Universal meager F_{σ} -sets in locally compact manifolds

TARAS BANAKH, DUŠAN REPOVŠ

Dedicated to the 120th birthday anniversary of Eduard Čech.

Abstract. In each manifold M modeled on a finite or infinite dimensional cube $[0,1]^n$, $n \leq \omega$, we construct a meager F_{σ} -subset $X \subset M$ which is universal meager in the sense that for each meager subset $A \subset M$ there is a homeomorphism $h: M \to M$ such that $h(A) \subset X$. We also prove that any two universal meager F_{σ} -sets in M are ambiently homeomorphic.

Keywords: universal nowhere dense subset, Sierpiński carpet, Menger cube, Hilbert cube manifold, n-manifold, tame ball, tame decomposition

Classification: 57N20, 57N45, 54F65

In this paper we shall construct and characterize universal meager F_{σ} -sets in \mathbb{I}^n -manifolds.

A meager subset A of a topological space X is called *universal meager* if for each meager subset $B \subset X$ there is a homeomorphism $h : X \to X$ such that $h(B) \subset A$. So, each universal meager subset of X contains homeomorphic copies of all other meager subsets of X.

In fact, the notion of a universal meager set is a special case of a more general notion of a \mathcal{K} -universal set for some family \mathcal{K} of subsets of a topological space X. Namely, we define a set $U \in \mathcal{K}$ to be \mathcal{K} -universal if for each set $K \in \mathcal{K}$ there is a homeomorphism $h: X \to X$ such that $h(K) \subset U$.

 \mathcal{K} -Universal sets for various classes \mathcal{K} often appear in topology. A classical example of such set is the Sierpiński Carpet M_1^2 , known to be a \mathcal{K} -universal set for the family \mathcal{K} of all (closed) nowhere dense subsets of the square $\mathbb{I}^2 = [0, 1]^2$ (see [14]). The Sierpiński Carpet M_1^2 is one of the Menger cubes M_k^n , which are \mathcal{K} -universal for the family \mathcal{K} of all k-dimensional compact subsets of the *n*dimensional cube \mathbb{I}^n (see [15], [8, §4.1]). An analogue of the Sierpiński Carpet exists also in the Hilbert cube \mathbb{I}^{ω} , which contains a \mathcal{Z}_0 -universal set for the family \mathcal{Z}_0 of closed nowhere dense subsets of \mathbb{I}^{ω} (see [3]).

Many \mathcal{K} -universal spaces arise in infinite-dimensional topology. For example, the pseudo-boundary $B(\mathbb{I}^{\omega}) = [0,1]^{\omega} \setminus (0,1)^{\omega}$ of the Hilbert cube \mathbb{I}^{ω} is known to be $\sigma \mathcal{Z}_{\omega}$ -universal for the family $\sigma \mathcal{Z}_{\omega}$ of $\sigma \mathcal{Z}_{\omega}$ -subsets of \mathbb{I}^{ω} . What is surprising, up

This research was supported by the Slovenian Research Agency grants P1-0292-0101 and J1-4144-0101. The first author has been partially financed by NCN means granted by decision DEC-2011/01/B/ST1/01439.

to an ambient homeomorphism, $B(\mathbb{I}^{\omega})$ is a unique $\sigma \mathcal{Z}_{\omega}$ -universal set in \mathbb{I}^{ω} . In this paper we shall show that such a uniqueness theorem also holds for $\sigma \mathcal{Z}_0$ -universal subsets in the Hilbert cube \mathbb{I}^{ω} .

Let us recall the definition of the families σZ_{ω} and σZ_0 . They consist of σZ_{ω} -sets and σZ_0 -sets, respectively.

A closed subset A of a topological space X is called a Z_n -set in X for a (finite or infinite) number $n \leq \omega$ if the set $\{f \in C(\mathbb{I}^n, X) : f(\mathbb{I}^n) \cap A = \emptyset\}$ is dense in the space $C(\mathbb{I}^n, X)$ of all continuous functions $f : \mathbb{I}^n \to X$, endowed with the compact-open topology. Here by $\mathbb{I} = [0, 1]$ we denote the unit interval and by \mathbb{I}^n the *n*-dimensional cube. For $n = \omega$ the space $\mathbb{I}^n = \mathbb{I}^\omega$ is the Hilbert cube.

A subset $A \subset X$ is called a σZ_n -set in X if A can be written as the union $A = \bigcup_{k \in \omega} A_k$ of countably many Z_n -sets $A_k \subset X$. Let us observe that a subset $A \subset X$ is a Z_0 -set in X if and only if it is closed and nowhere dense in X, and A is a σZ_0 -set if and only if A is a meager F_{σ} -set in X.

For a topological space X by \mathcal{Z}_n and $\sigma \mathcal{Z}_n$ we denote the families of Z_n -sets and σZ_n -sets in X, respectively.

A characterization of \mathcal{Z}_{ω} -universal sets in the Hilbert cube is quite simple and can be easily derived from the Z-Set Unknotting Theorem 11.1 from [7]:

Proposition 1. A subset $A \subset \mathbb{I}^{\omega}$ is \mathcal{Z}_{ω} -universal in \mathbb{I}^{ω} if and only if A is a Z_{ω} -set in \mathbb{I}^{ω} , containing a topological copy of the Hilbert cube \mathbb{I}^{ω} .

