
′)) :
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HomΛ(H2(P,Λ), H2(P,Λ)) −−−−→ H3(Bπ1,H2(P,Λ))yβ#

yβ#

HomΛ(H2(P,Λ),H2(P
′,Λ)) −−−−→ H3(Bπ1,H2(P

′,Λ))xβ#

x(Bα)∗

HomΛ(H2(P
′,Λ), H2(P

′,Λ)) −−−−→ H3(Bπ′
1,H2(P

′,Λ))

(3.2)

where the top (resp. bottom) horizontal map sends Id into k3P (resp. k3P ′ ), and on the left (resp. right) vertical

side we have β#(Id) = β = β#(Id) (resp. β#(k
3
P ) = (Bα)∗(k3P ′)). Therefore, there is a homotopy equivalence

h : D → D′ such that the diagram

D
h−−−−→ D′yχ y

Bπ1
Bα−−−−→ Bπ′

1

commutes (up to homotopy). Furthermore, Diagram (3.1) can be completed to the following diagram

H2(D,Λ)
χ∗

←−−−−∼=
H2(Bπ1,Λ)

p∗−−−−→ H2(P,Λ)
∩[P ]−−−−→ H2(P,Λ)

f∗−−−−→ H2(D,Λ)

h∗

x x(Bα)∗ β

y yh∗

H2(D′,Λ)
χ
′∗

←−−−−∼=
H2(Bπ′

1,Λ)
p
′∗

−−−−→ H2(P ′,Λ)
∩[P ′]−−−−→ H2(P

′,Λ)
f ′
∗−−−−→ H2(D

′,Λ)

(3.3)

where

H2(D,Λ)
f∗

−−−−→ H2(P,Λ)∥∥∥ xp∗
H2(D,Λ)

χ∗

←−−−−∼=
H2(Bπ1,Λ)

H2(D′,Λ)
f
′∗

−−−−→ H2(P ′,Λ)∥∥∥ xp′∗
H2(D′,Λ)

χ
′∗

←−−−−∼=
H2(Bπ′

1,Λ).

Note that all the maps are Λ-isomorphisms.

At this point it is convenient to introduce the map

G : H4(D,Z)→ HomΛ(H
2(D,Λ), H2(D,Λ))

using the equivariant cap-product construction, and similarly G′ for D′ . From Diagram (3.1) we summarize

as follows:

Corollary 3.1 Diagram (3.1) commutes, and the composed horizontal homomorphisms (from left to right) are

G(f∗[P ]) and G′(f ′∗[P
′]) .

We again invoke Wall’s theorem (Lemma 2.3) and identify

P = K ∪φ D4 P ′ = K ′ ∪φ′ D
′4
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where K and K ′ are 3-complexes, and φ : S3 → K and φ′ : S3 → K ′ are the attaching maps of the 4-cells D4

and D
′4 , respectively. Hence, (D,K) and (D′,K ′ ) are relative CW–complexes with cells in dimensions k ≥ 4,

that is, D(3) = K and D′(3) = K ′ . Approximate h : D → D′ by a cellular map (again denoted by h). Then

h(3) = h|K : K → K ′

and

D
h−−−−→ D′

i

x xi′
K

h(3)

−−−−→ K ′

commutes, where i : K ⊂ D and i′ : K ′ ⊂ D′ are the inclusion maps.

Proposition 3.2 (a) h(3) : K → K ′ extends to ϕ : P → P ′ if h∗f∗[P ] = ℓf ′∗[P
′] ∈ H4(D

′,Z) for some ℓ ∈ Z ;

and

(b) If f ′∗ : H4(P
′,Z) → H4(D

′,Z) is injective and ℓ = ±1 , then ϕ is of degree ±1 ; hence, it is a

homotopy equivalence.

Proof (a) The obstruction to extending h(3) belongs to

H4(P, π3(P
′)) ∼= H0(P, π3(P

′)) ∼= Z⊗Λ π3(P
′) ∼= Z⊗Λ π4(D

′, P ′)

∼= Z⊗Λ H4(D
′, P ′,Λ) = H4(D

′, P ′,Z)

(one applies among others: π3(D
′) = π3(D) = 0 and the Hurewicz theorem). The obstruction in Z⊗Λ π3(P

′)

is given by the image of [h(3) ◦ φ] ∈ π3(K ′) under the composite map

π3(K
′) −−−−→ π3(P

′) −−−−→ π3(P
′)⊗Λ Z.

The obstruction in H4(D
′, P ′,Z) is given by the induced map of the composition

(D4, S3) φ−−−−→ (P,K) ⊂ (D,K)
h−−−−→ (D′,K ′) ⊂ (D′, P ′)

and hence it is the image of [P ] ∈ H4(P,Z) under the composition on the bottom horizontal row in the following

diagram:

H4(P,K,Z) −−−−→ H4(D,K,Z)
h∗−−−−→ H4(D

′,K ′,Z) H4(D
′,K ′,Z)

∼=
x x x y

H4(P,Z)
f∗−−−−→ H4(D,Z)

h∗−−−−→ H4(D
′,Z) −−−−→ H4(D

′, P ′,Z).

