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Abstract

Our main result states that the hyperspace of convex compact subsets of a compact convex subset X in a locally convex space is
an absolute retract if and only if X is an absolute retract of weight � ω1. It is also proved that the hyperspace of convex compact
subsets of the Tychonov cube Iω1 is homeomorphic to Iω1 . An analogous result is also proved for the cone over Iω1 . Our proofs are
based on analysis of maps of hyperspaces of compact convex subsets, in particular, selection theorems for such maps are proved.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

For any uncountable cardinal number τ , the Tychonov and the Cantor cubes (denoted by I τ and Dτ , respectively),
belong to the class of main geometric objects in the topology of non-metrizable compact Hausdorff spaces. The spaces
I τ (we denote by I the segment [0,1]) and Dτ were first characterized by Shchepin [13]. In particular, the Tychonov
cubes are characterized as the homogeneous-by-character nonmetrizable compact Hausdorff absolute retracts [12].
This characterization was later applied to the study of topology of the functor-powers, i.e. spaces of the form F(Kτ ),
where K is a compact metrizable space and F is a covariant functor in the category of compact Hausdorff spaces.
In particular, it was proved that, for an uncountable τ , the space P(I τ ), where P denotes the probability measure
functor, is homeomorphic to I τ if and only if τ = ω1. For the hyperspace functor exp it is known that exp(Dτ ) is
homeomorphic to Dτ if and only if τ = ω1 and exp(I τ ) is not an absolute retract whenever τ > ω.

In this paper we consider the hyperspaces cc(X) of nonempty compact convex subsets in X, for compact convex
subsets in locally convex spaces X. For metrizable X, this object was investigated by different authors (see, e.g.,
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[7,9]). In particular, it was proved in [9] that the hyperspace of convex compact subsets of the Hilbert cube Q = Iω is
homeomorphic to Iω.

The aim of this paper is to consider the nonmetrizable compact convex subsets in locally convex spaces. One of our
main results is Theorem 4.1, which characterizes the compact convex spaces X by cc(X) being an absolute retract. We
also show that the space cc(X) is homeomorphic to Iω1 (resp., the cone over Iω1 ) if and only if X is homeomorphic
to Iω1 (resp., the cone over Iω1 ).

These results are in the spirit of the corresponding results concerning the functor-powers of compact metric spaces
(see [13]). The proofs are based on the spectral analysis of nonmetrizable compact Hausdorff spaces, in particular
on the Shchepin Spectral Theorem [13] as well as on analysis of the selection type properties of the maps of the
hyperspaces of compact convex subsets.

The construction cc determines a functor acting on the category Conv of compact convex subsets of locally convex
spaces. The results of this paper demonstrate that the functor cc is closer to the functor P of probability measures than
to the hyperspace functor exp.

2. Preliminaries

All topological spaces are assumed to be Tychonov, all maps are continuous. By Ā we denote the closure of a
subset A of a topological space. Let X be any space.

The hyperspace expX of X is the space of all nonempty compact subsets in X endowed with the Vietoris topology.
A base of this topology is formed by the sets of the form

〈U1, . . . ,Un〉 = {A ∈ expX | A ⊂ U1 ∪ · · · ∪ Un and A ∩ Ui 	= ∅ for every i},
where U1, . . . ,Un run through the topology of X, n ∈ N. For a metric space (X,ρ), the Vietoris topology on exp(X)

is induced by the Hausdorff metric ρH:

ρH(A,B) = inf
{
ε > 0 | A ⊂ Oε(B), B ⊂ Oε(A)

}
.

The hyperspace construction determines a functor in the category Comp of compact Hausdorff spaces and con-
tinuous maps. Given a map f :X → Y in Comp, we define exp(f ) : exp(X) → exp(Y ) by exp(f )(A) = f (A),
A ∈ exp(X).

Let Conv denote the category of compact convex subsets in locally convex spaces and affine continuous maps. If
X is an object of Conv we define

cc(X) = {
A ∈ exp(X) | A is convex

} ⊂ exp(X).

