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ABSTRACT. We construct 4k—-dimensional generalized manifolds, k > 1,
which have no resolutions. The construction proceeds as in a paper of
Bryant, Ferry, Mio and Weinberger (see [1]) but does not use their controlled
(e, 8)-surgery sequence. The controlled surgery sequence is believed to be
true. Recently, Pedersen, Quinn and Ranicki have given a proof of this
sequence in the case of trivial local fundamental groups (see [4]).

1. Exposition of the construction.

Generalized manifolds have been the first time systematically constructed
in [1]. Beginning with a simply connected n-dimensional manifold M™",
with n > 5, Bryant, Ferry, Mio and Weinberger constructed a sequence of
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Poincaré duality complexes {X;},i=0,1,2,..., and maps p; : X; = X;_1,
where X_; = M, which satisfy the following coriditions:

(1) all maps p; are UV,
(2) X; is an n;—Poincaré complex of gdimension n over X;_;;

(3) for any 7 > 1, the map p; : X; = X;_; is a {;-homotopy equivalence
over X;_o;

(4) there is a regular neighbourhood W of X, embedded in a sufficiently
large Euclidean space RY and there are embeddings X; — W, and retrac-
tions

ri: Wo b 4 X,‘

satisfying d(r;,ri—1) < (;, for any i > 1.

Here d is the metric on Wy induced from R”. Moreover, the sequences
of positive numbers {7;} and {¢;} are given and subject to the conditions

(/) E,"h’ <o

(//) (¢i,h)—cobordisms over X;_; of dimension L admit &;—product
structures; such (; exist by the thin A—cobordism theorem of Quinn (see
[5]), Theorem 2.7). Moreover, we require Y . §; < co. Since we also assume
¢i < 6;, we have Y, ¢; < oo.

A construction of the spaces X; is indicated at the end of this section.

We can choose small regular neighbourhoods W; of X; in W, with projec-
tion maps 7; : W; — X, such that W,y Cint W; foralli =0,1,.... More-
over, the choice can be made so that W;\ int W is a ({;41, h)—cobordism
with respect to the restriction of r;+; : Wo — Xj41.

We define X := N2, W; and show that it is a generalized manifold.
For any z € Wy, r(z) = lim;_ o r;(z) is well-defined by the properties
d(ri,riz1) < ¢ and ), {; < oo. Obviously, we have

lim ri(z) =r(z) € X.
1—00

We observe that X can be defined as the inverse limit of the complexes
{X;}, that is, X = li‘inX;, since the W;’ s become smaller and smaller

i

regular neighbourhoods as i goes to infinity. In particular, we have r(z) = z
for any z € X, i.e., X is an ANR-space. The proof that X is a homology
manifold relies to the following result due to Daverman and Hush (see [3]).
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Theorem 1.1. Let p : M — B be a proper map which is an approxi-
mate fibration of the connected m—manifold (without boundary) M onto
an ANR-space B. Then B is a k—dimensional generalized manifold. More-
over, if M is orientable, then the fiber of p has the shape of a Poincaré
duality space of formal dimension m — k.

To apply this criterion to our case we also need Proposition 4.5 of [1] (see
Proposition 3.6 in Section 3 below). We define a retraction p; : Wy — X;
by composing w; : W; — X; with the deformation given by the thin
h—cobordisms

Wo\ int W; = (Wp\ int Wy) U (W \int Wp) U --- U (Wi \int W;)

to OW;. We can form the limit as i — 0o to get a new retraction (see
Remark 1.1 below) p: Wy — X. It follows from Proposition 3.6 in Section
3 that given 6 > 0, then for sufficiently large 1, the restriction

Tilow; : OW; — X;

has the d-lifting property (because X; has an 7;-Poincaré structure with
n; very small as 1 becomes large). The composed h—cobordisms give a
homeomorphism dWy = 9W;, hence p;low, : IWo — X; has the §-lifting
property, too. It follows that in the limit : — oo one can obtain a
d—approximative fibration p : Wy — X for any § > 0, i.e., an approxi-
mative fibration. Thus X is a homology manifold.

Remark 1.1. The §;-thin h-cobordisms W;\ int W; are needed to con-
struct the limit of the maps p;, i.e., p = lim; ,o p; : Wy — X. We have
homeomorphisms h; : OW; x [1;, Ti11] = W;\ int W; such that the diameter
of the set

{ﬂ'i o hi(SL‘, t) H t € [T,;, Ti+1]}

is less than d;. For any z € 8W,, we follow these lines beginning with
Wo\ int W, by using hg, then with W3\ int W, by using h,, and so on. This
gives a curve beginning in z and converging to p(z) € N2, W;. This map
is continuous. Recall that 8W,, Wy and X are included in RE. Given
€ > 0, we choose a sufficiently large number 7 so that E;’;O i+j < €/4.
The first (i + 1)-product structures of Wp\ int Wy, ..., W;_,\ int W; define
a continuous map 6; : Wy — OW; (in fact, a homeomorphism). The map
p is the composition of §; with a map 6. : 9W; — X defined by the product
structures of W\ int W1, Wi 1\int W;4o, ..., which are &; controlled
with k =4,+1,.... Hence, if ¢/, y' € OW; and || ' — ¥’ ||< a, then

> €
Il 0'(z') - ') < a+ 225“.]' <a+t 5

J=0
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Now we choose § > 0 so that for any z, y € 8Wp and || z — y ||< & implies
[l 6:(z) — 6;(y) l|< €/2. Then we have

I (o) ~ ov) 1=l 6; 0 0i(z) — 6 0 6:(3) 1= 8:(05() — Bu(w)) 1< 5+ 5 = .

