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In each Menger manifold M we construct:

• a closed nowhere dense subset M0 which is homeomorphic to M and is universal
nowhere dense in the sense that for each nowhere dense set A ⊂ M there is a
homeomorphism h of M such that h(A) ⊂ M0;

• a meager Fσ-set Σ0 ⊂ M which is universal meager in the sense that for each
meager subset B ⊂ M there is a homeomorphism h of M such that h(B) ⊂ Σ0.

Also we prove that any two universal meager Fσ-sets in M are ambiently
homeomorphic.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction and survey of principal results

In this paper we shall construct universal nowhere dense and universal meager sets in Menger manifolds,
i.e., manifolds modeled on Menger cubes μn, n � 0. The notions of universal nowhere dense and universal
meager set are special cases of the notion of K-universal set for a family K of subsets of topological space X.
A subset A ⊂ X is called K-universal if A ∈ K and for each B ∈ K there exists a homeomorphism h : X → X

such that h(B) ⊂ A.

Problem 1.1. Which families K of subsets of a given topological space X possess a K-universal set A ∈ K?

For certain families K this problem is closely connected with the problem of existence of K-absorptive
sets, whose definition we are going to recall now.
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Let X be a topological space and K a family of subsets of X. We shall assume that K is ambiently
invariant in the sense that K = {h(K): K ∈ K} for any homeomorphism h : X → X of X. By σK we
denote the family of subsets of X which can be written as countable unions A =

⋃
n∈ω An of subsets An ∈ K,

n ∈ ω. For two maps f, g : X → Y between topological spaces and an open cover U of Y we shall write
(f, g) ≺ U and say that the maps f, g are U-near if for each x ∈ X the set {f(x), g(x)} is contained in some
set U ∈ U .

Following [15], we define a subset B ⊂ X to be K-absorptive in X if B ∈ σK and for each set K ∈ K,
open set V ⊂ X, and open cover U of V , there is a homeomorphism h : V → V such that h(K ∩V ) ⊂ B∩V

and (h, id) ≺ U . An important observation is that each set A ∈ σK containing a K-absorptive subset of X
is also K-absorptive.

The following powerful uniqueness theorem was proved by West [15] and Geoghegan and Summerhill [13,
2.5].

Theorem 1.2 (Uniqueness theorem for K-absorptive sets). Let K be an ambiently invariant family of closed
subsets of a Polish space X. Then any two K-absorptive sets B,B′ ⊂ X are ambiently homeomorphic. More
precisely, for any open set V ⊂ X and any open cover V of V there is a homeomorphism h : V → V such
that h(V ∩B) = V ∩B′ and h is V-near to the identity map of V .

Two subsets A,B of a topological space X are called ambiently homeomorphic if there is a homeomorphism
h : X → X such that h(A) = B. This happens if and only if the pairs (X,A) and (X,B) are homeomorphic.
We shall say that two pairs (X,A) and (Y,B) of topological spaces A ⊂ X and B ⊂ Y are homeomorphic
if there is a homeomorphism h : X → Y such that h(A) = B. In this case we say that h : (X,A) → (Y,B)
is a homeomorphism of pairs.

As shown in Corollary 1 of [3], Theorem 1.2 implies the following characterization.

Theorem 1.3. Let K be an ambiently invariant family of closed subsets of a Polish space. If a K-absorptive
set B in X exists, then a subset A ⊂ X is σK-universal in X if and only if A is K-absorptive.

Theorem 1.3 reduces the problem of constructing σK-universal sets in a Polish space X to the problem
of constructing K-absorptive sets in X. The latter problem was extensively studied for various families K
consisting of Z-sets in X, see [6, Ch. IV, V], [4], [10], [9, §2.2.2].

Let us recall that a subset A of a topological space X is a Z-set in X if A is closed in X and for each
open cover U of X there is a map f : X → X \ A such that (f, id) ≺ U . The family Z of all Z-sets of X
is ambiently invariant and is contained in the larger families Zk, 0 � k � ω, consisting of Zk-sets in X.
A subset A of a topological space X is called a Zk-set in X for 0 � k � ω if A is closed in X and for each
open cover U of X and each map f : Ik → X there is a map f ′ : Ik → X \ A such that (f ′, f) ≺ U . It is
clear that Zk ⊂ Zn for any numbers 0 � n � k � ω, which implies that the families Z,Zk, ω � k � 0, form
an increasing chain

Z ⊂ Zω ⊂ · · · ⊂ Z1 ⊂ Z0.

For certain nice spaces, for example, ANRs the families Z and Zω coincide (see [9, 2.2.4]). On the other
hand, for any topological space X the family Z0 of Z0-sets coincides with the family of closed nowhere dense
subsets of X. Consequently, the family σZ0 coincides with the family of all meager Fσ-subsets of X.

Using the technique of skeletoids, Z-absorptive sets (which are automatically σZ-universal) were con-
structed in many “nice” spaces X, in particular, in manifolds modeled on the Hilbert or Menger cubes, see [9,
§2.2]. By a manifold modeled on a topological space E (briefly, an E-manifold) we understand a paracompact
topological space having a cover by open subsets homeomorphic to open subsets of the model space E. The
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standard technique of skeletoids cannot be applied to constructing K-universal or σK-universal sets for fam-
ilies K �⊂ Z. In [2] and [3] the authors using the technique of tame open set and tame Gδ-set, constructed
Z0-universal and σZ0-universal sets in manifolds modeled on finite-dimensional and infinite-dimensional
cubes I

n, 1 � n � ω.
In this paper we shall apply the same technique to construct Z0-universal sets and σZ0-universal sets in

Menger manifolds, i.e., manifolds modeled on Menger cubes μn, 0 � n < ω. There are many (topologically
equivalent) constructions of Menger cubes [9, §4.1.1]. Due to celebrated Bestvina’s characterization [7],
spaces homeomorphic to Menger cubes can be topologically characterized as follows.