If f :X → Y is a map in Conv, then the map cc(f ) : cc(X) → cc(Y ) is defined as the restriction of exp(f ) on cc(X).
In the sequel, for a nonempty compact subset X in a locally convex space Y , we denote the closed convex hull map

by h : expX → cc(Y ). Let X be a subset of a metrizable locally convex space M . In the sequel, we identify any point
x ∈ X with the singleton {x} ∈ cc(X).

Recall that the Minkowski operation in cc(X) is defined as follows:

λ1A1 + λ2A2 = {λ1x1 + λ2x2 | x1 ∈ A1, x2 ∈ A2},
λ1, λ2 ∈ R, A1,A2 ∈ cc(X).

Lemma 2.1. Let X be a compact convex subset in a locally convex space. There exists an embedding α of the space
cc(X) into a locally convex space L satisfying the condition

α(λ1A1 + λ2A2) = λ1α(A1) + λ2α(A2) (2.1)

for every λ1, λ2 ∈ R, A1,A2 ∈ cc(X).

Proof. Let X be a compact convex subset in a metrizable locally convex space M . Following [11], consider the
equivalence relation ∼ on cc(M) × cc(M) defined by the condition: (A,B) ∼ (C,D) if and only if A + D = B + C.
Denote by L the set of equivalence classes of ∼ (in the sequel, we denote by [A,B] the equivalence class that contains
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(A,B)). It is well known that L is a linear space with respect to the naturally defined operations. Let U be a convex
neighborhood of zero in M and define

U∗ = {[A,B] ∈ L | A ⊂ B + U, B ⊂ A + U
}
.

The sets U∗ form a base at zero in L. The map α : cc(X) → L defined by the formula α(A) = [A, {0}] is the required
embedding. �
3. Functor cc and soft maps

A map f :X → Y is soft (see [13]) if for every commutative diagram

A
ψ

i

X

f

Z ϕ Y

where i :A → Z is a closed embedding into a paracompact space Z, there exists a map Φ :Z → X such that Φ|A = ψ

and f Φ = ϕ.
In other words, a map is soft if it satisfies the parameterized selection extension property.
The following proposition is close to the Michael selection theorem for convex-valued maps [8].

Proposition 3.1. Let f :X → Y be an affine open map of compact convex metrizable subsets of locally convex spaces.
Then the map cc(f ) : cc(X) → cc(Y ) is soft.

Proof. We first prove that the map cc(f ) is open. It is well known that the map exp(f ) is open. Since the diagram

(exp(f ))−1(cc(Y ))
h

exp(f )|(exp(f ))−1(cc(Y ))

cc(X)

cc(f )

cc(Y )

is commutative and the closed convex hull map h is a retraction of (exp(f ))−1(cc(Y )) onto cc(X), we see that the map
cc(f ) is also open.

There exists an embedding α : cc(X) → L satisfying condition (2.1). Choose a countable family of functionals
{ϕ1, ϕ2, . . .} ⊂ L∗ such that this family separates the points and ϕi(α(cc(X))) ⊂ [−1/i,1/i]. Then the map ϕ =
(ϕ1, ϕ2, . . .), defined on α(cc(X)), embeds α(cc(X)) into the Hilbert space �2. Denote by

ξ :ϕ
(
α
(
cc(X)

)) × cc
(
ϕ
(
α(cc(X))

)) → ϕ
(
α
(
cc(X)

))

the nearest point map: y = ξ(x,A) if and only if ‖z− x‖ > ‖y − x‖, for every z ∈ A \ {y} (here ‖ · ‖ denotes the norm
in �2).

Suppose a commutative diagram

A
p

cc(X)

cc(f )

Z q cc(Y )

is given, where A is a closed subset of a paracompact space Z.
Since cc(X) is an absolute retract, there exists a map r :Z → cc(X) such that r|A = p. Note that for every

B ∈ cc(Y ), the set ϕ(α(cc(f )−1(B))) is a convex closed subset of ϕ(α(cc(X))), i.e. an element of the space
cc(ϕ(α(cc(X)))). Since the map cc(f ) is open, the map

δ : cc(Y ) → cc
(
ϕ
(
α(cc(X))

))
, δ(B) = ϕ

(
α
(
cc(f )−1(B)

))
,

is continuous.
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Define the map R :Z → cc(X) by the formula

R(z) = α−1(ϕ−1(ξ(ϕ(α(r(z))), δ(q(z)))
))

, z ∈ Z.