(3.4)

Hence, the obstruction vanishes if and only if h∗f∗[P ] = ℓf ′∗[P
′] for some ℓ ∈ Z .

543



CAVICCHIOLI et al./Turk J Math

(b) If ϕ : P → P ′ exists, then it is such that the diagram

H4(P,Z)
ϕ∗−−−−→ H4(P

′,Z)
f ′
∗−−−−→ H4(D

′,Z)y∼=
y∼=

∥∥∥
H4(P,K,Z)

ϕ∗−−−−→ H4(P
′,K ′,Z) H4(D

′,Z)yf∗ yf ′
∗

∥∥∥
H4(D,K,Z)

h∗−−−−→ H4(D
′,K ′,Z) ←−−−− H4(D

′,Z)

commutes. Hence, f ′∗ϕ∗[P ] = h∗f∗[P ] = ±f ′∗[P ′] implies ϕ∗[P ] = ±[P ′] since f ′∗ is injective. Using the Poincaré

duality one obtains

ϕ∗ : H∗(P,Λ) −−−−→∼=
H∗(P

′,Λ).

Because ϕ∗ : π1(P ) → π1(P
′) is an isomorphism, the map ϕ : P → P ′ is a homotopy equivalence by the

Hurewicz–Whitehead theorem. 2

Proof of Theorem 1.3 We have a commutative diagram (up to homotopy)

D D
h−−−−→ D′ D′

f

x y y xf ′

P
p−−−−→ Bπ1

Bα−−−−→ Bπ′
1

p′←−−−− P ′

where h : D → D′ is a homotopy equivalence. Consider the diagram

H4(D,Z)
G−−−−→ HomΛ(H

2(D,Λ), H2(D,Λ))

h∗

y yT
H4(D

′,Z) G′

−−−−→ HomΛ(H
2(D′,Λ), H2(D

′,Λ))

(3.5)

where ∩z is the cap product with z ∈ H4(D,Z). Similarly, ∩′ . The map T is defined by T (ξ) = h∗ ◦ ξ ◦ h∗ .
Note that T is an isomorphism. 2

Lemma 3.3 Diagram (3.5) commutes.

Proof Given x ∈ H4(D,Z) and u′ ∈ H2(D′,Z), then we have

TG(x)(u′) = h∗(h
∗(u′) ∩ x) = u′ ∩ h∗(x) = G′h∗(x)

as required. 2

Now consider the diagram

H4(P,Z)
f∗−−−−→ H4(D,Z)

G−−−−→ HomΛ(H
2(D,Λ), H2(D,Λ))yh∗

yT
H4(P

′,Z)
f ′
∗−−−−→ H4(D

′,Z) G′

−−−−→ HomΛ(H
2(D′,Λ), H2(D

′,Λ)).
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It follows from Corollary 3.1 that

TGf∗[P ] = G′f ′∗[P
′],

and from TG = G′h∗ we get G′h∗f∗[P ] = G′f ′∗[P
′] ; hence, h∗f∗[P ] = f ′∗[P

′] . So Proposition 3.2 (a) holds with

ℓ = 1.

A similar diagram as (5) holds for the space P ′ :

H4(P
′,Z) G′′

−−−−→ HomΛ(H
2(P ′,Λ), H2(P

′,Λ)) ∼= HomΛ(H2(P
′,Λ), H2(P

′,Λ))

f ′
∗

y yT
H4(D

′,Z) G′

−−−−→ HomΛ(H
2(D′,Λ), H2(D

′,Λ))

with T (ξ) = f∗ ◦ ξ ◦ f∗ . Since T is an isomorphism, f ′∗ is injective if and only if the map G′′ is injective.

Now observe that under the maps the generator [P ′] goes to Id. The upper right isomorphism is induced by

Poincaré duality. Hence G′′ is injective if and only if Id is not of finite order. Now H2(P
′,Λ) ∼= H2(Bπ′

1,Λ)
∼=

H2(Bπ1,Λ). The claim now follows from Proposition 3.2(b).

4. Construction of strongly minimal models

The principal examples of fundamental groups π admitting a strongly minimal model P are discussed in [5].

These are groups of geometric dimension equal to 2, i.e. Bπ is a 2-dimensional aspherical complex. It is easy

to see that the boundary of a regular neighborhood N of an embedding Bπ ⊂ R5 is a strongly minimal model

for π (see [5]). Here we show that the map G is not injective, and hence we cannot expect uniqueness up to

homotopy equivalence. In fact, we are going to classify all strongly minimal models fixing π by elements of the

kernel of G . Note that all k -invariants vanish since Bπ is a 2-complex. We assume H4(P,Λ) ∼= 0, i.e. that π

is infinite (which holds for the known examples).

4.1. Computation of KerG

We fix π as above, and for convenience also one strongly minimal model P , say P = ∂N . We have the following

2-stage Postnikov system.

D
χ−−−−→ Bπ

f

x xp
P P

Lemma 4.1 There is an exact sequence

0 −−−−→ Γ(π2)⊗Λ Z −−−−→ H4(D,Z) −−−−→ H2(Bπ,H2(D,Λ)) −−−−→ 0

where π2 = π2(P ) ∼= π2(D).

