Low Perturbations for a Class of Nonuniformly Elliptic Problems

Anouar Bahrouni© and Dušan D. Repovš©

Abstract

In this paper, we introduce and study a new functional which was motivated by the work of Bahrouni et al. (Nonlinearity 31:15181534,2018) on the Caffarelli-Kohn-Nirenberg inequality with variable exponent. We also study the eigenvalue problem for equations involving this new functional.

Mathematics Subject Classification. Primary 35J60; Secondary 35J91, 58E30.

Keywords. Caffarelli-Kohn-Nirenberg inequality, eigenvalue problem, critical point theorem, generalized Lebesgue-Sobolev space, Luxemburg norm.

1. Introduction

The Caffarelli-Kohn-Nirenberg inequality plays an important role in studying various problems of mathematical physics, spectral theory, analysis of linear and nonlinear PDEs, harmonic analysis, and stochastic analysis. We refer to $[2,4,7,8]$ for relevant applications of the Caffarelli-Kohn-Nirenberg inequality.

Let $\Omega \subset \mathbb{R}^{N}(N \geq 2)$ be a bounded domain with smooth boundary. The following Caffarelli-Kohn-Nirenberg inequality [5] establishes that given $p \in(1, N)$ and real numbers a, b, and q, such that:

$$
-\infty<a<\frac{N-p}{p}, \quad a \leq b \leq a+1, \quad q=\frac{N p}{N-p(1+a-b)}
$$

there is a positive constant $C_{a, b}$, such that for every $u \in C_{c}^{1}(\Omega)$:

$$
\begin{equation*}
\left(\int_{\Omega}|x|^{-b q}|u|^{q} \mathrm{~d} x\right)^{p / q} \leq C_{a, b} \int_{\Omega}|x|^{-a p}|\nabla u|^{p} \mathrm{~d} x \tag{1}
\end{equation*}
$$

This inequality has been extensively studied (see, e.g., $[1-3,6,11]$ and the references therein).

In particular, Bahrouni et al. [3] gave a new version of the Caffarelli-Kohn-Nirenberg inequality with variable exponent. They proved the next theorem under the following assumptions: let $\Omega \subset \mathbb{R}^{N}(N \geq 2)$ be a bounded domain with smooth boundary and suppose that the following hypotheses are satisfied:
(A) $a: \bar{\Omega} \rightarrow \mathbb{R}$ is a function of class C^{1} and there exist $x_{0} \in \Omega, r>0$, and $s \in(1,+\infty)$, such that:
(1) $|a(x)| \neq 0$, for every $x \in \bar{\Omega} \backslash\left\{x_{0}\right\}$;
(2) $|a(x)| \geq\left|x-x_{0}\right|^{s}$, for every $x \in B\left(x_{0}, r\right)$;
(P) $p: \bar{\Omega} \rightarrow \mathbb{R}$ is a function of class C^{1} and $2<p(x)<N$ for every $x \in \Omega$.

Theorem 1.1. (Bahrouni et al. [3]) Suppose that hypotheses (A) and (P) are satisfied. Let $\Omega \subset \mathbb{R}^{N}(N \geq 2)$ be a bounded domain with smooth boundary. Then, there exists a positive constant β, such that:

$$
\begin{aligned}
\int_{\Omega}|a(x)|^{p(x)}|u(x)|^{p(x)} \mathrm{d} x \leq & \beta \int_{\Omega}|a(x)|^{p(x)-1}| | \nabla a(x) \|\left. u(x)\right|^{p(x)} \mathrm{d} x \\
& +\beta\left(\int_{\Omega}|a(x)|^{p(x)}|\nabla u(x)|^{p(x)} \mathrm{d} x\right. \\
& \left.+\int_{\Omega}|a(x)|^{p(x)}|\nabla p(x) \| u(x)|^{p(x)+1} \mathrm{~d} x\right) \\
& +\beta \int_{\Omega}|a(x)|^{p(x)-1}|\nabla p(x) \| u(x)|^{p(x)-1} \mathrm{~d} x .
\end{aligned}
$$

for every $u \in C_{c}^{1}(\Omega)$.
Motivated by [3], we introduce and study in the present paper a new functional $T: E_{1} \rightarrow \mathbb{R}$ via the Caffarelli-Kohn-Nirenberg inequality, in the framework of variable exponents. More precisely, we study the eigenvalue problem in which functional T is present. Our main result is Theorem 4.2 and we prove it in Sect. 5 .

