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Universal meager F,-sets in locally compact manifolds

TARAS BANAKH, DUSAN REPOVS

Dedicated to the 120th birthday anniversary of Eduard Cech.

Abstract. In each manifold M modeled on a finite or infinite dimensional cube
[0,1]", n < w, we construct a meager Fy-subset X C M which is universal mea-
ger in the sense that for each meager subset A C M there is a homeomorphism
h : M — M such that h(A) C X. We also prove that any two universal meager
Fg-sets in M are ambiently homeomorphic.

Keywords: universal nowhere dense subset, Sierpinski carpet, Menger cube, Hil-
bert cube manifold, n-manifold, tame ball, tame decomposition

Classification: 5TN20, 57N45, 54F65

In this paper we shall construct and characterize universal meager F,-sets in
["-manifolds.

A meager subset A of a topological space X is called universal meager if for
each meager subset B C X there is a homeomorphism h : X — X such that
h(B) C A. So, each universal meager subset of X contains homeomorphic copies
of all other meager subsets of X.

In fact, the notion of a universal meager set is a special case of a more general
notion of a K-universal set for some family K of subsets of a topological space X.
Namely, we define a set U € K to be K-universal if for each set K &€ IC there is a
homeomorphism h : X — X such that h(K) C U.

KC-Universal sets for various classes K often appear in topology. A classical
example of such set is the Sierpiriski Carpet M2, known to be a K-universal set
for the family K of all (closed) nowhere dense subsets of the square 12 = [0, 1]?
(see [14]). The Sierpinski Carpet M? is one of the Menger cubes M}, which
are KC-universal for the family IC of all k-dimensional compact subsets of the n-
dimensional cube I" (see [15], [8, §4.1]). An analogue of the Sierpiriski Carpet
exists also in the Hilbert cube I, which contains a Zy-universal set for the family
2y of closed nowhere dense subsets of I (see [3]).

Many KC-universal spaces arise in infinite-dimensional topology. For example,
the pseudo-boundary B(I*) = [0,1]* \ (0,1)% of the Hilbert cube I* is known to
be 0 Z,,-universal for the family 02, of 0 Z,-subsets of I¥. What is surprising, up
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to an ambient homeomorphism, B(I*) is a unique o Z,-universal set in I“. In this
paper we shall show that such a uniqueness theorem also holds for o Zj-universal
subsets in the Hilbert cube I*.

Let us recall the definition of the families 02, and 0Z;. They consist of
oZ,-sets and oZy-sets, respectively.

A closed subset A of a topological space X is called a Z,-set in X for a (finite
or infinite) number n < w if the set {f € C(I",X) : f(I") N A = 0} is dense
in the space C(I", X) of all continuous functions f : I" — X, endowed with the
compact-open topology. Here by I = [0,1] we denote the unit interval and by I"
the n-dimensional cube. For n = w the space I" = I is the Hilbert cube.

A subset A C X is called a 0Z,-set in X if A can be written as the union
A = Upen Ar of countably many Z,-sets Ay C X. Let us observe that a subset
A C X is a Zp-set in X if and only if it is closed and nowhere dense in X, and A
is a 0Zp-set if and only if A is a meager F,-set in X.

For a topological space X by Z, and 02, we denote the families of Z,-sets
and oZ,-sets in X, respectively.

A characterization of Z,-universal sets in the Hilbert cube is quite simple and
can be easily derived from the Z-Set Unknotting Theorem 11.1 from [7]:

Proposition 1. A subset A C I¥ is Z,,-universal in I if and only if A is a Z,,-set
in ¥, containing a topological copy of the Hilbert cube I*.

A characterization of o Z,,-universal sets in the Hilbert cube is also well-known
and can be given in many different terms (skeletoid of Bessaga-Pelczynski [4],
capsets of Anderson [1], [6], absorptive sets of West [16], pseudoboundaries of
Geoghegan and Summerhill [11], [12]). For our purposes the most appropriate
approach is that of West [16] and Geoghegan and Summerhill [12]. To formulate
this approach, we need to recall some notation.

Let U, V be two families of sets of a topological space X. Put

UNV={UNV:UelU, VeV, UNV #0} and
UVY ={UUV:UelU, VeV, UnV +0}.