Proof This follows from the spectral sequence

E2
pq = Hp(Bπ,Hq(D,Λ)) =⇒

p+q=n
Hn(D,Z).
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Taking n = 4, we have E2
pq = E∞

pq = [FpH4(D,Z)]/[Fp−1H4(D,Z)] with filtration

0 ∼= F−1H4 ⊂ F0H4 ⊂ F1H4 ⊂ F2H4 ⊂ F3H4 ⊂ F4H4(D,Z) = H4(D,Z).

The result follows since E2
22 = H2(Bπ,H2(D,Λ)), E

2
04 = H0(Bπ,H4(D,Λ)) = H4(D,Λ) ⊗Λ Z , and E2

pq
∼= 0

else for p+ q = 4. 2

Remark Similarly one gets the exact sequence

0 −−−−→ H1(P,H3(P,Λ)) −−−−→ H4(P,Z) −−−−→ H2(Bπ,H2(P,Λ)) −−−−→ 0.

In particular, H2(Bπ,H2(D,Λ)) is a quotient of Z because H2(D,Λ) ∼= H2(P,Λ) and H4(P,Z) ∼= Z .

Lemma 4.2 The kernel of

G : H4(D,Z)→ HomΛ−Λ(H
2(D,Λ), H2(D,Λ))

is Γ(π2)⊗Λ Z .

Proof The map χ∗ : H2(Bπ,Λ)→ H2(D,Λ) is an isomorphism, and H2(Bπ,Λ) ∼= [HomΛ(C2(B̃π),Λ)]/[Im δ1] ,

where

δ1 : HomΛ(C1(B̃π),Λ)→ HomΛ(C2(B̃π),Λ)

is the co-boundary map. The composition

HomΛ−Λ(H
2(Bπ,Λ), H2(D,Λ)) −−−−→ HomΛ(HomΛ(C2(B̃π),Λ),H2(D,Λ))

∼=
x

HomΛ(H
2(D,Λ),H2(D,Λ))

is obviously injective. Because C2(B̃π) is Λ-free, there is a canonical isomorphism

HomΛ−Λ(HomΛ(C2(B̃π),Λ),H2(D,Λ)) ∼= C2(B̃π)⊗Λ H2(D,Λ).

Composing all these maps gives an injective map

HomΛ−Λ(H
2(D,Λ), H2(D,Λ))→ C2(B̃π)⊗Λ H2(D,Λ).

The composition with G gives a map H4(D,Z)→ C2(B̃π)⊗ΛH2(D,Λ) with image of the 2-cycle subgroup of

the complex C∗(B̃π)⊗Λ H2(D,Λ), i.e. H2(Bπ,H2(D,Λ)). This is the map H4(D,Z)→ H2(Bπ,H2(D,Λ)) of

Lemma 4.1. In other words, we have the following commutative diagram:

HomΛ−Λ(H
2(D,Λ), H2(D,Λ)) −−−−→ H2(Bπ,H2(D,Λ))

G

x x
H4(D,Z) H4(D,Z)

where the horizontal map is injective. The result now follows from Lemma 4.1. 2
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Supplement to Lemma 4.1. If P and P ′ are 2 strongly minimal models for π , let

P
f−−−−→ D∥∥∥ yχ

P −−−−→
p

Bπ

P
f ′

−−−−→ D′∥∥∥ yχ′

P ′ −−−−→
p′

Bπ

be the 2 associated 2-stage Postnikov systems. Let h : D → D′ be the homotopy equivalence constructed in

Section 3. Then the diagram

H4(D,Z) −−−−→ H2(Bπ,H2(D,Λ))

h∗

y y
H4(D

′,Z) −−−−→ H2(Bπ,H2(D
′,Λ))

commutes. The right vertical map is induced by h∗ : H2(D,Λ)→ H2(D
′,Λ).

4.2. Construction of strongly minimal models

We choose a strongly minimal model P for π . By Wall’s theorem [13], P is homotopy equivalent to K ∪φ1 D
4 ,

where K is a 3-complex, and φ1 : S3 → K is the attaching map of the only 4-cell. This representation is

unique, i.e. given a homotopy equivalence

K1 ∪φ1 D
4 h−−−−→ K2 ∪φ2 D

4

there is a homotopy equivalence of pairs (K1, φ1(S3)) → (K2, φ2(S3)) (see [13, p.222]). We simply write

P = K ∪φ1 D
4 and change the attaching map [φ1] ∈ π3(K) by an element [φ] ∈ Γ(π2), i.e. [φ] ∈ Γ(π2) =

Im(π3(K
(2)) → π3(K)), and we consider X = K ∪φ2 D

4 , where φ2 = φ1 + φ and φ : S3 → K(2) . Let

q : X → Bπ be the classifying map. It follows that q∗ : H2(Bπ,Λ) → H2(X,Λ) is an isomorphism. If X is a

Poincaré 4-complex, then X is a strongly minimal model for π .

