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CLASSIFYING HOMOGENEOUS CELLULAR ORDINAL BALLEANS
UP TO COARSE EQUIVALENCE

BY

T. BANAKH (Lviv and Kielce), I. PROTASOV (Kyiv), D. REPOVŠ (Ljubljana)
and S. SLOBODIANIUK (Kyiv)

Abstract. For every ballean X, we introduce two cardinal characteristics cov[(X)
and cov](X) describing the capacity of balls in X. We observe that these characteristics are
invariant under coarse equivalence and prove that two cellular ordinal balleans X,Y are
coarsely equivalent if cof(X) = cof(Y ) and cov[(X) = cov](X) = cov[(Y ) = cov](Y ). This
implies that a cellular ordinal ballean X is homogeneous if and only if cov[(X) = cov](X).
Moreover, two homogeneous cellular ordinal balleans X,Y are coarsely equivalent if and
only if cof(X) = cof(Y ) and cov](X) = cov](Y ) if and only if each of these balleans
coarsely embeds into the other. This means that the coarse structure of a homogeneous
cellular ordinal ballean X is fully determined by the values of cof(X) and cov](X). For
every limit ordinal γ, we define a ballean 2<γ (called the Cantor macro-cube) that, in the
class of cellular ordinal balleans of cofinality cf(γ), plays a role analogous to the role of
the Cantor cube 2κ in the class of zero-dimensional compact Hausdorff spaces. We also
characterize balleans which are coarsely equivalent to 2<γ . This can be considered as an
asymptotic analogue of Brouwer’s characterization of the Cantor cube 2ω.

Introduction. In this paper we study the structure of ordinal balleans,
i.e., balleans that have well-ordered base of their coarse structure. Such
balleans were introduced by Protasov [10]. Some basic facts about ordinal
balleans are discussed in Section 1. The main result of the paper, presented
in Section 2, is a criterion for recognizing coarsely equivalent cellular ordinal
balleans. In Section 3, we shall use this criterion to classify homogeneous
cellular ordinal balleans up to coarse equivalence. In Section 4, we apply
this criterion to characterize balleans 2<γ (called Cantor macro-cubes) that
are universal objects in the class of cellular ordinal balleans. In Section 4,
we also identify the natural coarse structure on additively indecomposable
ordinals.
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1. Ordinal balleans. The notion of a ballean was introduced by Pro-
tasov [11] as a large scale counterpart of a uniform space, and it is a modifi-
cation of the notion of a coarse space introduced by Roe [15]. Both notions
are defined as sets endowed with certain families of entourages.

By an entourage on a set X we understand any reflexive symmetric
relation ε ⊂ X×X. This means that ε contains the diagonal ∆X = {(x, y) ∈
X × X : x = y} of X × X, and it is symmetric in the sense that ε = ε−1

where ε−1 := {(y, x) ∈ X ×X : (x, y) ∈ ε}. An entourage ε ⊂ X ×X will
be called cellular if it is transitive, i.e., it is an equivalence relation on X.

Each entourage ε ⊂ X ×X determines a cover {B(x, ε) : x ∈ X} of X
by ε-balls B(x, ε) := {y ∈ X : (x, y) ∈ ε}. It follows that ε =

⋃
x∈X{x} ×

B(x, ε) =
⋃
x∈X B(x, ε) × {x}. For a subset A ⊂ X we let B(A, ε) :=⋃

a∈AB(a, ε) denote the ε-neighborhood of A.
A ballean is a pair (X, EX) consisting of a set X and a family EX of

entourages on X (called the set of radii) such that
⋃
EX = X ×X and for

any entourages ε, δ ∈ EX their composition

ε ◦ δ = {(x, z) ∈ X ×X : ∃y ∈ X (x, y) ∈ ε, (y, z) ∈ δ}
is contained in some entourage η ∈ EX . A ballean (X, EX) is called a coarse
space if the family EX is closed under taking subentourages, i.e., for any
ε ∈ EX any entourage δ ⊂ ε belongs to EX . In this case, the set of radii EX
is called a coarse structure on X. A subfamily B ⊂ EX is called a base of a
coarse structure EX if each entourage ε ∈ EX is contained in some entourage
δ ∈ B. It follows that the set of radii EX of a ballean (X, EX) is a base
of a unique coarse structure ↓EX (consisting of all possible subentourages
δ ⊂ ε ∈ EX). So, balleans can be considered as coarse spaces with a fixed
base of their coarse structure. Coarse spaces and coarse structures were
introduced by Roe [15].

