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1. Introduction

We begin by some definitions for a finite-dimensional Euclidean space (Rn,‖ · ‖) over R with an inner product (·,·).
Let Br(a) = {x ∈ Rn | ‖x − a‖ � r}. Let cl A denote the closure and int A the interior of the subset A ⊂ Rn . The diameter of
the subset A ⊂ Rn is defined as diam A = supx,y∈A ‖x − y‖. The distance from the point x ∈ Rn to the set A ⊂ Rn is given by
the formula �(x, A) = infa∈A ‖x − a‖. We shall denote the convex hull of a set A ⊂ Rn by co A, the convex hull of a function
f : Rn → R by co f (cf. [1,9,13]).

The Hausdorff distance between two subsets A, B ⊂ Rn is defined as follows

h(A, B) = max
{

sup
a∈A

inf
b∈B

‖a − b‖, sup
b∈B

inf
a∈A

‖a − b‖
}

= inf
{

r > 0
∣∣ A ⊂ B + Br(0), B ⊂ A + Br(0)

}
.

The supporting function of the subset A ⊂ Rn is defined as follows

s(p, A) = sup
x∈A

(p, x), ∀p ∈ Rn. (1.1)

The supporting function of any set A is always lower semicontinuous, positively uniform and convex. If the set A is bounded
then the supporting function is Lipschitz continuous [1,9].

It follows from the separation theorem that for any convex compacta A, B in Rn (cf. [9, Lemma 1.11.4])

h(A, B) = sup
‖p‖=1

∣∣s(p, A) − s(p, B)
∣∣. (1.2)
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A convex compactum in Rn is called strictly convex if its boundary contains no nontrivial line segments.

Definition 1.1. (See Polyak [11].) Let E be a Banach space and let a subset A ⊂ E be convex and closed. The modulus of
convexity δA : [0,diam A) → [0,+∞) is the function defined by

δA(ε) = sup

{
δ � 0

∣∣∣ Bδ

(
x1 + x2

2

)
⊂ A, ∀x1, x2 ∈ A: ‖x1 − x2‖ = ε

}
.

Definition 1.2. (See Polyak [11].) Let E be a Banach space and let a subset A ⊂ E be convex and closed. If the modulus of
convexity δA(ε) is strictly positive for all ε ∈ (0,diam A), then we call the set A uniformly convex (with modulus δA(·)).

We proved in [3] that every uniformly convex set is bounded and if the Banach space E contains a nonsingleton uni-
formly convex set then it admits a uniformly convex equivalent norm. We also proved that the function ε → δA(ε)/ε
is increasing (see also [6, Lemma 1.e.8]), and for any uniformly convex set A there exists a constant C > 0 such that
δA(ε) � Cε2.

The class of strictly convex compacta coincides with the class of uniformly convex compacta with moduli of convexity
δA(ε) > 0 for all permissible ε > 0 in the finite-dimensional case (cf. [3]).

Definition 1.3. (See [8,9].) A grid G with step � ∈ (0, 1
2 ) is a finite collection of unit vectors {pi} ⊂ Rn , i ∈ 1, I = {1, . . . , I},

such that for any vector p 	= 0, p ∈ Rn , with p
‖p‖ /∈ G there exist a set of indexes I p ⊂ 1, I and numbers αi > 0, i ∈ I p , with

the property

p =
∑
i∈I p

αi pi, pi ∈ G, (1.3)

‖pi − p j‖ < �, ∀i, j ∈ I p . (1.4)

It is well known [1,9,13] that for any convex closed subset A ⊂ Rn we have

A = {
x ∈ Rn

∣∣ (p, x) � s(p, A), ∀p ∈ ∂ B1(0)
}
.

We shall consider external polyhedral approximation of the compact A ⊂ Rn on the grid G from Definition 1.3

Â = {
x ∈ Rn

∣∣ (p, x) � s(p, A), ∀p ∈ G
}
.