This shows that p is continuous. Note that the above construction defines
a map p: Wy — X which is a (deformation) retraction.

Our construction of the n;—Poincaré complexes begins with an element
o € Hy(M,L). If we have chosen an appropriate o, then our resulting
generalized manifold X has no resolution.

It follows a brief description of the spaces X; and maps p; : X; = X;_;.
More details are given in Section 4. Let n = 4k, and let o € H,(M,L) be
given. We decompose M = BUp C, where B is a regular neighbourhood of
the 2-skeleton of M, C is the closure of its complement and D = B = 9C
is its boundary. Using results from Sections 2 and 3 we realize o by a degree
1 normal map F, : V = D x I with F,|g,v =Id : oV = D — D, and
fe = Fsla,v : 1V = D' — D a controlled homotopy equivalence over M.
Then we put Xo = BUp V Uy, C. There is an obvious map p: Xo - M
of degree 1. Next we build the manifold My = BUp V Up (=V)Up C.
There is an obvious map gg : My — Xo. We decompose My = By Up, C1
in the same way as M and realize o by F1 , : Vi = Dy x I with Fj ;|g,v, =
Id: 8Vy = D; = Dy and f1,, = Figle,v; : 1V1 = D] — D; a controlled
homotopy equivalence over M. Then we consider X{ = B;Up, V1 Uy, , Ci.
There is an obvious map f] : X] = Xp. The composition goo f; : X] = X,
is a degree 1 normal map with vanishing controlled surgery obstruction.
One can do surgery outside the singular set to get a controlled homotopy
equivalence p; : X; = X, over M. Note that X, and X; are not homotopy
equivalent to M. Nevertheless, the composition pogy : My —» Xo - M
is of degree 1. Using L-Poincaré duality for the manifolds M, and M (see
[7]), it follows that there is an element & € H,,(Xo, L) with p.(5) = 0. Let
now o € H,(X;,L) be such that p,.(¢) = &. Taking a degree 1 normal
map g; : M; — X, with controlled surgery obstruction — we can proceed
to construct a map p; : Xo — X; which is a controlled UV!-homotopy
equivalence over Xg, and so on.

Remark 1.2. The proof given in [1] relies very much on their (,d)-
surgery sequence displayed in Theorem 2.4 (to be more precise on their
Theorem 2.8: see for instance the conclusion on p.454). By the time of the
ICTP-Conference, the proofs of these theorems were not yet published,
but Pedersen, Quinn and Ranicki announced a proof of the controlled
surgery sequence which is now available (see [4]). We will work instead
with non-singular associated even symmetric bilinear forms over compact
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ANR-spaces introduced by Quinn in [6]. We use the theorems of this paper
for our construction. Therefore, our construction is restricted to the 4k-
dimensional simply connected case with k ®> 1. Moreover, our proof uses
some results proved in Section 4 of [1]. We recall these in Section 3. The
results of Quinn are summarized in Section 2.

2. A review on Quinn’s results.

In this section all manifolds and Poincaré complexes will have dimension 4k,
for k > 1. As announced in Section 1, we shall restate here the main results
of [6] for control maps over compact metric ANR-spaces X. Suppose that
K is a Poincaré complex and p : K — X is proper (that is, K is compact).
Let f : M — K be a surgery problem (possibly with boundary), i.e., f is a
degree 1 normal map, and let € > 0 be given.

Definition 2.1. An e—form (A, ) over X is said to be associated to the
surgery problem
Mtk -2,x
(considered over X), where K is an e-Poincaré complex over X, and p is
(€,1)—connected, if the following conditions are satisfied:

(1) A is a geometric module over X;

(2) A: Ax A= Zis an e-form, i.e., if d(a,b) > ¢, then A(a,b) = 0 (here
d is the metric on X);

(3) there is a normal bordism of f rel. M to

mr Ly g2y x;

(4) there is a CW-pair (K', M") with cells only in dimension 2k + 1
(recall that dim K = 4k) such that Cox41(K', M) = A4;

(5) there exists an e—equivalence (K', M") — (K, M") over X;

(6) the form X is given by the intersection numbers in M” of the images of

A under the homomorphism A = Cor41(K, M") = Cor(M") (some details
are given in the proof of Proposition 2.2).

Remark 2.1. Here (K', M"") is the pair defined by f”, as usual. The
space K' is roughly constructed as follows. One does a controlled surgery
on f: M — K over X to obtain a (¢, 2k — 1)—connected map

ff M 5 K.
Then one can replace the pair (K, M’} by a pair (K', M’) such that
Co(K', M') = A
for ¢ = 2k + 1, and vanishing otherwise (use Proposition 2.4 of [6]).
The following is Theorem 2.1 ofi [6].
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Theorem 2.1. Assume that p : K — X is UV! and that K is a
4k~dimensional §—Poincaré complex over X for all § > 0. Then we have:

(i) For all € > 0 there exist non-singular symmetric even e—bilinear forms
(G, A) associated to a surgery problem f : M — K.

(ii) For all a > 0, there is a real number € > 0 so that for any associ-
ated even symmetric non-singular e-bilinear form (G, \) (with respect to
f: M — K), which is e-bordant to the trivial one (see definition below),
there exists a normal bordism of f : M — K over X to an a—homotopy
equivalence f' : M' = K’ over X. In the relative case, we have OM' = OM.