2. Function Spaces with Variable Exponent

We recall some necessary properties of variable exponent spaces. We refer to [10, 12, 13, 15-17] and the references therein. Consider the set:

$$
C_{+}(\bar{\Omega})=\{p \in C(\bar{\Omega}) \mid p(x)>1 \text { for all } x \in \bar{\Omega}\}
$$

For any $p \in C_{+}(\bar{\Omega})$, let

$$
p^{+}=\sup _{x \in \bar{\Omega}} p(x) \quad \text { and } \quad p^{-}=\inf _{x \in \bar{\Omega}} p(x)
$$

and define the variable exponent Lebesgue space as follows:
$L^{p(x)}(\Omega)=\left\{u \mid u\right.$ is measurable real-valued function, such that $\left.\int_{\Omega}|u(x)|^{p(x)} \mathrm{d} x<\infty\right\}$, with the Luxemburg norm:

$$
|u|_{p(x)}=\inf \left\{\mu>\left.0\left|\int_{\Omega}\right| \frac{u(x)}{\mu}\right|^{p(x)} \mathrm{d} x \leq 1\right\} .
$$

We recall that the variable exponent Lebesgue spaces are separable and reflexive Banach spaces if and only if $1<p^{-} \leq p^{+}<\infty$, and continuous functions with compact support are dense in $L^{p(x)}(\Omega)$ if $p^{+}<\infty$.

Let $L^{q(x)}(\Omega)$ denote the conjugate space of $L^{p(x)}(\Omega)$, where $1 / p(x)+$ $1 / q(x)=1$. If $u \in L^{p(x)}(\Omega)$ and $v \in L^{q(x)}(\Omega)$, then the following Hölder-type inequality holds:

$$
\begin{equation*}
\left|\int_{\Omega} u v \mathrm{~d} x\right| \leq\left(\frac{1}{p^{-}}+\frac{1}{q^{-}}\right)|u|_{p(x)}|v|_{q(x)} . \tag{2}
\end{equation*}
$$

An important role in manipulating the generalized Lebesgue-Sobolev spaces is played by the $p($.$) -modular of the L^{p(x)}(\Omega)$ space, which is the mapping $\rho: L^{p(x)}(\Omega) \rightarrow \mathbb{R}$ defined by:

$$
\rho(u)=\int_{\Omega}|u|^{p(x)} \mathrm{d} x .
$$

Proposition 2.1. (See [17]) The following properties hold:
(i) $|u|_{p(x)}<1($ resp., $=1 ;>1) \Leftrightarrow \rho(u)<1($ resp.,$=1 ;>1)$;
(ii) $|u|_{p(x)}>1 \Rightarrow|u|_{p(x)}^{p^{-}} \leq \rho(u) \leq|u|_{p(x)}^{p^{+}}$; and
(iii) $|u|_{p(x)}<1 \Rightarrow|u|_{p(x)}^{p^{+}} \leq \rho(u) \leq|u|_{p(x)}^{p^{-}}$.

Proposition 2.2. (See [17]) If $u, u_{n} \in L^{p(x)}(\Omega)$ and $n \in \mathbb{N}$, then the following statements are equivalent:

1. $\lim _{n \rightarrow+\infty}\left|u_{n}-u\right|_{p(x)}=0$.
2. $\lim _{n \rightarrow+\infty} \rho\left(u_{n}-u\right)=0$.
3. $u_{n} \rightarrow u$ in measure in Ω and $\lim _{n \rightarrow+\infty} \rho\left(u_{n}\right)=\rho(u)$.

We define the variable exponent Sobolev space by:

$$
W^{1, p(x)}(\Omega)=\left\{u \in L^{p(x)}(\Omega)| | \nabla u \mid \in L^{p(x)}(\Omega)\right\}
$$

On $W^{1, p(x)}(\Omega)$, we consider the following norm:

$$
\|u\|_{p(x)}=|u|_{p(x)}+|\nabla u|_{p(x)} .
$$

Then, $W^{1, p(x)}(\Omega)$ is a reflexive separable Banach space.