A characterization of σZ_{ω} -universal sets in the Hilbert cube is also well-known and can be given in many different terms (skeletoid of Bessaga-Pelczynski [4], capsets of Anderson [1], [6], absorptive sets of West [16], pseudoboundaries of Geoghegan and Summerhill [11], [12]). For our purposes the most appropriate approach is that of West [16] and Geoghegan and Summerhill [12]. To formulate this approach, we need to recall some notation.

Let \mathcal{U}, \mathcal{V} be two families of sets of a topological space X. Put

$$\mathcal{U} \land \mathcal{V} = \{ U \cap V : U \in \mathcal{U}, \ V \in \mathcal{V}, \ U \cap V \neq \emptyset \} \text{ and } \\ \mathcal{U} \lor \mathcal{V} = \{ U \cup V : U \in \mathcal{U}, \ V \in \mathcal{V}, \ U \cap V \neq \emptyset \}.$$

We shall write $\mathcal{U} \prec \mathcal{V}$ and say that \mathcal{U} refines \mathcal{V} if each set $U \in \mathcal{U}$ is contained in some set $V \in \mathcal{V}$. Let $St(\mathcal{U}, \mathcal{V}) = \{St(\mathcal{U}, \mathcal{V}) : \mathcal{U} \in \mathcal{U}\}$ where $St(\mathcal{U}, \mathcal{V}) = \bigcup \{V \in \mathcal{V} : \mathcal{U} \cap V \neq \emptyset\}$. Put $St(\mathcal{U}) = St(\mathcal{U}, \mathcal{U})$ and $St^{n+1}(\mathcal{U}) = St(St^n(\mathcal{U}))$ for each n > 0. We shall say that two maps $f, g : Z \to X$ are \mathcal{U} -near and denote it by $(f,g) \prec \mathcal{U}$ if the family $(f,g) = \{\{f(z),g(z)\} : z \in Z\}$ refines the family $\mathcal{U} \cup \{\{x\} : x \in X\}$. For a family \mathcal{F} of subsets of a metric space (X,d) we put $\operatorname{mesh}(\mathcal{F}) = \sup_{F \in \mathcal{F}} \operatorname{diam}(F)$.

Let \mathcal{K} be a family of closed subsets of a Polish space X and $\sigma \mathcal{K} = \{\bigcup_{n \in \omega} A_n : A_n \in \mathcal{K}, n \in \omega\}$. We shall say that \mathcal{K} is topologically invariant if $\mathcal{K} = \{h(K) : K \in \mathcal{K}\}$ for each homeomorphism $h : X \to X$.

A subset $B \subset X$ is called \mathcal{K} -absorptive in X if $B \in \sigma \mathcal{K}$ and for each set $K \in \mathcal{K}$, open set $V \subset X$, and open cover \mathcal{U} of V there is a homeomorphism $h: V \to V$ such that $h(K \cap V) \subset B \cap V$ and $(h, id) \prec \mathcal{U}$. An important observation is that each set $A \in \sigma \mathcal{K}$ containing a \mathcal{K} -absorptive subset of X is also \mathcal{K} -absorptive.

The following powerful uniqueness theorem was proved by West [16] and Geoghegan and Summerhill [12, 2.5].

Theorem 1 (Uniqueness Theorem for \mathcal{K} -absorptive sets). Let \mathcal{K} be a topologically invariant family of closed subsets of a Polish space X. Then any two \mathcal{K} -absorptive sets $B, B' \subset X$ are ambiently homeomorphic. More precisely, for any open set $V \subset X$ and any open cover \mathcal{U} of V there is a homeomorphism $h: V \to V$ such that $h(V \cap B) = V \cap B'$ and h is \mathcal{U} -near to the identity map of V.

Two subsets A, B of a topological space X are called *ambiently homeomorphic* if there is a homeomorphism $h: X \to X$ such that h(A) = B. This happens if and only if the pairs (X, A) and (X, B) are homeomorphic. We shall say that two pairs (X, A) and (Y, B) of topological spaces $A \subset X$ and $B \subset Y$ are *homeomorphic* if there is a homeomorphism $h: X \to Y$ such that h(A) = B. In this case we say that $h: (X, A) \to (Y, B)$ is a homeomorphism of pairs.

According to the following corollary of Theorem 1, each \mathcal{K} -absorptive set is $\sigma \mathcal{K}$ -universal.

Corollary 1. Let \mathcal{K} be a topologically invariant family of closed subsets of a Polish space. If a \mathcal{K} -absorptive set B in X exists, then a subset $A \subset X$ is $\sigma \mathcal{K}$ -universal in X if and only if A is \mathcal{K} -absorptive.

PROOF: Assume that a subset A of X is \mathcal{K} -absorptive. The definition implies that $A \in \sigma \mathcal{K}$. To show that A is $\sigma \mathcal{K}$ -universal, fix any subset $K \in \sigma \mathcal{K}$. The definition of a \mathcal{K} -absorptive set implies that the union $A \cup K$ is \mathcal{K} -absorptive. By the Uniqueness Theorem 1, there is a homeomorphism of pairs $h : (X, A \cup K) \rightarrow$ (X, A). This homeomorphism embeds the set K into A, witnessing that the \mathcal{K} absorptive set A is $\sigma \mathcal{K}$ -universal.