4.3. Proof of the Poincaré duality

(I) We have an isomorphism π4(X,K) → H4(X,K,Λ) ∼= Λ. Let us consider the diagram of Whitehead’s
sequences:

0 0y y
π4(X,K)

∼=−−−−→ H4(X,K,Λ)y y
0 −−−−→ Γ(π2) −−−−→ π3(K) −−−−→ H3(K,Λ) −−−−→ 0∥∥∥ y y

Γ(π2) −−−−→ π3(X) −−−−→ H3(X,Λ) −−−−→ 0y y
0 0
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One has a similar diagram if we replace X by P . Under the Hurewicz map, [φ1] and [φ2] go to the same

element in H3(K,Λ), which coincides with the images of the generators of H4(P,K,Λ) resp. H4(X,K,Λ)

under the connecting homomorphism, and hence H3(X,Λ) ∼= H3(P,Λ). Moreover, this gives us the following:

Lemma 4.3 H4(X,Z) ∼= Z

Proof Tensoring with ⊗ΛZ the upper part of the above diagram gives

π4(X,K)⊗Λ Z −−−−→∼=
H4(X,K,Λ)⊗Λ Z −−−−→∼=

H4(X,K,Z)y y y
Γ(π2)⊗Λ Z −−−−→ π3(K)⊗Λ Z −−−−→ H3(K,Λ)⊗Λ Z −−−−→ H3(K,Z)

and similarly for X replaced by P (we do not claim the exactness of the lower row). Now H4(P,K,Z) →
H3(K,Z) is the zero map. By the argument above, [φ1] ⊗Λ 1 and [φ2] ⊗Λ 1 map to the same element in

H3(K,Λ) ⊗Λ Z , and hence the generators of H4(X,K,Z) resp. H4(P,K,Z) map to the same element in

H3(K,Z) under the connecting homomorphisms. Thus, H4(X,K,Z) → H3(K,Z) is the zero map. Therefore,

there is an isomorphism H4(X,Z)→ H4(X,K,Z) ∼= Z . 2

Let [X] ∈ H4(X,Z) be a generator. We have to study

∩[X] : Hp(X,Λ)→ H4−p(X,Λ).

To examine the cases p = 1 and p = 3, we introduce an auxiliary space Y = K ∪φ1,φ {D4, D4} , obtained from

K by attaching two 4-cells with attaching maps φ1 and φ . Note that Y = P ∪φ D4 .

(II) Case p = 1

Let i : P → Y be the inclusion, and j : X → Y be the map induced by K ⊂ Y and

φ2 = φ1 + φ : S3 −−−−→ S3 ∨ S3 φ1∨φ−−−−→ K.

We have the following maps of pairs:

(D4, S3) ī◦φ̄1−−−−→ (Y,K)

φ̄1

y xī
(P,K) (P,K)

(D4, S3) j̄◦φ̄2−−−−→ (Y,K)

φ̄2

y xj̄
(X,K) (X,K)

and φ̄ : (D4, S3) → (Y,K). Obviously, φ̄2 = φ̄1 + φ̄ : (D4, S3) → (Y,K) is the 4-cell [φ1] “slided” over [φ] .

Since [φ̄] ∈ Γ(π2), φ̄ factors as follows:

(D4, S3) k̄◦φ̄−−−−→ (Y,K)

φ̄

y xk̄
(K(2) ∪φ D4,K(2)) (K(2) ∪φ D4,K(2))
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From this one sees that j̄∗[φ̄2]− ī∗[φ̄1] belongs to

Im(H4(K
(2) ∪φ D4,K(2))→ H4(Y,K)).

The diagram

H4(X)
j∗−−−−→ H4(Y )

i∗←−−−− H4(P )

∼=
y y y∼=

H4(X,K)
j̄∗−−−−→ H4(Y,K)

ī∗←−−−− H4(P,K)

as well as injectivity of H4(Y )→ H4(Y,K) and the isomorphism

H4(K
(2) ∪φ D4)→ H4(K

(2) ∪φ D4,K(2))

prove the following:

Lemma 4.4 j∗[X]− i∗[P ] belongs to Im(H4(K
(2) ∪φ D4)→ H4(Y )) .

Corollary 4.5 Taking cap-products with i∗[P ] and j∗[X] : H1(Y,Λ)→ H3(Y,Λ) gives the same map.

Proof Let θ ∈ H4(K
(2) ∪φ D4) map to j∗[X]− i∗[P ] . Then the diagram

H1(Y,Λ)
∩j∗[X]−∩i∗[P ]−−−−−−−−−−→ H3(Y,Λ)

∼=
y x

H1(K(2) ∪φ D4,Λ)
∩θ−−−−→ H3(K

(2) ∪φ D4,Λ) ∼= 0

commutes. 2

Lemma 4.6 i∗ : H3(P,Λ)→ H3(Y,Λ) is an isomorphism.

