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CLASSIFYING HOMOGENEOUS ULTRAMETRIC SPACES
UP TO COARSE EQUIVALENCE

BY

TARAS BANAKH (Lviv and Kielce) and DUŠAN REPOVŠ (Ljubljana)

Abstract. For every metric spaceX we introduce two cardinal characteristics cov[(X)
and cov](X) describing the capacity of balls in X. We prove that these cardinal charac-
teristics are invariant under coarse equivalence, and that two ultrametric spaces X,Y are
coarsely equivalent if cov[(X) = cov](X) = cov[(Y ) = cov](Y ). This implies that an
ultrametric space X is coarsely equivalent to an isometrically homogeneous ultrametric
space if and only if cov[(X) = cov](X). Moreover, two isometrically homogeneous ultra-
metric spaces X,Y are coarsely equivalent if and only if cov](X) = cov](Y ) if and only if
each of them coarsely embeds into the other. This means that the coarse structure of an
isometrically homogeneous ultrametric space X is completely determined by the value of
the cardinal cov](X) = cov[(X).

1. Introduction and main results. In this paper we present a crite-
rion for recognizing coarsely equivalent ultrametric spaces, and apply it to
classify isometrically homogeneous ultrametric spaces up to coarse equiva-
lence. Let us recall that an ultrametric space is a metric space (X, d) whose
metric satisfies the strong triangle inequality: d(x, z) ≤ max{d(x, y), d(y, z)}
for all x, y, z ∈ X. A metric space (X, d) is called isometrically homogeneous
if for any x, y ∈ X there is an isometric bijection f : X → X such that
f(x) = y. A typical example of an isometrically homogeneous metric space
is any group G endowed with a left-invariant metric d.

We are interested in classifying isometrically homogeneous ultrametric
spaces up to coarse equivalence. A map f : X → Y between metric spaces
X,Y is called coarse if for any ε ∈ R+ = (0,∞) there is δ ∈ R+ such that
for any subset A ⊂ X with diamA ≤ ε we have diam f(A) ≤ δ. Here for
a subset A of a metric space (X, dX) its diameter is defined as expected:
diamA = supx,y∈A dX(x, y).

A bijective map f : X → Y between metric spaces is called a coarse
isomorphism if both f and f−1 are coarse. In this case X and Y are called
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coarsely isomorphic. Two metric spaces X,Y are called coarsely equivalent
if they contain coarsely isomorphic large subspaces LX ⊂ X and LY ⊂ Y .
A subset L ⊂ X of a metric space (X, dX) is called large if X =

⋃
x∈LBε(x)

for some ε ∈ R+, where Bε(x) = {y ∈ X : dX(x, y) ≤ ε}. It follows that each
metric space X is coarsely equivalent to any large subset in X. For example
the real line R is coarsely equivalent to the space Z of integers.

Properties of metric spaces preserved by coarse equivalence are stud-
ied in coarse (or asymptotic) geometry [4]–[7]. In this paper we shall clas-
sify isometrically homogeneous ultrametric spaces up to coarse equivalence,
thus extending the classification of separable isometrically homogeneous ul-
trametric spaces given in [1]. According to [1], each isometrically homo-
geneous separable ultrametric space is coarsely equivalent to one of three
spaces: the singleton 1, the Cantor macro-cube 2<N or the Baire macro-
space ω<N.

In this paper we shall prove that the coarse structure of an isometrically
homogeneous ultrametric space X is fully determined by the value of two
(coinciding) cardinal invariants cov[(X) and cov](X), which are defined for
any metric space X as follows.

For a point x ∈ X of a metric space X and ε, δ ∈ R+ let

covδε(x) = min
{
|C| : C ⊂ X, Bδ(x) ⊂

⋃
c∈C

Bε(c)
}

be the smallest number of closed ε-balls covering the closed δ-ball centered
at x.

For a metric space X let

• cov](X) be the smallest cardinal κ for which there is ε ∈ R+ such that
for every δ ∈ R+ we have supx∈X covδε(x) < κ;

• cov[(X) be the largest cardinal κ such that for every cardinal λ < κ
and ε ∈ R+ there is δ ∈ R+ such that minx∈X covδε(x) ≥ λ.