3. Functional T

We shall introduce a new functional $T: E_{1} \rightarrow \mathbb{R}$ motivated by the Caffarelli-Kohn-Nirenberg inequality obtained in [3]. We denote by E_{1} the closure of $C_{c}^{1}(\Omega)$ under the norm:

$$
\begin{aligned}
\|u\|= & \|\left.\left. B(x)\right|^{\frac{1}{p(x)}} \nabla u(x)\right|_{p(x)}+\left|A(x)^{\frac{1}{p(x)}} u(x)\right|_{p(x)}+ \\
& \|\left.\left. D(x)\right|^{\frac{1}{p(x)+1}} u(x)\right|_{p(x)+1}+\left||C(x)|^{\frac{1}{p(x)-1}} u(x)\right|_{p(x)-1},
\end{aligned}
$$

where the potentials A, B, C, and D are defined by:

$$
\left\{\begin{array}{l}
A(x)=|a(x)|^{p(x)-1}|\nabla a(x)| \tag{3}\\
B(x)=|a(x)|^{p(x)} \\
C(x)=|a(x)|^{p(x)-1}|\nabla p(x)| \\
D(x)=B(x)|\nabla p(x)| .
\end{array}\right.
$$

We now define $T: E_{1} \rightarrow \mathbb{R}$ as follows:

$$
\begin{aligned}
T(u)= & \int_{\Omega} \frac{B(x)}{p(x)}|\nabla u(x)|^{p(x)} \mathrm{d} x+\int_{\Omega} \frac{A(x)}{p(x)}|u(x)|^{p(x)} \mathrm{d} x \\
& +\int_{\Omega} \frac{D(x)}{p(x)+1}|u(x)|^{p(x)+1} \mathrm{~d} x+\int_{\Omega} \frac{C(x)}{p(x)-1}|u(x)|^{p(x)-1} \mathrm{~d} x
\end{aligned}
$$

The following properties of T will be useful in the sequel.
Lemma 3.1. Suppose that hypotheses (A) and (P) are satisfied. Then, the functional T is well defined on E_{1}. Moreover, $T \in C^{1}\left(E_{1}, \mathbb{R}\right)$ with the derivative given by:

$$
\begin{aligned}
\langle L(u), v\rangle= & \left\langle T^{\prime}(u), v\right\rangle=\int_{\Omega} B(x)|\nabla u(x)|^{p(x)-2} \nabla u(x) \nabla v(x) \mathrm{d} x \\
& +\int_{\Omega} A(x)|u(x)|^{p(x)-2} u(x) v(x) \mathrm{d} x \\
& +\int_{\Omega} D(x)|u(x)|^{p(x)-1} u(x) v(x) \mathrm{d} x+\int_{\Omega} C(x)|u(x)|^{p(x)-3} u(x) v(x) \mathrm{d} x
\end{aligned}
$$

for every $u, v \in E_{1}$.
Proof. The proof is standard, see [17].
Lemma 3.2. Suppose that hypotheses (A) and (P) are satisfied. Then, the following properties hold
(i) $L: E_{1} \rightarrow E_{1}^{*}$ is a continuous, bounded, and strictly monotone operator;
(ii) L is a mapping of type $\left(S_{+}\right)$, i.e., if $u_{n} \rightharpoonup u$ in E_{1} and:

$$
\limsup _{n \rightarrow+\infty}\left\langle L\left(u_{n}\right)-L(u), u_{n}-u\right\rangle \leq 0
$$

then $u_{n} \rightarrow u$ in E_{1}.
Proof. (i) Evidently, L is a bounded operator. Recall the following Simon inequalities: [18]:

$$
\begin{cases}|x-y|^{p} \leq c_{p}\left(|x|^{p-2} x-|y|^{p-2} y\right) \cdot(x-y) & \text { for } p \geq 2 \tag{4}\\ |x-y|^{p} \leq C_{p}\left[\left(|x|^{p-2} x-|y|^{p-2} y\right) \cdot(x-y)\right]^{\frac{p}{2}}\left(|x|^{p}+|y|^{p}\right)^{\frac{2-p}{2}} \text { for } 1<p<2,\end{cases}
$$

for every $x, y \in \mathbb{R}^{N}$, where:

$$
c_{p}=\left(\frac{1}{2}\right)^{-p} \text { and } C_{p}=\frac{1}{p-1} .
$$

Using inequalities (4) and recalling that $2<p^{-}$, we can prove that L is a strictly monotone operator.
(ii) The proof is identical to the proof of Theorem 3.1 in [9].

