
J. Math. Anal. Appl. 394 (2012) 481–487

Contents lists available at SciVerse ScienceDirect

Journal of Mathematical Analysis and
Applications

journal homepage: www.elsevier.com/locate/jmaa

Hyperspaces of max-plus convex subsets of powers of the real line
Lidia Bazylevych a, Dušan Repovš b,c,∗, Mykhailo Zarichnyi d,e
a National University ‘‘Lviv Polytechnica’’, 12 Bandery Str., 79013 Lviv, Ukraine
b Faculty of Education, University of Ljubljana, Kardeljeva pl. 16, Ljubljana, 1000, Slovenia
c Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, Ljubljana, 1000, Slovenia
d Department of Mechanics and Mathematics, Lviv National University, Universytetska Str. 1, 79000 Lviv, Ukraine
e Institute of Mathematics, University of Rzeszów, Rejtana 16 A, 35-310 Rzeszów, Poland

a r t i c l e i n f o

Article history:
Received 24 April 2011
Available online 8 May 2012
Submitted by B. Sims

Keywords:
Max-plus convex set
Hyperspace
Absolute retract
Powers of the real line

a b s t r a c t

The notion of a max-plus convex subset of Euclidean space can be naturally extended
to other linear spaces. The aim of this paper is to describe the topology of hyperspaces
of max-plus convex subsets in Tychonov powers Rτ of the real line. We show that the
corresponding spaces are absolute retracts if and only if τ ≤ ω1.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Max-plus convex sets were introduced in [1]. Max-plus convex cones also appeared in idempotent analysis, following
the observation by Maslov that solutions of the Hamilton–Jacobi equation associated with a deterministic optimal control
problem satisfy a ‘‘max-plus’’ superposition principle and therefore belong to structures similar to convex cones which are
called semimodules or idempotent linear spaces [2]. In the last decade the interest in max-plus convex sets increased due
to the development of the so-called ‘‘idempotent mathematics’’, which is a part of mathematics where usual arithmetic
operations are replaced by idempotent operations. Our paper is devoted to hyperspaces of max-plus convex subsets in
Tychonov powers of the real line. The results of the first-named author cover the case of Rn, n ≥ 2.

The topology of hyperspaces of compact and closed convex sets has been investigated by several authors. The classical
result of Nadler et al. [3] asserts that the hyperspace of convex compact subsets of Rn, n ≥ 2, is a contractible Q -manifold
homeomorphic to Q \ {∗} (recall that a Q -manifold is a manifold modeled on the Hilbert cube Q = [0, 1]ω). Their result
has found many applications in convex geometry. In particular, it enabled the proof that the hyperspace of all compact
strictly convex bodies is homeomorphic to the separable Hilbert space ℓ2 (see [4]). Hyperspaces of compact convex subsets
of Tychonov cubes were investigated in [5].

Let Rmax = R∪{−∞} and let τ be a cardinal number. Given x, y ∈ Rτ and λ ∈ R, we denote by x⊕ y the coordinatewise
maximum of x and y and by λ⊙ x the vector obtained from x by adding λ to each of its coordinates. A subset A in Rτ is said
to be tropically convex (ormax-plus convex) if α ⊙ a⊕ β ⊙ b ∈ A for all a, b ∈ A and α, β ∈ Rmax with α ⊕ β = 0.

We denote the hyperspace of all nonempty max-plus convex compact subsets in Rτ by mpcc(Rτ ). Note that every max-
plus convex compact subset in Rτ is a subsemilattice of Rτ with respect to the operation⊕. In particular, max A ∈ A for any
max-plus convex compact subset A in Rτ .
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Tychonov powers Rτ , for τ > ω, are the main geometric objects of the theory of noncompact nonmetrizable absolute
extensors. Themain result of our paper is that the hyperspace ofmax-plus convex subsets in the spacesRτ is homeomorphic
to Rτ if τ ∈ {ω,ω1}.