Now assume that a set $A \subset X$ is $\sigma \mathcal{K}$ -universal. Since the \mathcal{K} -absorptive set B belongs to the family $\sigma \mathcal{K}$, there is a homeomorphism h of X such that $h(B) \subset A$. The topological invariance of the class \mathcal{K} implies that the set h(B) is \mathcal{K} -absorptive, and so is the set $A \supset h(B)$.

Corollary 1 reduces the problem of studying $\sigma \mathcal{K}$ -universal sets in a Polish space X to studying \mathcal{K} -absorptive sets in X (under the assumption that a \mathcal{K} -absorptive set in X exists). The problem of the existence of \mathcal{K} -absorptive sets was considered in several papers. In particular, Geoghegan and Summerhill [12] proved that each Euclidean space \mathbb{R}^n contains a \mathcal{Z}_0 -absorptive set and such a set is unique up to ambient homeomorphism.

Unfortunately, the methods of constructing Z_0 -absorptive sets in Euclidean spaces used in [12] do not work in case of the Hilbert cube or Hilbert cube manifolds (in spite of the fact that the paper [12] was written to demonstrate applications of methods of infinite-dimensional topology in the theory of finitedimensional manifolds). Known results on \mathcal{Z}_{ω} -absorptive sets in the Hilbert cube \mathbb{I}^{ω} and \mathcal{Z}_{0} -absorptive sets in Euclidean spaces allow us to make the following:

Conjecture 1. The Hilbert cube contains a \mathcal{Z}_n -absorptive set for every $n \leq \omega$.

This conjecture is true for $n = \omega$ as witnessed by the pseudoboundary $B(\mathbb{I}^{\omega}) = \mathbb{I}^{\omega} \setminus (0,1)^{\omega}$ of \mathbb{I}^{ω} which is a \mathcal{Z}_{ω} -absorptive set in \mathbb{I}^{ω} . In this paper we shall confirm Conjecture 1 for n = 0. In fact, our proof works not only for the Hilbert cube but also for any \mathbb{I}^k -manifold of finite or infinite dimension. By a manifold modeled on a space E (briefly, an E-manifold) we understand any paracompact space M admitting a cover by open subsets homeomorphic to open subspaces of the model space E. In this paper we consider only manifolds modeled on (finite or infinite dimensional) cubes \mathbb{I}^n , $n \leq \omega$. So, from now on, by a manifold we shall understand an \mathbb{I}^n -manifold for some $0 < n \leq \omega$. If a manifold X is finite-dimensional, then its boundary ∂X consists of all points $x \in X$ which do not have neighborhoods homeomorphic to Euclidean spaces. If X is a Hilbert cube manifold, then we put $\partial X = \emptyset$.

Our approach to constructing \mathcal{Z}_0 -absorptive sets in manifolds is based on the notion of a tame G_{δ} -set, which is interesting by itself, see [2]. First we recall some definitions.

A family \mathcal{F} of subsets of a topological space X is called *vanishing* if for each open cover \mathcal{U} of X the family $\mathcal{F}' = \{F \in \mathcal{F} : \forall U \in \mathcal{U}, F \not\subset U\}$ is locally finite in X. It is easy to see that a countable family $\mathcal{F} = \{F_n\}_{n \in \omega}$ of subsets of a compact metric space (X, d) is vanishing if and only if $\lim_{n\to\infty} \operatorname{diam}(F_n) = 0$.

An open subset B of an \mathbb{I}^n -manifold X is called a *tame open ball* in X if its closure \overline{B} has an open neighborhood $O(\overline{B})$ in X such that the pair $(O(\overline{B}), \overline{B})$ is homeomorphic to the pair $(\mathbb{R}^n, \mathbb{I}^n)$ if $n < \omega$ and to the pair $(\mathbb{I}^\omega \times [0, \infty), \mathbb{I}^\omega \times [0, 1])$ if $n = \omega$. Tame balls form a neighborhood base at each point $x \in X$, which does not belong to the boundary ∂X of X (this is trivial for $n < \omega$ and follows from Theorem 12.2 of [7] for $n = \omega$).

A subset U of a manifold X is called a *tame open set in* X if $U = \bigcup \mathcal{U}$ for some vanishing family \mathcal{U} of tame open balls having pairwise disjoint closures in X. Observe that the family \mathcal{U} is unique and coincides with the family $\mathcal{C}(U)$ of connected components of the set U. By $\overline{\mathcal{C}}(U) = \{\overline{C} : C \in \mathcal{C}(U)\}$ we shall denote the family of the closures of the connected components of U in X.

A subset $G \subset X$ is called a *tame* G_{δ} -set in X if $G = \bigcap_{n \in \omega} U_n$ for some decreasing sequence $(U_n)_{n \in \omega}$ of tame open sets such that the family $\mathcal{C} = \bigcup_{n \in \omega} \mathcal{C}(U_n)$ is vanishing and for every $n \in \omega$ the family $\overline{\mathcal{C}}(U_{n+1})$ refines the family $\mathcal{C}(U_n)$ of connected components of U_n .

Tame open and tame G_{δ} -sets can be equivalently defined via tame families of tame open balls. A family \mathcal{U} of non-empty open subsets of a topological space Xis called *tame* if \mathcal{U} is vanishing and for any distinct sets $U, V \in \mathcal{U}$ one of three possibilities hold: either $\overline{U} \cap \overline{V} = \emptyset$ or $\overline{U} \subset V$ or $\overline{V} \subset U$. For a family \mathcal{U} of subsets of a set X by

 $\bigcup^{\infty} \mathcal{U} = \bigcap \left\{ \bigcup (\mathcal{U} \setminus \mathcal{F}) : \mathcal{F} \text{ is a finite subfamily of } \mathcal{U} \right\}$

we denote the set of all points $x \in X$ which belong to infinite number of sets $U \in \mathcal{U}$.