Theorem 1.4 (Bestvina). A compact metrizable space X is homeomorphic to the n-dimensional Menger cube
μn if and only if

(1) dim(X) = n;
(2) X is an absolute extensor in dimension n;
(3) X has the disjoint n-cells property.

We say that a topological space X has the disjoint n-cells property if for any maps f, g : In → X from
the n-dimensional cube I

n = [0, 1]n to X and any open cover U of X there exist maps f ′, g′ : In → X such
that f ′(In) ∩ g′(In) = ∅ and the maps f ′, g′ are U-near to the maps f, g, respectively.

A topological space X is called an absolute neighborhood extensor in dimension n (briefly, an
ANE[n]-space) if each continuous map f : B → X defined on a closed subset B of a metrizable space
A of dimension dim(A) � n has a continuous extension f̄ : O(B) → X defined on a neighborhood O(B) of
the set B in A. If f can be always extended to a continuous map f̄ : A → X, then we say that X is an
absolute extensor in dimension n (briefly, an AE[n]-space).

The “local” version of Theorem 1.4 yields a characterization of Menger manifolds, see [7] or [9, 4.1.9].

Theorem 1.5 (Bestvina). A locally compact metrizable space X is a Menger manifold if and only if

(1) X has finite dimension n = dim(X);
(2) X is an absolute neighborhood extensor for n-dimensional spaces;
(3) X has the disjoint n-cells property.

For infinite n, Theorems 1.4 and 1.5 turn into Toruńczyk’s characterization theorems for the Hilbert cube
and Hilbert cube manifolds, see [14].

In this paper we address the following:

Problem 1.6. Is it true that for every k, n ∈ ω the Menger cube μn contains a universal Zk-set and a
universal σZk-set?

Z -Set Unknotting Theorem [9, 4.1.16] and Theorem 5.2.1 of [9] on the existence of skeletoids in the Menger
cube imply an affirmative answer to this problem for all k � n. In this paper we shall answer Problem 1.6
for k = 0. To construct Z0-universal and σZ0-universal sets in Menger cubes (or more generally in Menger
manifolds), we shall use the technique of tame open sets and tame Gδ-sets which was developed in [3].

We start by defining tame open balls in Menger manifolds. Let M be a μn-manifold for some n ∈ ω.
An open subset B ⊂ M is called a tame open ball in M if

• the closure B̄ of B is homeomorphic to the Menger cube μn;
• the boundary ∂B = B̄ \B in M is homeomorphic to the Menger cube μn;
• ∂B is a Z-set in B̄ and in M \B.
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By a tame closed ball in M we shall understand the closure of a tame open ball in M . It can be shown that
a closed subset B of a μn-manifold M is a tame closed ball in M if and only if B and its boundary ∂B in
M are homeomorphic to μn and B is n-clean in M (in the sense of [8] or [9, 4.4.15]).

The following theorem follows from Lemma 4.2, which will be proved in Section 4.

Theorem 1.7. Each Menger manifold has a base of topology consisting of tame open balls.

A family F of subsets of a topological space X is called vanishing if for each open cover U of X the
family F ′ = {F ∈ F : ∀U ∈ U , F �⊂ U} is locally finite in X. It is easy to see that a countable family
F = {Fn}n∈ω of subsets of a compact metric space (X, d) is vanishing if and only if limn→∞ diam(Fn) = 0.

A subset U of a Menger manifold M is called a tame open set in M if U =
⋃

U for some vanishing family
U of tame open balls having pairwise disjoint closures in M . If n = dim(M) > 0, then the tame open balls
U ∈ U can be uniquely recovered as connected components of the tame open set U .

A subset G ⊂ X is called a tame Gδ-set in X if U =
⋂

n∈ω

⋃
Un for some families Un, n ∈ ω, of tame

open balls in X such that

• for every n ∈ ω any distinct tame open balls U, V ∈ Un have disjoint closures in X;
• for every n ∈ ω and U ∈ Un+1 the closure Ū is contained in some set V ∈ Un with V �= Ū ;
• the family

⋃
n∈ω Un is vanishing.

Tame open sets and tame Gδ-sets can be equivalently defined via tame families of tame open balls.
A family U of non-empty open subsets of a topological space X is called tame if U is vanishing and for any
distinct sets U, V ∈ U one of the following three possibilities hold: either Ū ∩ V̄ = ∅ or Ū ⊂ V or V̄ ⊂ U .
For a family U of subsets of a set X by

⋃∞
U =

⋂{⋃
(U \ F): F is a finite subfamily of U

}

we denote the set of all points x ∈ X which belong to an infinite number of sets U ∈ U .
The following proposition can be proved by analogy with Proposition 2 of [3].

Proposition 1.8. A subset T of a Menger manifold M is tame open (resp. tame Gδ) if and only if T =
⋃

T
(resp. T =

⋃∞ T ) for a suitable tame family T of tame open balls in M .

The classes of dense tame open sets and dense tame Gδ-sets in Menger manifolds have the following
cofinality property, which can be derived from Theorem 1.7 by analogy with the proof of Proposition 3
of [3].

Proposition 1.9.

(1) Each open subset of a Menger manifold contains a dense tame open set;
(2) Each Gδ-subset of a Menger manifold contains a dense tame Gδ-set.

The Z-Set Unknotting Theorem for Menger manifolds [9, 4.1.15] implies that any two tame open balls
in a connected Menger manifold are ambiently homeomorphic. A similar uniqueness theorem holds also for
dense tame open sets and dense tame Gδ-sets in Menger manifolds.