Proof Since Y = P ∪φ D4 , i∗ is surjective. Let us consider the diagram

H4(K
(2) ∪φ D4,K(2),Λ) −−−−→ H4(Y, P,Λ) −−−−→ H3(P,Λ)

∼=
x ∼=

x x
H4(K

(2) ∪φ D4,Λ) −−−−→∼=
H4(K

(2) ∪φ D4,K(2),Λ) −−−−→ H3(K
(2) ∪φ D4,Λ),

which shows that H4(Y, P,Λ)→ H3(P,Λ) is the zero map. 2

Lemma 4.7 j∗ : H3(X,Λ)→ H3(Y,Λ) is an isomorphism.
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Proof The map j∗ is surjective because Y (3) = K = X(3) . We identify H4(Y,K,Λ) ≡ Λ ⊕ Λ according to

the diagram

0 0 0y y x
H4(D

4, S3,Λ) φ̄1∗−−−−→∼=
H4(P,K,Λ) H4(Y,Λ) H4(Y,X,Λ)

ī∗

y y x
H4(Y,K,Λ) H4(Y,K,Λ) H4(Y,K,Λ)

k̄∗φ̄∗←−−−− H4(D
4, S3,Λ)

j̄∗

x y y∼=

H4(D
4, S3,Λ) φ̄1∗+φ̄∗−−−−−→∼=

H4(X,K,Λ) H4(Y, P,Λ) H4(Y, P,Λ)y
0

where ī∗[φ̄1] = (1, 0) ∈ Λ⊕ Λ and k̄∗[φ̄] = (0, 1) ∈ Λ⊕ Λ. The map k̄∗φ̄∗ defines a splitting of H4(Y, P,Λ)→
H4(Y,K,Λ). Since: H4(Y,Λ)→ H4(Y, P,Λ) is an isomorphism (here we use our assumption H4(P,Λ) ∼= 0 and

Lemma 4.6), the image of H4(Y,Λ) in H4(Y,K,Λ) ≡ Λ ⊕ Λ is generated by (0, 1). Thus, we can write the

following diagram.

H4(Y,Λ)y
Λ −−−−→ Λ⊕ Λ −−−−→ (Λ⊕ Λ)/Λ(1, 1)∥∥∥ ∥∥∥
Λ −−−−→ Λ⊕ Λ −−−−→ Λ

The map j̄∗ corresponds to Λ → Λ ⊕ Λ defined by 1 → (1, 1). Hence, the map H4(Y,Λ) → H4(Y,X,Λ)

corresponds to the isomorphism Λ→ (Λ⊕Λ)/Λ(1, 1) defined by 1→ [(0, 1)] , the class of (0, 1) in the quotient.

Therefore, we have an isomorphism H3(X,Λ)→ H3(Y,Λ). 2

Lemma 4.8 The map ∩[X] : H1(X,Λ)→ H3(X,Λ) is an isomorphism.

Proof This follows from the diagram

H1(X,Λ)
∩[X]−−−−→ H3(X,Λ)

j∗
x∼= ∼=

yj∗
H1(Y,Λ)

∩j∗[X]−−−−→ H3(Y,Λ)

i∗
y∼= ∼=

xi∗
H1(P,Λ)

∩[P ]−−−−→∼=
H3(P,Λ)

and ∩j∗[X] = ∩i∗[P ] : H1(Y,Λ)→ H3(Y,Λ). 2
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(III) Case p = 3

Now we look N at the case ∩[X] : H3(X,Λ)→ H1(X,Λ) ∼= 0, i.e. we have to show that H3(X,Λ) ∼= 0.

Note that the sequence

0 −−−−→ H3(K,Λ) −−−−→ H4(P,K,Λ) −−−−→ H4(P,Λ) −−−−→ 0

is exact. Since H4(P,Λ) ∼= H0(P,Λ) ∼= Z , this sequence coincides with

0 −−−−→ I(Λ) −−−−→ Λ
ϵ−−−−→ Z −−−−→ 0

where ϵ is the augmentation, and I(Λ) = Ker ϵ . Let us consider the following diagram.

H3(K,Λ) −−−−→ H4(Y, P,Λ)
φ̄∗

−−−−→∼=
H4(D4,S3,Λ)∥∥∥ x

H3(K,Λ) −−−−→ H4(Y,K,Λ)
j̄∗−−−−→ H4(X,K,Λ)∥∥∥ yī∗

H3(K,Λ) −−−−→ H4(P,K,Λ)
φ̄∗

1−−−−→∼=
H4(D4,S3,Λ)

The 2 vertical maps split H4(Y,K,Λ) ∼= Λ⊕ Λ so that

ī∗ : H4(Y,K,Λ) ∼= Λ⊕ Λ→ Λ ∼= H4(P,K,Λ)

projects onto the first component and H4(Y,K,Λ) → H4(Y, P,Λ) ∼= Λ projects onto the second component.

Since the composition H3(K,Λ) → H4(Y, P,Λ) is the zero map, we can identify the image of H3(K,Λ) →
H4(Y,K,Λ) with (I(Λ), 0) ⊂ Λ⊕Λ. The map j̄∗ is the sum Λ⊕Λ→ Λ since the generator of H4(X,K,Λ) ∼= Λ

maps under

φ̄∗
1 + φ̄∗ : H4(X,K,Λ)→ H4(D4, S3,Λ) ∼= Λ

to a generator. Hence, the image of

H3(K,Λ) −−−−→ H4(Y,K,Λ)
j̄∗−−−−→ H4(X,K,Λ)

is I(Λ) ⊂ Λ, i.e. H3(K,Λ) → H4(X,K,Λ) is injective. The long exact sequence of the pair (X,K) implies

H3(X,Λ) ∼= 0.