From the inclusion G ⊂ ∂ B1(0) we easily see that A ⊂ Â. For an arbitrary convex compact set A ⊂ Rn we have h(A, Â) �
2h({0}, A)� (cf. [8,9]). If A = ⋂

x∈X B R(x) 	= ∅, then h(A, Â) � 2R�2 (cf. [8,9]). Further we shall consider the approximation
of an arbitrary strictly = uniformly convex compact set A ⊂ Rn . Our further goals are

(1) Estimate the error h(A, Â) via the geometric properties of the set A.
(2) Suppose that we know a presupporting function f (p) of the convex compact A, i.e. the function f is positively uniform,

continuous and co f (p) = s(p, A). Let

Ã = {
x ∈ Rn

∣∣ (p, x) � f (p), ∀p ∈ G
}
.

Estimate the error h(A, Ã) via the properties of the function f and geometric properties of the set A. In this case we
do not know the supporting function of the set A, but we can find information about some properties of the set A:
diameter, modulus of convexity, etc.

(3) We shall consider an algorithm for calculating the convex hull of a positively uniform function defined on the grid and
discuss estimates for the errors of such algorithms.

2. Approximation by supporting functions

Lemma 2.1. For a given grid G (Definition 1.3) with step � ∈ (0, 1
2 ) in the representation of any vector p 	= 0, p

‖p‖ /∈ G by formulae
(1.3), (1.4) the following estimates hold

‖p̂ − p j‖ < �, ∀ j ∈ I p, 1 � ‖p̂‖ � 1 − 1

2
�2,

where

p̂ = p

α
=

∑
i∈I p

α̂i pi, α =
∑
i∈I p

αi, α̂i = αi

α
. (2.5)
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Proof. From the definitions of p̂ and α̂i we obtain that

p̂ =
∑
i∈I p

α̂i pi,
∑
i∈I p

α̂i = 1.

Hence∑
i∈I p

α̂i(p̂ − pi) = 0.

By the triangle inequality we get

‖p̂ − p j‖ �
∑
i∈I p

α̂i‖pi − p j‖ < �, ∀ j ∈ I p,

‖p̂‖ �
∑
i∈I p

α̂i‖pi‖ = 1. (2.6)

The condition ‖pi − p j‖ < � is equivalent to the condition (pi, p j) = 1
2 (‖pi‖2 + ‖p j‖2 − ‖pi − p j‖2) � 1 − �2/2. Thus

1 � ‖p̂‖ � ‖p̂‖2 = ∑
i, j α̂iα̂ j(pi, p j) � (1 − 1

2 �2)
∑

i, j α̂iα̂ j = 1 − 1
2 �2. �

Definition 2.1. Let f : Rn → R be a positively uniform function. Let G be a grid with step � ∈ (0, 1
2 ). Define the grid

operators

C f (p) =
{

f (p),
p

‖p‖ ∈ G,

+∞,
p

‖p‖ /∈ G,
U f (p) =

{
f (p),

p
‖p‖ ∈ G,∑

i∈I p
αi f (pi),

p
‖p‖ /∈ G.

Indices I p and numbers αi are from Definition 1.3.

Lemma 2.2. (See [8, Lemma 5], [9, Lemma 2.6.2].) Let f : Rn → R be a positively uniform function.

(1) If the function f is convex then C f � f , co C f (p) = f (p), ∀p ∈ G.
(2) If the function f is convex then f � co U f .
(3) co C f = co U f , ∀ f .
(4) co f � co C f , ∀ f .

The next lemma is a modification of Lemma 2.2 from [3].

Lemma 2.3. Let A ⊂ Rn be compact and uniformly convex set with the modulus of convexity δ. Let ε ∈ (0,diam A), � ∈ (0, 1
2 ). Let

p1, p2 ∈ Rn, ‖p1‖ = 1, 1 − 1
2 �2 � ‖p2‖ � 1. Let xi = arg maxx∈A(pi, x), i = 1,2. If ‖p1 − p2‖ < (4 − �2)

δ(ε)
ε , then ‖x1 − x2‖ < ε.