(iii) Given <y > 0, there is a real number € with 0 < € < <y such that if
g: (NaaONialN) - (P’aOP,aIP)

is a normal bordism with P — X (e,1)-connected and P a (relative)
e—Poincaré complex over X, then e-associated forms to glan, and glsn,
are y—bordant.

Here we have used the following notion. Two forms (A, A1) and (A2, A2)
over X are said to be e-bordant if there are a geometric module H over X
and an e-isomorphism from (A;, A;) @ (A2, —X2) @ (H & H, ((1] (1))) toa
hyperbolic form over X. For instance, if (4, \) is an e-form as above, then
(A, X) @ (A4, - ) is e-isomorphic to a hyperbolic form over X.

We need the following proposition which is not proved in [6].

Proposition 2.2. Let p: K -+ X be a §—Poincaré complex over X for
all § > 0, and suppose that the map p is UV!. Let f; : M{* —» K and
f2 : M3* — M{* be normal maps of degree 1. Let (G1, ;) and (G2, \2) be
non-singular symmetric even €;—forms, i = 1,2, associated to the surgery
problems

M Dk P, x

and
f2 pofy
M, — M; —— X,

respectively. Then (G1, 1) ® (G2, \2) is an e3—form associated to

M2 fl°.f2; P‘) X,

where €3 depends on €; and e;. In particular, €3 is small whenever €; and
€9 are small.

Proof. Suppose for simplicity that f; and f, are already 2k—connected,
hence so is the composition f; o fo. Therefore, H,(K, M) and H.(M;, M,)
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are zero except for * = 2k + 1 (see Lemma 2.5 of [6]). Our application will
have these properties. Thus, H,(K, M,) = 0 for * # 2k + 1 and

Hok1(K, M) = Hop iy (K, My) ® Hagyr(My, M3).

Following the proof of Theorem 2.1 in [6] there are complexes A; ., 1 = 1,2,
with A; ¢ = 0 for ¢ < 2k, and §;—hain equivalences over X

C,(K, Ml) - Al,,. and C,.(Ml,Mz) - Ag'..

Moreover, we can assume that A; . is of the form J; : B ax4+1 — B2 (i-e.,
it is concentrated in dimension 2k and 2k + 1). It follows that there is a
§'-equivalence over X

Cu(K, M) = Ay, ® Ay,

where §' = &} + 05 (see [8], Proposition 2.3).
The complexes
8
B;ok+1 —— Bk

are constructed by folding, so they come with splittings
8i 2 B2k = Bigk41.

Then one does surgeries in M; on small (2k)-spheres given by a basis of
B 2k. One gets a normal map f{ : M{ = K which is normally cobordant
to f1: My — K. Similarly, one does surgeries in M3 on small (2k)-spheres
given by a basis of By ox. This produces a normal map f7 : My — M; which
is normally cobordant to fo : My — M;. The above surgeries have the effect
that the complexes A; . change to complexes concentrated in dimension

2k + 1 of the form B; 341 ® B; 2k, i.e., there are g,-—chain equivalences
C.(K,M{') > Byok+1®B1ax  and  C.(My, M}) = By o541 Ba g

Here §; depends on §] and the “small” surgeries on the (2k)-spheres. In
particular, 5, can be made arbitrarily small if §; is small enough. Then one
applies Proposition 2.4 of [6] to construct CW pairs (K’, M{') and (P’, M¥')
which are é{- and 45 -homotopy equivalent to (K, M{') and (M;, M), re-
spectively. Moreover, they have cells’ (relatively) only in dimension 2k + 1
which correspond to generators in the module B; 2541 @ B; 2x. Then G; =
B; 2k 41 ® B, 2k, and the intersection forms )\; are defined as follows. Let a,
b € G,. They correspond to {2k + 1)—cells in K’ rel. M}'. Then one defines
A1(a, b) to be the intersection number of their attaching spheres (similarly,
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for X\2). Then J; is (44!)-non-singular for any i = 1,2 (see [6], p.273).
Setting €; = 44} yields the non-singular ¢;—forms (G;, ;). Of course, 6}
depends on gi, hence on &, i.e., 4] is small if §; is. Now we construct an
associated form (G, ) of the composite map f; o fo : M — K, and com-
pare it with the form (G; @ G2, A1 ® Az). We begin with the §'-equivalence
C.(K,M;) — Ay, @ Ay, where §' = 4] + 85. We lift the small (2k)-
spheres in M; (corresponding to the elements of a basis of Bj k) to small
(2k)-spheres in M, via the map fy : My — M;, and do surgeries on them.
Then we obtain a normal map ¢ : N — K which is normally cobordant to
fio fa: My - K. Obviously, g factors over M{', i.e., we have a diagram of
normal maps
N 2 K

a l I b

M{I M”

This gives a ©-isomorphism (over X) of C.(M7,N) with C.(My, M),
hence a dj—equivalence C.(M;',N) — A,.. Then we do surgeries in N
on small (2k)-spheres corresponding to a basis of Bz o5. The result is a

normal map ¢g” : N — K which factors over M7, i.e., we have a commu-
tative diagram of normal maps

"
N' 2 K

ot | [s
M{I MII
This turns the above §;—equivalence into a b2-equivalence

C.(M]',N") = Bj2r+1 ® B2 k.