We shall write 4 < V and say that U refines V if each set U € U is contained in
some set V € V. Let StU,V) = {St(U,V) : U € U} where St(U,V) = |H{V €
V:UNV # 0} Put StUU) = StU,U) and St"TH(U) = St(St™(U)) for each
n > 0. We shall say that two maps f,g : Z — X are U-near and denote it
by (f,g) < U if the family (f,g) = {{f(2),9(2)} : z € Z} refines the family
UU{{z}: z € X}. For a family F of subsets of a metric space (X,d) we put
mesh(F) = suppe r diam(F).

Let K be a family of closed subsets of a Polish space X and ok = {{J, ., An :
A, € K, n € w}. We shall say that K is topologically invariant if K = {h(K) :
K € K} for each homeomorphism h : X — X.

A subset B C X is called K-absorptive in X if B € oK and for each set K € I,
open set V C X, and open cover U of V there is a homeomorphism h : V — V
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such that A(KNV) C BNV and (h,id) < Y. An important observation is that
each set A € o/ containing a /C-absorptive subset of X is also K-absorptive.

The following powerful uniqueness theorem was proved by West [16] and Ge-
oghegan and Summerhill [12, 2.5].

Theorem 1 (Uniqueness Theorem for K-absorptive sets). Let K be a topolo-
gically invariant family of closed subsets of a Polish space X. Then any two
K-absorptive sets B, B’ C X are ambiently homeomorphic. More precisely, for
any open set V. C X and any open cover U of V there is a homeomorphism
h :V — V such that h(V N B) = VN B and h is U-near to the identity map
of V.

Two subsets A, B of a topological space X are called ambiently homeomorphic
if there is a homeomorphism & : X — X such that h(A) = B. This happens if and
only if the pairs (X, A) and (X, B) are homeomorphic. We shall say that two pairs
(X, A) and (Y, B) of topological spaces A C X and B C Y are homeomorphic if
there is a homeomorphism A : X — Y such that h(A) = B. In this case we say
that h: (X, A) — (Y, B) is a homeomorphism of pairs.

According to the following corollary of Theorem 1, each K-absorptive set is
oC-universal.

Corollary 1. Let K be a topologically invariant family of closed subsets of a
Polish space. If a KC-absorptive set B in X exists, then a subset A C X is K-
universal in X if and only if A is KC-absorptive.

PRrROOF: Assume that a subset A of X is K-absorptive. The definition implies
that A € oK. To show that A is oK -universal, fix any subset K € oK. The
definition of a C-absorptive set implies that the union AU K is K-absorptive. By
the Uniqueness Theorem 1, there is a homeomorphism of pairs h: (X, AU K) —
(X, A). This homeomorphism embeds the set K into A, witnessing that the K-
absorptive set A is o/C-universal.

Now assume that a set A C X is o/-universal. Since the K-absorptive set B
belongs to the family ok, there is a homeomorphism h of X such that h(B) C A.
The topological invariance of the class K implies that the set h(B) is K-absorptive,
and so is the set A D h(B). O

Corollary 1 reduces the problem of studying oK-universal sets in a Polish space
X to studying K-absorptive sets in X (under the assumption that a KC-absorptive
set in X exists). The problem of the existence of K-absorptive sets was considered
in several papers. In particular, Geoghegan and Summerhill [12] proved that each
Euclidean space R™ contains a Zy-absorptive set and such a set is unique up to
ambient homeomorphism.

Unfortunately, the methods of constructing Zj-absorptive sets in Euclidean
spaces used in [12] do not work in case of the Hilbert cube or Hilbert cube
manifolds (in spite of the fact that the paper [12] was written to demonstrate

181



182

T. Banakh, D. Repovs

applications of methods of infinite-dimensional topology in the theory of finite-
dimensional manifolds). Known results on Z,-absorptive sets in the Hilbert cube
I and Zp-absorptive sets in Euclidean spaces allow us to make the following:

Conjecture 1. The Hilbert cube contains a Z,-absorptive set for every n < w.