Proposition 2. A subset T of a manifold X is tame open (resp. tame G_{δ}) if and only if $T = \bigcup \mathcal{T}$ (resp. $T = \bigcup^{\infty} \mathcal{T}$) for a suitable tame family \mathcal{T} of tame open balls in X.

PROOF: The "only if" part follows directly from the definition of a tame open (resp. tame G_{δ}) set. To prove the "if" part, assume that \mathcal{T} is a tame family of tame open balls in X. Endow the family \mathcal{T} with a partial order \leq defined by the reverse inclusion relation, that is $U \leq V$ if and only if $U \supset V$. The vanishing property of \mathcal{T} guarantees that for each set $U \in \mathcal{T}$ the set $\downarrow U = \{V \in \mathcal{T} : V \leq U\}$ is finite. This allows us to define the ordinal rank(U) letting rank $(U) = |\downarrow U|$. For each number $n \in \omega$ let $\mathcal{T}_n = \{U \in \mathcal{T} : \operatorname{rank}(U) = n+1\}$. It follows from the definition of a tame family that the union $U_n = \bigcup \mathcal{T}_n$ is a tame open set and $U_n \subset U_{n-1}$, where $U_{-1} = X$. In particular, the union $\bigcup \mathcal{T} = U_0$ is tame open set in X and the set $T = \bigcup^{\infty} \mathcal{T} = \bigcap_{n \in \omega} U_n$ is a tame G_{δ} -set in X.

The classes of dense tame open sets and dense tame G_{δ} -sets have the following cofinality property.

Proposition 3. (1) Each open subset of a manifold X contains a dense tame open set.

(2) Each G_{δ} -subset of a manifold contains a dense tame G_{δ} -set.

PROOF: Let X be a manifold and d be a metric generating the topology of X.

1. Given an open set $V \subset X$ and an open cover \mathcal{U} of V we shall construct a tame open set $W \subset X$ such that W is dense in V and the family $\overline{\mathcal{C}}(W)$ refines the cover \mathcal{U} . Replacing V by $V \setminus \partial X$, we can assume that the set V does not intersect the boundary ∂X of X. Replacing the set V by $V \setminus \{v\}$ for some point $v \in V$, we can additionally assume that the set V is not compact. We can also assume that $V = \bigcup \mathcal{U}$. Without loss of generality, the manifold X is connected and hence separable. So, we can fix a countable dense subset $\{x_n\}_{n\in\omega}$ in V. By induction we can construct an increasing number sequence $(n_k)_{k\in\omega}$ and a sequence B_k of tame open balls in X such that for each $k \in \omega$ the following conditions hold:

- (1) n_k is the smallest number n such that $x_n \notin \bigcup_{i \le k} \bar{B}_k$;
- (2) B_k is a tame open ball such that $x_{n_k} \in B_k$, the closure \overline{B}_k of B_k in X has diameter $< 2^{-k}$ and is contained in $U \setminus \bigcup_{i < k} \overline{B}_k$ for some set $U \in \mathcal{U}$.

It is easy to check that $W = \bigcup_{k \in \omega} B_k$ is a required dense tame open set in V with $\overline{C}(W) = \{\overline{B}_k\}_{k \in \omega} \prec \mathcal{U}$.

2. Fix an arbitrary G_{δ} -set G in X and write it as the intersection $G = \bigcap_{n \in \omega} U_n$ of a decreasing sequence $(U_n)_{n \in \omega}$ of open sets in X. By the (proof of the) preceding item, we can construct inductively a decreasing sequence $(V_n)_{n \in \omega}$ of tame open sets in X such that for every $n \in \omega$ we get

• mesh
$$\overline{\mathcal{C}}(V_n) < 2^{-n}$$
,

- $\bigcup \overline{\mathcal{C}}(V_n) \subset V_{n-1} \cap U_n$, and
- V_n is dense in $V_{n-1} \cap U_n$.

Here we assume that $V_{-1} = X$. It follows that $\mathcal{V} = \bigcup_{n \in \omega} \mathcal{C}(V_n)$ is a tame family of tame open balls whose limit set $\bigcup^{\infty} \mathcal{V} = \bigcap_{n \in \omega} V_n$ is a required dense tame G_{δ} -set in G.

It is easy to see that any two tame open balls in a connected \mathbb{I}^n -manifold are ambiently homeomorphic. A similar fact holds also for dense tame open sets. Generalizing earlier results of Whyburn [17] and Cannon [5], Banakh and Repovš in [3, Corollary 2.8] proved the following Uniqueness Theorem for dense tame open sets.

Theorem 2 (Uniqueness Theorem for Dense Tame Open Sets in Manifolds). Any two dense tame open sets $U, U' \subset X$ of a manifold X are ambiently homeomorphic. Moreover, for each open cover \mathcal{U} of X there is a homeomorphism $h : (X, U) \to (X, U')$ such that $(h, \mathrm{id}) \prec St(\overline{\mathcal{C}}(U), \mathcal{U}) \lor St(\overline{\mathcal{C}}(U'), \mathcal{U})$.