(IV) Case p = 4

Remark The last argument also implies H4(X,Λ) ∼= Λ/I(Λ) ∼= Z . We have proven the first part of the

following:

Lemma 4.9 H3(X,Λ) ∼= 0 , H4(X,Λ) ∼= Z , and ∩[X] : H4(X,Λ)→ H0(X,Λ) is an isomorphism.
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Proof The second part follows from the well-known property of cap-products indicated in the following

diagram:

Z ∼= H4(X,Λ)
∩[X]−−−−→ H0(X,Λ) ∼= Z

ϵ

x xϵ
Λ ∼= H4(X,K,Λ) = HomΛ(C4(X̃, K̃),Λ)

A−−−−→∼=
C0(X̃) ∼= Λ

Here A(α) = α(1), 1 ∈ C4(X̃, K̃) being the generator. Observe that H0(X,Λ) = C0(X̃)/∂1C1(X̃), so ϵ corre-

sponds to the canonical map C0(X̃)→ C0(X̃)/∂1C1(X̃) (we may assume that X has one 0-cell). 2

(V) Case p = 2

Recall the 2-stage Postnikov system for P :

P
f−−−−→ D∥∥∥ yχ

P
p−−−−→ Bπ.

Let f0 = f |K . Given any ψ : S3 → K , a canonical map g : K ∪ψ D4 → D can be constructed as follows: Let

H : S3 × I → D be the zero homotopy of the composition f0 ◦ ψ : S3 → D . It factors over

D4 = (S3 × I)/S3 × {1} Ĥ−−−−→ D.

Then g = f0∪Ĥ : K∪ψD4 → D . Since πq(D) ∼= 0 for q ≥ 3, g is unique up to homotopy. In our case, we have

ψ = φ2 = φ1 + φ with [φ] ∈ Γ(π2), where φ : S3 → K(2) , i.e. we need the zero homotopy of the composition

S3 −−−−→ S3 ∨ S3 φ1∨φ−−−−→ K ∨K(2) f0∨f0−−−−→ D ∨D −−−−→ D.

We take the wedge of the zero homotopies H : S3 × I → D for f0 ◦ φ1 and H0 : S3 × I → D for f0 ◦ φ . This

gives us the following:

Lemma 4.10 Let g0 = f0 ∪ Ĥ0 : K(2) ∪φ D4 → D denote the canonical extension and θ ∈ H4(K
(2) ∪φ D4,Z)

the canonical generator. Then we have

g∗[X] = f∗[P ] + (g0)∗(θ).

Corollary 4.11 (g0)∗(θ) ∈ KerG ⊂ H4(D,Z) . In particular,

∩f∗[P ] = ∩g∗[X] : H2(D,Λ)→ H2(D,Λ);

that is, the map ∩[X] : H2(X,Λ)→ H2(X,Λ) is an isomorphism.

Proof The above spectral sequence applied to K(2) ∪φ D4 gives

0 −−−−→ Z⊗Λ H4(K
(2) ∪φ D4,Λ) −−−−→ H4(K

(2) ∪φ D4,Z)

−−−−→ H2(Bπ,H2(K
(2) ∪φ D4,Λ)) −−−−→ 0.

552



CAVICCHIOLI et al./Turk J Math

The first map is an isomorphism, so H2(Bπ,H2(K
(2) ∪φ D4,Λ)) ∼= 0. Comparison with the exact sequence for

D :

0 −−−−→ Z⊗Λ H4(K
(2) ∪φ D4,Λ) −−−−→ H4(K

(2) ∪φ D4,Z) −−−−→ 0y(g0)∗

y
G : H4(D,Z) −−−−→ HomΛ(H

2(D,Λ),H2(D,Λ))

gives the result. 2

Theorem 4.12 Suppose Bπ is homotopy equivalent to a 2-dimensional complex. Let π2 = H2(Bπ,Λ) . Then,

if we fix one model P , we obtain all models by the above construction.

Proof Fixing P , we constructed for any [φ] ∈ π2 a strongly minimal model. Conversely, let X = K ∪ψ D4

be a minimal model, where ψ : S3 → K is the attaching map. The map f : X → D into the 2-stage Postnikov

space D is given by the zero homotopy of

S3 ψ−−−−→ K
f0−−−−→ D;

that is,

S3 × I H−−−−→ Dy xĤ
D4 = (S3 × I)/S3 × {1} D4

with f = f0 ∪ Ĥ . Let us consider Ĥ : (D4, S3)→ (D,K) and let

ψ̄ : (D4, S3)→ (X,K)

be the top cell. The diagram

H4(X,Z) −−−−→∼=
H4(X,K,Z)

ψ̄←−−−−∼=
H4(D

4, S3,Z)

f∗

y ∥∥∥
H4(D,Z) −−−−→ H4(D,K,Z)

Ĥ∗←−−−− H4(D
4, S3,Z)

shows that f∗[X] depends only on ψ ⊗Λ 1 ∈ π3(K) ⊗Λ Z . Note that H4(D,Z) → H4(D,K,Z) is injective.