Theorem 1.10 (Uniqueness theorem for dense tame open sets). Any two dense tame open sets U,U ′ ⊂ M of a
Menger manifold M are ambiently homeomorphic. Moreover, for each tame open set U ⊂ M its complement
M \ U is homeomorphic to the Menger manifold M .
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This theorem follows from Propositions 3.6 and 4.4, which will be proved in Sections 3 and 4, respectively.
Using Theorem 1.10 and Proposition 1.9(1) we can give a promised partial answer to Problem 1.6.

Theorem 1.11. Each Menger manifold M contains a Z0-universal subset A ⊂ M , which is homeomorphic
to M .

Proof. By Proposition 1.9, the Menger manifold M contains a dense tame open set U ⊂ M . By Theo-
rem 1.10, the complement A = M \U is a closed nowhere dense subset of M , homeomorphic to M . To prove
that the set A is Z0-universal, take any closed nowhere dense subset B ⊂ X. By Proposition 1.9, the dense
open set X \ B contains a dense tame open set V ⊂ M . By Theorem 1.10, there exists a homeomorphism
h : M → M such that h(V ) = U and hence h(B) ⊂ h(M \ V ) = M \ U = A. This proves that the set A is
Z0-universal. �

Next, we turn to universal σZ0-sets in Menger manifolds. We shall exploit the following uniqueness
theorem, which will be proved in Section 5.

Theorem 1.12 (Uniqueness theorem for dense tame Gδ-sets). Any two dense tame Gδ-sets G,G′ in a Menger
manifold M are ambiently homeomorphic. Moreover, for each open cover U of M there is a homeomorphism
h : (M,G) → (M,G′), which is U-near to the identity homeomorphism of M .

Applying Theorem 1.12 and Proposition 1.9(2) we can give another partial answer to Problem 1.6.

Theorem 1.13 (Characterization of σZ0-universal sets in Menger manifolds). For a subset A of a Menger
manifold X the following conditions are equivalent:

(1) A is σZ0-universal in X;
(2) A is Z0-absorptive in X;
(3) the complement X \A is a dense tame Gδ-set in X.

The proof of this theorem literally repeats the proof of Theorem 4 of [3] characterizing σZ0-universal
sets in manifolds modeled on the Hilbert cube.

Taking into account that each meager Fσ-set containing a σZ0-absorptive subset is σZ0-absorptive, we
see that Theorem 1.13 implies:

Corollary 1.14. Each dense Gδ-subset of a dense tame Gδ-set in a Menger manifold is tame.

2. Equivalence of certain decompositions of Polish spaces

Theorem 1.10 will be derived from results [2] on topological equivalence of upper semicontinuous decom-
positions of a given Polish space. To use these results we need to recall some terminology from [2]. First we
note that all maps considered in this paper are continuous.

Let A,B be two families of subsets of a space X. We shall write A ≺ B and say that the family A refines
the family B if each set A ∈ A is contained in some set B ∈ B.

A subset A ⊂ X is called B-saturated if A coincides with its B-star St(A,B) =
⋃
{B ∈ B: A∩B �= ∅}. The

family A is called B-saturated if each set A ∈ A is B-saturated. The family St(A,B) = {St(A,B): A ∈ B}
will be called the B-star of the family A, and St(A) = St(A,A) is the star of A.

By a decomposition of a topological space X we understand a cover D of X by pairwise disjoint non-empty
compact subsets. For each decomposition D we can consider the quotient map qD : X → D assigning to each
point x ∈ X the unique compact set q(x) ∈ D that contains x. The quotient map qD induces the quotient
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topology on D turning D into a topological space called the decomposition space of the decomposition D.
Sometimes to distinguish a decomposition D from its decomposition space we shall denote the latter space
by X/D.

A decomposition D of a topological space X is said to be upper semicontinuous if for each closed subset
F ⊂ X its D-saturation St(F,D) =

⋃
{D ∈ D: D ∩ F �= ∅} is closed in X. It is easy to see that a

decomposition D of X is upper semicontinuous if and only if the quotient map qD : X → X/D is closed if
and only if the quotient map qD is perfect (the latter means that qD is closed and for each point y ∈ X/D
the preimage q−1

D (y) is compact). Since the metrizability (and local compactness) of spaces is preserved by
perfect maps (see [12, 3.7.21] and [12, 4.4.15]), we get the following:

Lemma 2.1. For every upper semicontinuous decomposition D of a metrizable (locally compact) space X the
decomposition space X/D is metrizable (and locally compact).

Observe that a decomposition D of a topological space X is vanishing if and only if for each open cover
U of X the subfamily D′ = {D ∈ D: ∀U ∈ U D �⊂ U} is discrete in X in the sense that each point x ∈ X

has a neighborhood Ox ⊂ X that meets at most one set D ∈ D′.
Each vanishing disjoint family C of non-empty compact subsets of a topological space X generates the

vanishing decomposition

Ċ = C ∪
{
{x}: x ∈ X \

⋃
C
}

of the space X. In particular, each non-empty compact set K ⊂ X induces the vanishing decomposition
{K} ∪ {{x}: x ∈ X \K} whose decomposition space will be denoted by X/K. By qK : X → X/K we shall
denote the corresponding quotient map. By Lemma 2.2 of [2], each vanishing decomposition D of a regular
space X is upper semicontinuous.

A decomposition D of a space X will be called dense if its non-degeneracy part

D◦ =
{
D ∈ D: |D| > 1

}

is dense in the decomposition space D = X/D.
A decomposition D of a topological space X is called

• shrinkable if for each D-saturated open cover U of X and each open cover V of X there is a homeomor-
phism h : X → X such that (h, idX) ≺ U and {h(D): D ∈ D} ≺ V;

• strongly shrinkable if for each D-saturated open set U ⊂ X the decomposition D|U = {D ∈ D: D ⊂ U}
of U is shrinkable.