Each subset A ⊂ X of a ballean (X, EX) carries the induced ballean
structure EA = {ε ∩ (A×A) : ε ∈ EX}. The ballean (A, EA) will be called a
subballean of (X, EX).

By definition, the cofinality cof(X) of a ballean X = (X, EX) is equal to
the smallest cardinality of a base of the coarse structure ↓EX . We identify
cardinals with the smallest ordinals of the given cardinality.

Now we consider some examples of balleans.

Example 1.1. Every metric space (X, d) carries a canonical ballean
structure EX = {∆ε}ε∈R+ consisting of the entourages

∆ε = {(x, y) ∈ X ×X : d(x, y) ≤ ε}
parametrized by R+ = [0,∞). The ballean structure EX = {∆ε}ε∈R+ gen-
erates the coarse structure ↓EX consisting of all subentourages of the en-
tourages ∆ε, ε ∈ R+.
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A ballean X is called metrizable if its coarse structure is generated by a
suitable metric. Metrizable balleans belong to the class of ordinal balleans.
A ballean X = (X, EX) is defined to be ordinal if its coarse structure ↓EX
has a well-ordered base B ⊂ EX . The latter means that B can be enumerated
as {εα}α<κ for some ordinal κ such that εα ⊂ εβ for α < β < κ. Passing
to a cofinal subset of κ, we can always assume that κ is a regular cardinal,
equal to the cofinality cof(X) of X = (X, EX) (i.e., the smallest cardinality
of a base of the coarse structure ↓EX).

Ordinal balleans can be characterized as balleans X = (X, EX) whose
cofinality equals the additivity number

add(X) = min
{
|A| : A ⊂ ↓EX ,

⋃
A /∈ ↓EX \ {X ×X}

}
.

Proposition 1.2. A ballean X is ordinal if and only if cof(X)=add(X).

Proof. Assuming that a ballean X = (X, EX) is ordinal, fix a well-
ordered base {εα}α<κ of the coarse structure ↓EX . Passing to a cofinal sub-
sequence, we can assume that κ = cf(κ) is a regular cardinal. If κ = 1, then
the ballean (X, EX) is bounded, and hence for the entourage X ×X ∈ ↓EX
the family A = {X × X} has cardinality |A| = 1 and

⋃
A = X × X /∈

EX \ {X × X}. Therefore, add(X) = 1 = cof(X). So, we assume that κ
is infinite, and hence εα 6= X × X for all α < κ. Since add(X) ≤ cof(X),
it suffices to check that cof(X) ≤ add(X). The definition of cof(X) im-
plies that cof(X) ≤ κ. The inequality add(X) ≥ κ ≥ cof(X) will follow
as soon as we check that for any family A ⊂ EX with |A| < κ we have⋃
A ∈ ↓EX \ {X ×X}. For every A ∈ A find an ordinal αA < κ such that

A ⊂ εαA . By the regularity of κ, the cardinal β = sup{αA : A ∈ A} is
strictly smaller than κ. Consequently, A ⊂ εαA ⊂ εβ for every A ∈ A, and
hence

⋃
A ⊂ εβ and

⋃
A ∈ ↓EX \ {X × X}. This completes the proof of

add(X) = cof(X) for ordinal balleans.

Now we shall prove that a ballean X = (X, EX) is ordinal if add(X) =
cof(X). Fix any base {εα}α<cof(X) ⊂ ↓EX of the coarse structure ↓EX . By
definition of add(X), for every α < cof(X) = add(X), the union ε̃α =⋃
β≤α εβ belongs to the coarse structure ↓EX . Then {ε̃α}α<cof(X) is a well-

ordered base of ↓EX , which means that X is ordinal.

An important property of ordinal balleans of uncountable cofinality is
their cellularity. A ballean (X, EX) is called cellular if its coarse structure ↓EX
has a base consisting of cellular entourages (i.e., equivalence relations). It
can be shown that a ballean (X, EX) is cellular if and only if for every ε ∈ EX
the cellular entourage ε<ω =

⋃
n∈ω ε

n belongs to the coarse structure ↓EX .
Here ε0 = ∆X and εn+1 = εn ◦ ε for all n ∈ ω. This characterization implies
the following simple fact.
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Proposition 1.3. Every ordinal ballean X = (X, EX) with cof(X) un-
countable is cellular.