It follows that cov[(X) ≤ cov](X) and the cardinals cov[(X) and cov](X)
can be equivalently defined as

cov](X) = min
ε∈R+

sup
δ∈R+

(
sup
x∈X

covδε(x)
)+
,

cov[(X) = min
ε∈R+

sup
δ∈R+

(
min
x∈X

covδε(x)
)+
,

where κ+ denotes the smallest cardinal which is larger than κ. Cardinals are
identified with the smallest ordinals of a given cardinality.

The following proposition on coarse invariance of the cardinal character-
istics cov[ and cov] will be proved in Section 3.
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Proposition 1.1. If metric spaces X and Y are coarsely equivalent,
then

cov[(X) = cov[(Y ) and cov](X) = cov](Y ).

Observe that cov](X) ≤ ω means that X has bounded geometry, while
cov[(X) ≥ ω means that X has no isolated balls (see [1] for definitions).
By [2], any two ultrametric spaces of bounded geometry and without isolated
balls are coarsely equivalent.

The following criterion of coarse equivalence of ultrametric spaces gener-
alizes this fact and is one of the principal results of this paper.

Theorem 1.2. Let X,Y be ultrametric spaces.

(1) If cov](X) ≤ cov[(Y ), then X is coarsely equivalent to a subspace
of Y .

(2) If cov[(X) = cov](X) = cov](Y ) = cov[(Y ), then X and Y are
coarsely equivalent.

Theorem 1.2 will be proved in Section 5 after some preparatory work in
Section 4. Now we shall present some applications of this theorem.

The first one is the characterization of ultrametric spaces X with
cov[(X) = cov](Y ).

Theorem 1.3. An ultrametric space X is coarsely equivalent to an iso-
metrically homogeneous ultrametric space if and only if cov[(X) = cov](X).

Proof. If an ultrametric space X is isometrically homogeneous, then for
any x, y ∈ X and ε, δ ∈ R+ we have covδε(x) = covδε(y), which implies that
minx∈X covδε(x) = supx∈X covδε(y) and hence cov[(X) = cov](X).

If an ultrametric space X is coarsely equivalent to an isometrically homo-
geneous metric space Y , then the invariance of cov[ and cov] under coarse
equivalence implies that cov[(X) = cov[(Y ) = cov](Y ) = cov](X). This
completes the proof of the “only if” part.

To prove the “if” part, assume that X is an ultrametric space with κ =
cov[(X) = cov](X). The definition of κ = cov[(X) = cov](X) implies that
either κ = 0, or κ = 1, or κ has countable cofinality, or κ is a successor
cardinal.

If κ = 0, then X is empty and hence isometrically homogeneous.
If κ = 1, then X is bounded and coarsely equivalent to the singleton

(which is an isometrically homogeneous ultrametric space).
If κ has countable cofinality or is a successor cardinal, then we can

choose a non-decreasing sequence (κn)n∈N of non-zero cardinals such that
κ = supn∈N κ

+
n . Choose an increasing sequence of groups

{e} = G0 ⊂ G1 ⊂ G2 ⊂ · · ·
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such that |Gn/Gn−1| = κn, and on G =
⋃
n∈ω Gn consider the left-invariant

ultrametric
dG(x, y) = min{n ∈ ω : x−1y ∈ Gn}

turning G into an isometrically homogeneous ultrametric space (G, dG).
Observe that

cov[(G, dG) = cov](G, dG) = min
n∈N

sup
m≥n
|Gm/Gn|+ = sup

m∈ω
κ+m = κ.

Applying Theorem 1.2, we conclude that X is coarsely equivalent to the
isometrically homogeneous ultrametric space (G, dG).

Theorem 1.2 and Proposition 1.1 imply the following classification of
isometrically homogeneous ultrametric spaces.

Theorem 1.4. For isometrically homogeneous ultrametric spaces X,Y
the following conditions are equivalent:

(1) X and Y are coarsely equivalent.
(2) X is coarsely equivalent to a subspace of Y and vice versa.
(3) cov](X) = cov](Y ).

Proof. The implication (1)⇒(2) is trivial, (2)⇒(3) follows from Proposi-
tion 1.1 and monotonicity of cov] under taking subspaces (see Lemma 3.1),
and (3)⇒(1) follows from Theorems 1.2 and 1.3.

It is known [3] that a metric space X is coarsely equivalent (even coarsely
isomorphic) to an ultrametric space if and only if X has asymptotic dimen-
sion zero. So, in fact all our results concern the coarse classification of metric
spaces of asymptotic dimension zero.