4. Main Theorem

We recall the Compactness Lemma from [3].
Lemma 4.1. (Bahrouni el al. [3]) Suppose that hypotheses (A) and (P) are satisfied and that $p^{-}>1+s$. Then, E_{1} is compactly embeddable in $L^{q}(\Omega)$ for each $q \in\left(1, \frac{N p^{-}}{N+s p^{+}}\right)$. Moreover, the same conclusion holds if we replace $L^{q}(\Omega)$ by $L^{q(x)}(\Omega)$, provided that $q^{+}<\frac{N p^{-}}{N+s p^{+}}$.

We are concerned with the following nonhomogeneous problem:

$$
\left\{\begin{array}{l}
-\operatorname{div}\left(B(x)|\nabla u|^{p(x)-2} \nabla u\right)+\left(A(x)|u|^{p(x)-2}+C(x)|u|^{p(x)-3}\right) u \tag{5}\\
\quad=\left(\lambda|u|^{q(x)-2}-D(x)|u|^{p(x)-1}\right) u \text { in } \Omega, \\
\quad u=0 \text { on } \partial \Omega,
\end{array}\right.
$$

where $\lambda>0$ is a real number and q is continuous on $\bar{\Omega}$. We suppose that q satisfies the following basic inequalities:

$$
\text { (Q) } 1<\min _{x \in \bar{\Omega}} q(x)<\min _{x \in \bar{\Omega}}(p(x)-1)<\max _{x \in \bar{\Omega}} q(x)<\frac{N p^{-}}{N+s p^{+}} \text {. }
$$

We can now state the main result of this paper.
Theorem 4.2. Suppose that all hypotheses of Lemma 4.1 are satisfied and that inequalities (Q) hold. Then, there exists $\lambda_{0}>0$, such that every $\lambda \in\left(0, \lambda_{0}\right)$ is an eigenvalue for problem (5).

To prove Theorem 4.2 (which will be done in the Sect. 5), we shall need some preliminary results. We begin by defining the functional $I_{\lambda}: E_{1} \rightarrow \mathbb{R}$:

$$
\begin{aligned}
I_{\lambda}(u)= & \int_{\Omega} \frac{B(x)}{p(x)}|\nabla u(x)|^{p(x)} \mathrm{d} x+\int_{\Omega} \frac{A(x)}{p(x)}|u(x)|^{p(x)} \mathrm{d} x+\int_{\Omega} \frac{C(x)}{p(x)-1}|u(x)|^{p(x)-1} \mathrm{~d} x \\
& +\int_{\Omega} \frac{D(x)}{p(x)+1}|u(x)|^{p(x)+1} \mathrm{~d} x-\lambda \int_{\Omega} \frac{|u(x)|^{q(x)}}{q(x)} \mathrm{d} x .
\end{aligned}
$$

Standard argument shows that $I_{\lambda} \in C^{1}\left(E_{1}, \mathbb{R}\right)$ and:

$$
\begin{aligned}
\left\langle I_{\lambda}^{\prime}(u), v\right\rangle= & \int_{\Omega} B(x)|\nabla u(x)|^{p(x)-2} \nabla u(x) \nabla v(x) \mathrm{d} x+\int_{\Omega} A(x)|u(x)|^{p(x)-2} u(x) v(x) \mathrm{d} x \\
& +\int_{\Omega} D(x)|u(x)|^{p(x)-1} u(x) v(x) \mathrm{d} x+\int_{\Omega} C(x)|u(x)|^{p(x)-3} u(x) v(x) \mathrm{d} x \\
& -\lambda \int_{\Omega}|u(x)|^{q(x)-2} u(x) v(x),
\end{aligned}
$$

for every $u, v \in E_{1}$. Thus, the weak solutions of problem (5) coincide with the critical points of I_{λ}.