2. Preliminaries

The set R ∪ {−∞}will be endowed with the metric ϱ, ϱ(x, y) = |ex − ey| (conventions: e−∞ = 0 and ln 0 = −∞). We
denote the set of all nonempty compact subsets of a metric space (X, d) by exp X . The base of the Vietoris topology on exp X
consists of the sets of the form

⟨U1, . . . ,Un⟩ = {A ∈ exp X | A ⊂ ∪n
i=1 Ui, A ∩ Ui ≠ ∅, for all i = 1, . . . , n},

where U1, . . . ,Un run over the topology of X .
If X is a metric space, then one can endow exp X with the Hausdorff metric dH :

dH(A, B) = inf{ε > 0 | A ⊂ Oε(B), B ⊂ Oε(A)}

(hereafter, Or(C) will denote the r-neighborhood of C ∈ exp X). It is well-known that equivalent metrics on X generate
equivalent Hausdorff metrics on exp X .

By ANR (resp., AR) we shall denote the class of absolute neighborhood retracts (resp., absolute retracts) for the class of
metrizable spaces, i.e. the class of metrizable spaces X satisfying the following property: for every embedding i : X → Y
into a metrizable space Y there exists a retraction of a neighborhood of i(X) in Y (resp., a retraction of Y ) onto i(X).

We say that a metric space X satisfies the strong discrete approximation property (SDAP) if for every continuous function
ε : X → (0,∞) and every map f :


∞

n=1 I
n
→ X there exists a map g :


∞

n=1 I
n
→ X such that d(f (x), g(x)) < ε(x), x ∈

∞

n=1 I
n, and the family {g(In) | n ∈ N} is discrete (d denotes the metric on X). The following is a characterization theorem

for ℓ2-manifolds.

Theorem 2.1 (Toruńczyk [6]). A complete separable nowhere locally compact ANR X is an ℓ2-manifold if and only if X satisfies
the SDAP.

Recall that a map f : X → Y is called soft [7] if for every commutative diagram

A� _

��

ϕ // X

f

��
Z

ψ
// Y

(1)

such that A is a closed subset of a paracompact space Z , there exists a mapΦ : Z → X such that fΦ = ψ andΦ|A = ϕ.
A trivial ℓ2-bundle is a map f : X → Y which is homeomorphic to the projection Y × M → Y onto the first factor,

where M is ℓ2. A map f : X → Y of metric spaces is said to satisfy the fiberwise discrete approximation property if for
every map g :


∞

n=1 I
n
→ X and every continuous function ε : X → (0,∞) there is a map h :


∞

n=1 I
n
→ X such that

d(f (x), g(x)) < ε(x), x ∈

∞

n=1 I
n, and:

(1) fg = fh; and
(2) the family {h(In) | i ∈ N} is discrete.

The following result was cited in [8] and was attributed to Toruńczyk and West (see [9] for the compact case).

Theorem 2.2 (Toruńczyk–West Characterization Theorem for Rω-Manifold Bundles). A map f : X → Y of complete metric ANR-
spaces is a trivial Rω if f is soft and f satisfies the fiberwise discrete approximation property (FDAP).

The following notion was introduced in [10]: a c-structure on a topological space X is an assignment, to every nonempty
finite subset A of X , of a contractible subspace F(A) of X , such that F(A) ⊂ F(A′)whenever A ⊂ A′. A pair (X, F), where F is a
c-structure on X , is called a c-space. A subset E of X is called an F-set if F(A) ⊂ E for any finite A ⊂ E. A metric space (X, d)
is said to be ametric l.c.-space if all the open balls are F-sets and all open r-neighborhoods of F-sets are also F-sets.

The following is a generalization of the Michael Selection Theorem for generalized convexity structures (see [11] for the
proof). Recall that a multivalued map F : X → Y of topological spaces is called lower semicontinuous if, for any open subset
U of Y , the set {x ∈ X | F(x) ∩ U ≠ ∅} is open in X . A selection of a multivalued map F : X → Y is a (single-valued) map
f : X → Y such that f (x) ∈ F(x) for every x ∈ X . The following was proved in [11] (see the second corollary of Theorem 2
in [11]).

Theorem 2.3. Let (X, d, F) be a metric l.c.-space. Then X is an AR.