Now we briefly describe the structure of the remaining part of the paper.
In Section 2 we characterize coarse equivalence by means of macro-uniform
multivalued maps. Section 3 contains the proof of Proposition 1.1. In Sec-
tion 4 we recall the necessary information about towers and their morphisms,
and in the final Section 5 we prove Theorem 1.2.

2. Characterizing coarse equivalences. In this section we shall dis-
cuss the definition of coarse equivalence based on the notion of a multi-map.
This approach was suggested and exploited in [2].

By a multi-map Φ : X ( Y between two sets X,Y we understand any
subset Φ ⊂ X×Y . For a subset A ⊂ X we denote by Φ(A) = {y ∈ Y : ∃a ∈ A
with (a, y) ∈ Φ} the image of A under Φ. Given x ∈ X we write Φ(x) instead
of Φ({x}).

The inverse Φ−1 : Y ( X of Φ is the multi-map

Φ−1 = {(y, x) ∈ Y ×X : (x, y) ∈ Φ} ⊂ Y ×X
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assigning to each point y ∈ Y the set Φ−1(y) = {x ∈ X : y ∈ Φ(x)}. For
two multi-maps Φ : X ( Y and Ψ : Y ( Z we define their composition
Ψ ◦ Φ : X ( Z as usual:

Ψ ◦ Φ = {(x, z) ∈ X × Z : ∃y ∈ Y such that (x, y) ∈ Φ and (y, z) ∈ Ψ}.
A multi-map Φ : X ( Y between metric spaces X,Y is called coarse if

for any ε ∈ R+ there is δ ∈ R+ such that for any A ⊂ X with diamA ≤ ε
we have diamΦ(A) ≤ δ. This is equivalent to saying that for every ε ∈ R+

the oscillation

ωΦ(ε) = sup{diamΦ(A) : A ⊂ X, diamA ≤ ε}
is finite. Here, by definition, diam ∅ = 0.

A multi-map Φ : X ( Y between metric spaces is called a coarse em-
bedding if Φ−1(Y ) = X and both Φ and Φ−1 are coarse. If, in addition,
Φ(X) = Y , then Φ is called a coarse equivalence between X and Y .

It is clear that for two coarse embeddings [coarse equivalences] Φ : X( Y
and Φ : Y ( Z their composition Ψ ◦ Φ : X ( Z is a coarse embedding
[coarse equivalence].

The following characterization of coarse equivalence was proved in
[2, Proposition 2.1].

Proposition 2.1. For metric spaces X,Y the following conditions are
equivalent:

(1) X and Y are coarsely equivalent (i.e., contain coarsely isomorphic large
subspaces).

(2) There is a coarse equivalence Φ : X ( Y .
(3) There are coarse maps f : X → Y and g : Y → X such that

sup
x∈X

dX(x, g ◦ f(x)) <∞ and sup
y∈Y

dY (y, f ◦ g(x)) <∞.

3. Proof of Proposition 1.1. Proposition 1.1 follows from two lem-
mas.

Lemma 3.1. If a metric space X is coarsely equivalent to a subspace of
a metric space Y , then cov](X) ≤ cov](Y ).

Proof. Proposition 2.1 implies thatX, being coarsely equivalent to a sub-
space of Y , admits a coarse embedding Φ : X ( Y . By definition of cov](Y ),
there is ε ∈ R+ such that for every δ ∈ R+ we have κδ := supy∈Y covδε(y) <

cov](Y ).
As Φ−1: Y (X is coarse, the number ε′=ωΦ−1(2ε) is finite. The inequa-

lity cov](X) ≤ cov](Y ) will follow as soon as we check that supx∈X covδ
′
ε′(x)

< cov](Y ) for every δ′ ∈ R+. Given any δ′ ∈ R+ consider the finite number
δ = ωΦ(2δ

′), and observe that for every x ∈ X we have diamBδ′(x) ≤ 2δ′,
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which implies that diamΦ(Bδ(x)) ≤ ωΦ(2δ
′) = δ. Then Φ(Bδ′(x)) ⊂ Bδ(y)

for some y ∈ Y . Since covδε(y) ≤ κδ, there is a subset C ⊂ Y of cardinality
|C| ≤ κδ such that Bδ(y) ⊂

⋃
c∈C Bε(c). The inclusion Φ(Bδ′(x)) ⊂ Bδ(y)

and the equality X = Φ−1(Y ) imply that

Bδ′(x) ⊂ Φ−1(Φ(Bδ′(x))) ⊂ Φ−1(Bδ(y)) ⊂
⋃
c∈C

Φ−1(Bε(c)).