Remark 1.4. By [14, Theorem 3.1.3], a ballean X is cellular if and only
if it has asymptotic dimension zero. A metrizable ballean X is cellular if
and only if its coarse structure is generated by an ultrametric (i.e., a metric
d satisfying d(x, z) ≤ max{d(x, y), d(y, z)} for all x, y, z ∈ X). More infor-
mation on cellular balleans can be found in [14, Chapter 3]. For information
on spaces of asymptotic dimension zero, see [4].

Example 1.5. Let X be a set and γ be an ordinal identified with the
set [0, γ) of smaller ordinals. A function d : X × X → [0, γ) is called a
γ-ultrametric if

d(x, x) = 0, d(x, y) = d(y, x) and d(x, z) ≤ max{d(x, y), d(y, z)}
for all x, y, z ∈ X. The γ-ultrametric d induces the cellular ballean structure
Ed = {∆α}α<γ consisting of the entourages ∆α = {(x, y) ∈ X ×X : d(x, y)
≤ α} for α < γ.

Example 1.6. Let λ, γ be ordinals and f : [0, λ)→ [0, γ) be a function
such that sup f([0, α]) < γ for all ordinals α < λ. The map f determines
a γ-ultrametric df on [0, λ) defined by df (x, y) = df (y, x) = sup f

(
(x, y])

for all ordinals x < y < γ. The γ-ultrametric space ([0, λ), df ) is called the
γ-comb determined by f (see [12]).

Example 1.7. Every infinite cardinal κ carries a natural ballean struc-
ture Eκ = {εα}α<κ consisting of the entourages

εα = {(x, y) ∈ κ× κ : x ≤ y + α, y ≤ x+ α}
parametrized by ordinals α < κ. The resulting ordinal ballean (κ, Eκ) will

be denoted by
↔
κ . The cardinal balleans

↔
κ were introduced in [8]. By [8,

Theorem 3], the ballean
↔
κ is cellular for any uncountable cardinal κ.

Example 1.8. Given an ordinal γ and a transfinite sequence (κα)α<γ of
non-zero cardinals, consider the ballean∐

α∈γ
κα =

{
(xα)α∈γ ∈

∏
α∈γ

κα : |{α ∈ γ : xα 6= 0}| < ω
}

endowed with the ballean structure {εβ}β<γ consisting of the entourages

εβ =
{

((xα)α∈γ , (yα)α∈γ) ∈
(∐
α<γ

κα

)2
: ∀α > β (xα = yα)

}
for β < γ.

The ballean
∐
α∈γ κα is called the asymptotic product of the cardinals κα,

α ∈ γ. It is a cellular ordinal ballean whose cofinality equals cf(γ), the
cofinality of the ordinal γ.
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If all cardinals κα, α ∈ γ, are equal to a fixed cardinal κ, then
∐
α∈γ κα

will be denoted by κ<γ . For a limit ordinal γ the ballean 2<γ is called a Can-
tor macro-cube. The Cantor macro-cube 2<ω was characterized in [3]. This
characterization will be extended to all Cantor macro-cubes in Theorem 4.3.

Balleans are objects of the (coarse) category whose morphisms are coarse
maps. A map f : X → Y between two balleans (X, EX) and (Y, EY ) is called
coarse if for each ε ∈ EX there is δ ∈ EY such that {(f(x), f(y)) : (x, y) ∈ ε}
⊂ δ. A map f : X → Y is called a coarse isomorphism if f is bijective and
both f and f−1 are coarse. In this case the balleans (X, EX) and (Y, EY ) are
called coarsely isomorphic. It follows that each ballean (X, EX) is coarsely
isomorphic to the coarse space (X, ↓EX).

Coarse isomorphisms play the role of isomorphisms in the coarse cate-
gory (whose objects are balleans and whose morphisms are coarse maps).
Probably a more important notion is that of coarse equivalence of balleans.
Two balleans (X, EX) and (Y, EY ) are coarsely equivalent if they contain
coarsely isomorphic large subspaces LX ⊂ X and LY ⊂ Y . A subset L of a
ballean (X, EX) is called large if X = B(L, ε) for some entourage ε ∈ EX .