Theorem 2.4. Let (X, d, F) be a complete metric l.c.-space. Then any lower semicontinuous multivalued map T : Y → X of a
paracompact space Y whose values are nonempty closed F-sets has a continuous selection.
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3. Two lemmas

Recall that the countable power Rω of the real line R is homeomorphic to the pseudo-interior s of the Hilbert cube Q as
well as, by the Anderson–Kadec theorem, to the separable Hilbert space ℓ2. We shall consider the following metric ϱ on R:

ϱ(x, y) = min{|x− y|, 1}.

We shall define a metric d on the countable power Rω by the formula

d((xi)∞i=1, (yi)
∞

i=1) = max
i∈N

ϱ(xi, yi)
2i

.

Note that d is a complete metric generating the Tychonov topology on Rω .

Lemma 3.1. The space mpcc(Rω) is an absolute retract.

Proof. Define a c-structure on mpcc(Rω) as follows: given any A1, . . . , An ∈ mpcc(Rω), let

F({A1, . . . , An}) =


n

i=1

αi ⊙ Ai | α1, . . . , αn ∈ [−∞, 0], ⊕n
i=1 αi = 0


.

Weare going to show that every set of the form F({A1, . . . , An}) is contractible. LetA = ⊕n
i=1 Ai. ThenA ∈ F({A1, . . . , An}).

Define a map

H : F({A1, . . . , An})× [0, 1] → F({A1, . . . , An})

by the formula

H(C, t) = C ⊕ (ln t)⊙ A.

Note that H is well-defined, H(C, 0) = C ⊕ {−∞} = C and H(C, 1) = C ⊕ 0⊙ A = A, for every C ∈ F({A1, . . . , An}). Thus,
H contracts the set F({A1, . . . , An}) to A.

Now let us prove that every neighborhood of a point in mpcc(Rω) is an F-set. Let A ∈ mpcc(Rω), r > 0, and
dH(A, B), dH(A, B′) < r . Given a ∈ A, find b ∈ B and b′ ∈ B′ such that d(a, b) < r and d(a, b′) < r . Without loss of
generality, we may assume that a = 0. There exist i, j ∈ N such that

d(a, b) =
min{|bi|, 1}

2i
, d(a, b′) =

min{|b′j|, 1}

2j
.

Given t ∈ [−∞, 0], find k ∈ N such that

d(a, b⊕ t ⊙ b′) =
min{|max{bk, b′k + t}|, 1}

2k
.

Without loss of generality, we may assume that r < 1. The rest of the proof splits into two cases.
Case 1. bk ≥ b′k + t . Then

d(a, b⊕ t ⊙ b′) =
|bk|
2k
≤
|bi|
2i
< r.

Case 2. bk ≤ b′k + t . Then also b′k + t ≤ b′k and

d(a, b⊕ t ⊙ b′) =
|bk + t|

2k
≤ max


|bk|
2k
,
|bk|
2k


≤ max


|bi|
2i
,
|bj|
2j


< r.

In both cases, for every a ∈ A there is a point c ∈ B ⊕ t ⊙ B′ such that d(a, c) < r . Similarly, for any c ∈ B ⊕ t · B′
one can find a ∈ A such that d(a, c) < r . This shows that dH(A, B ⊕ t ⊙ B′) < r for every B, B′ ∈ mpcc(Rω) such that
dH(A, B) < r, dH(A, B′) < r .

We can demonstrate by induction that

dH


n

i=1

αi ⊙ Ai, A


< r, whenever α1, . . . , αn ∈ [−∞, 0],

⊕
n
i=1 αi = 0, and dH(Ai, A) < r, for every i = 1, . . . , n.

This shows that every r-neighborhood of a point in the space mpcc(Rω) is an F-set.
By using a similar argumentwe can prove that every neighborhood of an F-set is again an F-set. It follows from the results

of [11] that the space mpcc(Rω) is an AR-space (see Theorem 2.3). �
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Let A, B be nonempty sets such that A ⊂ B. Observe that the projection p = pBA : RB
→ RA onto the first factor induces

the map

mpcc(p) : mpcc(RB)→ mpcc(RA)

given by:

mpcc(p)(A) = p(A), A ∈ mpcc(RB).