This theorem will be our main tool in the proof of the following Uniqueness Theorem for dense tame G_{δ} -sets.

Theorem 3 (Uniqueness Theorem for Dense Tame G_{δ} -Sets in Manifolds). Any two dense tame G_{δ} -sets G, G' in a manifold X are ambiently homeomorphic. Moreover, for each open cover \mathcal{U} of X there is a homeomorphism $h : (X, G) \to (X, G')$ such that $(h, \mathrm{id}) \prec \mathcal{U}$.

PROOF: Fix a bounded complete metric d generating the topology of the manifold X. By [9, 8.1.10], the metric d can be chosen so that the cover $\{\overline{B}(x,1): x \in X\}$ by closed balls of radius 1 refines the cover \mathcal{U} . In this case any two functions $f, g: X \to X$ with $d(f, g) = \sup_{x \in X} d(f(x), g(x)) \leq 1$ are \mathcal{U} -near.

Represent the tame G_{δ} -sets G and G' as the limit sets $G = \bigcup^{\infty} \mathcal{G}$ and $G' = \bigcup^{\infty} \mathcal{G}'$ of suitable tame families \mathcal{G} and \mathcal{G}' of tame open balls in X. For every $n \in \omega$ let $\mathcal{G}_n = \{U \in \mathcal{G} : |\{V \in \mathcal{G} : V \supset \overline{U}\}| \ge n\}$ and $\mathcal{G}'_n = \{U \in \mathcal{G}' : |\{V \in \mathcal{G}' : V \supset \overline{U}\}| \ge n\}$. It follows that $G = \bigcap_{n \in \omega} \bigcup \mathcal{G}_n$ and $G' = \bigcap_{n \in \omega} \bigcup \mathcal{G}'_n$.

Let $U_{-1} = U'_{-1} = X$ and $h_{-1} : X \to X$ be the identity homeomorphism of X. Let also $\mathcal{U}_{-1} = \mathcal{U}'_{-1}$ be a cover of X by open subsets of diameter $\leq \frac{1}{8}$.

For every $n \in \omega$ we shall construct a homeomorphism $h_n : X \to X$, two tame open sets $U_n, U'_n \subset X$, and open covers $\mathcal{U}_n, \mathcal{U}'_n$ of the sets U_n, U'_n , respectively, such that

- (1) $G \subset U_n \subset U_{n-1} \cap \bigcup \mathcal{G}_n$ and $\overline{\mathcal{C}}(U_n) \prec \mathcal{U}_{n-1}$;
- (2) $G' \subset U'_n \subset U'_{n-1} \cap \bigcup \mathcal{G}'_n$ and $\overline{\mathcal{C}}(U'_n) \prec \mathcal{U}'_{n-1} \wedge h_{n-1}(\mathcal{U}_{n-1});$
- (3) $h_n(U_n) = U'_n;$

Universal meager F_{σ} -sets in locally compact manifolds

- (4) $h_n | X \setminus U_{n-1} = h_{n-1} | X \setminus U_{n-1};$ (5) $d(h_n, h_{n-1}) \le 2^{-n-1}$ and $d(h_n^{-1}, h_{n-1}^{-1}) \le 2^{-n-1};$
- (6) $\operatorname{mesh}(\mathcal{U}'_n) < 2^{-n-3}$, $\operatorname{mesh}(\mathcal{U}_n) < 2^{-n-3}$, and $\mathcal{S}t^2(\mathcal{U}_n) \prec \{B(x, d(x, X \setminus \mathcal{U}_n))\}$ $(U_n)/2): x \in U_n\}.$

Assume that for some $n \in \omega$ the open sets U_{n-1}, U'_{n-1} , open covers $\mathcal{U}_{n-1}, \mathcal{U}'_{n-1}$ and a homeomorphism $h_{n-1}: (X, U_{n-1}) \to (X, U'_{n-1})$ satisfying the conditions (1)–(6) have been constructed. Consider the subfamilies $\mathcal{F}_n = \{U \in \mathcal{G}_n : \{\bar{U}\} \prec$ \mathcal{U}_{n-1} and $\mathcal{F}'_n = \{ U \in \mathcal{G}'_n : \{ \overline{U} \} \prec \mathcal{U}'_{n-1} \land h_{n-1}(\mathcal{U}_{n-1}) \}$. The vanishing property of the tame families \mathcal{G} and \mathcal{G}' implies that the sets $U_n = \bigcup \mathcal{F}_n$ and $U'_n = \bigcup \mathcal{F}'_n$ satisfy the conditions (1), (2) of the inductive construction. The sets U_n and U'_n are tame open, being unions of the tame families \mathcal{F}_n and \mathcal{F}'_n , respectively. Moreover, $\overline{\mathcal{C}}(U_n) \prec \mathcal{U}_{n-1}$ and $\overline{\mathcal{C}}(U'_n) \prec \mathcal{U}'_{n-1} \land h_{n-1}(\mathcal{U}_{n-1})$.