A compact subset K of a topological space X is called locally shrinkable if for each neighborhood O(K) ⊂ X

and any open cover V of O(K) there is a homeomorphism h : X → X such that h|X \O(K) = id and h(K)
is contained in some set V ∈ V. It is easy to see that a compact subset K ⊂ X is locally shrinkable if and
only if the decomposition {K} ∪ {{x}: x ∈ X \K} of X is strongly shrinkable (cf. [11, p. 42]).

(Strongly) shrinkable decompositions are closely connected with (strong) near homeomorphisms. A map
f : X → Y between topological spaces will be called

• a near homeomorphism if for each open cover U of Y there is a homeomorphism h : X → Y such that
(h, f) ≺ U ;

• a strong near homeomorphism if for each open set U ⊂ Y the map f |f−1(U) : f−1(U) → U is a near
homeomorphism.
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The following Shrinkability Criterion was proved in [11, Theorem 2.6].

Theorem 2.2 (Shrinkability Criterion). An upper semicontinuous decomposition D of a completely metriz-
able space X is (strongly) shrinkable if and only if the quotient map qD : X → X/D is a (strong) near
homeomorphism.

We shall say that a decomposition A of a topological space X is topologically equivalent to a decomposition
B of a topological space Y if there is a homeomorphism Φ : X → Y such that the decomposition Φ(A) =
{Φ(A): A ∈ A} of Y is equal to the decomposition B.

Now we shall formulate some conditions of topological equivalence of decompositions of Polish spaces.
First we recall two definitions from [2].

Definition 2.3. Let K be a family of compact subsets of a topological space X. We shall say that the family K

• is ambiently invariant if for each homeomorphism h : X → X and each set K ∈ K we get h(K) ∈ K;
• has the local shift property if for any point x ∈ X and a neighborhood Ox ⊂ X there is a neighborhood

Ux ⊂ Ox of x such that for any sets A,B ∈ K with A,B ⊂ Ux there is a homeomorphism h : X → X

such that h(A) = B and h|X \Ox = id|X \Ox;
• tame if K is ambiently invariant, consists of locally shrinkable sets, has the local shift property, and

each non-empty open subset U ⊂ X contains a set K ∈ K.

Now we can define K-tame decompositions.

Definition 2.4. Let K be a tame family of compact subsets of a Polish space X. A decomposition D of X is
called K-tame if D is vanishing, strongly shrinkable, and D◦ ⊂ K.

The following theorem, proved in [2, 2.6], yields many examples of K-tame decompositions.

Theorem 2.5. Let K be a tame family of compact subsets of a completely metrizable space X such that each
set K ∈ K contains more than one point. For any open set U ⊂ X there is a K-tame decomposition D of X
such that

⋃
D◦ is a dense subset of U .

We shall say that a topological space X is strongly locally homogeneous if the family of singletons
{{x}}x∈X is tame. This happens if and only if this family has the local shift property. Therefore, our
definition of the strong local homogeneity agrees with the classical one introduced in [5]. It is easy to see
that each connected strongly locally homogeneous space is topologically homogeneous in the sense that for
any two points x, y ∈ X there is a homeomorphism h : X → X with h(x) = y. The following (difficult)
theorem was proved in [2, 2.8].

Theorem 2.6. For any tame family K of compact subsets of a strongly locally homogeneous completely
metrizable space X, any two dense K-tame decompositions A,B of X are topologically equivalent. Moreover,
for any open cover U of X there is a homeomorphism Φ : X → X such that Φ(A) = B and (Φ, idX) ≺ W,
where

W =
{
St(A,U) ∪ St(B,U): A ∈ A, B ∈ B, St(A,U) ∩ St(B,U) �= ∅

}
.

3. Some properties of Menger manifolds

In this section we shall establish some properties of Menger manifolds. Basic information on the theory
of Menger manifolds can be found in [9, Ch. 4]. We start by recalling the necessary definitions.
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Let n � 0 be any non-negative integer. A subset A of a topological space X is called a UV n−1-set for
n ∈ ω if for any open neighborhood U of A in X there exists a neighborhood V ⊂ X of A such that every
map f : [0, 1]k \ (0, 1)k → V from the boundary of the k-dimensional cube [0, 1]k, k � n, has a continuous
extension f̄ : [0, 1]k → U .

A topological space X is called

• a Cn−1-space if X is a UV n−1-set in X;
• an LCn−1-space if each singleton {x} ⊂ X is a UV n−1-set in X;
• a UV n-compactum if X is homeomorphic to a closed UV n-subset of the Hilbert cube.

It is clear that a topological space X is a Cn−1-space if and only if all homotopy groups πk(X,x0),
x0 ∈ X, k < n, are trivial.

The following characterization of absolute (neighborhood) extensors in dimension n is well known and
can be found in [9, 2.1.12].

Proposition 3.1. A metrizable topological space X is an ANE[n]-space (resp. an AE[n]-space) if and only if
X is an LCn−1-space (resp. an LCn−1-space and a Cn−1-space).

We shall need the following well-known Extension Property of ANE[n]-spaces, which can be found in [9,
4.1.7].

Proposition 3.2. For any open cover U of a metrizable ANE[n]-space X there is an open cover V of X such
that for any closed subset B of a metrizable space A of dimension dim(A) � n and any maps f : A → X

and g : B → X with (g, f |B) ≺ V there is a map ḡ : A → X such that ḡ|B = g and (ḡ, f) ≺ U .

A map f : X → Y between metrizable spaces is called a UV n−1-map if for each y ∈ Y the preimage
f−1(y) is a UV n−1-compactum. A surjective UV n−1-map will be called UV n−1-surjection. It is well known
that the Menger cube μn is an UV n−1-compactum (see, e.g. Lemma 5.5 of [1]).