Composing with C.(K, M) = Bi k41 ® B2 yields a (31 + 52)—cha.in
equivalence

Cu(K,N") = Bi2k+1® B1,2k ® Ba,2k+1 ® Baok = G1 @ Go.
Then we apply Proposition 2.4 of [6] to get a CW-pair (P’, N") which is
05 —homotopy equivalent to (K, N”), and has cells only in dimension 2k + 1.
Here 45 is small if §’; and ¢’ are small. Therefore, the pair (G;®G2, A\;®A3)

is an ez—associated non-singular form of f; o fo : My —+ K over X with
€3 = 4(5:,3’. (]

The next theorem says that non-singular e~forms (G, \) can be realized
as associated non-singular forms of normal maps (see Proposition 2.7 of [6}).

We state it in a slightly different way which can be proved as Proposition
2.7 of [6).
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Theorem 2.3. Let X be a compact ANR-space, and let Ng*~* be a closed
manifold. Suppose that a map p : Ny — X is UV!. Then, given a real
number § > 0 and a §—symmetric even non-singular form (G, ) over X,
there is a degree 1 normal map F : V — Ny x I with

Flaov =1Id: aoV = No — Np.

Moreover, if v > 0 is given, then F|g,v : &1V — Ny is a y-homotopy
equivalence if § is sufficiently small.

Remark 2.2. (I) The modification we have made consider an arbitrary
manifold Nj3*~! instead of the boundary of a regular neighbourhood of X
in R4, This requires that we have to transform the geometric non-singular
d—form over X to one over Np. If {a;} are the generators of the geometric
module G corresponding to points {z;} in X, then d(a;,a;) = d(z;, ;).
For arbitrary @, b € G with a = 3, oa; and b = 3. Bja;, the distance
d(a,b) is defined to be the minimum of d(a;,a;) with a; # 0 and B; # 0. If
(G, A) is a 6—form, then we have A(a,b) = 0 whenever d(a,b) > 8. Let {2}
be points in Ny with p(2;) = y; such that

d(yi,y;) 2 6 = d(zi, ;) > 6.

Then we may consider G as a geometric module over Ny, and A a non—
singular d—form over Np. Now the proof of Theorem 2.3 proceeds as in [6],
replacing the boundary of a regular neighbourhood projection W — X
(of X in R*) by the UV!-map p: Ny — X. Connecting each y; to z; by a
path defines a morphism of the geometric modules G over X with respect
to {y;} and {z;}. Different lifts {2} of {y;} define, up to homotopy, a
unique isomorphism of G over {z}} to G over {z;} because p: Ny = X is
UV, So the §—form (G, )) over N is unique, up to the choice of {y;}.

(IT) If v is sufficiently small, then the map Fla,v : ;V — Np is ho-
motopic to a homeomorphism. The homotopy is controlled, that is, given
a > 0, then for sufficiently small « (i.e., sufficiently small §), the restriction
Flg,v is a-homotopic to a homeomorphism (this is the theorem of Chap-
man and Ferry {2]). We have to made use also of parts (2), (3) and (4) of
Proposition 2.7 of [6]. Recall that

Hy(X,L) = He(X,Z) x Hue(X, G/ TOP) = Z x Hy(X, G/ TOP),

since X is a 4k—-dimensional compact Poincaré complex. Let o € Hyi (X, L)
be given. According to Proposition 2.7 (1) of [6] the Z-component can
be computed as follows. Choose a degree 1 normal map X — M over
p: M — X, which can be assumed to be UV!, representing o. Let
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{(H?®, %)} be the family of associated non-singular d—forms over X. For
sufficiently small 4, the pairing (H?, u®) can be realized as 16k—dimensional
closed simply connected surgery problem f, : P, — Q,. Then the Z-
component of o is 1 4 80(f,,), where o(f,) is the surgery obstruction of f,
(for simplicity we have written p for pu®). We will call 1+ 80(f,) the Quinn
index of (H, ).

Corollary 2.4. Let f : X = Y be a UV'-map of 4k—dimensional compact
connected Poincaré spaces. Then the induced homomorphism

far : Hye(X, L) = Hy (Y, L)

is the identity on the Z—factor.

Proof. This follows immediately from Proposition 2.7 (4) of {6]. Namely,
far(o) € Hye(Y,L) can be represented by

X M2 x t vy
Since f is UV, we have the associated j—forms {(_I_I-J,ﬁg)bo} with
-7
(H aﬁé) = (HJ, “6)

measured over Y. Let fz: Fr = Qg — Y be the closed realization of a

generic (_ﬁé,ﬁg) as closed 16k—dimensional surgery problem. By Proposi-
tion 2.7 (4) of [6] for a given € > 0 there is an (¢, 1)-normal cobordism over
Y between f, and fz, hence they have the same surgery obstruction. 0O

The proof shows also the following consequence which we spell out for
later use.

Corollary 2.5. Let 0 € Hy,(X,L) be represented by the degree 1 normal
map X — M over X and let {(H%,u%)5>0} be the associated forms. If
f: X > Y isUV!, then {(ﬁa,ﬁ“)bo} are the associated forms of X — M
overY,and§ — 0 asd — 0.

We state a special case of Proposition 2.7 (3) of [6].

Corollary 2.6. Let W be a compact ANR—space and X C W a closed
subspace. Let {(H®, 1®)5>0} be a family of a symmetric even non-singular
d—forms over X, hence over W via the inclusion X C W. Then the Quinn
index constructed over X coincides with the one constructed over W .

