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Abstract. In this paper, we introduce and study a new functional which
was motivated by the work of Bahrouni et al. (Nonlinearity 31:1518–
1534, 2018) on the Caffarelli–Kohn–Nirenberg inequality with variable
exponent. We also study the eigenvalue problem for equations involving
this new functional.
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1. Introduction

The Caffarelli–Kohn–Nirenberg inequality plays an important role in study-
ing various problems of mathematical physics, spectral theory, analysis of
linear and nonlinear PDEs, harmonic analysis, and stochastic analysis. We
refer to [2,4,7,8] for relevant applications of the Caffarelli–Kohn–Nirenberg
inequality.

Let Ω ⊂ R
N (N ≥ 2) be a bounded domain with smooth boundary.

The following Caffarelli–Kohn–Nirenberg inequality [5] establishes that given
p ∈ (1, N) and real numbers a, b, and q, such that:

−∞ < a <
N − p

p
, a ≤ b ≤ a + 1, q =

Np

N − p(1 + a − b)
,

there is a positive constant Ca,b, such that for every u ∈ C1
c (Ω):

(∫
Ω

|x|−bq|u|q dx

)p/q

≤ Ca,b

∫
Ω

|x|−ap|∇u|p dx . (1)

This inequality has been extensively studied (see, e.g., [1–3,6,11] and the
references therein).
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In particular, Bahrouni et al. [3] gave a new version of the Caffarelli–
Kohn–Nirenberg inequality with variable exponent. They proved the next
theorem under the following assumptions: let Ω ⊂ R

N (N ≥ 2) be a bounded
domain with smooth boundary and suppose that the following hypotheses
are satisfied:
(A) a : Ω → R is a function of class C1 and there exist x0 ∈ Ω, r > 0, and

s ∈ (1,+∞), such that:
(1) |a(x)| 	= 0, for every x ∈ Ω \ {x0};
(2) |a(x)| ≥ |x − x0|s, for every x ∈ B(x0, r);

(P) p : Ω → R is a function of class C1 and 2 < p(x) < N for every x ∈ Ω.

Theorem 1.1. (Bahrouni et al. [3]) Suppose that hypotheses (A) and (P ) are
satisfied. Let Ω ⊂ R

N (N ≥ 2) be a bounded domain with smooth boundary.
Then, there exists a positive constant β, such that:∫

Ω

|a(x)|p(x)|u(x)|p(x)dx ≤ β

∫
Ω

|a(x)|p(x)−1||∇a(x)||u(x)|p(x)dx

+ β

(∫
Ω

|a(x)|p(x)|∇u(x)|p(x)dx

+
∫

Ω

|a(x)|p(x)|∇p(x)||u(x)|p(x)+1dx

)

+ β

∫
Ω

|a(x)|p(x)−1|∇p(x)||u(x)|p(x)−1dx.

for every u ∈ C1
c (Ω).

Motivated by [3], we introduce and study in the present paper a new
functional T : E1 → R via the Caffarelli–Kohn–Nirenberg inequality, in the
framework of variable exponents. More precisely, we study the eigenvalue
problem in which functional T is present. Our main result is Theorem 4.2
and we prove it in Sect. 5.

2. Function Spaces with Variable Exponent

We recall some necessary properties of variable exponent spaces. We refer to
[10,12,13,15–17] and the references therein. Consider the set:

C+(Ω) = {p ∈ C(Ω) | p(x) > 1 for all x ∈ Ω}.

For any p ∈ C+(Ω), let

p+ = sup
x∈Ω

p(x) and p− = inf
x∈Ω

p(x),

and define the variable exponent Lebesgue space as follows:

Lp(x)(Ω) =

{
u | u is measurable real-valued function, such that

∫
Ω

|u(x)|p(x) dx < ∞
}

,

with the Luxemburg norm:

|u|p(x) = inf

{
μ > 0 |

∫
Ω

∣∣∣∣u(x)
μ

∣∣∣∣
p(x)

dx ≤ 1

}
.
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We recall that the variable exponent Lebesgue spaces are separable and reflex-
ive Banach spaces if and only if 1 < p− ≤ p+ < ∞, and continuous functions
with compact support are dense in Lp(x)(Ω) if p+ < ∞.