Lemma 4.3. Suppose that all hypotheses of Theorem 4.2 are satisfied. Then, there exists $\lambda_{0}>0$, such that for any $\lambda \in\left(0, \lambda_{0}\right)$, there exist $\rho, \alpha>0$, such that:

$$
I_{\lambda}(u) \geq \alpha \text { for any } \quad u \in E_{1} \text { with }\|u\|=\rho .
$$

Proof. By Lemma 4.1, there exists $\beta>0$, such that:

$$
|u|_{r(x)} \leq \beta\|u\|, \quad \text { for every } u \in E_{1} \text { and } r^{+} \in\left(1, \frac{N p^{-}}{N+s p^{+}}\right) .
$$

We fix $\rho \in\left(0, \min \left(1, \frac{1}{\beta}\right)\right)$. Invoking Proposition 2.1, for every $u \in E_{1}$ with $\|u\|$ $=\rho$, we can get:

$$
|u|_{q(x)}<1 .
$$

Combining the above relations and Proposition 2.1, for any $u \in E_{1}$ with $\|u\|=\rho$, we can then deduce that:

$$
\begin{align*}
I_{\lambda}(u) \geq & \frac{1}{p^{+}}\left(\int_{\Omega} B(x)|\nabla u(x)|^{p(x)} \mathrm{d} x+\int_{\Omega} A(x)|u(x)|^{p(x)} \mathrm{d} x\right) \\
& +\frac{1}{p^{+}+1} \int_{\Omega} D(x)|u(x)|^{p(x)+1} \mathrm{~d} x \\
& +\frac{1}{p^{+}-1} \int_{\Omega} C(x)|u(x)|^{p(x)-1} \mathrm{~d} x-\frac{\lambda}{q^{-}} \int_{\Omega}|u(x)|^{q(x)} \mathrm{d} x \\
\geq & \frac{1}{4^{p^{+}}\left(p^{+}+1\right)}\|u\|^{p^{+}+1}-\lambda \frac{\beta^{q^{-}}}{q^{-}}\|u\|^{q^{-}} \\
\geq & \frac{1}{4^{p^{+}}\left(p^{+}+1\right)} \rho^{p^{+}+1}-\lambda \frac{\beta^{q^{-}}}{q^{-}} \rho^{q^{-}} \\
= & \rho^{q^{-}}\left(\frac{1}{4^{p^{+}}\left(p^{+}+1\right)} \rho^{p^{+}+1-q^{-}}-\lambda \frac{\beta^{q^{-}}}{q^{-}}\right) . \tag{6}
\end{align*}
$$

Put $\lambda_{0}=\frac{\rho^{p^{+}+1-q^{-}}}{4^{p^{+}}\left(2 p^{+}+2\right)} \frac{q^{-}}{\beta^{q^{-}}}$. It now follows from (6) that for any $\lambda \in\left(0, \lambda_{0}\right)$:

$$
I_{\lambda}(u) \geq \alpha \text { with }\|u\|=\rho
$$

and $\alpha=\frac{\rho^{p^{+}+1}}{4^{p^{+}}\left(2 p^{+}+2\right)}>0$. This completes the proof of Lemma 4.3.
Lemma 4.4. Suppose that all hypotheses of Theorem 4.2 are satisfied. Then, there exists $\varphi \in E_{1}$, such that $\varphi>0$ and $I_{\lambda}(t \varphi)<0$, for small enough t.

Proof. By virtue of hypotheses (P) and (Q), there exist $\epsilon_{0}>0$ and $\Omega_{0} \subset \Omega$, such that:

$$
\begin{equation*}
q(x)<q^{-}+\epsilon_{0}<p^{-}-1, \text { for every } x \in \Omega_{0} \tag{7}
\end{equation*}
$$

Let $\varphi \in C_{0}^{\infty}(\Omega)$, such that $\overline{\Omega_{0}} \subset \operatorname{supp}(\varphi), \varphi=1$ for every $x \in \overline{\Omega_{0}}$ and $0 \leq \varphi \leq 1$ in Ω. It then follows that for $t \in(0,1)$:

$$
\begin{aligned}
I_{\lambda}(t \varphi)= & \int_{\Omega} \frac{t^{p(x)} B(x)}{p(x)}|\nabla \varphi(x)|^{p(x)} \mathrm{d} x \\
& +\int_{\Omega} \frac{t^{p(x)} A(x)}{p(x)}|\varphi(x)|^{p(x)} \mathrm{d} x+\int_{\Omega} \frac{t^{p(x)-1} C(x)}{p(x)-1}|\varphi|^{p(x)-1} \mathrm{~d} x \\
& +\int_{\Omega} \frac{t^{p(x)+1} D(x)}{p(x)+1}|\varphi(x)|^{p(x)+1} \mathrm{~d} x-\lambda \int_{\Omega} t^{q(x)} \frac{|\varphi(x)|^{q(x)}}{q(x)} \mathrm{d} x
\end{aligned}
$$