We observe that the inclusion is not required to be UV!,
Finally, we need the following special converse case of Theorem 2.1 in [6].
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Lemma 2.7. Let f : M — K be a 4k—dimensional degree 1 normal map
over the UV! map p: K — X with,associated §—forms {(G®, X\)550}. If f
is an e—equivalence over X, then for a certain § = §(¢) the form (G®, \%) is
¢/—cobordant to the trivial one. Moreover, ¢ — 0 and § -+ 0 ase — 0.

Proof. Imitating the proof of Theorem 2.1 in {6] (see also the proof of
Proposition 2.2 above), one obtains a €; —chain equivalence of the complexes
C.(K,M) — A,, where A, is of the form 8341 : Bak+1 = Ba. By (8]

(Proposition 2.4 and Section 9) one can assume that €¢; = 3¢. Then one
does surgeries on small (2k)-spheres corresponding to a bases of By to
get a normal map M” — K (according to notation of [6]). Then G =
Hyr4+1(K, M") is by definition an associated module with A : G x G = Z
defined by setting A(z,y) equal to the intersection number of dz and dy
in M"”. Since 82k41 : Bag41 — By, the intersection pairing is standard.

Moreover, if G is an €s—module, then M is an (4e3)—form. Now the small
trivial surgeries on the bases By are made on places according to to the €;—
chain equivalence Coi+1(K, M) — A,, hence €, depends on €;, and ¢ —+ 0
as € — 0. This proves the lemma. O

3. Some technical preliminaries.

In this section we summarize some technical preliminaries proved in Section
4 of [1). We report also Proposition 4.7 of [1] though we shall not use it
(see Proposition 3.4 below).

Theorem 3.1. (Bestvina’s theorem, see [1], Proposition 4.3)

Let f : (M™,0M™) — K be a map from a compact n-manifold to a polyhe-
dron, where n > 5. If the homotopy fiber of f is simply connected, then f
is homotopic to an UV'-map. If f|sp is already UV, then the homotopy
is relative to M.

Remark 3.1. If n > 5, then the map f can be e-approximated by
UV-maps.

We need the following “controlled” gluing construction of compact mani-
folds (see [1], Proposition 4.5).

Theorem 3.2. Given n and a finite complex B, there are real numbers
€0 > 0 and T > 0 such that if 0 < € < €p, (M;,0M;), i = 1,2, are orientable
manifolds, p; : M; - B,i = 1,2, are UV'-maps, and h : IM; — OM, is an
orientation—preserving e—equivalerice over B (this includes d(p,,p20oh) < €),
then M; Uy, M, is a Te-Poincaré duality space over B.

The proof of Theorem 3.2 uses the following lemma which explains the real
numbers ¢y and 7. 4
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Lemma 3.3. Let B be a finite polyhedron. Then there are real numbers
€0 > 0and T > 0 so that if0 < € < €, then for any space S and for any two
maps f, g: S — B with d(f,g) < ¢ the maps f and g are Te-homotopic.

Lemma 3.3 can be proved by embedding B into R™ and considering
small regular neighbourhoods of B C R™.

Let us mention another technical proposition (see [1], Proposition 4.7)
which will however not be used in our construction.

Proposition 3.4. Given B and n as above, there is a real number T > 0
so that if p; : X; — B, i = 1,2, are e-Poincaré spaces over B of the same
formal dimension < n with UV~control maps, and f : X; — X, is a map
satisfying d(p, o f,p1) < € such that the algebraic mapping cone of f is
e—acyclic through the middle dimension, then f is a Te—equivalence.

We will use the following result (see [1], Proposition 4.10):

Proposition 3.5. Suppose that X and Y are finite polyhedra, V is a
regular neighbourhood of X with dimV > 2dimY +1,p:V — Bisa
map, r: V — X is a retraction, and f : Y — X is an e—equivalence over
B. Then we can choose an embedding © : Y — V so that there exists a
retraction s : V — i(Y) withd(por,pos) < 2e.

There is another important theorem concerning controlled Poincaré spaces.
In the definition of an e~Poincaré structure of a locally compact ANR~pair
(K,0K), given by Quinn in [6], appears the following property:

There are a mapping cylinder neighbourhood (U, 3sU) of a proper embed-
ding (K,0K) C (R*+F=1 x [0, 00[, R**¥~1 x 0) and a spherical fibration
Sl 5S¢ - K

such that there is an e-homotopy equivalence

(U,80U,6,U) — (D(£), D(£lak ), S(£))

over the control space (here D(£) is the disc-fibration of S(£)).

In other words, the canonical normal Spivak fibration of (K, 8K) has the
e-approximative lifting property. The definition of e-Poincaré complexes
given in [1] does not include the e~approximative lifting property of the
Spivak fibration. However, this property is a consequence of their definition
(see [1}, Proposition 4.5). We recall the statement of that result.
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Proposition 3.6. Givenn and B, there are real numbersey > 0andT > 0
such that if 0 < e < ¢y and X is an e-Poincaré duality space of topological
dimension < n over B with UV?! control map p : X — B, then for any
abstract regular neighbourhood N of X in which X has codimension at
least 3, the restriction of the regular neighbourhood projection 0N — X
has the Te-lifting property.