Let Lq(x)(Ω) denote the conjugate space of Lp(x)(Ω), where 1/p(x) +
1/q(x) = 1. If u ∈ Lp(x)(Ω) and v ∈ Lq(x)(Ω), then the following Hölder-type
inequality holds: ∣∣∣∣

∫
Ω

uv dx

∣∣∣∣ ≤
(

1
p− +

1
q−

)
|u|p(x)|v|q(x) . (2)

An important role in manipulating the generalized Lebesgue–Sobolev
spaces is played by the p(.)−modular of the Lp(x)(Ω) space, which is the
mapping ρ : Lp(x)(Ω) → R defined by:

ρ(u) =
∫

Ω

|u|p(x)dx.

Proposition 2.1. (See [17]) The following properties hold:
(i) |u|p(x) < 1(resp.,= 1;> 1) ⇔ ρ(u) < 1(resp.,= 1;> 1);

(ii) |u|p(x) > 1 ⇒ |u|p−

p(x) ≤ ρ(u) ≤ |u|p+

p(x); and

(iii) |u|p(x) < 1 ⇒ |u|p+

p(x) ≤ ρ(u) ≤ |u|p−

p(x).

Proposition 2.2. (See [17]) If u, un ∈ Lp(x)(Ω) and n ∈ N, then the following
statements are equivalent:

1. limn→+∞ |un − u|p(x) = 0.
2. limn→+∞ ρ(un − u) = 0.
3. un → u in measure in Ω and limn→+∞ ρ(un) = ρ(u).

We define the variable exponent Sobolev space by:

W 1,p(x)(Ω) = {u ∈ Lp(x)(Ω) | |∇u| ∈ Lp(x)(Ω)}.

On W 1,p(x)(Ω), we consider the following norm:

‖u‖p(x) = |u|p(x) + |∇u|p(x).

Then, W 1,p(x)(Ω) is a reflexive separable Banach space.

3. Functional T

We shall introduce a new functional T : E1 → R motivated by the Caffarelli–
Kohn–Nirenberg inequality obtained in [3]. We denote by E1 the closure of
C1

c (Ω) under the norm:

‖u‖ = ||B(x)| 1
p(x) ∇u(x)|p(x) + |A(x)

1
p(x) u(x)|p(x)+

||D(x)| 1
p(x)+1 u(x)|p(x)+1 + ||C(x)| 1

p(x)−1 u(x)|p(x)−1,

where the potentials A, B, C, and D are defined by:⎧⎪⎪⎨
⎪⎪⎩

A(x) = |a(x)|p(x)−1|∇a(x)|
B(x) = |a(x)|p(x)

C(x) = |a(x)|p(x)−1|∇p(x)|
D(x) = B(x)|∇p(x)|.

(3)
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We now define T : E1 → R as follows:

T (u) =
∫

Ω

B(x)
p(x)

|∇u(x)|p(x)dx +
∫

Ω

A(x)
p(x)

|u(x)|p(x)dx

+
∫

Ω

D(x)
p(x) + 1

|u(x)|p(x)+1dx +
∫

Ω

C(x)
p(x) − 1

|u(x)|p(x)−1dx.

The following properties of T will be useful in the sequel.

Lemma 3.1. Suppose that hypotheses (A) and (P ) are satisfied. Then, the
functional T is well defined on E1. Moreover, T ∈ C1(E1,R) with the deriv-
ative given by:

〈L(u), v〉 = 〈T ′(u), v〉 =

∫
Ω

B(x)|∇u(x)|p(x)−2∇u(x)∇v(x)dx

+

∫
Ω

A(x)|u(x)|p(x)−2u(x)v(x)dx

+

∫
Ω

D(x)|u(x)|p(x)−1u(x)v(x)dx +

∫
Ω

C(x)|u(x)|p(x)−3u(x)v(x)dx,

for every u, v ∈ E1.

Proof. The proof is standard, see [17]. �

Lemma 3.2. Suppose that hypotheses (A) and (P ) are satisfied. Then, the
following properties hold

(i) L : E1 → E∗
1 is a continuous, bounded, and strictly monotone operator;

(ii) L is a mapping of type (S+), i.e., if un ⇀ u in E1 and:

lim sup
n→+∞

〈L(un) − L(u), un − u〉 ≤ 0,

then un → u in E1.

Proof. (i) Evidently, L is a bounded operator. Recall the following Simon
inequalities: [18]:

{
|x − y|p ≤ cp

(|x|p−2 x − |y|p−2 y
)
.(x − y) for p ≥ 2

|x − y|p ≤ Cp

[(|x|p−2 x − |y|p−2 y
)
.(x − y)

] p

2 (|x|p + |y|p)
2−p

2 for 1 < p < 2,

(4)
for every x, y ∈ R

N , where:

cp = (
1
2
)−p and Cp =

1
p − 1

.