Proof. Suppose that ‖x1 − x2‖ � ε. Let t = δ(‖x1 − x2‖) � δ(ε). By the condition

Bt

(
x1 + x2

2

)
⊂ A

we have that (p1, x1) � (p1,
x1+x2

2 ) + t ,

(p1, x1 − x2) � 2t, (2.7)

(p2, x2) �
(

p2,
x1 + x2

2

)
+ t‖p2‖ �

(
p2,

x1 + x2

2

)
+ t

(
1 − 1

2
�2

)
,

(p2, x2 − x1) �
(
2 − �2)t. (2.8)

By formulae (2.7), (2.8) we obtain that

(p1 − p2, x1 − x2) �
(
4 − �2)t,

and

‖p1 − p2‖ �
(
4 − �2)δ(‖x1 − x2‖)

‖x − x ‖ .

1 2
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By Lemma 2.1 of [3] we have the inequality δ(‖x1−x2‖)
‖x1−x2‖ � δ(ε)

ε and

‖p1 − p2‖ �
(
4 − �2)δ(ε)

ε
.

Contradiction. �
Corollary 2.1. Let under the conditions of Lemma 2.3 ε(�) be a solution of the equation δ(ε)

ε = �

4−�2 . If ‖p1 − p2‖ < � then
‖x1 − x2‖ < ε(�).

Proof. The proof follows from Lemma 2.3 and strict monotonicity of the function δ(ε)
ε [4, Lemma 1.2]. �

Theorem 2.1. Let p1, p2 ∈ Rn, ‖p1‖ = 1, 1 − 1
2 �2 � ‖p2‖ � 1, ‖p1 − p2‖ < �. Let A ⊂ Rn be compact and uniformly convex set

with modulus of convexity δ and � ∈ (0, 1
2 ), δ(diam A)/diam A > �

4−�2 . Let xi = arg maxx∈A(pi, x), i = 1,2. Then

s(p1, A) − s(p2, A) = (x2, p1 − p2) + ε1
(‖p1 − p2‖

)‖p1 − p2‖, (2.9)

s(p2, A) − s(p1, A) = (x1, p2 − p1) + ε2
(‖p1 − p2‖

)‖p1 − p2‖, (2.10)

and

max
{∣∣ε1

(‖p1 − p2‖
)∣∣‖p1 − p2‖,

∣∣ε1
(‖p1 − p2‖

)∣∣‖p1 − p2‖
}

� ε(�)�,

where ε(�) is a solution of the equation δ(ε)
ε = �

4−�2 .

Proof. Eqs. (2.9) and (2.10) are equivalent to the condition of continuous gradient for (convex) supporting function at
the points p2 and p1, respectively. It is a well-known fact that the supporting function of the strictly convex compact is
continuously differentiable [9,13].

By Corollary 2.1 we have the estimate∣∣(p1 − p2, x1 − x2)
∣∣ � ‖p1 − p2‖‖x1 − x2‖ � �ε(�).

From the equalities (pi, xi) = s(pi, A), i = 1,2, we conclude that

ε1
(‖p1 − p2‖

)‖p1 − p2‖ = (p1, x1 − x2), ε2
(‖p1 − p2‖

)‖p1 − p2‖ = (p2, x2 − x1).

By the formulae

(p1, x1 − x2) + (p2, x2 − x1) = (p1 − p2, x1 − x2), (2.11)

and (p1, x1 − x2) � 0, (p2, x2 − x1) � 0 we have

max
{∣∣(p1, x1 − x2)

∣∣, ∣∣(p2, x2 − x1)
∣∣} � (p1 − p2, x1 − x2) � ε(�)�. �

It is well known that the external polyhedral approximation Â of the convex compact set A ⊂ Rn with supporting
function s(p, A) on the grid G satisfies the formula s(p, Â) = co C s(p, A) [8,9].

Theorem 2.2. Let A ⊂ Rn be a convex compact set with the modulus of convexity δ(ε), ε ∈ [0,diam A]. Let G be a grid with the step
� ∈ (0, 1

2 ), δ(diam A)/diam A > �

4−�2 . Then

h(A, Â) � 8

7
ε(�)�,

where ε(�) is a solution of the equation δ(ε)
ε = �

4−�2 .