Coarse equivalences can be alternatively defined using multi-valued maps.
By a multi-valued map (briefly, a multi-map) Φ : X ( Y between two sets
X,Y we understand any subset Φ ⊂ X ×Y . For a subset A ⊂ X, the image
of A under Φ is Φ(A) := {y ∈ Y : ∃a ∈ A (a, y) ∈ Φ}. Given x ∈ X we write
Φ(x) instead of Φ({x}).

The inverse Φ−1 : Y ( X of the multi-map Φ : X ( Y is the multi-map

Φ−1 := {(y, x) ∈ Y ×X : (x, y) ∈ Φ} ⊂ Y ×X
assigning to each y ∈ Y the set Φ−1(y) = {x ∈ X : y ∈ Φ(x)}. For two multi-
maps Φ : X ( Y and Ψ : Y ( Z we define their composition Ψ ◦Φ : X ( Z
as usual:

Ψ ◦ Φ = {(x, z) ∈ X × Z : ∃y ∈ Y [(x, y) ∈ Φ and (y, z) ∈ Ψ ]}.
A multi-map Φ : X ( Y between two balleans (X, EX) and (Y, EY )

is called coarse if for every ε ∈ EX there is a δ ∈ EY containing the set
ωΦ(ε) :=

⋃
(x,y)∈ε Φ(x) × Φ(y) called the ε-oscillation of Φ. More precisely,

for a function ϕ : EX → EY , a multi-map Φ : X ( Y is defined to be ϕ-coarse
if ωΦ(ε) ⊂ ϕ(ε) for every ε ∈ EX . So, Φ : X ( Y is coarse if and only if
it is ϕ-coarse for some ϕ : EX → EY . It follows that a (single-valued) map
f : X → Y is coarse if and only if it is coarse as a multi-map.

A multi-map Φ : X ( Y between two balleans is called a coarse embed-
ding if Φ−1(Y ) = X and both Φ and Φ−1 are coarse. If in addition Φ(X) = Y ,
then Φ : X ( Y is called a coarse equivalence. By analogy with [3, proof
of Proposition 2.1], it can be shown that two balleans X,Y are coarsely
equivalent if and only if there is a coarse equivalence Φ : X ( Y .
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The study of balleans (or coarse spaces) up to coarse equivalence is one
of the principal tasks of Coarse Geometry [5], [6], [14], [15].

Example 1.9. By [12], each ordinal cellular ballean (X, EX) is coarsely
isomorphic to some γ-comb ([0, λ), df ).

Example 1.10. Let G be a group. An ideal I in the Boolean algebra of
all subsets of G is called a group ideal if G =

⋃
I and if for any A,B ∈ I

we get AB−1 ∈ I.
Let I be a group ideal I on a group G and X be a transitive G-space

endowed with an action G × X → X of the group G. The G-space X
carries the ballean structure EX,G,I = {εA}A∈I consisting of the entourages
εA = {(x, y) ∈ X : x ∈ (A ∪ {1G} ∪ A−1) · y} parametrized by sets A ∈ I.
Here by 1G we denote the unit of the group G.

By [7, Theorems 1 and 3], every (cellular) ballean (X, EX) is coarsely
isomorphic to the ballean (X, EX,G,I) for a suitable group G of permutations
of X and a suitable group ideal I of G (having a base consisting of subgroups
of G).

Example 1.11. Let G be a group endowed with the ballean EG consist-
ing of the entourages εF = {(x, y) ∈ G × G : xy−1 ∈ F} parametrized by
finite subsets F = F−1 ⊂ G containing 1G. By [11, 9.8] the ballean (G, EG)
is cellular if and only if the group G is locally finite (in the sense that each
finite subset of G is contained in a finite subgroup of G). By [3], any two
infinite countable locally finite groups G,H are coarsely equivalent. On the
other hand, by [9], two countable locally finite groups G,H are coarsely iso-
morphic if and only if φG = φH . Here φG : Π → ω ∪ {ω} is the factorizing
function of G. It is defined on the set Π of prime numbers and assigns to
each p ∈ Π the (finite or infinite) number

φG(p) = sup{k ∈ ω : G contains a subgroup of cardinality pk}.

2. A criterion for coarse equivalence of cellular ordinal balleans.
In this section we introduce two cardinal characteristics called covering num-
bers of a ballean, and using them we give a criterion for coarse equivalence
of two cellular ordinal balleans.