For every c ∈ C the set Φ−1(Bε(c)) ⊂ X has diameter ≤ ωΦ−1(2ε) = ε′, and
hence is contained in the closed ε′-ball Bε′(xc) centered at some xc ∈ X.
Then Bδ′(x) ⊂

⋃
c∈C Bε′(xc), which implies covδ′ε′(x) ≤ |C| ≤ κδ. Therefore,

supx∈X covδ
′
ε′(x) ≤ κδ < cov](Y ) as desired.

Lemma 3.2. If metric spaces X and Y are coarsely equivalent, then
cov[(X) = cov[(Y ).

Proof. By Proposition 2.1, there is a coarse equivalence Φ : X ( Y . By
symmetry, it suffices to prove that cov[(X) ≤ cov[(Y ). This will follow as
soon as for every κ < cov[(X) and every ε ∈ R+ we find δ ∈ R+ such
that miny∈Y covδε(y) ≥ κ. Given any ε ∈ R+, consider the finite number
ε′ = ωΦ−1(2ε) and using the definition of cov[(X) > κ, find δ′ ∈ R+ such that
minx∈X covδ

′
ε′(x) ≥ κ. We claim that δ = ωΦ(2δ

′) has the required property.
Given any y ∈ Y , we need to check that covδε(y) ≥ κ. Assuming the contrary,
we could find a set C ⊂ Y with |C| < κ such that Bδ(y) ⊂

⋃
c∈C Bε(c). Then

for any x ∈ Φ−1(y),

Bδ′(x) ⊂ Φ−1(Bδ(y)) ⊂
⋃
c∈C

Φ−1(Bε(c)) ⊂
⋃
c∈C

Bε′(xc)

for all xc ∈ Φ−1(c), c ∈ C (see the proof of Lemma 3.1). This would imply
that covδ′ε′(x) ≤ |C| < κ, which contradicts the choice of δ′.

So, miny∈Y covδε(y) ≥ κ and hence cov[(Y ) ≥ cov[(X).

Remark 3.3. Simple examples show that the cardinal characteristic cov[
is not monotone with respect to taking subspaces (in contrast to cov], which
is monotone according to Lemma 3.1).

4. Towers and their morphisms. Theorem 1.2 announced in the in-
troduction will be proved by induction on partially ordered sets called tow-
ers. The technique of towers was created in [2] to characterize the Cantor
macro-cube. In this section we recall the necessary information on towers.

4.1. Partially ordered sets. A partially ordered set is a set T endowed
with a reflexive antisymmetric transitive relation ≤.

A partially ordered set T is called ↑-directed if for any x, y ∈ T there is
z ∈ T such that z ≥ x and z ≥ y.
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A subset C of T is called cofinal if for every x ∈ T there is y ∈ C such
that y ≥ x.

The lower cone (resp. upper cone) of a point x ∈ T is the set

↓x = {y ∈ T : y ≤ x} (resp. ↑x = {y ∈ T : y ≥ x}).
A subset A ⊂ T will be called a lower (resp. upper) set if ↓a ⊂ A (resp.
↑a ⊂ A) for all a ∈ A. For x ≤ y in T the intersection [x, y] = ↑x ∩ ↓y is
called the order interval with end-points x, y.

A partially ordered set T is a tree if T has the smallest element and for
each point x ∈ T the lower cone ↓x is well-ordered (in the sense that each
subset A ⊂ ↓x has the smallest element).

4.2. Defining towers. A partially ordered set T is called a tower if T
is ↑-directed and for any x ≤ y in T the order interval [x, y] ⊂ T is finite
and linearly ordered.

This definition implies that for every point x in a tower T the upper set
↑x is linearly ordered and is order isomorphic to a subset of ω. Since T is
↑-directed, for any x, y ∈ T the upper sets ↑x and ↑y have non-empty inter-
section, and this intersection has the smallest element x ∧ y = min(↑x ∩ ↑y)
(because each order interval in X is finite). Thus any two points x, y in a
tower have the smallest upper bound x ∧ y.

It follows that for each point x of a tower T the lower cone ↓x endowed
with the reverse partial order is a tree of at most countable height.