$$
\begin{align*}
\leq & \frac{t^{p^{-}-1}}{p^{-}-1}\left(\int_{\Omega} \frac{B(x)}{p(x)}|\nabla \varphi(x)|^{p(x)} \mathrm{d} x+\int_{\Omega} \frac{A(x)}{p(x)}|\varphi(x)|^{p(x)} \mathrm{d} x\right. \\
& +\int_{\Omega} \frac{C(x)}{p(x)-1}|\varphi|^{p(x)-1} \mathrm{~d} x \\
& \left.+\int_{\Omega} \frac{D(x)}{p(x)+1}|\varphi(x)|^{p(x)+1} \mathrm{~d} x\right)-\lambda t^{q^{-}+\epsilon_{0}} \int_{\Omega} \frac{|\varphi(x)|^{q(x)}}{q(x)} \mathrm{d} x . \tag{8}
\end{align*}
$$

Combining (7) and (8), we finally arrive at the desired conclusion. This completes the proof of Lemma 4.4.

5. Proof of Theorem 4.2

In the last section, we shall prove the main theorem of this paper. Let λ_{0} be defined as in Lemma 4.3 and choose any $\lambda \in\left(0, \lambda_{0}\right)$. Again, invoking Lemma 4.3, we can deduce that:

$$
\begin{equation*}
\inf _{u \in \partial B(0, \rho)} I_{\lambda}(u)>0 \tag{9}
\end{equation*}
$$

On the other hand, by Lemma 4.4 , there exists $\varphi \in E_{1}$, such that $I_{\lambda}(t \varphi)<0$ for every small enough $t>0$. Moreover, by Proposition 2.1, when $\|u\|<\rho$, we have:

$$
I_{\lambda}(u) \geq \frac{1}{4^{p^{+}}\left(p^{+}+1\right)}\|u\|^{p^{+}+1}-c\|u\|^{q^{-}}
$$

where c is a positive constant. It follows that:

$$
-\infty<m=\inf _{u \in B(0, \rho)} I_{\lambda}(u)<0
$$

Applying Ekeland's variational principle to the functional $I_{\lambda}: B(0, \rho) \rightarrow \mathbb{R}$, we can find a (PS) sequence $\left(u_{n}\right) \in B(0, \rho)$, that is:

$$
I_{\lambda}\left(u_{n}\right) \rightarrow m \text { and } I_{\lambda}^{\prime}\left(u_{n}\right) \rightarrow 0
$$

It is clear that $\left(u_{n}\right)$ is bounded in E_{1}. Thus, there exists $u \in E_{1}$, such that, up to a subsequence, $\left(u_{n}\right) \rightharpoonup u$ in E_{1}. Using Theorem 4.1, we see that $\left(u_{n}\right)$ strongly converges to u in $L^{q(x)}(\Omega)$. Therefore, by the Hölder inequality and Proposition 2.2, we can obtain the following:

$$
\lim _{n \rightarrow+\infty} \int_{\Omega}\left|u_{n}\right|^{q(x)-2} u_{n}\left(u_{n}-u\right) \mathrm{d} x=\lim _{n \rightarrow+\infty} \int_{\Omega}|u|^{q(x)-2} u\left(u_{n}-u\right) \mathrm{d} x=0
$$

On the other hand, since $\left(u_{n}\right)$ is a (PS) sequence, we can also infer that:

$$
\lim _{n \rightarrow+\infty}\left\langle I_{\lambda}^{\prime}\left(u_{n}\right)-I_{\lambda}^{\prime}(u), u_{n}-u\right\rangle=0
$$

Combining the above pieces of information with Lemma 3.2, we can now conclude that $u_{n} \rightarrow u$ in E_{1}. Therefore:

$$
I_{\lambda}(u)=m<0 \text { and } I_{\lambda}^{\prime}(u)=0
$$

We have thus shown that u is a nontrivial weak solution for problem (5) and that every $\lambda \in\left(0, \lambda_{0}\right)$ is an eigenvalue of problem (5). This completes the proof of Theorem 4.2.