Given A ⊂ X and an entourage ε ⊂ X ×X consider the cardinal

covε(A) := min{|C| : C ⊂ X, A ⊂ B(C, ε)},
equal to the smallest number of ε-balls covering A.

For every ballean (X, EX) consider the following cardinals:

• cov](X, EX), the smallest cardinal κ for which there is an ε ∈ EX such
that supx∈X covε(B(x, δ)) < κ for every δ ∈ EX ;
• cov[(X, EX), the largest cardinal κ such that for any cardinal λ < κ and
ε ∈ EX there is δ ∈ EX such that minx∈X covε(B(x, δ)) ≥ λ.
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It follows that

cov](X) = min
ε∈EX

sup
δ∈EX

(
sup
x∈X

covε(B(x, δ))
)+
,

cov[(X) = min
ε∈EX

sup
δ∈EX

(
min
x∈X

covε(B(x, δ))
)+
,

where κ+ denotes the smallest cardinal which is larger than κ.

The following proposition can be proved by analogy with [1, proof of
Lemmas 3.1 and 3.2].

Proposition 2.1. If a ballean X coarsely embeds into a ballean Y , then
cov](X) ≤ cov](Y ). If balleans X,Y are coarsely equivalent, then cov[(X) =
cov[(Y ) and cov](X) = cov](Y ).

Observe that cov](X) ≤ ω means that the ballean X has bounded ge-
ometry, while cov[(X) ≥ ω means that X has no isolated balls (see [2]).
By [3], any two metrizable cellular balleans of bounded geometry and with-
out isolated balls are coarsely equivalent. In [1] this result was extended to
the following criterion: two metrizable cellular balleans X,Y are coarsely
equivalent if cov[(X) = cov](X) = cov](Y ) = cov[(Y ). In this paper we fur-
ther extend this criterion to cellular ordinal balleans and prove the following
main result.

Theorem 2.2. Let X,Y be cellular ordinal balleans with cof(X)=cof(Y ).

(1) If cov](X) ≤ cov[(Y ), then X is coarsely equivalent to a subballean of Y .
(2) If cov[(X) = cov](X) = cov](Y ) = cov[(Y ), then X and Y are coarsely

equivalent.

The proof will be presented in Section 6. First we shall discuss some
applications of this theorem.

3. Classifying homogeneous cellular ordinal balleans. In this sec-
tion we shall apply Theorem 2.2 to show that for a cellular ordinal ballean
X the equality cov[(X) = cov](X) is equivalent to the homogeneity of X,
defined as follows.

A ballean (X, EX) is called homogeneous if there is a function ϕ : EX → EX
such that for any x, y ∈ X there is a coarse equivalence Φ : X ( X such
that y ∈ Φ(x) and both Φ and Φ−1 are ϕ-coarse. Recall that Φ : X ( X is
ϕ-coarse if ωΦ(ε) :=

⋃
(x,y)∈ε Φ(x)× Φ(x) ⊂ ϕ(ε) for every ε ∈ EX .

The following proposition shows that homogeneity is preserved by coarse
equivalence.

Proposition 3.1. A ballean X is homogeneous if and only if it is coar-
sely equivalent to a homogeneous ballean Y .
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Proof. The “only if” part is trivial. To prove the “if” part, assume that a
ballean (X, EX) admits a coarse equivalence Φ : X ( Y with a homogeneous
ballean (Y, EY ). By the homogeneity of (Y, EY ), there is a function ϕY : EY →
EY such that for any y, y′ ∈ Y there is a coarse equivalence Ψ : Y ( Y such
that y′ ∈ Ψ(y) and both Ψ and Ψ−1 are ϕY -coarse. Since Φ is a coarse
equivalence, there are functions ϕX,Y : EX → EY and ϕY,X : EY → EX such
that ωΦ(ε) ⊂ ϕX,Y (ε) and ωΦ−1(δ) ⊂ ϕY,X(δ) for all ε ∈ EX and δ ∈ EY . We
claim that the function

ϕX := ϕY,X ◦ ϕY ◦ ϕX,Y : EX → EX
witnesses that X is homogeneous. Indeed, given any points x, x′, we can
choose y ∈ Φ(x), y′ ∈ Φ(x′) and find a coarse equivalence ΨY : Y → Y such
that y′ ∈ ΨY (y) and both ΨY and Ψ−1Y are ϕY -coarse. It can be shown that
the multi-map ΨX := Φ−1 ◦ΨY ◦Φ : X ( X has the desired properties: x′ ∈
Φ−1(y′) ⊂ Φ−1(ΨY (y)) ⊂ Φ−1(ΨY (Φ(x))) = ΦX(x) and ωΦX (ε) ∪ ωΦ−1

X
(ε) ⊂

ϕX(ε) for all ε ∈ EX .