Remark 3.2. If M is a manifold with a PL structure, then M is an
e-Poincaré space for all € > 0 and for all proper control maps. This follows
from the fact that Poincaré duality can be defined in terms of dual cells
o* = D(o, M) of 0. If the triangulation of M is sufficiently fine, then we
get e—chain equivalences

NE : CUM) — Cag(M)

for any € > 0. Thus, a necessary condition that a Poincaré complex is a
manifold is the existence of arbitrary small e-Poincaré duality equivalences.

4. A construction of 4k—dimensional generalized manifolds.

Let M** be a triangulated closed simply connected manifold of dimension
4k, where k > 1. We fix an element 0 € Hy(M,L) = [M,Z x G/ TOP].
Then o determines a family of surgery problems

{z(1) : Xy & M, = D(1,M) : 7 simplex of M}.

They assemble to a normal map

X4k — MK y M

over M (as explained in Section 8 of [7]). We can assume that M is
simply connected, hence by Theorem 3.1 we may assume that the map
M*¥* 5 M is UV!. Moreover, M* is a §~Poincaré space for all § > 0
over M. By Theorem 2.1 there is a family {(G%, A%)s550} of non-singular
symmetric even bilinear forms (over M) associated to X** —» M4 - M.
We follow the idea of [1] to construct the spaces X;. One decomposes
M = BUp C, where B is a regular neighbourhood of the 2-skeleton of
M, C is the closure of the complement of B in M, and D = 8C = 8B.
Observe that by Theorem 3.1 we can assume that Dx I — D —» M is UV!
so the form (G% A%) can be realized by a normal map F, : V — D x I
with F,|lgpoy =1d : &V = D = D and Fy|a,v = fo : OOV = D' - D
Y—equivalences over M, where v = v(8) depends on é.

We get for any § > 0 a normal map F,, but for simplicity we shall not
mark F, with §. Moreover, y(6) — 0 as § — 0.
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We construct the space Xy. For conveniency, we give two descriptions,

)?0 and X o say, homeomorphic to each other:
(1) 5('0=BUDVUfaC

(identification of D’ with 8C = D via f, : D' — D)

(2) Xo=BUpVU; (DxI)UC

(choosing a small collar of D C M one easily describes a homeomorphism).

Let pg : Xo = )?o — BUig (D x I) Uyq C = M be given by py|p = Id,
polv = F,, and po|c = Id. We can again assume that py is UV!. By
Theorem 3.2, X, is a Ty(d)-Poincaré duality space for some T' > 0. We
define the manifold

My =BUpVUp (-V)Up C

where —V denotes the cobordism V “upside-down”.
Let

go:Mo—)XoEX():BUDVUf, (DXI)UldC
be the map defined by

golpupv =1d, gol-v =~F,, golc=1Id
where —F, means F, “upside-down”. By Theorem 3.1 we may assume
that go is UV!.

Lemma 4.1. With the above notation, g : My — Xo is a normal map
of degree 1 and (G®, —\%) 15 an associated non-singular symmetric 6—form
over M.

Proof. Following the proof of Theorem 2.1 (see also the proof of Proposition
2.2), it is obvious that the essential construction regards the map

—F,=g]l-v:-VaDxI

which realizes (G¢,—)%). O

To summarize, we have constructed a Poincaré space X5, a map
Do : Xo — M, and a degree 1 normal map g : Mp — Xp which satisfy the
following properties:

(i) Xo is a Ty(8)-Poincaré space over M;
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(ii) po : Xo = M is UV'! (not a hompotopy equivalence);

(iii) (G%, —X%) is an associated non-singular d—form to gy : My — X,
over M.

Before the next step we shall transform (G?¢, X%) in forms over X,. Note
that Xp is not yet a metric space. We embed M into RL, for L large, and
approximate py : Xo =& M C RY by an embedding. Let ro : Wy — X
be the restriction of a cylindrical neighbourhood of Xy C RL. We can
assume that M C Wy. Then the d—forms (G%,\°) over M become §'-
forms (G%,A%) over X, by using rolar : M — X,. Since by Theorem 3.1
we can assume that ro|as is UV?, Corollary 2.5 implies that there exist
non-singular §—forms over X, which we denote by {{(G%',A%)}s>0. Note
that My is an e-Poincaré space over X, for any € > 0. We decompose
My = B Up, C}, where B is a regular neighbourhood of the 2—skeleton of
My (for some fine triangulation yet to choose), and C) is the closure of its
complement with B; = D; = 8C;. We realize the form (G?%, %) by the
map

Fle:Vi, —— Dy xI sy D; —£5 X,

(over Xo) with
Fl,trlaovl =1d: 30V1 = D1 b g D1

and
fl,a = F1y0|<91V1 = 81V1 = Dll -3 D1

a 71 = 71(d8')-equivalences by Theorem 2.3 (here 7, (') is small whenever
¢’ is small, that is, if § is small).
Now let X; = B; Up, V1 Uy, , C1, and let the map

f{ : X{ —.)Mo = B; Uy (D1 XI) Uia C1
be defined by

f{IBx =1d, f{lVl =F,, f“cl =1d.

By Theorem 3.2, X] is a Ty7;(d')-Poincaré space over X, with respect to
the map ggo f1, for some T3 > 0. Furthermore, f{ is a normal map of degree
1 outside the singular set, where the points z € D} are identified with the
points f; ,(z) € D;. Finally, (G¥, %) is associated to f. By Proposition .
2.2, (G¥,\%') @ (G%, —\%) is €'-associated to the composition over M:

i 9 Po
X1 Ly M, ° 5 Xo y M,
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where ¢’ depends on § and 4, and €' is small if § is sufficiently small. But it
is trivial, so we can do surgery on X (outside the singular set) to obtain an
oy-equivalence p; : X1 — Xp applying Theorem 2.1 (2). The real number
oy depends on &, i.e., a; = a;(d'), and @;(d') is small if §' is sufficiently
small. Now we observe that X; is still a T}y, (6')-Poincaré space over Xj.
Because this fact is used many times, we formulate it as a lemma.