This also demonstrates that the above construction only depends on ξ , not on the choice of [φ] ∈ Γ(π2) with

[φ]⊗Λ 1 = ξ .

It remains to be shown that any minimal model X ′ is homotopy equivalent to some model X obtained

by the above construction. Write

X ′ = K ′ ∪ψ D4 f ′

−−−−→ D′,

where D′ is the 2-stage Postnikov space, K ′ is a 3-dimensional complex, and ψ : S3 → K ′ is the attaching

map. Recall our standard model:

P = K ∪φ1 D
4 f−−−−→ D.
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In Section 3 we constructed a homotopy equivalence h : D′ → D sending K ′ → K . Lemma 3.3 implies

h∗f
′
∗[X

′]− f∗[P ] ∈ KerG = Γ(π2)⊗Λ Z.

By Lemma 4.1 of Section 4 choose [φ] ∈ Γ(π2) so that [φ]⊗Λ 1 = h∗f
′
∗[X

′]−f∗[P ] , and φ : S3 → K(2) ⊂ K . As

in Part V of Section 4, we build X = K ∪φ2 D
4 , with φ2 = φ1 +φ , and g : X → D . Let g0 : K(2) ∪φD4 → D

be the canonically defined map from the zero homotopy of S3 → K(2) → D . Then we have (use Lemma 4.10)

g∗[X] = f∗[P ] + (g0)∗(θ), where θ ∈ H4(K
(2) ∪φD4,Z) is a generator. But (g0)∗(θ) = h∗f

′
∗[X

′]− f∗[P ] , as can
be seen from the following diagram:

0 −−−−→ H4(K
(2) ∪φ D4,Λ)⊗Λ Z −−−−→∼=

H4(K
(2) ∪φ D4,Z)

(g0)∗⊗Λ1

y y(g0)∗

0 −−−−→ Γ(π2)⊗Λ Z = H4(D,Λ)⊗Λ Z −−−−→ H4(D,Z) −−−−→ H2(Bπ,H2(D,Λ)) −−−−→ 0.

Therefore, g∗[X] = h∗f
′
∗[X

′] . By Proposition 3.2 and the proof of Theorem 1.3 (where we have to use that π2

is not a torsion group) we obtain a homotopy equivalence X ′ → X . 2

5. Non-uniqueness of strongly minimal models: examples

In Section 4 we constructed minimal models for all elements of Γ(π2). In this section we address the question of

uniqueness up to homotopy equivalence. Recall that for 2 models X and X ′ we have a homotopy equivalence

between the 2-stage Postnikov systems (assuming that the first k -invariants are compatible). It is deduced

from Diagram (3.2) in Section 3, i.e. we have the diagram

X
f−−−−→ D

h−−−−→ D′ f ′

←−−−− X ′y y
Bπ1 −−−−→ Bπ1.

If X = K ∪φ D4 and X ′ = K ′ ∪ψ D4 , then D and D′ are constructed from the 3-complexes K and K ′ ,

respectively, by adjoining cells of dimension greater or equal to 4. Proposition 3.2 defines an obstruction

to extending the restriction h(3) : K → K ′ to a homotopy equivalence X → X ′ . Also, if this obstruction

does not vanish, it could be that X is homotopy equivalent to X ′ . We use h to identify D → Bπ1 with

D′ → Bπ1 . All this makes sense if Bπ1 is an aspherical 2-complex. From now on we shall consider only

Baumslag–Solitar groups B(k), k ̸= 0, and aspherical surface fundamental groups. For any such model X

we obtain H3(X,Λ) ∼= H1(X,Λ) ∼= H1(Bπ,Λ) ∼= 0 by Lemma 6.2 of [5] (here π = π1 , as usual). Since

H4(X,Λ) ∼= 0, we get an isomorphism from H4(X,K,Λ) onto H3(K,Λ), i.e. H3(K,Λ) ∼= Λ. Furthermore,

the canonical generator of H4(X,K,Λ), given by the attaching map φ , defines a generator of H3(K,Λ) and a

splitting sX : H3(K,Λ)→ π3(K) of the Whitehead sequence given by the following diagram:

0 −−−−→ Γ(π2)
i∗−−−−→ π3(K)

H−−−−→ H3(K,Λ) −−−−→ 0x x∼=

π4(X,K)
∼=−−−−→ H4(X,K,Λ).
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Then sX defines a splitting tX : π3(K)→ Γ(π2). From the Whitehead sequence of X , we have an isomorphism

from Γ(π2) onto π3(X), and tX can also be defined by the following diagram:

Γ(π2)
tX←−−−− π3(K)

∼=
y yj∗

π3(X) π3(X).

Conversely, tX defines sX by the well-known procedure using the projection operator i∗ ◦ tX . If X = K ∪φD4

and X ′ = K∪ψD4 are homotopy equivalent models, there is a homotopy equivalence of pairs (see [13], Theorem

2.4)

g : (K,φ(S3))→ (K,ψ(S3))

inducing the diagrams

0 −−−−→ Γ(π2)
i∗−−−−→ π3(K)

j∗−−−−→ π3(X)

g∗

y g∗

y g∗

y
0 −−−−→ Γ(π2)

i′∗−−−−→ π3(K)
j′∗−−−−→ π3(X

′)

and

0 −−−−→ Γ(π2)
i∗−−−−→ π3(K)

H−−−−→ H3(K,Λ) −−−−→ 0

g∗

y g∗

y g∗

y
0 −−−−→ Γ(π2)

i′∗−−−−→ π3(K)
H−−−−→ H3(K,Λ) −−−−→ 0.