It is easy to verify that this map is well-defined.
We may regard the construction mpcc as a covariant functor acting on the category whose objects are the powers of R

and where the morphisms are the projections.

Lemma 3.2. Let p : Rω × Rω → Rω be the projection onto the first factor. Then the mapmpcc(p) is soft.

Proof. Consider a commutative diagram

A� _

��

ϕ // mpcc(Rω × Rω)

mpcc(p)

��
Z

ψ
// mpcc(Rω),

(2)

where A is a closed subset of a paracompact space Z .
For every C ∈ mpcc(Rω), the preimage

mpcc(p)−1(c) ⊂ mpcc(Rω × Rω)

is convex with respect to the c-structure F in the space mpcc(Rω × Rω) defined as follows: given any A1, . . . , An ∈

mpcc(Rω × Rω), let

F({A1, . . . , An}) =


n

i=1

αi ⊙ Ai | α1, . . . , αn ∈ [−∞, 0], ⊕n
i=1 αi = 0


.

Note that this is an F-structurewith respect to the Hausdorff metric d′H on the spacempcc(Rω×Rω) generated by themetric
d′ on the space Rω × Rω defined by the formula

d′((x1, y1), (x2, y2)) = max{d(x1, x2), d(y1, y2)}.

This can be established by repeating the corresponding arguments from the proof of Lemma 3.1.
Define a multivalued mapΦ : Z → mpcc(Rω × Rω) as follows:

Φ(z) =

mpcc(p)−1(ψ(z)), if z ∈ Z \ A,
{ϕ(z)}, if z ∈ A.

Clearly, the images ofΦ are F-sets. Since the set A is closed, we see that the mapΦ is lower semicontinuous. It follows from
Theorem 2.4 that this map admits a continuous selection g . Clearly, g|A = ϕ and gmpcc(p) = ψ . This proves the softness
of mpcc(p). �

4. The main result

Theorem 4.1. The hyperspacempcc(Rω) of compact max-plus convex subsets in the space Rω is homeomorphic to Rω .

Proof. Since Rω is homeomorphic to (Rω)ω , one can represent the latter space as the limit of the inverse sequence

Rω ← Rω × Rω ← Rω × Rω × Rω ← · · · ,

where every arrow denotes the projection onto the first factor. Applying the functor mpcc to this sequence we obtain

mpcc(Rω)← mpcc(Rω × Rω)← mpcc(Rω × Rω × Rω)← · · · . (3)

The bonding maps of the latter sequence have the following property: for every such map there exists a countable family of
selections such that the family of images of these selections is discrete. Indeed, let C = {ci | i ∈ ω} be a closed countable
subset of Rω . For every i ∈ ω, denote by si the selection of the map

mpcc((Rω × Rω × · · · × Rω)× Rω)→ mpcc(Rω × Rω × · · · × Rω)

defined as follows: si(A) = A× {ci}.
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We are going to show that the limit projection of the inverse limit of (3) onto mpcc(Rω) satisfies the FDAP. Let
f : ⊔i∈N Qi → mpcc((Rω)ω) be a map and let ε : mpcc((Rω)ω)→ (0,∞) be a function. For every n ∈ ω, let

Yn =


y ∈ Y | ε(f (y)) ≥

1
2n


.

Note that

Y0 ⊂ Int(Y1) ⊂ Y1 ⊂ Int(Y2) ⊂ Y2 · · · .