Using inequalities (4) and recalling that 2 < p−, we can prove that L
is a strictly monotone operator.

(ii) The proof is identical to the proof of Theorem 3.1 in [9].
�
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4. Main Theorem

We recall the Compactness Lemma from [3].

Lemma 4.1. (Bahrouni el al. [3]) Suppose that hypotheses (A) and (P ) are
satisfied and that p− > 1 + s. Then, E1 is compactly embeddable in Lq(Ω)
for each q ∈ (1, Np−

N+sp+ ). Moreover, the same conclusion holds if we replace

Lq(Ω) by Lq(x)(Ω), provided that q+ < Np−

N+sp+ .

We are concerned with the following nonhomogeneous problem:⎧⎨
⎩

−div (B(x)|∇u|p(x)−2∇u) + (A(x)|u|p(x)−2 + C(x)|u|p(x)−3)u
= (λ|u|q(x)−2 − D(x)|u|p(x)−1)u in Ω,
u = 0 on ∂Ω,

(5)

where λ > 0 is a real number and q is continuous on Ω. We suppose that q
satisfies the following basic inequalities:

(Q) 1 < min
x∈Ω

q(x) < min
x∈Ω

(p(x) − 1) < max
x∈Ω

q(x) <
Np−

N + sp+
.

We can now state the main result of this paper.

Theorem 4.2. Suppose that all hypotheses of Lemma 4.1 are satisfied and that
inequalities (Q) hold. Then, there exists λ0 > 0, such that every λ ∈ (0, λ0)
is an eigenvalue for problem (5).

To prove Theorem 4.2 (which will be done in the Sect. 5), we shall need
some preliminary results. We begin by defining the functional Iλ : E1 → R:

Iλ(u) =

∫
Ω

B(x)

p(x)
|∇u(x)|p(x)dx +

∫
Ω

A(x)

p(x)
|u(x)|p(x)dx +

∫
Ω

C(x)

p(x) − 1
|u(x)|p(x)−1dx

+

∫
Ω

D(x)

p(x) + 1
|u(x)|p(x)+1dx − λ

∫
Ω

|u(x)|q(x)

q(x)
dx.

Standard argument shows that Iλ ∈ C1(E1,R) and:

〈I′
λ(u), v〉 =

∫
Ω

B(x)|∇u(x)|p(x)−2∇u(x)∇v(x)dx +

∫
Ω

A(x)|u(x)|p(x)−2u(x)v(x)dx

+

∫
Ω

D(x)|u(x)|p(x)−1u(x)v(x)dx +

∫
Ω

C(x)|u(x)|p(x)−3u(x)v(x)dx

− λ

∫
Ω

|u(x)|q(x)−2u(x)v(x),

for every u, v ∈ E1. Thus, the weak solutions of problem (5) coincide with
the critical points of Iλ.

Lemma 4.3. Suppose that all hypotheses of Theorem 4.2 are satisfied. Then,
there exists λ0 > 0, such that for any λ ∈ (0, λ0), there exist ρ, α > 0, such
that:

Iλ(u) ≥ α for any u ∈ E1 with ‖u‖ = ρ.



  111 Page 6 of 9 A. Bahrouni and D. D. Repovš MJOM

Proof. By Lemma 4.1, there exists β > 0, such that:

|u|r(x) ≤ β ‖u‖ , for every u ∈ E1 and r+ ∈
(

1,
Np−

N + sp+

)
.

We fix ρ ∈ (0,min(1, 1
β )). Invoking Proposition 2.1, for every u ∈ E1 with ‖u‖

= ρ, we can get:

|u|q(x) < 1.

Combining the above relations and Proposition 2.1, for any u ∈ E1 with
‖u‖ = ρ, we can then deduce that:

Iλ(u) ≥ 1
p+

(∫
Ω

B(x)|∇u(x)|p(x)dx +
∫

Ω

A(x)|u(x)|p(x)dx

)

+
1

p+ + 1

∫
Ω

D(x)|u(x)|p(x)+1dx

+
1

p+ − 1

∫
Ω

C(x)|u(x)|p(x)−1dx − λ

q−

∫
Ω

|u(x)|q(x)dx

≥ 1
4p+(p+ + 1)

‖u‖p++1 − λ
βq−

q− ‖u‖q−

≥ 1
4p+(p+ + 1)