It is easy to see that R is continuous, R|A = p, and cc(f )R = q . �
A point p of a set X in a locally convex space E is called an exposed point of X if there exists a continuous linear

functional f on E such that f (x) > f (p), for each x ∈ X \ {p}.

Lemma 3.2. Let f :X → Y be an open affine continuous map of compact convex subsets in locally convex spaces
such that |f −1(y)| > 1 for every y ∈ Y . Then |cc(f )−1(B)| > 1, for every B ∈ cc(Y ).

Proof. As in the proof of Proposition 3.1, one may assume that X is affinely embedded in the Hilbert space �2. Let
B ∈ cc(Y ) and A ∈ cc(f )−1(B). If A 	= f −1(B), then we define A′ as the closure of the convex hull of A∪{x}, where
x ∈ f −1(B) \ A. Then A′ 	= A and A′ ∈ cc(f )−1(B).

If A = f −1(B), then it is well-known (see e.g., [1]) that there exists an exposed point, x of A. Since f is open,
there exists a neighborhood U of x such that f (A \ U) = B . In this case we define A′ as the closure of the convex
hull of A \ U . Note that A′ ∈ cc(f )−1(B). That A 	= A′ easily follows from the fact that x is an exposed point. �
Lemma 3.3. Suppose that f :X → Y is a continuous affine map of compact convex subsets of locally convex spaces.
If the map cc(f ) is open then so is the map f .

Proof. Suppose to the contrary, that f is not open. Then there exists x ∈ X and a net (yα)α∈A in Y converging to
y = f (x), such that there is no net (xα)α∈A in X converging to x with xα ∈ f −1(yα), for every α ∈ A.

Assuming that the map cc(f ) is open, we obtain that there exists a net (Cα)α∈A in cc(X) converging to {x} and such
that cc(f )(Cα) = {yα}, for every α ∈ A. Then, obviously, the net (cα)α∈A converges to x, for every choice cα ∈ Cα ,
α ∈ A. This gives a contradiction. �

A commutative diagram

D = X
f

g

Y

u

Z v T

(3.1)

is called soft if its characteristic map

χD = (f, g) :X → Y ×T Z = {
(y, z) ∈ Y × Z | u(y) = v(z)

}

is soft.

Lemma 3.4. Suppose that a commutative diagram D (see formula (3.1)) in the category Conv consists of metrizable
spaces. If the diagram cc(D) is soft, then so is the diagram D.

Proof. First we show that the diagram D is open if such is cc(D). Let (yi, zi)
∞
i=1 be a sequence in Y ×T Z converging

to a point (y, z) and let x ∈ X be such that χD(x) = (y, z). Since cc(D) is soft (and therefore open), there exists a
sequence (Ai)

∞
i=1 in cc(X) such that (f (Ai), g(Ai)) = ({yi}, {zi}), for every i, and (Ai)

∞
i=1 converges to {x} in cc(X).

Choose arbitrary xi ∈ Ai , then (f (xi), g(xi)) = (yi, zi), for every i, and (xi)
∞
i=1 converges to x in X. This shows that

the map χD is open.
Now the map χD , being an open affine map of convex compact metrizable subspaces of locally convex spaces, is

soft. This follows from the Michael Selection Theorem [8] (see e.g., [13]). �
4. Hyperspaces cc(X) homeomorphic to Tychonov cubes

We are going to recall some definitions and results related to the Shchepin Spectral Theorem (see [13] for details).
In what follows, an inverse system S = {Xα,pαβ;A} satisfies the following conditions:
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(1) Xα are compact Hausdorff spaces;
(2) pαβ are surjective;
(3) the partially ordered set A (by �) is directed, i.e., for every α,β ∈ A there exists γ ∈ A with α � γ , β � γ .

An inverse system S = {Xα,pαβ;A} is called open if all the maps pαβ are open. An inverse system S =
{Xα,pαβ;A} is called continuous if for every α ∈A we have Xα = lim←−{Xα′ ,pα′β ′ ;α′, β ′ < α}.