Define, for every l = 0, 2, 4, . . . , a map gl : Yl−1 ∪ Yl ∪ Yl+1 → mpcc((Rω)ω) by the formula

gl(y) = mpcc(prl+1)(f (y))× {ci} × {ci} × · · · ,

whenever y ∈ Qi. Now, for every l = 1, 3, 5, . . . , let ϕl : Yl−1 ∪ Yl ∪ Yl+1 → [0, 1] be a function such that ϕl|Yl−1 ≡

0, ϕl|Yl+1 ≡ 0.
Define a map g : ⊔i∈N Qi → mpcc((Rω)ω) by the following condition. Let y ∈ Yl, where l = 0, 2, 4, . . . . Then define

g(y) = gl(y). If y ∈ Yl ∩ Qi, where l = 1, 3, 5, . . . , then define

g(y) = {(a1, . . . , al, ϕl(y)al+1 + (1− ϕl(y))ci, ci, ci, . . .) | (ak)∞k=1 ∈ f (y)}.

It is easy to see that the map g is well-defined, mpcc(pr1)f = mpcc(pr1)g , and that d(f (x), g(x)) < ε(x), for every
x ∈ ⊔i∈N Qi.

We are going to prove that the map g is a closed embedding. Suppose the contrary. Then there exists a sequence
(yki)

∞

i=1, where yki ∈ Qki for every i (here we assume that k1 < k2 < k3 < · · · ), such that limi→∞ g(yki) = A, for some
A ∈ mpcc((Rω)ω). Without loss of generality, one may assume that ki = i, for all i.

Since ε(A) > 0, onemay assume that ε(g(yi)) > 2−n for some n < ω. Denote byπk : (Rω)ω → Rω the projection onto the
kth factor. Then from the construction of the map g it follows that mpcc(πn+1)(g(yi)) = {ci}. Since the set C = {ci | i ∈ ω}
is closed in Rω , we obtain a contradiction.

It now follows from Theorem 2.2 that the limit projection of the inverse limit of the inverse sequence (3) onto mpcc(Rω)
is a trivial ℓ2-bundle. Since the space mpcc(Rω) is an absolute retract, we conclude that

mpcc(Rω) ≃ mpcc((Rω)ω) ≃ mpcc(Rω)× ℓ2 ≃ ℓ2,

which proves the theorem. �

Remark 4.2. As a by-product of the proofwe see that themapmpcc(p1) : mpcc(Rω×Rω)→ mpcc(Rω) is a trivial ℓ2-bundle
(here p1 denotes the projection onto the first factor).

The following result is an analogue of a theorem of the first-named author [12], proved for the open sets in Rn, n ≥ 2.

Theorem 4.3. Let X be an open subset in the space Rω . Then the hyperspace of max-plus convex subsets in X is homeomorphic
to X.

Proof. The set X is an Rω-manifold, being an open subset of mpcc(Rω). We identify the set X with the set of all singletons
in X . The mapmax : mpcc(X)→ X is therefore a retraction. Denote the homotopy H : mpcc(X)×[0, 1] → mpcc(X) by the
formula

H(A, t) = {a⊕ ln t max A | a ∈ A}, A ∈ mpcc(X), t ∈ [0, 1]

(convention: ln 0 = −∞).
Therefore, the space X is a deformation retract of the spacempcc(X), whencewe conclude that the spaces X andmpcc(X)

are homotopically equivalent. The classification theorem for Rω-manifolds implies that the spaces X and mpcc(X) are
homeomorphic. �

Theorem 4.4. The hyperspacempcc(Rω1) is homeomorphic to Rω1 .

Proof. We represent Rω1 as the limit of the inverse system S = {(Rω)α, pαβ;ω1}, where, for α > β , themap pαβ : (Rω)α →
(Rω)β is the projection map. Then, recall that every projection map pαβ induces the map mpcc(pαβ) : mpcc((Rω)α) →
mpcc((Rω)β) and therefore we obtain the inverse system

mpcc(S) = {mpcc((Rω)α),mpcc(pαβ);ω1}.

Since by Remark 4.2 every bonding map mpcc(pαβ) is homeomorphic to the projection p : Rω ×Rω → Rω , we conclude
that

mpcc(Rω1) = mpcc(lim
←−
(S)) = lim

←−
(mpcc(S)) ≃ Rω1

(the second equality is simply the continuity of the functor mpcc; see [13] for details.) �
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In the sequel, we shall speak of the theory of noncompact nonmetrizable absolute extensors in the sense of [8]. They are
defined as retracts of functionally open subspaces of powers of the real line. Recall that a set U in a topological space X is
called functionally open if U = f −1((0, 1]) for some continuous function f : X → [0, 1].