Lemma 4.2. Let X be an e—Poincaré complex over Y. Suppose that
X = X; U X, and int X, is an open manifold of the same dimension as X.
Then surgeries on int X, (on spheres which are contractible in Y') give an
e-Poincaré complex X' over Y.

Proof. Let us suppose that we do surgeries only in the middle dimension 2k
(k > 1) and H2x(X1) = 0 (this will be sufficient for our applications). Let
X} be the result after the surgeries, i.e., 3X5 = X2 and X' = X; U Xj.
So a change in Poincaré duality regards only C%*(X’) — Cax(X'), ie.,
C?*(X}) = Cak(X3), which can be made an arbitrary fine chain equivalence
if we choose a fine triangulation of X35. O

To summarize, we have obtained a Poincaré space X; and a map
p1 : X1 —= Xo so that:

(1) p; is UV? (apply Theorem 3.1);
(2) X, is a T171(6’)-Poincaré space over Xo;
(3) p1 is a a;1(d')-homotopy equivalence;

(4) there exist an embedding X; — Wy and a retraction ry : Wy — X
such that d(ro, 1) < 20 (6).

The property (4) follows from Proposition 3.5. It will be convenient to
restate the two steps in a generic form as follows.

Step (1). Given 79 > 0, we have:

(i) there are a Poincaré complex Xy and an UV-map po : Xo = M;

(i1) Xo is an np—Poincaré complex over M;

(iii) there is a degree 1 normal map go : My — X, with associated d—form
(G, =) (For this we choose § so that Ty(6) < o).

Step (2). Given n; > 0 and (; > 0, there are a Poincaré complex X,
and a map p; : X; — X with the following properties:

(L) py is UV

(IT) X, is an n;-Poincaré complex over Xg;
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(ITI) p; is a {;—equivalence;

(IV) d(ro, 1) < (1.
For this we choose ¢, i.e., d, so small that T17,(6') < m, 201(8) < ¢y,
and a1(6’) < Cl-

In the third step we construct X5, and then one proceeds by induction.
What we need is a degree 1 normal map ¢g; : M; — X; which has an
appropriate associated non-singular §—form over Xp. First we show that
there is an element & € H,(X,,L) with p.(G) = o. For this, we use
L-Poincaré duality for the manifolds My and M (see [7]). The assertion
follows from the following diagram

Hn(Mo,L) — Hn(Xo,L) —2— H.(M,L)

=] Ig

HO(M(),L) — HO(X(),L) — HO(M,L)
9 p*

This defines a normal map (over Xy)

Xl —) Ml 4 XO

which provides us with a family of associated d—forms {(EJ,XJ)}DQ. For
this, we assume that the map M; — X, is UV? (see Theorem 3.1), and
then we apply Theorem 2.1. Since p; : X; — Xp is a controlled UV!-
homotopy equivalence, for any small § > 0 there is a degree 1 normal map
g1 : M; — X, which has (_C?J, —XJ) as associated non-singular symmetric
form. This can be deduced from the following diagram

[XQ,G/TOP] — Hn(Xo,L)

p; l Iplt

[Xl,G/ TOP] EE— Hn(Xl,L)

where the horizontal maps send a normal map to its (controlled) surgery
obstruction. By using the map g;, one proceeds as in Step 2 to construct
for any n; > 0 and (2 > 0 a Poincaré space X, and a map ps : X2 — X,
which satisfy the following properties:

(i) p2 is UV, )

(ii) X is an ny-Poincaré complex over Xj;
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(iii) p2 is a {2—equivalence over Xp;

(iv) there are an embedding X; = Wy and a retraction r, : Wy — X3
such that d(ry,r2) < (s.

We briefly describe the construction of X, (compare it with the con-
struction of X;). We decompose M; = By Up, C,, where B, is a regular
neighbourhood of the 2-skeleton of M; in a sufficiently fine triangulation,
and C, is the closure of the complement of By in M;. Hence we have
Dy = 0B, = 8C,. We can assume that g1|p, : D2 — X; is UV by

Theorem 3.1. Then we transform {(EJ,X&)}DO into a family of forms

{(_676 ,XJ )}s'>0 over X; by using an embedding of X; into W close to
p1 : X1 = Xo C Wy (compare the construction of (G%, %) over M with

that of (G%', A%") over X;). By Theorem 2.3 we can realize (-@6 by ) as the
associated form of a degree 1 normal map (over X,)

F2,32V2—)D2XI

with
Fo5lo,v, =1d: 0o Va = Dy = Dy

and
f25 = Faglov, : 01V = Dy — D,

a controlled homotopy equivalence. Then let X3 = BUp, VoUy, . C>. This
space is a controlled Poincaré complex. Let the map

f5: X, = My =ByU(Dy x I)UC,
be defined by
falg, =1d, fily,=F7 and fi|c, =1d.
By using Proposition 2.2 we can do surgery on the composition

f2 91
1 2, N
X2 ? Ml 4 Xl

. . — 0 = L .
since the associated form (G ,—\" ) ® (G ,\ ) is trivial. The result is a
controlled homotopy equivalence p; : X3 = X;.