By w(X) we denote the weight of a space X. An inverse system S = {Xα,pαβ;A} is called a τ -system, τ being
a cardinal number, if the following holds:

(1) the directed set A is τ -complete, i.e. every chain of cardinality � τ in A has the least upper bound;
(2) S is continuous;
(3) w(Xα) � τ , for every α ∈A.

If τ = ω, we use the terms σ -complete and σ -system.
For every A, we denote the family of all countable subsets of A ordered by inclusion by Pω(A).
A standard way to represent a compact Hausdorff space X as a limit of a σ -system is to embed it into a Tychonov

cube I τ , for some τ . For any countable A ⊂ τ , let XA = pA(X), where pA : I τ → IA denotes the projection. In this
way we obtain an inverse system S = {XA,pAB;Pω(τ)}, where, for A ⊃ B , pAB :XA → XB denotes the (unique)
map with the property pB |X = pAB(pA|X). The resulting inverse system S is a σ -system and X = lim←−S .

If X is a compact convex subset of a locally convex space, we can affinely embed X into I τ , for some τ . The above
construction gives us an inverse σ -system S in the category Conv such that X = lim←−S .

In the sequel, we will use the well-known fact that the functor cc is continuous in the sense that it commutes with
the limits of inverse systems.

A compact Hausdorff space X is openly generated if X is the limit of an inverse σ -system with open short projec-
tions. The absolute retracts (ARs) are considered in the class of compact Hausdorff spaces.

Theorem 4.1. Let X be a convex compact subset of a locally convex space. Then the space cc(X) is an absolute retract
if and only if X is openly generated and of weight � ω1.

Proof. If X is openly generated and of weight � ω1, then X is homeomorphic to lim←−S , where S = {Xα,pαβ;ω1}
is an inverse system consisting of convex compact subsets of metrizable locally convex spaces and open maps. Then
cc(X) is homeomorphic to lim←− cc(S). Since the spaces cc(Xα) are ARs and the maps cc(pαβ) are soft (see Proposition

3.1), the space cc(X) is an AR.
Suppose now that cc(X) is an AR of weight � ω2. It easily follows from standard results of Shchepin’s theory

that there exists a compact convex space X̃ of weight ω2 such that cc(X̃) is an AR (see [13] and also [4], where the
case of locally convex spaces is considered). We may assume that cc(X̃) = lim←− cc(S̃), where S̃ = {X̃α, p̃αβ;ω2} is

an inverse system such that for every α < ω2 the space cc(X̃α) is an AR and for every α,β , β � α < ω2, the map
cc(p̃αβ) is soft. In its turn, every X̃α can be represented as lim←− S̃α , where S̃α = {X̃αγ , q̃α

γ δ;ω1} is an inverse system

in Conv and it follows from the results of Chigogidze [4] that for every α,β , where β � α < ω2, the map p̃αβ is the
limit of a morphism (p̃

γ
αβ)γ<ω1 : S̃α → S̃β such that the maps cc(p̃γ

αβ) are soft and for every γ � δ, γ, δ < ω1, the
diagram

cc(X̃αγ )
cc(p̃γ

αβ )

cc(qα
γ δ)

cc(X̃βγ )

cc(qβ
γ δ)

cc(X̃αδ) cc(p̃δ
αβ )

cc(X̃βδ)

is soft. Since all the spaces in the above diagram are metrizable, by Lemma 3.4, the diagram
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X̃αγ

p̃
γ
αβ

qα
γ δ

X̃βγ

q
β
γ δ

X̃αδ p̃δ
αβ

X̃βδ

is also soft. As the limits of soft morphisms, the maps p̃αβ are soft and we conclude that the space X̃ is an absolute
retract.

Since the space X̃ is an AR, it contains a copy of the Tychonov cube Iω2 . It follows from the Shchepin Spectral
Theorem that, without loss of generality, one may assume that every X̃α contains the space (Iω1)α and for every α,β ,
where β � α < ω2, the map p̃αβ |(Iω1)α is the projection map of (Iω1)α onto (Iω1)β .

Denote by D the Aleksandrov supersequence of weight ω1, i.e. the one-point compactification of a discrete space
of cardinality ω1.