The following important result can be found in [9, 4.1.20].

Proposition 3.3. Proper UV n−1-surjections between μn-manifolds are near homeomorphisms.

Another useful property of the Menger cubes is the Z-Set Unknotting Theorem [9, 4.1.6]:

Theorem 3.4. Any homeomorphism h : A → B between two Z-sets of the Menger cube μn can be extended
to a homeomorphism h̄ : μn → μn.

Lemma 3.5. For each tame open ball B in a μn-manifold M there is a UV n−1-retraction r : B̄ → ∂B.

Proof. Since the tame closed ball B̄ is homeomorphic to the Menger cube μn, we can apply Theorem 4.3.3
of [9] and find a UV n−1-surjection π : B̄ → μn and a continuous map s : μn → B̄ such that π ◦ s is the
identity map of μn and s(μn) is a Z-set in B̄. It follows that s is an embedding of μn in B̄ and hence
s(μn) is a Z-set of B̄, homeomorphic to μn. Since the boundary ∂B of B in M also is a Z-set in B̄,
homeomorphic to μn, we can apply the Z-Set Unknotting Theorem 3.4 and find a homeomorphism of pairs
h : (B̄, ∂B) → (B̄, s(μn)). Then the map r = h−1 ◦ s ◦ π ◦ h : B̄ → ∂B is a UV n−1-surjection, being the
composition of the UV n−1-surjection π and the homeomorphisms h, h−1 ◦ s. To see that r is a retraction of
B̄ onto ∂B, observe that for every x ∈ ∂B the point h(x) belongs to s(μn) and hence h(x) = s(y) for some
y ∈ μn. Since y = π ◦ s(y) = π ◦ h(x), we conclude that h(x) = s ◦ π ◦ h(x) and hence

r(x) = h−1 ◦ s ◦ π ◦ h(x) = h−1 ◦ h(x) = x,

so r is a retraction of B̄ onto its boundary ∂B. �
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Proposition 3.6. For any tame open set U in a μn-manifold M the complement M \ U is a μn-manifold,
homeomorphic to M .

Proof. Write the tame open set U as the union U =
⋃

B of a vanishing family of tame open balls with
disjoint closures in M . By Lemma 3.5, for each tame open ball B ∈ B there exists a UV n−1-retraction
rB : B̄ → ∂B. Extend rB to the UV n−1-retraction r̄B : M → M \B such that r̄B |B̄ = rB .

The UV n−1-retractions rB , B ∈ B, form a UV n−1-retraction r : M → M \ U defined by

r(x) =
{
rB(x) if x ∈ B ∈ B,
x otherwise.

Claim 3.7. M \ U is a μn-manifold.

Proof. By Theorem 1.5, the μn-manifold M is an ANE[n]-space, and then so is its retract M \U . It remains
to check that M \U has the disjoint n-cells property. Fix any metric d generating the topology of M . Given
any ε > 0 and a map f : In × {0, 1} → M \ U we need to find a map f̃ : Iω × {0, 1} → M \ U such that
f̃(In × {0}) ∩ f̃(In × {1}) = ∅ and that d(f̃ , f) = supt∈In d(f̃(t), f(y)) < ε.

By the discrete n-cells property of the Menger manifold M , the map f : In × {0, 1} → M \ U ⊂ M can
be approximated by a map g : In×{0, 1} → M such that d(r ◦ g, f) < 1

2ε and g(In ×{0})∩ g(In ×{1}) = ∅.
Fix a positive real number δ < ε such that

δ � dist
(
g
(
I
n × {0}

)
, g
(
I
n × {1}

))
= inf

{
d(x, y): x ∈ g

(
I
n × {0}

)
, y ∈ g

(
I
n × {1}

)}
.

The vanishing property of the family B guarantees that the subfamily B′ = {B ∈ B: diam(B) � δ/5} is
discrete in M . By collectivewise normality of M , for each set B ∈ B′ its closure B̄ has an open neighborhood
O(B̄) ⊂ M such that the indexed family (O(B̄))B∈B′ is discrete in M .

Claim 3.8. For every B ∈ B′ there is a map gB : In × {0, 1} → M \B such that

(1) d(gB , r̄B ◦ g) < δ/5;
(2) gB |g−1(M \O(B̄)) = g|g−1(M \O(B̄));
(3) gB(g−1(B̄)) ⊂ ∂B;
(4) gB(g−1(O(B̄))) ⊂ O(B̄), and
(5) gB(In × {0}) ∩ gB(In × {1}) = ∅.

Proof. By normality of M , the closed set B̄ has an open neighborhood U(B̄) ⊂ M whose closure Ū(B̄)
is contained in O(B̄). Consider the closed subset FB = g−1(B̄) ⊂ I

n × {0, 1}, and its open neighborhoods
O(FB) = g−1(O(B̄)) and U(FB) = g−1(U(B̄)). It follows from Ū(B̄) ⊂ O(B̄) that Ū(FB) ⊂ O(FB).

Next, consider the map r̄B ◦ g|O(FB) : O(FB) → O(B̄) \ B. By Lemma 3.2, there is an open cover UB

of O(B̄) \ B such that any map g′ : FB → O(B̄) \ B with (g′, r̄B ◦ g|FB) ≺ UB can be extended to a map
g′B : O(FB) → O(B̄) \B such that g′B |O(FB) \ U(FB) = g|O(FB) \ U(FB) and d(g′B, g|O(B)) < δ/5.

Since the boundary ∂B of the tame open ball B in M is homeomorphic to the Menger cube μn, by
Theorem 4.1.19 of [9], the map r̄B ◦ g|FB → ∂B can be approximated by an injective map g′ : FB → ∂B

such that (g′, g|FB) ≺ UB . By the choice of the cover UB the map g′ can be extended to a continuous map
g′B : O(FB) → O(B̄) \B such that g′B |O(FB) \ U(FB) = g|O(FB) \ U(FB) and d(g′B, g|O(FB)) < δ/5.