Now we shall construct a homeomorphism $h_n: (X, U_n) \to (X, U'_n)$. Since $h_{n-1}(U_{n-1}) = U'_{n-1}$, each connected component $C \in \mathcal{C}(U_{n-1})$ of the open set U_{n-1} maps onto the connected component $C' = h_{n-1}(C) \in \mathcal{C}(U'_{n-1})$ of the set U'_{n-1} . Taking into account that each set $\overline{B} \in \overline{C}(U_n)$ is a compact connected subset of the open set $\bigcup \mathcal{U}'_{n-1} = \mathcal{U}'_{n-1}$, we see that the intersection $\mathcal{U}'_n \cap C'$ is a dense tame open set in the open set C'. Consequently, its image $h_{n-1}^{-1}(\mathcal{U}'_n \cap C')$ is a dense tame open set in the open set $C = h_{n-1}^{-1}(C')$. By Theorem 2, there is a homeomorphism of pairs $g_C: (C, C \cap U_n) \to (C, h_{n-1}^{-1}(C' \cap U'_n))$ which is \mathcal{W}_{C} near to the identity map $\operatorname{id}_C : C \to C$ for the cover $\mathcal{W}_C = \mathcal{S}t(\overline{\mathcal{C}}(C \cap U_n), \mathcal{U}_{n-1}) \lor$ $\mathcal{S}t(\bar{\mathcal{C}}(h_{n-1}^{-1}(C'\cap U_n')),\mathcal{U}_{n-1}).$

Taking into account that

$$\bar{\mathcal{C}}(C \cap U_n) \prec \bar{\mathcal{C}}(U_n) \prec \mathcal{U}_{n-1} \text{ and } \bar{\mathcal{C}}(h_{n-1}^{-1}(U'_n \cap C')) \prec \bar{\mathcal{C}}(h_{n-1}^{-1}(U'_n))$$
$$= h_{n-1}^{-1}(\bar{\mathcal{C}}(U'_n)) \prec h_{n-1}^{-1}(h_{n-1}(\mathcal{U}_{n-1})) = \mathcal{U}_{n-1},$$

we conclude that

$$\mathcal{W}_{C} = \mathcal{S}t(\bar{\mathcal{C}}(C \cap U_{n}), \mathcal{U}_{n-1}) \lor \mathcal{S}t(\bar{\mathcal{C}}(h_{n-1}^{-1}(C' \cap U_{n}')), \mathcal{U}_{n-1})$$

$$\prec \mathcal{S}t(\mathcal{U}_{n-1}, \mathcal{U}_{n-1}) \lor \mathcal{S}t(\mathcal{U}_{n-1}, \mathcal{U}_{n-1})$$

$$= \mathcal{S}t(\mathcal{U}_{n-1}) \lor \mathcal{S}t(\mathcal{U}_{n-1}) \prec \mathcal{S}t^{2}(\mathcal{U}_{n-1}) \prec \{B(x, d(X \setminus U_{n-1})/2) : x \in U_{n-1}\}.$$

Now the vanishing property of the family $\mathcal{C}(U_{n-1})$ implies that the map g_n : $X \to X$ defined by

$$g_n(x) = \begin{cases} x & \text{if } x \notin U_{n-1}, \\ g_C & \text{if } x \in C \in \mathcal{C}(U_{n-1}) \end{cases}$$

is a homeomorphism of X such that $(g_n, \mathrm{id}) \prec \mathcal{S}t^2(\mathcal{U}_{n-1})$ and $(g_n, \mathrm{id}) \prec \mathcal{C}(U_{n-1})$. Then $h_n = h_{n-1} \circ g_n$ is a homeomorphism of X satisfying the conditions (3) and (4) of the inductive construction.

To prove the condition (5) we shall consider separately the cases of n = 0 and n > 0. If n = 0, then $h_0 = g_0$ and hence $(h_0, h_{-1}) = (g_0, \mathrm{id}) \prec \mathcal{S}t^2(\mathcal{U}_{-1})$. It follows from $\mathrm{mesh}(\mathcal{U}_{-1}) \leq 1/8$ that $d(h_0^{-1}, h_{-1}^{-1}) = d(h_0, h_{-1}) \leq \mathrm{mesh}(\mathcal{S}t^2(\mathcal{U}_{-1})) \leq \frac{1}{2}$.

If n > 0, then $(h_n, h_{n-1}) = (h_{n-1} \circ g_n, h_{n-1} \circ \operatorname{id}) \prec h_{n-1}(\mathcal{C}(U_{n-1})) = \mathcal{C}(U'_{n-1}) \prec \mathcal{U}'_{n-2}$ implies $d(h_n, h_{n-1}) \leq \operatorname{mesh}(\mathcal{U}'_{n-2}) \leq 2^{-n-1}$. By analogy, $(h_n^{-1}, h_{n-1}^{-1}) = (g_n^{-1} \circ h_{n-1}^{-1}, h_{n-1}^{-1}) = (g_n^{-1} \circ h_{n-1}^{-1}, h_{n-1}^{-1}) = (g_n^{-1}, \operatorname{id}) = (g_n, \operatorname{id}) \prec \mathcal{C}(U_{n-1}) \prec \mathcal{U}_{n-2}$ implies $d(h_n^{-1}, h_{n-1}^{-1}) \leq \operatorname{mesh}(\mathcal{U}_{n-2}) \leq 2^{-n-1}$. So, the condition (5) holds.

Finally, using the paracompactness of the metrizable spaces U_n and U'_n choose two open covers \mathcal{U}_n and \mathcal{U}'_n of U_n and U'_n satisfying the condition (6).