Proof. From the inclusion A ⊂ Â, formula s(p, Â) = co C s(p, A) = co U s(p, A) (see Lemma 2.2) and from Definition 2.1 it
follows that (in terms of Definition 1.3)

0 � s(p, Â) − s(p, A) � U s(p, A) − s(p, A) = α
∑
i∈I p

α̂i
(
s(pi, A) − s(p̂, A)

)
, ∀p ∈ Rn. (2.12)

Let x̂ = arg maxx∈A(p̂, x).

s(pi, A) − s(p̂, A) = (x̂, pi − p̂) + εi
(‖pi − p̂‖)‖pi − p̂‖,
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and by properties of vector p̂ (Lemma 2.1) and Theorem 2.1 we conclude that∣∣εi
(‖pi − p̂‖)‖pi − p̂‖∣∣ � ε(�)�, ∀i ∈ I p .

Finally, using the equality
∑

i∈I p
α̂i pi = p̂, we obtain that∑

i∈I p

α̂i
(
s(pi, A) − s(p̂, A)

) =
∑
i∈I p

α̂i
(
(x̂, pi − p̂) + εi

(‖pi − p̂‖)‖pi − p̂‖)
� max

i∈I p

∣∣εi
(‖pi − p̂‖)‖pi − p̂‖∣∣ � ε(�)�.

By formula (2.12) it follows

0 � s(p, Â) − s(p, A) � αε(�)� = ‖p‖
‖p̂‖ε(�)� � ε(�)�

1 − 1
2 �2

‖p‖ � 8

7
ε(�)�‖p‖.

By formula (1.2) we get

h(A, Â) � 8

7
ε(�)�. �

Corollary 2.2. For any convex compact set A the modulus of convexity δ satisfies the estimate δ(ε) � Cε2 . Thus the typical value of
ε(�) is ε(�) � �s , � → +0, where s ∈ (0,1].

Corollary 2.3. The estimate of Theorem 2.2 is exact.

Consider an example. Let R2 be the Euclidean plane with the standard basis O x1x2. Let A = {x2 � |x1|s} ∩ B1(0),
s � 2.

The modulus of convexity for the set A equals δ(ε) = εs/2s for small ε > 0 and it is realized on the segment
[(− ε

2 , εs

2s ), (
ε
2 , εs

2s )]. Let a and b be two points from ∂ A:

a =
(

−ε

2
,
εs

2s

)
, b =

(
ε

2
,
εs

2s

)
.

Let pa and pb be unit normals to the set A at the points a and b, respectively. It is easy to calculate that

pb = (s(ε/2)s−1,−1)√
s2(ε/2)2(s−1) + 1

, pa = (−s(ε/2)s−1,−1)√
s2(ε/2)2(s−1) + 1

, ‖pb − pa‖ = 2s(ε/2)s−1√
s2(ε/2)2(s−1) + 1

.

Let � = ‖pb − pa‖ and pa , pb be adjacent vectors of some grid G with the step �. Suppose that the grid G has symmetry
with respect to the line O x2.

Then ε � �
1

s−1 (for small �). The tangent line to the graph x2 = |x1|s at the point b is

ytan(x1) = s

(
ε

2

)s−1(
x1 − ε

2

)
+

(
ε

2

)s

.

We have ytan(0) = −(s − 1)( ε
2 )s . The point c = (0, ytan(0)) belongs to the set Â (because approximation Â has symmetry

with respect to the line O x2). Hence

h(A, Â) � �(c, A) = ∣∣ytan(0)
∣∣ = (s − 1)

(
ε

2

)s

.

So we have h(A, Â) � C · � s
s−1 . The same order s

s−1 is given by Theorem 2.2.

3. Approximation by presupporting functions

Suppose that we know a presupporting function f of a convex set A ⊂ Rn . We want to estimate the difference
co C f (p) − co f (p) for all p ∈ Rn . The last question is equivalent to the question of evaluation of the value h(A, Ã) where
A = {x | (p, x) � co f (p), ∀p ∈ Rn}, Ã = {x | (p, x) � co C f (p), ∀p ∈ Rn}.