Extend the map g′B to a continuous map gB : In × {0, 1} → M \B such that
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gB(x) =
{
g′B(x) if x ∈ O(B),
g(x) otherwise.

It is easy to see that the map gB satisfies the conditions (1)–(5). �
Now define a map g̃ : In × {0, 1} → M \

⋃
B′ by the formula

g̃(x) =
{
gB(x) if x ∈ g−1(O(B̄)) for some B ∈ B′;
g(x) otherwise.

Claim 3.8 implies that g̃(In × {0}) ∩ g̃(In × {1}) = ∅. Finally, put f̃ = r ◦ g̃ : In × {0, 1} → M \ U .
The choice of the family B′ guarantees that d(f̃ , r ◦ g) < δ/5 and d(f̃ , f) � d(f̃ , r ◦ g) + d(r ◦ g, f) <

1
5δ + 1

2ε < ε. It follows from the construction of f̃ and the choice of δ � dist(g(In×{0}), g(In×{0})) that
f̃(In×{0}) ∩ f̃(In×{1}) = ∅. By Characterization Theorem 1.5, the space M \ U is a μn-manifold. �

By Proposition 3.3, the proper UV n−1-retraction r : M → M \ U between the μn-manifolds M and
M \ U is a near homeomorphism, which implies that M \ U is homeomorphic to M . �

Since each tame open ball is a tame open set, Proposition 3.6 implies:

Corollary 3.9. For any tame open ball U in a Menger manifold M , the complement M \ U is a Menger
manifold, homeomorphic to M .

Proposition 3.10. Let D be a vanishing decomposition of a μn-manifold M such that each set D ∈ D is a
compact UV n−1-set in M and a Z-set in M . Then the decomposition space M/D is a μn-manifold and the
quotient map q : M → M/D is a near homeomorphism.

Proof. Since each μn-manifolds can be decomposed into a topological sum of σ-compact μn-manifolds, we
lose no generality assuming that the μn-manifold M is σ-compact. In this case the vanishing decomposition
D has at most countable non-degeneracy part D◦, which implies that the union

⋃
D◦ is a σZ-set in M .

By Lemma 2.2 of [2], the vanishing decomposition D of M is upper semicontinuous, which implies that
quotient map q : M → M/D is perfect and hence is a UV n−1-surjection. By Lemma 2.1, the decomposition
space N = M/D is metrizable and locally compact.

The space M , being a μn-manifold, is an LCn−1-space. Since q : M → N is a UV n−1-surjection,
N is an LCn−1-space according to Proposition 2.1.32 of [9]. By Lemma 3.1, N is an ANE[n]-space. To
apply Bestvina’s characterization Theorem 1.5, it remain to prove that the space N has the disjoint n-cells
property.

For this fix an open cover U of N and two maps f, g : In → N . By the paracompactness of N , there
exists an open cover V of N such that St(V) ≺ U . Consider the open cover q−1(V) = {q−1(V ): V ∈ V}
of the space M . By Proposition 2.1.31 of [9], there are maps f̃ , g̃ : In → M such that (q ◦ f̃ , f) ≺ V and
(q ◦ g̃, g) ≺ V. Since M is a μn-manifold and

⋃
D◦ is a σZ-set in M , there are two maps f̃ ′, g̃′ : In → M

such that (f̃ ′, f̃) ≺ q−1(V), (g̃′, g̃) ≺ q−1(V), f̃ ′(Ik) ∩ g̃′(Ik) = ∅ and f̃ ′(Ik) ∪ g̃′(Ik) ⊂ M \
⋃

D◦. Then
the maps f ′ = q ◦ f̃ ′ : I

n → N and g′ = q ◦ g̃′ : I
n → N have the properties: (f ′, f) ≺ St(V) ≺ U ,

(g′, g) ≺ St(V) ≺ U and f ′(In)∩g′(In) = ∅. The latter property follows from the injectivity of the restriction
q|M \

⋃
D◦. This completes the proof of the disjoint n-cells property of the locally compact ANE[n]-space N .

By Theorem 1.5, the space N is a μn-manifold and by Proposition 3.3, the UV n−1-surjection q : M → N

is a near homeomorphism. �
Proposition 3.11. A vanishing decomposition D of a μn-manifold M is shrinkable if each non-degeneracy
element D ∈ D◦ is a tame closed ball in M .
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Proof. Find a disjoint family U of tame open balls in the μn-manifold M such that D◦ = {B̄: B ∈ U}.
Then U =

⋃
U is a tame open set in M and by Proposition 3.6, the complement M \ U is a μn-manifold.

Moreover, by the proof of Proposition 3.6, there is an UV n−1-retraction r : M → M \ U . By the definition
of a tame open ball, the boundary ∂B of each tame open ball B ∈ U in M is homeomorphic to the Menger
cube μn and is a Z-set in M \B.