4.3. Levels of a tower. Given x, y ∈ T we write levT (x) ≤ levT (y) if

|[x, x ∧ y]| ≥ |[y, x ∧ y]|.
Also we write levT (x) = levT (y) if |[x, x ∧ y]| = |[y, x ∧ y]|.

The relation

{(x, y) ∈ T × T : levT (x) = levT (y)}
is an equivalence relation on T dividing the tower T into equivalence classes
called the levels of T . The level containing x ∈ T is denoted by levT (x). Let

Lev(T ) = {levT (x) : x ∈ T}
and let

levT : T → Lev(T ), x 7→ levT (x),

stand for the quotient map called the level map.
The set Lev(T ) endowed with the order levT (x) ≤ levT (y) is a linearly

ordered set, order isomorphic to a subset of integers. For λ ∈ Lev(T ) we
denote by λ + 1 (resp. λ − 1) the successor (resp. the predecessor) of λ
in Lev(T ). If λ is a maximal (resp. minimal) level of T , then we set λ+1 = ∅
(resp. λ− 1 = ∅).
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It is clear that each ↑-directed subset S of a tower T is a tower with
respect to the partial order inherited from T . In this case we say that S is a
subtower of T . A typical example is a level subtower

TL = {x ∈ T : levT (x) ∈ L},

where L is a cofinal subset of Lev(T ).
A tower T will be called ↓-bounded (resp. ↑-bounded) if Lev(T ) has the

smallest (resp. largest) element. Otherwise T is called ↓-unbounded (resp.
↑-unbounded). All towers to be considered in this paper are assumed to be
↑-unbounded and ↓-bounded.

The level set Lev(T ) of a ↓-bounded tower can be identified with ω, so
that zero corresponds to the smallest level of T .

4.4. The boundary of a tower. By a branch of a tower T we under-
stand a maximal linearly ordered subset of T . The family of all branches
of T is denoted by ∂T and is called the boundary of T . Each branch of a
↓-bounded tower can be identified with its smallest element. The bound-
ary ∂T of a ↓-bounded tower carries an ultrametric that can be defined as
follows.

Given x, y ∈ ∂T let

ρ(x, y) =

{
0 if x = y,
levT (minx ∩ y) if x 6= y.

Here we identify Lev(T ) with ω. It is a standard exercise to check that ρ is
a well-defined ultrametric on ∂T .

In what follows, we shall assume that the boundary ∂T of any tower T
is endowed with the ultrametric ρ.

4.5. Degrees of points of a tower. For x ∈ T and λ ∈ Lev(T ) let
predλ(x) = λ ∩ ↓x be the set of predecessors of x on the λ-level and set
degλ(x) = |predλ(x)|. For λ = levT (x) − 1, the set predλ(x), called the set
of parents of x, is denoted by pred(x). Its cardinality |pred(x)| is called the
degree of x and is denoted by deg(x). Thus deg(x) = deglevT (x)−1(x). It
follows that deg(x) = 0 if and only if x is a minimal element of T .

For λ, l ∈ Lev(T ) let

deglλ(T ) = min{degλ(x) : levT (x) = l},
Deglλ(T ) = sup{degλ(x) : levT (x) = l}.

Now let us introduce several notions related to these degrees. We define
a tower T to be

• homogeneous if deglλ(T ) = Deglλ(T ) for any levels λ ≤ l of T ;
• pruned if degλλ−1(T ) > 0 for every non-minimal level λ of T .
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It is easy to check that a tower T is pruned if and only if each branch of
T meets each level of T . In this case the boundary ∂T of a ↓-bounded tower
T can be identified with the smallest level of T .

There is a direct interdependence between the degrees of points of the
tower T and the capacities of the balls in the ultrametric space ∂T . For an
arbitrary branch x ∈ ∂T we can see that covlλ(x) = degλ(x ∩ lev−1T (l)) for
any λ ≤ l in Lev(T ) = ω.

4.6. Assigning a tower to an ultrametric space. In the preced-
ing section we have assigned to each tower T the ultrametric space ∂T . In
this section we describe the converse operation assigning to each ultramet-
ric space X a pruned tower TLX whose boundary ∂TLX is coarsely equivalent
to X.