This conjecture is true for n = w as witnessed by the pseudoboundary B(I¥) =
I«\ (0,1)“ of I¥ which is a Z,-absorptive set in I*. In this paper we shall confirm
Conjecture 1 for n = 0. In fact, our proof works not only for the Hilbert cube but
also for any I*-manifold of finite or infinite dimension. By a manifold modeled
on a space E (briefly, an E-manifold) we understand any paracompact space M
admitting a cover by open subsets homeomorphic to open subspaces of the model
space F. In this paper we consider only manifolds modeled on (finite or infinite
dimensional) cubes I, n < w. So, from now on, by a manifold we shall understand
an ["-manifold for some 0 < n < w. If a manifold X is finite-dimensional, then
its boundary 0X consists of all points £ € X which do not have neighborhoods
homeomorphic to Euclidean spaces. If X is a Hilbert cube manifold, then we put
X = 0.

Our approach to constructing Zy-absorptive sets in manifolds is based on the
notion of a tame Gs-set, which is interesting by itself, see [2]. First we recall some
definitions.

A family F of subsets of a topological space X is called vanishing if for each
open cover U of X the family 7' = {F € F: VYU € U, F ¢ U} is locally finite
in X. It is easy to see that a countable family F = {F,} e, of subsets of a
compact metric space (X, d) is vanishing if and only if lim,,_, . diam(F,) = 0.

An open subset B of an ["-manifold X is called a tame open ball in X if its
closure B has an open neighborhood O(B) in X such that the pair (O(B), B) is
homeomorphic to the pair (R™,1") if n < w and to the pair (I* x [0, 00), I x [0, 1])
if n = w. Tame balls form a neighborhood base at each point x € X, which does
not belong to the boundary 90X of X (this is trivial for n < w and follows from
Theorem 12.2 of [7] for n = w).

A subset U of a manifold X is called a tame open set in X if U = |JU for
some vanishing family U of tame open balls having pairwise disjoint closures
in X. Observe that the family I/ is unique and coincides with the family C(U) of
connected components of the set U. By C(U) = {C : C € C(U)} we shall denote
the family of the closures of the connected components of U in X.

A subset G C X is called a tame Gg-set in X if G = ﬂnew U,, for some decreas-
ing sequence (Uy,)new of tame open sets such that the family C = U, ., C(Un)
is vanishing and for every n € w the family C(U,11) refines the family C(U,,) of
connected components of U,.

Tame open and tame Gs-sets can be equivalently defined via tame families of
tame open balls. A family & of non-empty open subsets of a topological space X
is called tame if U is vanishing and for any distinct sets U,V € U one of three
possibilities hold: either UNV =@ or U C V or V C U. For a family U of subsets
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of a set X by
U™U =N {UU \ F) : F is a finite subfamily of U }

we denote the set of all points x € X which belong to infinite number of sets
Uel.

Proposition 2. A subset T' of a manifold X is tame open (resp. tame Gy) if and
only if T = JT (resp. T = |J™T ) for a suitable tame family T of tame open
balls in X.

PrROOF: The “only if” part follows directly from the definition of a tame open
(resp. tame Gy) set. To prove the “if” part, assume that 7 is a tame family of
tame open balls in X. Endow the family 7 with a partial order < defined by the
reverse inclusion relation, that is U < V if and only if U D V. The vanishing
property of 7 guarantees that for each set U € T the set JU ={V € T : V < U}
is finite. This allows us to define the ordinal rank(U) letting rank(U) = [{U].
For each number n € w let 7, = {U € T : rank(U) = n + 1}. It follows from
the definition of a tame family that the union U,, = |J 7, is a tame open set and
U, C Up_1, where U_1 = X. In particular, the union | J7 = Up is tame open set
in X and the set T =J™T =(),,c, Un is a tame Gs-set in X. O

new

The classes of dense tame open sets and dense tame Gs-sets have the following
cofinality property.

Proposition 3. (1) Each open subset of a manifold X contains a dense tame
open set.
(2) Each Gs-subset of a manifold contains a dense tame Gs-set.

PROOF: Let X be a manifold and d be a metric generating the topology of X.