We claim that ∂B is a Zn-set in M \U . Given any map f : In → M \U and any open cover W of M \U ,
consider the open cover r−1(W) = {r−1(W ): W ∈ W} of the subspace M \ B ⊂ M . Since ∂B is a Z-set
in M \B, there is a map f ′ : In → M \B such that f ′(In) ∩ ∂B = ∅ and (f ′, f) ≺ r−1(W). Then the map
f̃ = r◦f ′ : In → M \U has the desired properties: (f̃ , f) ≺ W and f̃(In)∩∂B = ∅. The latter equality follows
from the fact that r(K) ⊂ ∂K for each K ∈ U . So, ∂B is a Zn-set in M \U . Since M \U is a μn-manifold, ∂B
is a Z-set in M \U according to Proposition 4.1.13 of [9]. Now we see that ∂D = {∂B: B ∈ D◦}∪{{x}: x ∈
M \

⋃
D◦} is a vanishing decomposition of the μn-manifold M \U into Z-sets which are UV n−1-sets (being

homeomorphic to μn or singletons). By Proposition 3.10, the decomposition space N = (M \ U)/∂D is a
μn-manifold and the quotient map q : M \U → N = (M \U)/∂D is a near homeomorphism. Now consider
the perfect map qD ◦ r : M → N and observe that D = {(q∂D ◦ r)−1(y): y ∈ N}, which implies that the
decomposition space M/∂D is homeomorphic to the μn-manifold N . Now we see that the quotient map
qD : M → M/D, being a UV n−1-surjection between μn-manifolds, is a near homeomorphism. �

Since open subspaces of μn-manifolds are μn-manifolds, Proposition 3.11 has a self-generalization:

Proposition 3.12. A vanishing decomposition D of a Menger manifold M is strongly shrinkable if each
non-degeneracy element D ∈ D◦ is a tame closed ball in M .

4. Constructing tame balls in Menger manifolds

In this section we shall construct tame balls in Menger manifolds. In particular, we shall prove Lemma 4.2,
which implies Theorem 1.7, announced in the introduction. Our construction of tame balls in Menger
manifolds is rather standard and resembles that from [10, Ch. 4].

First we recall a standard construction of the Menger cube Mk
n where k � 2n + 1. In the discrete cube

{0, 1, 2}k consider the subset

T k
n =

{
(x1, . . . , xk) ∈ {0, 1, 2}k:

∣∣{i ∈ {1, . . . , k}: xi = 1
}∣∣ � n

}
.

Let pk : {0, 1, 2}k → {0, 1, 2}, pk : (x1, . . . , xk) �→ xk, be the projection onto the last coordinate. It follows
that for any y ∈ {0, 2} we get

p−1
k (y) ∩ T k

n = T k−1
n × {y}. (1)

By definition, the Menger cube Mk
n is the image of the countable product (Tn

k )N under the continuous
map

s :
(
Tn
k

)N → [0, 1]k, s : (xi)∞i=1 �→
∞∑
i=1

xi

3i .

Bestvina’s characterization Theorem 1.4 implies that for any n � 0 and k � 2n+ 1 the Menger cube Mk
n

is homeomorphic to the Menger cube μn = M2n+1
n , see [7, p. 98]. For n = 0 and k = 1 the Menger cube

μ0 = M1
0 coincides with the standard Cantor set on [0, 1].

Now we shall establish some properties of sections of the Menger cube Mk
n by hyperplanes. Consider the

projection prk : [0, 1]k → [0, 1], prk : (x1, . . . , xk) �→ xk, of the cube [0, 1]k onto the last coordinate. For two
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points a < b in the unit interval [0, 1], consider the retraction r[a,b] : [0, 1] → [a, b] such that r(x) = x for all
x ∈ [a, b], r([0, a]) = {a} and r([b, 1]) = {b}. This retraction induces the retraction r̄ : [0, 1]k → pr−1

k ([a, b])
defined by r̄ : (x1, . . . , xk) �→ (x1, . . . , xk−1, r(xk)).

Lemma 4.1. If k � 2n + 2 and a < b are any points of the Cantor set M1
0 ⊂ [0, 1], then:

(1) the set Mk
n ∩ pr−1

k (a) is equal to Mk−1
n × {a} and hence is homeomorphic to the Menger cube μn;

(2) the restriction r̄[a,b]|Mk
n : Mk

n → pr−1
k ([a, b]) is a retraction of Mk

n onto Mk
n ∩ pr−1

k ([a, b]);
(3) Mk

n ∩ pr−1
k (a) is a Z-set in Mk

n ∩ pr−1
k ([a, b]) if a is a non-isolated point of [a, b] ∩M1

0 ;
(4) Mk

n ∩ pr−1
k (b) is a Z-set in Mk

n ∩ pr−1
k ([a, b]) if b is non-isolated point of [a, b] ∩M1

0 ;
(5) Mk

n ∩ pr−1
k ([a, b]) is homeomorphic to the Menger cube μn if a, b are non-isolated points in [a, b] ∩M1

0 .

Proof. 1. The first statement follows from the equality T k−1
n × {0, 2} = T k

n ∩ ({0, 1, 2}k−1 × {0, 2}).
2. The second statement follows from the observation that for each sequence (x(1), . . . , x(k)) ∈ T k

n the
sequences (x(1), . . . , x(k − 1), 0) and (x(1), . . . , x(k − 1), 2) belong to T k

n .
3. To prove the third statement, assume that a is a non-isolated point of the set M1

0 ∩ [a, b]. We need to
check that Mk

n∩pr−1
k (a) is a Z-set in Mk

n∩pr−1
k ([a, b]). Fix an open cover U of Mk

n∩pr−1
k ([a, b]) and find a′ ∈

(a, b]∩M1
0 so close to a that the retraction f = r̄[a′,b′]|Mk

n∩pr−1
k ([a, b]) : Mk

n∩pr−1
k ([a, b]) → Mk

n∩pr−1
k ([a′, b])

is U-near to the identity map of Mk
n ∩pr−1

k ([a, b]). Since r̄[a′,b](Mk
n ∩pr−1

k ([a, b])∩pr−1
k (a) = ∅, the retraction

f witnesses that Mk
n ∩ pr−1

k (a) is a Z-set in Mk
n ∩ pr−1([a, b]).

4. The fourth statement can be proved by analogy with the third one.
5. The fifth statement can be derived from the preceding statements with help of the characterization

Theorem 1.4. �
Lemma 4.2. Each point of the Menger cube μn has a neighborhood base consisting of tame open balls.