Claim. There exists α < ω2 such that the subspace (Iω1)α ⊂ X̃α contains an affinely independent copy of the
space D.

Proof. Represent D as {dγ | γ � ω1}, where dω1 denotes the unique non-isolated point of D. For γ < ω1, let rγ :D →
{dδ | δ � γ } ∪ {dω1} denote the retraction that sends {dδ | γ < δ < ω1} into dω1 .

Define by transfinite induction maps fγ :D → (Iω1)αγ ⊂ X̃αγ , where γ < ω1 and αγ < ω2, so that αγ � αγ ′ and
p̃αγ ′αγ fγ ′ = fγ for every γ � γ ′.

Let f0 :D → (Iω1)α0 ⊂ X̃α0 be an arbitrary constant map, for some α0 < ω2. Suppose that, for some δ < ω1,
maps fγ are already defined for every γ < δ so that fγ = iγ rγ for some embedding iγ : rγ (D) → X̃αγ . If δ is a limit
ordinal, let αδ = sup{αγ | γ < δ} and fδ = lim←−{fγ | γ < δ}. If δ = δ′ + 1, let αδ = αδ′ + 1 and find an embedding

iδ : rδ(D) → (Iω1)αδ ⊂ X̃αδ such that p̃αδαδ′ iδ = iδ′ and p̃αδαδ′ iδ(dδ) = iδ′(dδ′). Put fδ = iδrδ .
Finally, let α = sup{αγ | γ < ω1} and f = lim←−{fγ | γ < ω1}. Claim is thus proved. �
We now return to the proof of the theorem. Without loss of generality, we assume that D ⊂ (Iω1)α ⊂ X̃α and D is

affinely independent in X̃α . Recall that h(D) denotes the closed convex hull of D in X̃α . We are going to show that the
space (cc(p̃α+1,α))−1(h(D)) does not satisfy the Souslin condition. There exist two maps s1, s2 :D → X̃α+1 such that
p̃α+1,αs1 = p̃α+1,αs2 = 1D and s1(D) ∩ s2(D) = ∅. Let U1,U2 be neighborhoods of s1(D) and s2(D), respectively,
such that Ū1 ∩ Ū2 = ∅.

For every isolated point y ∈ D let Vy be a neighborhood of y in X̃α such that V̄y ∩ h(D \ {y}) = ∅.
Let

Wy = 〈
X̃α+1 \ (

Ū2 ∩ p̃−1
α+1,α

(
D \ {y})),U2 ∩ p̃−1

α+1,α(V̄y)
〉
.

We are going to show that cc(p̃α+1,α)−1(h(D)) ∩ Wy 	= ∅. To this end, consider the set B = h(s1(D \ {y}) ∪
{s2(y)}). Obviously, B ∈ cc(p̃α+1,α)−1(h(D)) and s2(y) ∈ B ∩U2 ∩ p̃−1

α+1,α(V̄y). In addition, for every z ∈ D \ {dω1},
z 	= y, we have B ∩ p̃−1

α+1,α(z) = {s1(z)}, therefore B ⊂ X̃α+1 \ (Ū2 ∩ p̃−1
α+1,α(D \ {y})). We conclude that B ∈ Wy .

It remains to prove that for every y, z ∈ D \ {dω1}, y 	= z, we have Wy ∩ Wz ∩ cc(p̃α+1,α)−1(h(D)) 	= ∅. Indeed,
otherwise, for any A ∈ Wy ∩ Wz ∩ cc(p̃α+1,α)−1(h(D)) we would have A ∩ p̃−1

α+1,α(y) ⊂ p−1
α+1,α(y) \ Ū2 and, on the

other hand, A ∩ p̃−1
α+1,α(y) ⊂ U2, a contradiction. We therefore conclude that

{
Wy ∩ cc(p̃α+1,α)−1(h(D)

) | y ∈ D \ {dω1}
}

is a family of nonempty disjoint open subsets in cc(p̃α+1,α)−1(h(D)). Since the space cc(p̃α+1,α)−1(h(D)) does not
satisfy the Souslin condition, we obtain that cc(p̃α+1,α)−1(h(D)) /∈ AR and hence the map cc(p̃α+1,α) is not a soft
map. This contradiction demonstrates that w(X) � ω1.