1. Given an open set V C X and an open cover U of V we shall construct a
tame open set W C X such that W is dense in V and the family C(W) refines the
cover U. Replacing V by V' \ 90X, we can assume that the set V' does not intersect
the boundary 90X of X. Replacing the set V by V' \ {v} for some point v € V,
we can additionally assume that the set V is not compact. We can also assume
that V' = |JU. Without loss of generality, the manifold X is connected and hence
separable. So, we can fix a countable dense subset {z,}ne, in V. By induction
we can construct an increasing number sequence (ny)re. and a sequence By, of
tame open balls in X such that for each k& € w the following conditions hold:

(1) ny is the smallest number n such that z, & J,; ., By

(2) By is a tame open ball such that x,, € By, the (ilosure By of By in X
has diameter < 27% and is contained in U \ J;_, B for some set U € U.

It is easy to check that W = UkEW By, is a required dense tame open set in V

with C(W) = {Bk}’kEw <U.
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2. Fix an arbitrary Gs-set G in X and write it as the intersection G = ﬂnew U,
of a decreasing sequence (Up,)new of open sets in X. By the (proof of the) pre-
ceding item, we can construct inductively a decreasing sequence (V;,)ne,, of tame
open sets in X such that for every n € w we get

e meshC(V,,) <277,
e JC(V,) €V, NU,, and
e V,isdensein V,,_1 NU,,.
Here we assume that V_; = X. It follows that V = .., C(V},) is a tame family

of tame open balls whose limit set | JV = Mheco Va is a required dense tame
Gs-set in G. O

It is easy to see that any two tame open balls in a connected I"-manifold are
ambiently homeomorphic. A similar fact holds also for dense tame open sets.
Generalizing earlier results of Whyburn [17] and Cannon [5], Banakh and Repovs
in [3, Corollary 2.8] proved the following Uniqueness Theorem for dense tame
open sets.

Theorem 2 (Uniqueness Theorem for Dense Tame Open Sets in Manifolds). Any
two dense tame open sets U, U’ C X of a manifold X are ambiently homeomorphic.
Moreover, for each open cover U of X there is a homeomorphism h : (X,U) —

(X,U’) such that (h,id) < St(C(U),U) vV St(C(U"),U).
This theorem will be our main tool in the proof of the following Uniqueness
Theorem for dense tame (F5-sets.

Theorem 3 (Uniqueness Theorem for Dense Tame Gj-Sets in Manifolds). Any
two dense tame Gs-sets G,G’ in a manifold X are ambiently homeomorphic.
Moreover, for each open cover U of X there is a homeomorphism h : (X,G) —
(X, G") such that (h,id) < U.

PRroOF: Fix a bounded complete metric d generating the topology of the mani-
fold X. By [9, 8.1.10], the metric d can be chosen so that the cover {B(x,1): z €
X} by closed balls of radius 1 refines the cover Y. In this case any two functions
f,9: X — X with d(f, g) =sup,cx d(f(z),g(x)) <1 are U-near.

Represent the tame Gs-sets G and G’ as the limit sets G = (J°G and G’ =
UG’ of suitable tame families G and G’ of tame open balls in X. For every n € w
let G, ={Ue€G:{VeG:VoU}>n}andG,={UecG :{Veg:VD
U}| > n}. It follows that G =N, UGn and G’ =N,,c, UG-

Let U_y1 =U’; = X and h_; : X — X be the identity homeomorphism of X.
Let also U_1 = U’ | be a cover of X by open subsets of diameter < é.

For every n € w we shall construct a homeomorphism h,, : X — X, two tame
open sets Up, U, C X, and open covers U,,, U], of the sets U,, U}, respectively,
such that

(1) GCU, CU,-1NUGn and C(U,) < Up,—1;
(2) G'cU, cU' _;nUG, and C(U,) <U" | N hp_1(Un_1);
(3) hn(Un) = Urylm
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(4) hn|X \ Unfl - hn71|X \ Un 13
(5) d(hn,hn_1) <27 Vand d(h,; ', b 1) <2771

(6) mesh(L[,’L) < 27773 mesh(U,) < 2773, and St2(U,) < {B(z,d(z, X \
U,)/2) -z € Un}.