The geometric difference of sets B, A ⊂ Rn is the set

B ∗ A = {x | x + A ⊂ B} =
⋂

(B − a).
a∈A
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We shall obtain the solution for two particular cases of presupporting function. The first case is f (p) = s(p, B) − s(p, A),
where A and B are convex compacta. In the case B ∗ A 	= ∅ the convex hull co f (p) equals the supporting function
s(p, B ∗ A) of the geometric difference B ∗ A [9, formula (1.11.18)].

The second case is f (p) = min{s(p, A), s(p, B)}, where A and B are convex compacta. In the case A ∩ B 	= ∅ the convex
hull co f (p) equals the supporting function s(p, A ∩ B) of the intersection A ∩ B [9, formula (1.11.17)].

The considered cases have important role for computational geometry [5] and for linear differential games [10,12].

Theorem 3.1. Let A, B ⊂ Rn be convex compacta and suppose that B is uniformly convex with modulus δB . Let f (p) =
s(p, B) − s(p, A). Let Br0(a) ⊂ B ∗ A ⊂ Bd(a). Let G be a grid with step � ∈ (0, 1

2 ); δB(diam B)/diam B > �

4−�2 . Then

co f (p) � co C f (p) � co f (p) + 8d

7r0
εB(�)�‖p‖, ∀p ∈ Rn, (3.13)

where ε = εB(�) is a solution of δB (ε)
ε = �

4−�2 .

Proof. The left inequality in (3.13) is obvious. By [9, formula (1.11.18)] we have

co f (p) = co
(
s(p, B) − s(p, A)

) = s(p, B ∗ A).

Let C = B ∗ A. By the formula

C f (p) + C s(p, A) = C s(p, B)

we obtain that

co
(

C f (p) + C s(p, A)
) = co C s(p, B) = s(p, B̂),

where B̂ = {x | (p, x) � C s(p, B), ∀p ∈ Rn}. Using inequality co( f + g) � co f + co g (which is true for any functions f , g)
we have

co C f (p) + co C s(p, A) � s(p, B̂),

or

co C f (p) � s(p, B̂) − co C s(p, A) = s(p, B̂) − s(p, Â) � s(p, B̂) − s(p, A).

By the last inequality

co C f (p) � co
(
s(p, B̂) − s(p, A)

) = s(p, B̂ ∗ A).

Let ‖p‖ = 1. Using (1.2) we have

co C f (p) − co f (p) � s(p, B̂ ∗ A) − s(p, B ∗ A) � h(B̂ ∗ A, B ∗ A).

Let h = h(B, B̂). Using conditions of the theorem we conclude that

B ∗ A ⊂ B̂ ∗ A ⊂ (
B + Bh(0)

) ∗ A ⊂
(

B + h

r0
(C − a)

)
∗ A

=
(

B + h

r0
(B ∗ A)

)
∗ A − h

r0
a ⊂

(
B + h

r0
B ∗ h

r0
A

)
∗ A − h

r0
a

= (B ∗ A) + h

r0

(
(B ∗ A) − a

) ⊂ (B ∗ A) + h

r0
Bd(0).

Hence

h(B ∗ A, B̂ ∗ A) � d

r0
h(B, B̂).

Applying Theorem 2.2 we finish the proof. �
Theorem 3.2. Let A, B ⊂ Rn be uniformly convex compacta with moduli δA , δB . Let f (p) = min{s(p, A), s(p, B)}. Let Br0(a) ⊂ A ∩ B,

max{diam Â,diam B̂} � d. Let G be a grid with step � ∈ (0, 1
2 ); δA(diam A)/diam A > �

4−�2 , δB(diam B)/diam B > �

4−�2 . Then

co f (p) � co C f (p) � co f (p) + 8

7

(
max

{
εA(�), εB(�)

} + d

r0

(
εA(�) + εB(�)

))
�‖p‖, ∀p ∈ Rn, (3.14)

where ε = εX (�) is a solution of δX (ε) = �
2 , X = A or X = B.
ε 4−�
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Proof. Let C = A ∩ B and Ĉ be external polyhedral approximation of the set C on the grid G. By the inclusions C ⊂ A, C ⊂ B
we have Ĉ ⊂ Â, Ĉ ⊂ B̂ and thus Ĉ ⊂ Â ∩ B̂ .