Any closed discrete unbounded subset L ⊂ [0,∞) will be called a level
set. Given an ultrametric space X and a level set L ⊂ [0,∞), consider the
set

TLX = {(Bλ(x), λ) : x ∈ X, λ ∈ L}

endowed with the partial order (Bλ(x), λ) ≤ (Bl(y), l) iff λ ≤ l and Bλ(x)
⊂ Bl(y). Here Bλ(x) stands for the closed λ-ball centered at x ∈ X.

The tower TLX will be called the canonical L-tower of X. Observe that
for each x ∈ X the set BL(x) = {(Bλ(x), λ) : λ ∈ L} is a branch of the
tower TLX , so the map

BL : X → ∂TLX , x 7→ BL(x),

called the canonical map, is well-defined.
The following important fact was proved in [2, Propositions 4.4 and 4.5].

Lemma 4.1. Let L ⊂ [0,∞) be a level set. Then the canonical map
BL : X → ∂TLX of an ultrametric space X into the boundary of its canonical
L-tower is a coarse equivalence. If X is isometrically homogeneous, then the
tower TLX is homogeneous and ∂TLX is isometrically homogeneous.

4.7. Tower morphisms. A map ϕ : S → T is said to be

• monotone if for any x, y ∈ S the inequality x < y implies ϕ(x) < ϕ(y);
• level-preserving if there is an injective map ϕLev : Lev(S) → Lev(T )

making the following diagram commutative:

S
ϕ //

levS

��

T

levT

��
Lev(S)

ϕLev // Lev(T )
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For every monotone level-preserving map ϕ : S → T the induced map
ϕLev : Lev(S)→ Lev(T ) is monotone and injective.

A monotone level-preserving map ϕ : S → T is

• a tower isomorphism if it is bijective;
• a tower embedding if it is injective;
• a tower immersion if it is almost injective in the sense that for any
x, x′ ∈ S with ϕ(x) = ϕ(x′) we have

levS(x ∧ x′) ≤ max{levS(x), levS(x′)}+ 1.

Each monotone map ϕ : S → T between towers induces a multi-map
∂ϕ : ∂S ( ∂T assigning to a branch β ⊂ S the set ∂ϕ(β) ⊂ ∂T of all
branches of T that contain the linearly ordered subset ϕ(β) of T . It follows
that ∂ϕ(β) 6= ∅, and hence (∂ϕ)−1(∂T ) = ∂S.

We are interested in immersions of towers because we have the following
property proved in [2, Proposition 5.4].

Lemma 4.2. Any surjective tower immersion ϕ : S → T induces a coarse
equivalence ∂ϕ : ∂S ( ∂T .

Identity embeddings of level subtowers also induce coarse equivalences.

Lemma 4.3. Let T be a pruned tower and L be a cofinal subset of
Lev(T ). The multi-map ∂ id : ∂TL ( ∂T induced by the identity embedding
id : TL → T is a coarse equivalence.

The following lemma was proved in [2, 5.8].

Lemma 4.4. Let S, T be pruned towers and f : Lev(S) → Lev(T ) be a
monotone map. If Degλ+1

λ (S) ≤ deg
f(λ+1)
f(λ) (T ) for each non-maximal level

λ ∈ Lev(S), then there is a tower embedding ϕ : S → T such that ϕlev = f .
The tower embedding ϕ induces a coarse embedding ∂ϕ : ∂S ( ∂T .

Our last lemma will play a key role in the proof of Theorem 1.2. It is an
infinite version of (a much more technically difficult) Lemma 6.1 from [2].

Lemma 4.5. Let T, S be two pruned ↓-bounded ↑-unbounded towers and
f : Lev(T ) → Lev(S) be a monotone bijective map. Assume that for each
λ ∈ Lev(T ) we have

ω ≤ Degλ+1
λ (T ) ≤ deg

f(λ+1)
f(λ) (S) ≤ Deg

f(λ+1)
f(λ) (S) ≤ degλ+2

λ+1(T ).

Then there is a surjective tower immersion ϕ : T → S inducing a coarse
equivalence ∂ϕ : ∂T ( ∂S.

Proof. First we introduce some more notation. Since the towers T, S are
↓-bounded and ↑-unbounded, their level sets are order isomorphic to ω and
will therefore be identified with ω. In this case f : Lev(T )→ Lev(S) coincides
with the identity map of ω.
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A subset A of the tower T will be called a trapezium if A = ↓P for some
non-empty subset P ⊂ pred(v) of parents of some v ∈ T , called the vertex
of A and denoted by vx(A). It is easy to see that {vx(A)}∪↓P is a subtower
of T . The set P generating the trapezium A = ↓P will be called the plateau
of the trapezium.