Assume that for some n € w the open sets U,_1,U],_;, open covers Uy, _1, U], 4
and a homeomorphism h,_1 : (X,U,—1) — (X, U] _;) satisfying the conditions
(1)—(6) have been constructed. Consider the subfannhes Fo={U€G, {U}=
Up_1} and F,, ={U € G/, : {U} <U/,_; ANhy_1(Un—1)}. The vanishing property
of the tame families G and G’ implies that the sets U,, = |JF,, and U/ = |JF),
satisfy the conditions (1), (2) of the inductive construction. The sets U, and
U/ are tame open, being unions of the tame families F,, and F, respectively.
Moreover, C(Uy,) < Up—1 and C(U},) < U),_1 A hn,l(un,l).

Now we shall construct a homeomorphism h,, : (X,U,) — (X,U},). Since
hn—1(Un—1) = U/ _,, each connected component C € C(Up—1) of the open set
U,—1 maps onto the connected component C’ = h,,_1(C) € C(U! _;) of the set
U/ Taking into account that each set B € C(U,,) is a compact connected subset

n—1-
of the open set JU,,_; = U],_,, we see that the intersection U}, N C’ is a dense

tame open set in the open set C’. Consequently, its image h, ', (U, N C’) is a
dense tame open set in the open set C' = h, ', (C’). By Theorem 2, there is a
homeomorphism of pairs go : (C,C NU,) — (C,h, !, (C' NU!)) which is We-
near to the identity map ide : C — C for the cover W = St(C(CNU,),Up_1) V
SHC(h 4 (C N UL)) U 1),
Taking into account that
c(CcnU,) <CU,) <U,_1 and

h (UL NCY) < C(ht (UL))

( ( )) n 1(hn—1(un—1)):un—1,

(hyt
=h,!
we conclude that

We = SHC(C N U,),Un—1) VStC(h, 2 (C'NU.)),Upn—1)

< St(un—laun—l) \ St(“n—la“n—l)
= St(Up_1) V St(Up_1) < St*(Uyp_1) < {B(z,d(X \Up_1)/2) : x € Up_1}.

Now the vanishing property of the family C(U,—1) implies that the map g, :
X — X defined by

x ifxé Uy,
gn (:L‘) - .
gc ifreCe C(Un_l)
is a homeomorphism of X such that (g,,id) < St?(U,_1) and (g,,id) < C(U,_1).
Then h,, = hy—1 © g, is & homeomorphism of X satisfying the conditions (3) and
(4) of the inductive construction.
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To prove the condition (5) we shall consider separately the cases of n = 0 and
n > 0. Ifn = 0, then hy = go and hence (hg, h_1) = (go,id) < St?(U_1). It follows
from mesh(_1) < 1/8 that d(hg ', hZ1) = d(ho, h—1) < mesh(St*(U_1)) < 3.

If n > 0, then (hp, hn—1) = (hn—199n, hn—10id) < hp_1(C(Up—-1)) =CU} _;) <
U’ _, implies d(hy,,h,—1) < mesh(U!_,) < 27"~'. By analogy, (h;*,h ') =
(9 tohn 1 bty ) = (97051d) = (g, id) < C(Un—1) < Up—o implies d(hy;*, b)) <
mesh (U, _2) < 27"~ 1. So, the condition (5) holds.

Finally, using the paracompactness of the metrizable spaces U,, and U, choose
two open covers U,, and U], of U, and U}, satisfying the condition (6).

After completing the inductive construction, we obtain a sequence of homeo-
morphisms h, : (X,U,) = (X,U}), n € w. The condition (5) guarantees that
the limit map h = lim,,_,s A, is a well-defined homeomorphism of X such that
d(h,id) < 1. Moreover, the conditions (1) and (3) imply

WG) =h((Un)= (MU= [ U,=G"

new new new

By the choice of the metric d, the inequality d(h,id) < 1 implies (h,id) < U. So,
h:(X,G) = (X,G) is a required homeomorphism of pairs with (h,id) <¢. O

Now we are able to prove a characterization of o Zp-universal sets in manifolds.

Theorem 4 (Characterization of o Zy-Universal Sets in Manifolds). For a subset
A of a manifold X the following conditions are equivalent:

(1) A is 0Zp-universal in X;

(2) A is Zyp-absorptive in X;

(3) the complement X \ A is a dense tame Gs-set in X.

PROOF: We shall prove the equivalences (3) < (2) < (1). Let d be a metric
generating the topology of the manifold X.