For convenience, we use from now on the following notations:

-8 b
(G%,2%) =(G3,\8)  and (G°,X") = (G35, \)).

Remark 4.1. We emphasize the important fact that for any given
m—-Poincaré complex X; (over Xy) we can construct an 1,~Poincaré com-
plex X, over X;.

Putting all together we have proved the following result:
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Theorem 4.3. Suppose to be given the sequences of positive real num-
bers {n:} and {(;} (all sufficiently small). Then there is a sequence of
4k-dimensional Poincaré complexes (over M) and maps

o X I Xy — - B X B Xy BM

such that:
(1) pm is UV for any m > 0;
(2) X, is an n,—Poincaré complex over Xp—1;

(3) P : Xm — Xin-1 is a {;n—homotopy equivalence over X, for any
m>1, where X_; = M;

(4) there is a regular neighbourhood Wy of X, in RY, L sufficiently large,
and there are embeddings X,, — Wy and retractions r,, : Wy = X,, so
that d(rm,"m—-1) < {m for any m > 1. '

As explained in Section 1 we choose regular neighbourhoods W,, of
Xm C Wy so that Wy,,4y C int W,,, and W, \int Wi, are ((m41, h)-
cobordism for any m > 1. Then X = N,,W,, is a generalized ANR-
manifold. Our construction comes with a sequence of normal maps

Xp —— My —— Xy

defined by elements in Hyx(Xm-1,L) & Z x [X;n-1, G/ TOP] which have
the same Z-component as ¢ € Hy(M,L). Then we have realized the
associated forms (G%,, =A%) of X, = M,, over X,,_; by a degree 1 normal
map g, : My, = X over X,,,_;. By Proposition 2.7 (2) of [6] (see Remark
2.3), they have the same Quinn invariant, i.e., g, : My, = X, defines an
element in Hyx(Xm-1,L) & Z x [X,,—1,G/TOP] which belongs to the
Z—component as —& (which is the same as the one of —o € Hq (M, L)).

It remains to prove that X has Quinn index i(X) # 1. In fact, we
prove that it coincides with the component of —o. For this, we consider
gm : M, — X, as a degree 1 normal map over W, in two different ways:

and
(2) Mm 9m , Xm Id - Xm ¢_} Wo

Here iy : Xz — Wy are U Vliapproximations of the inclusions X c W.
Choosing m sufficiently large, we can assume that for any z € X,, there
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is a straight segment in Wy which connects i,(z) and iy 0 pm(z). This
defines a homotopy A : Xm X I = Wy which we may assume to be UV,
Then the map

g XId: My, xIT = X, x1I

is a normal cobordism over the UV!-map h,,. Let us assume that X is a
manifold. Then p : Wy — X is a fibration, hence it is UV!. Therefore,
the composition po h,, is UV!. Hence the associated non-singular é—forms
over X of both problems are e-cobordant by Theorem 2.1 (3), so they have
the same Quinn index. By Corollary 2.4 the first problem has the Quinn
index as —o. Since the composite map

1
Xm —2 Wo —2— X

is UV, it follows from Corollary 2.4 that the surgery problems

Id
M, 2 X,

y Xom

and
M, -2 X, 2=y X
have the same Quinn index, which is equal to the Z-component of

—o € Hy(M,L). Because p o i,, is a homotopy equivalence, we have
an obvious normal map

fm=potmognm: M, = X.

We shall consider it as a degree 1 normal map over Idx : X —+ X, and we
show that its Quinn index coincides with the Z-component of —¢. If it is
not 1, then X cannot be a manifold. This completes the existence proof.

Let fl, : X — X, be a controlled UV! homotopy inverse of poi,, (take
for instance the composition X C Wy, = X,., and then approximate it
by an UV!-map). Let us consider the normal map f/, : X = X,, over
Id: X,, =& Xy If m is large, ie., f;, is an e-homotopy equivalence, then
its associated 6 = d(e)—form is e-cobordant to the zero form (see Lemma
4.7).

By Proposition 2.2, the associated form of the composition

fm Id

M, I, x

y Xom y Xon

is therefore ¢’-cobordant to the associated form of f,, : M,, = X over
fi+ X = X, If € is sufficiently small, then their Quinn indexes coincide
(see Proposition 2.7.2 of [6], or the proof of Corollary 2.4). Now the claim
follows from the following two observations:
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(a) By Corollé.ry 2.4 the Quinn index of fr, : My, &+ X overId: X - X
coincides with the one of f, : My v X over f,, : X = X,, since f!, is
Uvt. '

(b) The composition
fl

2 Xm

M, fm , x

is homotopic to g, : My, = X,,,, since
flopoim: Xy = X,
is e-homotopic to the identity for m sufficiently large. The homotopy
bt : X = X

is a homotopy equivalence, hence ¢; 0 ¢, : My, — X,, is 2 normal map over
1d : X,, =@ X,,. Therefore, the map

@0 (gm xId): My, x I = X X I

is a normal cobordism between f], o f,, and g,, over the first projection -

X X I = X

Here the map ¢ : Xm X I = X, x I is given by ¢(z,t) = (¢:(z),t). By

Theorem 2.1 (3) we obtain that the Quinn index of the composite map
M, fn , x I X,

over Id : X,, = X,, is the Z-component of —c. From (a) and (b) we obtain

our main result.
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