Proof. Fix any integer k � 2n + 2 and consider the Menger cube Mk
n , which is homeomorphic to μn

by [7, p. 98]. By Lemma 4.1, the set K = Mk
n ∩ pr−1

k (0) is a Z-set in Mk
n , homeomorphic to μn. By

Proposition 3.10, the quotient map q : Mk
n → Mk

n/K is a near homeomorphism and hence the quotient
space Mk

n/K is homeomorphic to the Menger cube μn. Let E denote the set of points a of the Cantor cube
M1

0 such that a is a non-isolated point in the sets [0, a] ∩M1
0 and [a, 1] ∩M1

0 . It is clear that E is a dense
subset of M1

0 .
By Lemma 4.1, for every point ε ∈ E, the set Uε = Mk

n ∩ pr−1([0, ε)) is a tame open ball in Mk
n . Using

Proposition 3.10, it can be shown that the set Vε = q(Uε) = Uε/K is a tame open ball in Mk
n/K. It remains

to observe that {Vε: ε ∈ E} is a neighborhood base of the point {K} ∈ Mk
n/K consisting of tame open

balls in the space Mk
n/K, which is homeomorphic to the Menger cube μn. The topological homogeneity of

μn implies that each point of μn has a neighborhood base consisting of tame open balls. �
Lemma 4.3. The family K of tame closed balls in a μn-manifold M is tame.

Proof. By Definition 2.3 of a tame family, we need to check four conditions.
1. It follows from the definition of a tame closed ball that the family K is ambiently invariant.
2. Next, we should check that each tame closed ball B ∈ K is locally shrinkable. By [11, p. 42], this is

equivalent to saying that the quotient map qB : M → M/B is a strong near homeomorphism. But this
follows from Proposition 3.12.

3. To prove that the family K of tame closed balls has the local shift property, fix a point x ∈ M and
a neighborhood Ox of x. By Lemma 4.2, the neighborhood Ox contains the closure Ūx of some tame open
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ball Ux. We claim that for any two tame closed balls Ā, B̄ ⊂ Ux there is a homeomorphism h̄ : M → M

such that h̄(Ā) = B̄ and h̄|M \Ox = id. Here A,B are the interiors of the tame closed balls Ā and B̄ in M .
By Corollary 3.9, the complements Ūx \A and Ūx \B are homeomorphic to the Menger cube μn. Since the
sets ∂Ux, ∂A, ∂B are Z-sets in the tame closed ball Ūx, the Z-Unknotting Theorem 3.4 allows us to find a
homeomorphism h : Ūx \A → Ūx \B such that h|∂Ux = id and h(∂A) = ∂B. Since the tame closed balls Ā
and B̄ are homeomorphic to μn, the Z-Set Unknotting Theorem 3.4 guarantees that the homeomorphism
h|∂A : ∂A → ∂B extends to a homeomorphism h̃ : Ā → B̄. Then the homeomorphism h̄ : M → M defined
by h̄|Ūx \A = h, h̄|Ā = h̃ and h̄|M \Ux = id has the desired properties: h̄(Ā) = B̄ and h̄|M \Ox = id. This
completes the proof of the local shift property of the family K.

4. Lemma 4.2 implies that each non-empty open set contains a tame closed ball. �
Proposition 4.4. Any two dense disjoint vanishing families A,B of tame closed balls in a Menger manifold
M are topologically equivalent. Moreover, for any open cover U of M there is a homeomorphism Φ : X → X

such that Φ(A) = B and (Φ, idX) ≺ W, where

W =
{
St(A,U) ∪ St(B,U): A ∈ Ȧ, B ∈ Ḃ, St(A,U) ∩ St(B,U) �= ∅

}
,

Ȧ = A ∪ {{x}: x ∈ M \
⋃

A} and Ḃ = B ∪ {{x}: x ∈ M \
⋃
B}.

Proof. The vanishing families A,B can be completed to vanishing decompositions Ȧ = A ∪ {{x}: x ∈
M \

⋃
A} and Ḃ = B ∪ {{x}: x ∈ M \

⋃
B} of the Menger manifold M . By Corollary 4.1.17 of [9], the

Menger manifold M is strongly topologically homogeneous. By Lemma 4.3, the family K of tame closed
balls in M is tame. By Proposition 3.12, the vanishing decompositions Ȧ and Ḃ are strongly shrinkable and
hence are K-tame according to Definition 2.4. Now Proposition 4.4 follows from Theorem 2.6. �
5. Proof of Theorem 1.12

Given two dense tame Gδ-sets G,G′ in a Menger manifold M , and an open cover U of M we need to find
a homeomorphism h : (M,G) → (M,G′), which is U-near to the identity homeomorphism of M .

Depending on the dimension of the Menger manifold M , two cases are possible.
If dim(M) = 0, then M is a manifold modeled on the Cantor cube μ0. It follows from the definition of a

tame Gδ-set that the complements M \G and M \G′ are everywhere uncountable in M in the sense that
they have uncountable intersections with each non-empty open subset of M . This fact can be used to show
that M \ G =

⋃
i∈ω Zi and for an increasing sequence (Zi)i∈ω of compact subsets without isolated points

in M such that each set Zi is nowhere dense in Zi+1. By analogy we can represent M \ G′ =
⋃

i∈ω Z ′
i.

Now the standard technique of skeletoids ([6, §IV, V], [9, §2.2.2]) allows us to construct a homeomorphism
h : M → M such that (h, id) ≺ U and h(M \G) = M \G′.

If dim(M) > 0, then the homeomorphism h(M,G) → (M,G′) can be constructed by analogy with the
proof of Theorem 3 in [3].
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