C f (p) = min
{

C s(p, A), C s(p, B)
}
, co C f (p) = co min

{
C s(p, A), C s(p, B)

}
.

By the inequality co min{ f , g} � min{co f , co g} (which is valid for any functions f , g) we have

co C f (p) � min
{

co C s(p, A), co C s(p, B)
} = min

{
s(p, Â), s(p, B̂)

}
.

Hence

co C f (p) � co
(
min

{
s(p, Â), s(p, B̂)

}) = s(p, Â ∩ B̂).

Let ‖p‖ = 1. Using (1.2) we have

co C f (p) − co f (p) � s(p, Â ∩ B̂) − s(p, A ∩ B) � h(A ∩ B, Â ∩ B̂).

Applying Theorem 3.1 [2] we obtain that

h(A ∩ B, Â ∩ B̂) � max
{

h(A, Â),h(B, B̂)
} + d

r0

(
h(A, Â) + h(B, B̂)

)
.

Using of Theorem 2.2 ends the proof. �
4. On finding the convex hulls

Theorem 4.1. Let A ⊂ Rn be a uniformly convex compact set with modulus of convexity δ. Let

r0 = sup
{

r � 0
∣∣ ∃a ∈ Rn: Br(a) ⊂ A

}
.

Let a point a ∈ Rn be such that Br0(a) ⊂ A and d = supx∈A ‖x − a‖. Then

d � max

{
2r0, r0 + δ−1

(
r0

2

)}
,

where δ−1 is the inverse function for modulus δ.

Proof. Suppose that d > 2r0. We shall prove that d � r0 + δ−1(
r0
2 ).

Let b ∈ A and ‖a − b‖ = d. Let L be any 2-dimensional affine plane which contains points a, b. Let L = (a − b)⊥ , dim L =
n − 1.

Our further consideration will take place on the plane L. Let the line l be orthogonal to the line aff{a,b} and a ∈ l. Let
{x, y} = l ∩ ∂ Br0 (a). From the triangle xab we have ‖x − b‖ � d − r0, from the triangle yab we have ‖y − b‖ � d − r0.

Let z = a+b
2 and let the line l1 be parallel to the line l and z ∈ l1. Let x1 = l1 ∩ aff{x,b}, y1 = l1 ∩ aff{y,b}. By the uniform

convexity of the set A we obtain that[
z, z + x1 − z

‖x1 − z‖
(

r0

2
+ δ

(‖x − b‖))]
∪

[
z, z + y1 − z

‖y1 − z‖
(

r0

2
+ δ

(‖y − b‖))]
⊂ A,

hence [
z, z + y1 − z

‖y1 − z‖
(

r0

2
+ δ(d − r0)

)]
∪

[
z, z + x1 − z

‖x1 − z‖
(

r0

2
+ δ(d − r0)

)]
⊂ A.

If R = r0
2 + δ(d − r0) > r0 then (due to the previous inclusion being valid for any 2-dimensional plane L with {a,b} ⊂ L) we

have

B R(z) ∩ (L + z) ⊂ A

and thus

co
(

Br0(a) ∪ (
B R(z) ∩ (L + z)

)) ⊂ A.

By the last inclusion and by the inequality ‖a − z‖ > r0 we obtain that a shift of the ball Br0(a) on a small distance in the
direction b − a occurs in the interior of the set A. Hence r0 is not the maximal radius of balls from A. This contradiction
shows that r0

2 + δ(d − r0) � r0. �
Now we describe an algorithm for finding the convex hull of a positively uniform function [9,10].
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Suppose that G is a grid with step � ∈ (0, 1
2 ), f (p) is a positively uniform continuous function and Ã = {x | (p, x) �

C f (p), ∀p}. We wish to calculate co C f (p) for all p ∈ G. In other words, we wish to find C co C s(p, Ã). The problem can be
solved as a collection of problems of linear programming: for all q ∈ G to find

(q, x) → max(p, x) � C f (p), ∀p ∈ G.