ρp++1 − λ
βq−

q− ρq−

= ρq−
(

1
4p+(p+ + 1)

ρp++1−q− − λ
βq−

q− ). (6)

Put λ0 = ρp++1−q−

4p+ (2p++2)

q−

βq− . It now follows from (6) that for any λ ∈ (0, λ0):

Iλ(u) ≥ α with ‖u‖ = ρ,

and α = ρp++1

4p+ (2p++2)
> 0. This completes the proof of Lemma 4.3. �

Lemma 4.4. Suppose that all hypotheses of Theorem 4.2 are satisfied. Then,
there exists ϕ ∈ E1, such that ϕ > 0 and Iλ(tϕ) < 0, for small enough t.

Proof. By virtue of hypotheses (P ) and (Q), there exist ε0 > 0 and Ω0 ⊂ Ω,
such that:

q(x) < q− + ε0 < p− − 1, for every x ∈ Ω0. (7)

Let ϕ ∈ C∞
0 (Ω), such that Ω0 ⊂ supp(ϕ), ϕ = 1 for every x ∈ Ω0 and

0 ≤ ϕ ≤ 1 in Ω. It then follows that for t ∈ (0, 1):

Iλ(tϕ) =
∫

Ω

tp(x)B(x)
p(x)

|∇ϕ(x)|p(x)dx

+
∫

Ω

tp(x)A(x)
p(x)

|ϕ(x)|p(x)dx +
∫

Ω

tp(x)−1C(x)
p(x) − 1

|ϕ|p(x)−1dx

+
∫

Ω

tp(x)+1D(x)
p(x) + 1

|ϕ(x)|p(x)+1dx − λ

∫
Ω

tq(x) |ϕ(x)|q(x)

q(x)
dx
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≤ tp
−−1

p− − 1

(∫
Ω

B(x)
p(x)

|∇ϕ(x)|p(x)dx +
∫

Ω

A(x)
p(x)

|ϕ(x)|p(x)dx

+
∫

Ω

C(x)
p(x) − 1

|ϕ|p(x)−1dx

+
∫

Ω

D(x)
p(x) + 1

|ϕ(x)|p(x)+1dx

)
− λtq

−+ε0

∫
Ω

|ϕ(x)|q(x)

q(x)
dx. (8)

Combining (7) and (8), we finally arrive at the desired conclusion. This com-
pletes the proof of Lemma 4.4. �

5. Proof of Theorem 4.2

In the last section, we shall prove the main theorem of this paper. Let λ0

be defined as in Lemma 4.3 and choose any λ ∈ (0, λ0). Again, invoking
Lemma 4.3, we can deduce that:

inf
u∈∂B(0,ρ)

Iλ(u) > 0. (9)

On the other hand, by Lemma 4.4, there exists ϕ ∈ E1, such that Iλ(tϕ) < 0
for every small enough t > 0. Moreover, by Proposition 2.1, when ‖u‖ < ρ,
we have:

Iλ(u) ≥ 1
4p+(p+ + 1)

‖u‖p++1 − c‖u‖q−
,

where c is a positive constant. It follows that:

−∞ < m = inf
u∈B(0,ρ)

Iλ(u) < 0.

Applying Ekeland’s variational principle to the functional Iλ : B(0, ρ) → R,
we can find a (PS) sequence (un) ∈ B(0, ρ), that is:

Iλ(un) → m and I
′
λ(un) → 0.

It is clear that (un) is bounded in E1. Thus, there exists u ∈ E1, such that,
up to a subsequence, (un) ⇀ u in E1. Using Theorem 4.1, we see that (un)
strongly converges to u in Lq(x)(Ω). Therefore, by the Hölder inequality and
Proposition 2.2, we can obtain the following:

lim
n→+∞

∫
Ω

|un|q(x)−2un(un − u)dx = lim
n→+∞

∫
Ω

|u|q(x)−2u(un − u)dx = 0.

On the other hand, since (un) is a (PS) sequence, we can also infer that:

lim
n→+∞〈I ′

λ(un) − I
′
λ(u), un − u〉 = 0.

Combining the above pieces of information with Lemma 3.2, we can now
conclude that un → u in E1. Therefore:

Iλ(u) = m < 0 and I
′
λ(u) = 0.
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We have thus shown that u is a nontrivial weak solution for problem (5) and
that every λ ∈ (0, λ0) is an eigenvalue of problem (5). This completes the
proof of Theorem 4.2. �
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