We are going to show that X is openly generated. Since cc(X) is an AR of weight ω1, there exists an inverse system
S = {Xα,pαβ;ω1} consisting of compact metrizable convex spaces and affine maps such that cc(X) = lim cc(S).
←−
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Applying Shchepin’s Spectral Theorem, we may additionally assume that all the maps cc(pαβ), β � α < ω1, are soft.

By Lemma 3.3, the maps pαβ , β � α < ω1, are soft and therefore open. �
Theorem 4.2. Let X be a convex compact subset of a locally convex space. The space cc(X) is homeomorphic to Iω1

if and only if X is homeomorphic to Iω1 .

Proof. We use the following characterization of the Tychonov cube I τ , τ > ω, due to Shchepin [13]: a compact
Hausdorff space X of weight τ > ω is homeomorphic to the Tychonov cube I τ if and only if X is a character
homogeneous absolute retract. Recall that a space is called character homogeneous if the characters of all of its
points are equal.

If the weight of X is ω1, then it easily follows from the Shchepin Spectral Theorem [13] that X can be represented
as lim←−S , where S = {Xα,pαβ;ω1} is an inverse system consisting of convex compact metrizable subsets in locally

convex spaces and affine continuous maps. Since the functor cc is continuous (see, e.g., [10]), we obtain that cc(X) =
lim←−{cc(Xα), cc(pαβ);ω1}. Since cc(Xα) is an absolute retract (see [15]) and, by Proposition 3.1, the map cc(pαβ) is

soft for every α,β < ω1, α � β , we apply a result of Shchepin (see [13]) to derive that cc(X) is an absolute retract.
If X is character homogeneous, then we can in addition assume that no projection pαβ possesses one-point

preimages. By Lemma 3.2, the maps cc(pαβ) do not possess one-point preimages and therefore cc(X) is character
homogeneous. By the mentioned result of Shchepin, cc(X) is homeomorphic to Iω1 .

If cc(X) is homeomorphic to Iω1 , then there exists an inverse system S = {Xα,pαβ;ω1} consisting of compact
metrizable convex spaces and open affine maps such that cc(X) = lim←− cc(S). Applying Shchepin’s Spectral Theorem,

we may additionally assume that all the maps cc(pαβ), β � α < ω1, are soft and do not possess points with one-point
preimage. It is then evident that the maps pαβ , β � α < ω1, do not possess points with one-point preimage. Applying
Lemma 3.3 we conclude that the maps pαβ , β � α < ω1, are open and therefore, by the Michael Selection Theorem,
soft. Then X is a character homogeneous AR of weight ω1. By the cited characterization theorem for Iω1 , the space
X is homeomorphic to Iω1 . �
5. Cone over Tychonov cube

Define the cone functor cone in the category Conv as follows. Given an object X in Conv, i.e. a compact convex
subset X in a locally convex space L, let cone(X) be the convex hull of the set X × {0} ∪ {(0,1)} in L × R. For a
morphism f :X → Y in Conv define cone(f ) : cone(X) → cone(Y ) as the only affine continuous map that extends
f × {0} :X × {0} → Y × {0} and sends (0,1) ∈ cone(X) to (0,1) ∈ cone(Y ).

We will need the following notion. A map f :X → Y is called a trivial Q-bundle if there exists a homeomorphism
g :X → Y × Q such that f = pr1 g. The following statement is a characterization theorem for the space cone(Iω1)

among the convex compact spaces.

Proposition 5.1. A convex compactum X is homeomorphic to the space cone(Iω1) if and only if X satisfies the
following properties:

(1) X is an AR;
(2) w(X) = ω1; and
(3) there exists a unique point x ∈ X of countable character.