A map ϕ : ↓P → S from a trapezium ↓P ⊂ T to the tower S will be
called an admissible immersion if

• ϕ = φ|↓P for some tower immersion φ : {vx(↓P )} ∪ ↓P → S,
• there is a vertex s ∈ S such that ϕ(P ) = {s} and ϕ(↓P ) = ↓s.

Lemma 4.5 will be derived from the following

Claim 4.6. For any k ∈ ω, any trapezium ↓Ak ⊂ T , and any vertex
w ∈ S with lev(w) = lev(Ak) = k and |Ak| = deg(w) there is an admissible
immersion ϕ : ↓Ak → ↓w. Moreover, if k > 0 and for some v ∈ pred(w),
a ∈ Ak, and Ak−1 ⊂ pred(a) with |Ak−1| = deg(v) and |pred(a) \ Ak−1| =
deg(a) an admissible immersion ψ : ↓Ak−1 → ↓v is given, then the admissible
immersion ϕ can be constructed so that ϕ|↓Ak−1 = ψ.

Proof. We use induction on k. If k = 0, then ↓Ak = Ak and the constant
map ϕ : Ak → {w} ⊂ S is the required immersion.

Assume that the claim has been proved for some k − 1 ∈ ω. Fix a
trapezium ↓Ak ⊂ T and a point w ∈ S with levS(Ak) = levT (w) = k
and deg(w) = |Ak|. Observe that for the set pred(Ak) =

⋃
a∈Ak

pred(a) we
have

ω ≤ deg(w) = |Ak| ≤ |pred(Ak)| =
∑
a∈Ak

deg(a) ≤ |Ak| ·Degkk−1(T )

≤ |Ak| · degkk−1(S) ≤ |Ak| · deg(w) = deg(w).

Observe also that deg(u) ≤ deg(a) for every u ∈ pred(w) and a ∈ Ak. This
follows from deg(u) = 0 ≤ deg(a) if k = 1, and from

deg(u) ≤ Degk−1k−2(S) ≤ degkk−1(T ) ≤ deg(a)

if k > 1.
Consequently, we canwrite pred(Ak) as a disjoint union

⋃
u∈pred(w)Ak−1(u)

with |Ak−1(u)| = max{1,deg(u)} for u∈ pred(w) so that the cover {Ak−1(u) :
u ∈ pred(w)} of pred(Ak) refines the cover {pred(a) : a ∈ Ak}.

By the inductive assumption, for each u ∈ pred(w) we can find an admis-
sible immersion ϕu : ↓Ak−1(u) → ↓u. Now define an admissible immersion
ϕ : ↓Ak → ↓w by letting

ϕ(x) =

{
ϕu(x) if x ∈ ↓Ak−1(u) for some u ∈ pred(w),
w if x ∈ Ak.
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If for some a ∈ Ak, v ∈ pred(w) andAk−1 ⊂ pred(a)with |Ak−1| = deg(v)
and |pred(a) \ Ak−1| = deg(a) an admissible immersion ψ : ↓Ak−1 → ↓v
is given, then we can choose the cover {Ak−1(u) : u ∈ pred(w)} so that
Ak−1(v) = Ak−1 and then take ϕv = ψ. In this case ϕ|↓Ak−1 = ψ. This
completes the proof of Claim 4.6.

Now we are able to complete the proof of Lemma 4.5. Choose two branches
{ak}k∈ω ∈ ∂T and {bk}k∈ω ∈ ∂S such that levT (ak) = k = levS(bk) for all
l ∈ ω = Lev(T ) = Lev(S). For every k ∈ ω choose Ak ⊂ pred(ak+1) such
that ak ∈ Ak and |pred(ak+1) \ Ak| = deg(ak+1) and |Ak| = deg(bk). Such
a choice is always possible because deg(ak+1) ≥ degk+1

k (T ) ≥ Degkk−1(S)
≥ deg(bk).

Using Claim 4.6 inductively we can construct a sequence of admissible
immersions ϕk : ↓Ak → ↓bk, k ∈ ω, such that ϕk+1|↓Ak = ϕk. Finally, define
a surjective tower immersion ϕ : T → S by letting ϕ|↓Ak = ϕk for k ∈ ω. By
Lemma 4.2, the induced multi-map ∂ϕ : ∂T ( ∂S is a coarse equivalence.