We shall describe an approximate algorithm from [7], [9, Theorem 2.6.3], [10] and discuss its error for the case of
uniformly convex set A = {x | (p, x) � co f (p), ∀p ∈ Rn} with modulus of convexity δ.

Suppose that Br0(a) ⊂ A is the ball of maximum radius in the set A and d = supx∈A ‖x − a‖.
We often do not know the precise values of a, r0, but we can easily calculate the ball of maximum radius B R(b), r0 � R ,

from Ã: it suffices to solve the following problem of linear programming

R → max(p,b) + R � f (p), ∀p ∈ G.

The solution (b, R) ∈ Rn × R gives the center of the ball and its radius. In this case B R(b) ⊂ Ã and Ã ⊂ b + (d + 4d2

r0
�)B1(0),

see [9, Corollary 2.6.2]. Thus

(p,b) + R‖p‖ � f (p) � (p,b) +
(

d + 4d2

r0
�

)
‖p‖, ∀p ∈ Rn. (4.15)

We shall further assume that b = 0.
The first step of the approximate algorithm is to calculate for all q ∈ G the values

s◦(q) = max

{
(p,q)

f (p)

∣∣∣ p ∈ G

}
.

The second step is to define z(q) = q/s◦(q), ∀q ∈ G. Then the polyhedron

A1 = co
⋃
q∈G

z(q)

is an approximation of A. The approximate value for co C f (p), p ∈ G, is

max
{(

p, z(q)
) ∣∣ q ∈ G

}
.

By [9, Theorem 2.6.3] we have under the assumption (4.15) that A1 ⊂ A,

h(A, A1) �
2(d + 4d2

r0
�)2

R
�, (4.16)

and

0 � co C f (p) − max
{(

p, z(q)
) ∣∣ q ∈ G

}
�

2(d + 4d2

r0
�)2

R
�, ∀p ∈ G.

So the error of the algorithm is proportional to the step � and to the value 1
r0

in the general case.

Consider the case when the set A has modulus of convexity of the second order: δ(ε) = Cε2 + o(ε2), ε → +0. Then
under assumption � ∈ (0,

√
r0) we obtain by Theorem 4.1 that

2(d + 4d2

r0
�)2

R
�

2(d + 4d2

r0
�)2

r0
� Const.,

and the error of the algorithm does not depend on the radius R of an interior ball.

5. Epilogue

1. By Theorem 4.1 we can estimate the value d
r0

in the theorems from Section 3. For example, in Theorem 3.1 in the case
when Br0(a) is the ball of maximum radius from B ∗ A and d = supx∈B ∗ A ‖x − a‖, we have (for small r0 > 0)

d

r0
�

r0 + δ−1
B (

r0
2 )

r0
.

If the modulus δB has the second order at zero then d � 1√ , r0 → +0.
r0 r0
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2. We want to point out that if the sets A, B are uniformly convex with moduli δA , δB respectively and Â, B̂ are
polyhedral approximations of A and B on a grid G with the step �, then

h( Â + B̂, Â + B) � 8

7
εA+B(�)�

and in general in spaces of 3 or more dimensions Â + B̂ ⊂ Â + B , but Â + B̂ 	= Â + B . So the sum of approximations does
not equal the approximation of sum.

3. The results can easily be reformulated in any finite-dimensional Banach space. The only obstacle for the proofs is in
Lemma 2.1 when we estimate ‖p̂‖ � 1 − 1

2 �2. One must demand from the space and the grid that

C = inf‖p‖=1

∥∥∥∥∑
i∈I p

α̂i pi

∥∥∥∥ ∈ (0,1).

Then one must replace denominator 4 − �2 by the new 2 + 2C and coefficient 8
7 by the new 1

C in all theorems.
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