Proof. Obviously, if a convex compactum X is homeomorphic to cone(Iω1), then X satisfies properties (1)–(3).
Suppose now that X satisfies (1)–(3). Then X is homeomorphic to the limit of a continuous inverse system S =

{Xα,pαβ;ω1} in Conv which satisfies the properties

(i) Xα is a convex metrizable compactum for every α;
(ii) pαβ is an open affine map for every α � β; and

(iii) {xβ} = {y ∈ Xβ | |p−1
αβ (y)| = 1}.
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Passing, if necessary, to a subsystem of S , one can assume that for every α and every compact subset K of Xα \ {xα}
the map

pα+1,α|p−1
α+1,α(K) :p−1

α+1,α(K) → K

satisfies the condition of fibrewise disjoint approximation. The Toruńczyk–West characterization theorem [14] implies
that, if K is an AR, the map pα+1,α|p−1

α+1,α(K) is a trivial Q-bundle and therefore the map

pα+1,α|p−1
α+1,α

(
Xα \ {xα}) = pα+1,α|(Xα+1 \ {xα+1}

)
,

being a locally trivial Q-bundle, is a trivial Q-bundle (see [2]). Therefore, the map pα+1,α is homeomorphic to the
projection map pr23 :Q × Q × [0,1) → Q × [0,1) (that Xα \ {xα} is homeomorphic to Q × [0,1) follows from the
fact that the spaces Q and cone(Q) are homeomorphic—see [3]). Passing to the one-point compactifications of these
maps we obtain the commutative diagram

Xα+1

pα+1,α

cone(Q × Q)

cone(pr2)

Xα+1 \ {xα+1}
pα+1,α |...

Q × Q × [0,1)

pr23

Xα \ {xα} Q × [0,1)

Xα cone(Q)

in which the horizontal arrows are homeomorphisms. Therefore X and cone(Iω1) are homeomorphic. �
Theorem 5.2. Let X be an object of the category Conv. The space cc(X) is homeomorphic to the cone over the
Tychonov cube, cone(Iω1), if and only if X is homeomorphic to the space cone(Iω1).

Proof. Suppose that a convex compact space X is an absolute retract of weight ω1 with exactly one point x, of
countable character. It follows from the Shchepin Spectral Theorem ([13]; see also [4]) that X can be represented as
lim←−S , where S = {Xα,pαβ;ω1} is an inverse system in which every Xα is a metrizable convex compactum and every
pαβ , α � β , is an affine map. Denote by pα :X → Xα the limit projections and let xα = pα(x). Passing, if necessary,
to a subsystem of S , one can assume additionally that for every α � β we have {xβ} = {y ∈ Xβ | |p−1

αβ (y)| = 1}.
Then for every α � β , the map cc(pαβ) is a soft map and similarly as in the proof of Lemma 3.2, one can show that

{{xβ}} = {
A ∈ cc(Xβ) | ∣∣cc(pαβ)−1(A)

∣∣ = 1
}
.

We conclude that the space cc(X) = lim←−(S) satisfies the conditions of Proposition 5.1 and therefore is homeomorphic

to the space cone(Iω1).
Now, if cc(X) is homeomorphic to cone(Iω1), it follows from Theorem 4.1 that X is an AR of weight ω1. Note that

for every point x of countable character in X, the point {x} is of countable character in cc(X). We therefore conclude
that there is a unique point of countable character in X. By Proposition 5.1, X is homeomorphic to cone(Iω1). �
6. Remarks and open problems

Problem 6.1. Let f :X → Y be an affine continuous map of compact metrizable compacta in locally convex spaces
such that dimf −1(y) � 2, for every y ∈ Y . Is the map cc(f ) : cc(X) → cc(Y ) homeomorphic to the projection map
pr1 :Q × Q → Q?

Note that there is an open map f :X → Y of metrizable compacta with infinite fibers such that the map
P(f ) :P(X) → P(Y ) is not homeomorphic to the projection map pr1 :Q × Q → Q (see [6]). (Recall that P de-
notes the probability measure functor.)
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Problem 6.2. Does every compact convex AR of weight τ � ω1 contain an affine copy of the Tychonov cube I τ ?

It is known that every compact Hausdorff AR of weight τ � ω1 contains a topological copy of the Tychonov cube
I τ (see [12]).

The theory of nonmetrizable noncompact absolute extensors which is, in some sense, parallel to that of compact
absolute extensors, was elaborated by Chigogidze [4,5]. One can also consider the hyperspaces of compact subsets in
the spaces R

τ and conjecture that for noncountable τ , the hyperspace cc(Rτ ) is homeomorphic to R
τ if and only if

τ = ω1.
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