5. Proof of Theorem 1.2. Let X,Y be ultrametric spaces.
1. First assume that cov](X) ≤ cov[(Y ). In this case we shall prove that

X is coarsely equivalent to a subspace of Y .
By definition of cov](X), there is ε0 ∈ R+ such that

cov](X) = sup
δ∈R+

(
sup
x∈X

covδε0(x)
)+
.

Choose any unbounded strictly increasing number sequence (εn)
∞
n=1 such

that ε1 > ε0, set E = {εn : n ∈ ω} and consider the canonical tower
TEX = {(Bεn(x), εn) : n ∈ ω} of the ultrametric space X. By Lemma 4.1,
the canonical map BE : X → ∂TEX is a coarse equivalence.

Observe that for every n ∈ ω the cardinal

κn = Degεn+1
εn (TEX ) = sup

x∈X
covεn+1

εn (x)

is strictly smaller than cov](X).
Let δ0 = 0 and choose by induction on n ∈ ω a real number δn+1 > 1+δn

such that
min
y∈Y

cov
δn+1

δn
(y) ≥ κn.

This is possible since cov[(Y ) ≥ cov](X) > κn. Let D = {δn : n ∈ ω} and
consider the canonical tower TDY of Y . By Lemma 4.1, the canonical map
BD : Y → ∂TDY is a coarse equivalence.

The choice of (δn)n∈ω guarantees that for every n ∈ ω,

Degεn+1
εn (TEX ) = sup

x∈X
covεn+1

εn (x) = κn ≤ min
y∈Y

cov
δn+1

δn
(y) = deg

δn+1

δn
(TDY ).



CLASSIFYING HOMOGENEOUS ULTRAMETRIC SPACES 201

By Lemma 4.4, there is a tower embedding ϕ : TEX → TDY which induces a
coarse embedding ∂ϕ : ∂TEX ( ∂TDY .

Then (BD)
−1 ◦ ∂ϕ ◦BE : X ( Y is the required coarse embedding of X

into Y .

2. Now assuming that cov[(X) = cov](X) = cov[(Y ) = cov](Y ), we
shall prove that X,Y are coarsely equivalent. We shall consider four cases,
depending on the value of κ = cov[(X) = cov](X) = cov[(Y ) = cov](Y ).

If κ = 0, then X and Y are empty and hence coarsely equivalent.
If κ = 1, then X and Y are bounded and hence coarsely equivalent (to a

singleton).
If κ = ω, then X and Y are coarsely equivalent by [2, Theorem 5].
It remains to consider the case of κ uncountable. By definition of cov](X)

= cov](Y ), there are ε0, δ0 ∈ R+ such that for every ε, δ ∈ R+ we have
supx∈X covεε0(x) < cov](X) = κ and supy∈Y covδδ0(y) < cov](Y ) = κ.

Using the definition of cov[(X) = κ = cov[(Y ), we can inductively con-
struct unbounded strictly increasing sequences (εn)

∞
n=1 and (δn)n∈ω such

that
sup
x∈X

covεn+1
εn (x) ≤ min

y∈Y
cov

δn+1

δn
(y)

and
sup
y∈Y

cov
δn+1

δn
(x) ≤ min

x∈X
covεn+2

εn+1
(y)

for every n ∈ ω.
Let E = {en : n ∈ ω} and D = {δn : n ∈ ω}, and consider the canonical

towers TEX and TDY of X and Y , respectively. By Lemma 4.1, the canonical
maps BE : X → ∂TEX and BD : Y → ∂TDY are coarse equivalences.

Observe that for every n ∈ ω,

Degεn+1
εn (TEX ) = sup

x∈X
covεn+1

εn (x) ≤ min
y∈Y

cov
δn+1

δn
(y) = deg

δn+1

δn
(TDY )

≤ Deg
δn+1

δn
(TDY ) = sup

y∈Y
cov

δn+1

δn
(y) ≤ min

x∈X
covεn+2

εn+1
(x) = degεn+2

εn+1
(TEX ).

So, we can apply Lemma 4.5 to construct a surjective tower immersion
ϕ : TEX → TDY , which induces a coarse equivalence ∂ϕ : ∂TEX ( ∂TDY .

Then the composition

X
BE // ∂TEX

∂ϕ
( ∂TDY

B−1
D( Y

is the required coarse equivalence between X and Y .
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