To prove that (3) = (2), assume that the complement X \ A is a dense tame
Ggs-set in X. To prove that A is Zy-absorptive, fix any open set V C X, an
open cover Y of V and a closed nowhere dense subset K C X. We lose no
generality assuming that U < {B(z,d(z, X \ V)/2) : x € V}. Since V' \ (AU K)
is a dense Gs-set in V', we can apply Proposition 3 and find a dense tame Gs-set
G C V\ (AU K). The characterization of tame Gs-sets given in Proposition 2
implies that the intersection VN (X \ A) = V'\ A is a dense tame Gs-set in V. By
Theorem 3, there is a homeomorphism of pairs h : (V,G) — (V,V \ A) such that
(h,id) < U. Since U < {B(z,d(z,X \V)/2) : © € V}, the homeomorphism h of
V extends to a homeomorphism A : X — X such that h|X \ V = id. Observing
that A(V N K) C h(V\ G) =V N A, we see that the set A is Zg-absorptive.

To prove that (2) = (3), assume that the set A is Zp-absorptive. By Propo-
sition 3, the dense Gs-set X \ A contains a dense tame Gs-set G in X. Since
A C X\ G, the set X\ G € 02 is Zp-absorptive. By the Uniqueness Theorem 3,
there is a homeomorphism of pairs b : (X, A) = (X, X\ G). Then X\ A = h(G) is
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a dense tame Gs-set in X, which completes the proof of the implication (2) = (3).

By Proposition 3, X contains a dense tame Gs-set G and by the implication
(3) = (2) proved above the complement X \ G is Zy-absorptive. Now Corollary 1
yields the equivalence (2) < (1). O

Theorem 4 implies:
Corollary 2. Fach dense Gs-subset of a dense tame G5-set in a manifold is tame.

We finish this paper by some open problems. It is clear that each tame Gs-
set in a manifold is zero-dimensional. However, not each zero-dimensional dense
Gs-subset of the Hilbert cube I¥ is tame.

Proposition 4. For any dense Gs-set G C I the countable product G* is not a
tame Gg-set in I¢.

PROOF: Assuming that G“ is tame, we can find a dense tame open set T" C ¥
containing G¥. By Theorem 1.4 of [3], the complement S = I\ T is homeomorphic
to the Hilbert cube and the boundary B\ B of each tame open ball B € C(T)
in I¥ is a Z,-set in S. Let pr, : I¥ — [, n € w, denote the projection of the
Hilbert cube I onto the nth coordinate. Since I\ T' C |J,,.,, pr;,* (I \ G), Baire
Theorem yields a non-empty open subset W C S such that W C pr,, (I \ G) for
some n € w. Since S is homeomorphic to the Hilbert cube, we can assume that
the set W is connected and hence is contained in pr, ! (t) for some point t € T\ G.
Since the union A = Upgcen B\ B is a 0Z,-set in S, we can choose a point
xg € W\ A. Choose an open neighborhood U of xg in I such that UNS C W
and U \ pr,, ! (¢) has at most two connected components.

Since the family C(7T') is vanishing and T = |JC(T') is dense in ¥, there are three
pairwise distinct tame open balls By, B, B3 € C(T') such that By U By U By C U.
Since the set U \ pr,,;*(¢) has at most two connected components, there are two
distinct indices 1 < 4,7 < 3 such that the balls B; and B; meet the same connected
component V of U \ pr,,; (). Since B; \ B; CUNS C pr,;'(t), the set V N B; is
closed-and-open in the connected set V' and hence coincides with V. So, V C B;.
By the same reason, V' C Bj, which is not possible as the balls B; and B; are
disjoint. (I
Problem 1. Can the countable power G* of a dense Gs-set G C I be covered by
countably many dense tame Gs-sets?

By Smirnov’s result [9, 5.2.B], the Hilbert cube I* can be covered by Ry zero-
dimensional Gs-sets.

Problem 2. What is the smallest cardinality of a cover of the Hilbert cube I¥
by tame Gs-sets? Is it equal to Ry 7 (By Theorem 1.6 of [2] this cardinality does
not exceed add(M), the additivity of the ideal M of meager subsets on the real
line.)
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