Theorem 4.5. Let M be a functionally open subset of Rω1 . Then mpcc(M) is homeomorphic to M.

Proof. Note that the set mpccM is also functionally open. Indeed, let f : Rω1 → [0, 1] be a continuous function such that
M = f −1((0, 1]). Define the function f̃ : Rω1 → [0, 1] by the formula f̃ (A) = inf A. Then, clearly, f̃ −1((0, 1]) = mpccM .

There exists a countable subset S ⊂ ω1 and a function g : RS
→ [0, 1] such that f = gprS . Therefore, M = U × Rω1\S .

Without loss of generality, one may conclude that S = ω ⊂ ω1. We conclude that

M = lim
←−
{U × Rα\ω, pβ\ωα\ω;ω < α < β < ω1}

and therefore

mpcc(M) = lim
←−
{mpcc(U × Rα\ω),mpcc(pβ\ωα\ω);ω < α < β < ω1}.

Since by Theorem 4.3, the space mpcc(U) is homeomorphic to U and every projection map in the latter inverse system
is soft, we conclude that

mpcc(M) ≃ mpcc(U)× Rω1 ≃ U × Rω1 ≃ M. �

Theorem 4.6. The hyperspacempcc(Rτ ) is not an absolute retract, for any τ > ω1.

Proof. First, note that it suffices to consider the case τ = ω2. Now, recall thatmpcc is a functor acting on the categorywhose
objects are spaces Rτ and the morphisms are the projections. Assuming that mpcc(Rω2) is an absolute retract we conclude,
by Chigogidze’s characterization theorem [14], that mpcc(Rω2) is homeomorphic to Rω2 .

By general results concerning the functors in the category of Tychonov spaces [8,7], we obtain that any homeomorphism
of Rω2 and mpcc(Rω2) implies the isomorphism of the square diagram

D = (Rω)3
pr12 //

pr13
��

(Rω)2

pr1

��
(Rω)2 pr1

// Rω

,

where prij, prk denote the projections onto the corresponding factors, and mpcc(D).
We are going to show that the diagram mpcc(D) is not a pullback diagram. Let

A = {0} ⊂ Rω, B = C = {0} × {(xi) | x0 ∈ [0, 1], xi = 0, if i > 0} ⊂ (Rω)2.

Let also

D1 = {0} × {((xi), (yi)) | x0 = y0 and xi = yi = 0, if i > 0} ⊂ (Rω)3;

then

mpcc(pr12)(D) = mpcc(pr12)(D1) = B, mpcc(pr13)(D) = mpcc(pr13)(D1) = C .

Thus mpcc(D) is not a pullback diagram and this completes the proof. �

5. Epilogue

The following question is related to Theorem 4.3.

Question 5.1. Let U be an open subset of Rω1 which is an Rω1-manifold (see [14] for the background of the theory of Rω1-
manifolds). Is mpcc(U) then homeomorphic to U?

The following notion was introduced in [15] and investigated in [16,17]. A subset B of Rn
+
is said to be B-convex if for all

x, y ∈ B and all t ∈ [0, 1] one has max(tx, y) ∈ B. For the hyperspace B -cc(Rn), n ≥ 2, of compact B-convex subsets of Rn
+

one can prove analogues of the results in [13].
One can extend this notion over an arbitrary vector lattice. Let ℓ2

+
denote the positive cone of the separable Hilbert space

ℓ2. We say that a subset B of ℓ2
+
is B-convex if for all x, y ∈ B and all t ∈ [0, 1] one has max(tx, y) ∈ B. We conjecture that

the hyperspace of compact B-convex subsets in ℓ2
+
is homeomorphic to ℓ2. An analogous question can be formulated for the

nonseparable case.

Question 5.2. Let ℓ2(A)+ denote the positive cone in a nonseparable Hilbert space ℓ2(A). Is the hyperspace B -cc(ℓ2(A)+)
homeomorphic to ℓ2(A)?
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