After completing the inductive construction, we obtain a sequence of homeomorphisms $h_n : (X, U_n) \to (X, U'_n), n \in \omega$. The condition (5) guarantees that the limit map $h = \lim_{n\to\infty} h_n$ is a well-defined homeomorphism of X such that $d(h, \mathrm{id}) \leq 1$. Moreover, the conditions (1) and (3) imply

$$h(G) = h\big(\bigcap_{n \in \omega} U_n\big) = \bigcap_{n \in \omega} h(U_n) = \bigcap_{n \in \omega} U'_n = G'.$$

By the choice of the metric d, the inequality $d(h, \mathrm{id}) \leq 1$ implies $(h, \mathrm{id}) \prec \mathcal{U}$. So, $h: (X, G) \to (X, G')$ is a required homeomorphism of pairs with $(h, \mathrm{id}) \prec \mathcal{U}$. \Box

Now we are able to prove a characterization of σZ_0 -universal sets in manifolds.

Theorem 4 (Characterization of σZ_0 -Universal Sets in Manifolds). For a subset A of a manifold X the following conditions are equivalent:

- (1) A is σZ_0 -universal in X;
- (2) A is \mathcal{Z}_0 -absorptive in X;
- (3) the complement $X \setminus A$ is a dense tame G_{δ} -set in X.

PROOF: We shall prove the equivalences (3) \Leftrightarrow (2) \Leftrightarrow (1). Let d be a metric generating the topology of the manifold X.

To prove that $(3) \Rightarrow (2)$, assume that the complement $X \setminus A$ is a dense tame G_{δ} -set in X. To prove that A is \mathcal{Z}_0 -absorptive, fix any open set $V \subset X$, an open cover \mathcal{U} of V and a closed nowhere dense subset $K \subset X$. We lose no generality assuming that $\mathcal{U} \prec \{B(x, d(x, X \setminus V)/2) : x \in V\}$. Since $V \setminus (A \cup K)$ is a dense G_{δ} -set in V, we can apply Proposition 3 and find a dense tame G_{δ} -set $G \subset V \setminus (A \cup K)$. The characterization of tame G_{δ} -sets given in Proposition 2 implies that the intersection $V \cap (X \setminus A) = V \setminus A$ is a dense tame G_{δ} -set in V. By Theorem 3, there is a homeomorphism of pairs $h : (V, G) \to (V, V \setminus A)$ such that $(h, \mathrm{id}) \prec \mathcal{U}$. Since $\mathcal{U} \prec \{B(x, d(x, X \setminus V)/2) : x \in V\}$, the homeomorphism h of V extends to a homeomorphism $\overline{h} : X \to X$ such that $\overline{h}|X \setminus V = \mathrm{id}$. Observing that $\overline{h}(V \cap K) \subset \overline{h}(V \setminus G) = V \cap A$, we see that the set A is \mathcal{Z}_0 -absorptive.

To prove that $(2) \Rightarrow (3)$, assume that the set A is \mathcal{Z}_0 -absorptive. By Proposition 3, the dense G_{δ} -set $X \setminus A$ contains a dense tame G_{δ} -set G in X. Since $A \subset X \setminus G$, the set $X \setminus G \in \sigma \mathcal{Z}_0$ is \mathcal{Z}_0 -absorptive. By the Uniqueness Theorem 3, there is a homeomorphism of pairs $h: (X, A) \to (X, X \setminus G)$. Then $X \setminus A = h(G)$ is

a dense tame G_{δ} -set in X, which completes the proof of the implication $(2) \Rightarrow (3)$.

By Proposition 3, X contains a dense tame G_{δ} -set G and by the implication $(3) \Rightarrow (2)$ proved above the complement $X \setminus G$ is \mathcal{Z}_0 -absorptive. Now Corollary 1 yields the equivalence $(2) \Leftrightarrow (1)$.

Theorem 4 implies:

Corollary 2. Each dense G_{δ} -subset of a dense tame G_{δ} -set in a manifold is tame.

We finish this paper by some open problems. It is clear that each tame G_{δ} set in a manifold is zero-dimensional. However, not each zero-dimensional dense G_{δ} -subset of the Hilbert cube \mathbb{I}^{ω} is tame.

Proposition 4. For any dense G_{δ} -set $G \subset \mathbb{I}$ the countable product G^{ω} is not a tame G_{δ} -set in \mathbb{I}^{ω} .

PROOF: Assuming that G^{ω} is tame, we can find a dense tame open set $T \subset \mathbb{I}^{\omega}$ containing G^{ω} . By Theorem 1.4 of [3], the complement $S = \mathbb{I}^{\omega} \setminus T$ is homeomorphic to the Hilbert cube and the boundary $\bar{B} \setminus B$ of each tame open ball $B \in \mathcal{C}(T)$ in \mathbb{I}^{ω} is a Z_{ω} -set in S. Let $\operatorname{pr}_n : \mathbb{I}^{\omega} \to \mathbb{I}$, $n \in \omega$, denote the projection of the Hilbert cube \mathbb{I}^{ω} onto the *n*th coordinate. Since $\mathbb{I}^{\omega} \setminus T \subset \bigcup_{n \in \omega} \operatorname{pr}_n^{-1}(\mathbb{I} \setminus G)$, Baire Theorem yields a non-empty open subset $W \subset S$ such that $W \subset \operatorname{pr}_n^{-1}(\mathbb{I} \setminus G)$ for some $n \in \omega$. Since S is homeomorphic to the Hilbert cube, we can assume that the set W is connected and hence is contained in $\operatorname{pr}_n^{-1}(t)$ for some point $t \in \mathbb{I} \setminus G$. Since the union $\Delta = \bigcup_{B \in \mathcal{C}(U)} \bar{B} \setminus B$ is a σZ_{ω} -set in S, we can choose a point $x_0 \in W \setminus \Delta$. Choose an open neighborhood U of x_0 in \mathbb{I}^{ω} such that $U \cap S \subset W$ and $U \setminus \operatorname{pr}_n^{-1}(t)$ has at most two connected components.