Acknowledgements

The second author was supported by the Slovenian Research Agency grants P1-0292, J1-8131, N1-0064, N1-0083, and N1-0114. We thank the referee for comments and suggestions.

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

[1] Abdellaoui, B., Peral, I.: Some results for quasilinear elliptic equations related to some Caffarelli-Kohn-Nirenberg inequalities. Commun. Pure Appl. Anal. 2, 539-566 (2003)
[2] Chaudhuri, A.N., Ramaswamy, M.: An improved Hardy-Sobolev inequality and its application. Proc. Am. Math. Soc. 130, 89-505 (2002)
[3] Bahrouni, A., Rădulescu, V., Repovš, D.D.: A weighted anisotropic variant of the Caffarelli-Kohn-Nirenberg inequality and applications. Nonlinearity. 31(4), 1516-1534 (2018)
[4] Baroni, P., Colombo, M., Mingione, G.: Non-autonomous functionals, borderline cases and related function classes. St. Petersburg Math. J. 27, 347-379 (2016)
[5] Caffarelli, L., Kohn, R., Nirenberg, L.: First order interpolation inequalities with weights. Compos. Math. 53, 259-275 (1984)
[6] Catrina, F., Wang, Z.Q.: On the Caffarelli-Kohn-Nirenberg inequalities: sharp constants, existence (and non existence) and symmetry of extremal function. Commun. Pure Appl. Math. 54, 229-258 (2001)
[7] Colasuonno, F., Pucci, P.: Multiplicity of solutions for $p(x)$-polyharmonic elliptic Kirchhoff equations. Nonlinear Anal. 74(17), 5962-5974 (2011)
[8] Colombo, M., Mingione, G.: Bounded minimisers of double phase variational integrals. Arch. Ration. Mech. Anal. 218, 219-273 (2015)
[9] Fan, X., Zhang, Q.: Existence of solutions for $p(x)$-Laplacian Dirichlet probem. Nonlinear Anal. 52, 1843-1852 (2003)
[10] Hajek, P., Santalucia, V.M., Vanderwerff, J., Zizler, V.: Biorthogonal Systems in Banach Spaces. CMC Books in Mathematics. Springer, New York (2008)
[11] Mihăilescu, M., Rădulescu, V., Stancu, D.: A Caffarelli-Kohn-Nirenberg type inequality with variable exponent and applications to PDE's. Complex Va. Ellipt. Eqns. 56, 659-669 (2011)
[12] Musielak, J.: Orlicz Spaces and Modular Spaces. Lecture Notes in Mathematics, vol. 1034, Springer, Berlin (1983)
[13] Papageorgiou, N.S., Rădulescu, V.D., Repovš, D.D.: Nonlinear AnalysisTheory and Methods. Springer Monographs in Mathematics. Springer, Cham (2019)
[14] Rabinowitz, P.H.: Minimax Theorems and Applications to Nonlinear Partial Differential Equations. In: Cesari, L., Kannan, R., Weinberger, H.F. (eds.) Nonlinear Analysis, pp. 161-177. Academic Press, New York (1978)
[15] Rădulescu, V.D.: Nonlinear elliptic equations with variable exponent: old and new. Nonlinear Anal. 121, 336-369 (2015)
[16] Rădulescu, V.D.: Isotropic and anisotropic double-phase problems: old and new. Opuscula Math. 39, 259-279 (2019)
[17] Rădulescu, V.D., Repovš, D.D.: Partial Differential Equations with Variable Exponents: Variational Methods and Qualitative Analysis, CRC Press. Taylor \& Francis Group, Boca Raton (2015)
[18] Simon, J.: Régularité de la solution d'une équation non linéaire dans \mathbb{R}^{N}, Journées d'Analyse Non Linéaire (Proc. Conf., Besançon, 1977), pp. 205-227, Lecture Notes in Math., 665, Springer, Berlin (1978)

Anouar Bahrouni
Mathematics Department
University of Monastir, Faculty of Sciences
5019 Monastir
Tunisia
e-mail: bahrounianouar@yahoo.fr

Dušan D. Repovš
Faculty of Education and Faculty of Mathematics and Physics
University of Ljubljana, and Institute of Mathematics, Physics and Mechanics
1000 Ljubljana
Slovenia
e-mail: dusan.repovs@guest.arnes.si
Received: July 15, 2019.
Revised: January 10, 2020.
Accepted: June 4, 2020.