Hence, all splittings tX , tX′ , sX , and sX′ commute with the induced homomorphisms g∗ . In the following we

fix one model X = K∪φD4 . We are going to construct models X ′ = K∪ψD4 that are not homotopy equivalent

to X . Let us denote by 1 ∈ H3(K,Λ) the generator defined by X , i.e. sX(1) = [φ] . Let θ : Γ(π2)→ Γ(π2) be

an isomorphism. Then θ ◦ tX = t : π3(K)→ Γ(π2) is a splitting. It defines a splitting s : H3(K,Λ)→ π3(K).

Then s(1) = sX(1) + i∗(a) for some a ∈ Γ(π2). As in Section 4, we construct the model X ′ = K ∪ψ D4 with

[ψ] = s(1).

Proposition 5.1 If θ is not induced by an isomorphism π2 → π2 , then X ′ is not homotopy equivalent to X .

Proof Any homotopy equivalence g : X → X ′ induces

0 −−−−→ Γ(π2) −−−−→ π3(K) −−−−→ π3(X)

g∗

y g∗

y g∗

y
0 −−−−→ Γ(π2) −−−−→ π3(K) −−−−→ π3(X

′).

However, g∗ : Γ(π2)→ Γ(π2) is never θ . 2

Examples Let X = F × S2 , where F is a closed oriented aspherical surface. Then π2(X) ∼= Z , Γ(π2) ∼= Z
and − Id : Γ(π2) → Γ(π2) is not induced by an isomorphism π2 → π2 . This easily follows from the Γ-functor

property. There are inclusions π2 → Γ(π2) and Γ(π2) → π2 ⊗ π2 (because π2 is free abelian) such that the
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composition π2 → Γ(π2)→ π2 ⊗ π2 sends x to x⊗ x . In the case when π = B(k), π2 is free abelian (see [5],

Lemma 6.2 V), one obtains such θ in this case, too. On the other hand, if θ is induced by an isomorphism

β : π2 → π2 , one needs more to construct a homotopy equivalence. By [15], Theorem 3, one gets a map

g : K → K , but the induced maps g∗ do not necessarily commute with the splittings sX and sX′ .

Supplement to the aspherical surface case. In the example F × S2 there are 2 models, namely

F × S2 and the non-trivial S2 -bundle E → F with the second Stiefel–Whitney class ̸= 0 (see, for example, [3],

Appendix). Here it is also convenient to consider the map

FZ : H4(D,Z)→ HomZ(H
2(D,Z)⊗H2(D,Z),Z)

given by

FZ(x)(u⊗ v) := x ∩ (u ∪ v),

where D = F × CP∞ . Then FZ is injective. If f0 : F × S2 → D and f1 : E → D are Postnikov maps, then

FZ(f0∗[F × S2]) and FZ(f1∗[E]) are the integral intersection forms of F × S2 and E , respectively. Moreover,

these forms are respectively given by the matrices(
0 1
1 0

) (
0 1
1 1

)
(see [3]). It was shown in [9], Section 5, that F × S2 and E are the only models up to homotopy equivalence.

6. Final remarks

The following map was defined in [2]:

F : H4(D,Z)→ HomΛ−Λ(H
2(D,Λ)⊗Z H

2
(D,Λ),Λ),

to classify Poincaré 4-complexes X , where D → Bπ is a 2-stage Postnikov system for X . Here H2(D,Λ)⊗Z

H
2
(D,Λ) carries the obvious Λ-bimodule structure. It was proven therein that F is injective for free non-

abelian groups π . The maps F and G are related by the following diagram:

H4(D,Z)
G−−−−→ HomΛ−Λ(H

2(D,Λ), H2(D,Λ))∥∥∥ yH
H4(D,Z)

F−−−−→ HomΛ−Λ(H
2(D,Λ)⊗Z H

2
(D,Λ),Λ),

where H(φ)(u⊗ v) = û(φ(v)), and û is the image of u under

H2(D,Λ)→ HomΛ(H2(D,Λ),Λ).

Obviously, G is injective if F is injective. If f : X → D is a map such that f∗ : πq(X) → πq(D) is

an isomorphism for q = 1, 2, then F (f∗[X]) ◦ (f∗ ⊗ f∗) is the equivariant intersection form on X , and

f∗G(f∗[X])f∗ : H2(X,Λ)→ H2(X,Λ) is the Poincaré duality isomorphism. It is convenient to denote F (f∗[X])

as the “intersection type” and G(f∗[X]) as the “Poincaré duality type” of X . The Poincaré duality type

determines the intersection type. In this sense it is a stronger “invariant”. For S2 -bundles over aspherical

2-surfaces all intersection types vanish, whereas the Poincaré types are non-trivial.
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