Since the family $\mathcal{C}(T)$ is vanishing and $T = \bigcup \mathcal{C}(T)$ is dense in \mathbb{I}^{ω} , there are three pairwise distinct tame open balls $B_1, B_2, B_3 \in \mathcal{C}(T)$ such that $\overline{B}_1 \cup \overline{B}_2 \cup \overline{B}_2 \subset U$. Since the set $U \setminus \operatorname{pr}_n^{-1}(t)$ has at most two connected components, there are two distinct indices $1 \leq i, j \leq 3$ such that the balls B_i and B_j meet the same connected component V of $U \setminus \operatorname{pr}_n^{-1}(t)$. Since $\overline{B}_i \setminus B_i \subset U \cap S \subset \operatorname{pr}_n^{-1}(t)$, the set $V \cap B_i$ is closed-and-open in the connected set V and hence coincides with V. So, $V \subset B_i$. By the same reason, $V \subset B_j$, which is not possible as the balls B_i and B_j are disjoint.

Problem 1. Can the countable power G^{ω} of a dense G_{δ} -set $G \subset \mathbb{I}$ be covered by countably many dense tame G_{δ} -sets?

By Smirnov's result [9, 5.2.B], the Hilbert cube \mathbb{I}^{ω} can be covered by \aleph_1 zerodimensional G_{δ} -sets.

Problem 2. What is the smallest cardinality of a cover of the Hilbert cube \mathbb{I}^{ω} by tame G_{δ} -sets? Is it equal to \aleph_1 ? (By Theorem 1.6 of [2] this cardinality does not exceed add(\mathcal{M}), the additivity of the ideal \mathcal{M} of meager subsets on the real line.)

T. Banakh, D. Repovš

References

- [1] Anderson R.D., On sigma-compact subsets of infinite-dimensional manifolds, unpublished manuscript.
- [2] Banakh T., Morayne M., Rałowski R., Żeberski S., Topologically invariant σ-ideals on the Hilbert cube, preprint (http://arxiv.org/abs/1302.5658).
- Banakh T., Repovš D., Universal nowhere dense subsets of locally compact manifolds, preprint (http://arxiv.org/abs/1302.5651).
- [4] Bessaga C., Pelczyński A., Selected topics in infinite-dimensional topology, PWN, Warsaw, 1975.
- [5] Cannon J.W., A positional characterization of the (n-1)-dimensional Sierpinski curve in S^n $(n \neq 4)$, Fund. Math. **79** (1973), no. 2, 107–112.
- [6] Chapman T.A., Dense sigma-compact subsets of infinite-dimensional manifolds, Trans. Amer. Math. Soc. 154 (1971), 399–426.
- [7] Chapman T.A., Lectures on Hilbert Cube Manifolds, American Mathematical Society, Providence, R.I., 1976.
- [8] Chigogidze A., Inverse Spectra, North-Holland Publishing Co., Amsterdam, 1996.
- [9] Engelking R., General Topology, Heldermann Verlag, Berlin, 1989.
- [10] Engelking R., Theory of dimensions finite and infinite, Heldermann Verlag, Lemgo, 1995.
- [11] Geoghegan R., Summerhill R., Infinite-dimensional methods in finite-dimensional geometric topology, Bull. Amer. Math. Soc. 78 (1972), 1009–1014.
- [12] Geoghegan R., Summerhill R., Pseudo-boundaries and pseudo-interiors in Euclidean spaces and topological manifolds, Trans. Amer. Math. Soc. 194 (1974), 141–165.
- [13] Menger K., Allgemeine Raume und Cartesische Raume Zweite Mitteilung: "Uber umfassendste n-dimensional Mengen", Proc. Akad. Amsterdam 29 (1926), 1125–1128.
- [14] Sierpiński W., Sur une courbe cantorienne qui contient une image biunivoque et continue de toute courbe donnée, C.R. Acad. Sci., Paris, 162 (1916), 629–632.
- [15] Štanko M.A., The embedding of compact into Euclidean space, Math USSR Sbornik 12 (1970), 234–254.
- [16] West J., The ambient homeomorphy of an incomplete subspace of infinite-dimensional Hilbert spaces, Pacific J. Math. 34 (1970), 257–267.
- [17] Whyburn G., Topological characterization of the Sierpinski curve, Fund. Math. 45 (1958), 320–324.

JAN KOCHANOWSKI UNIVERSITY IN KIELCE (POLAND) AND IVAN FRANKO NATIONAL UNIVERSITY OF LVIV (UKRAINE)

E-mail: t.o.banakh@gmail.com

FACULTY OF MATHEMATICS AND PHYSICS, AND FACULTY OF EDUCATION, UNIVERSITY OF LJUBLJANA (SLOVENIA)

E-mail: dusan.repovs@guest.arnes.si

(Received February 26, 2013)