Proposition 3.2. If a ballean X is homogeneous, then cov[(X)
= cov](X).

Proof. Since cov[(X) ≤ cov](X), it suffices to check that cov[(X) ≥
cov](X). This will follow as soon as for given ε ∈ EX and κ < cov](X), we
find δ ∈ EX such that minx∈X covε(B(x, δ)) ≥ κ. By the homogeneity of X,
there is a function ϕ : EX → EX such that for any x, y ∈ X there is a coarse
equivalence Φ : X ( X such that y ∈ Φ(x) and both Φ and Φ−1 are ϕ-coarse.

By the definition of cov](X) > κ, for ε′ = ϕ(ε), there are δ′ ∈ EX and
x′ ∈ X such that covε′(B(x′, δ′)) ≥ κ. We claim that δ = ϕ(δ′) ∈ EX has
the required property: minx∈X covε(B(x, δ)) ≥ κ.

Assume conversely that covε(B(x, δ)) < κ for some x ∈ X. By the homo-
geneity of X and the choice of ϕ, there is a coarse equivalence Φ : X ( X
such that x′ ∈ Φ(x) and both Φ and Φ−1 are ϕ-coarse. Since covε(B(x, δ))
< κ, there is a subset C ⊂ X with |C| < κ such that B(x, δ) ⊂

⋃
c∈C B(c, ε).

For every c ∈ C fix yc ∈ Φ(c). Observe that for every b ∈ B(c, ε) we have
(b, c) ∈ ε. Therefore Φ(b) × Φ(c) ⊂ ωΦ(ε) ⊂ ϕ(ε) and Φ(b) ⊂ B(yc, ϕ(ε)) =
B(yc, ε

′), which implies Φ(B(c, ε)) ⊂ B(yc, ε
′). Taking into account that

B(x, δ)⊂
⋃
c∈C B(c, ε), we get Φ(B(x, δ))⊂

⋃
c∈C Φ(B(c, ε))⊂

⋃
c∈C B(yc, ε

′),
which implies covε′(Φ(B(x, δ))) ≤ |C| < κ.

We claim that B(x′, δ′) ⊂ Φ(B(x, δ)). Indeed, for any y′ ∈ B(x′, δ′) we
can fix y ∈ Φ−1(x′) and observe that (y′, x′) ∈ δ′ implies (y, x) ∈ Φ−1(y′)×
Φ−1(x′) ⊂ ωΦ−1(δ′) ⊂ ϕ(δ′) = δ (since Φ−1 is ϕ-coarse). Then y ∈ B(x, δ)
and y′ ∈ Φ(y) ⊂ Φ(B(x, δ)). Finally, we get B(x′, δ′) ⊂ Φ(B(x, δ)) and
covε′(B(x′, δ′)) ≤ covε′(Φ(B(x, δ))) ≤ |C| < κ, which contradicts the choice
of δ′ and x′.
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Theorem 3.3. A cellular ordinal ballean X is homogeneous if and only
if cov[(X) = cov](X).

Proof. The “only if” part follows from Proposition 3.2. To prove the “if”
part, assume X is a cellular ordinal ballean with cov[(X) = cov](X). Let
γ = cof(X) = add(X). The definition of κ = cov[(X) = cov](X) implies
that there exists a non-decreasing transfinite sequence (κα)α<γ of cardinals
such that κ = supα<γ κ

+
α . Choose an increasing transfinite sequence (Gα)α<γ

of groups such that Gα =
⋃
β<αGβ for every limit ordinal α < γ and

|Gα+1/Gα| = κα for every ordinal α < γ.

Consider the group G =
⋃
α<γ Gα endowed with the ballean structure

EG = (εα)α<γ consisting of the entourages

εα := {(x, y) ∈ G : x−1y ∈ Gα} for α < γ.

It is clear that the left shifts are id-coarse isomorphisms of (G, EG), which im-
plies that the ballean (G, EG) is homogeneous. It is clear that add(G, EG) =
cof(G, EG) = γ and

cov[(G, EG) = cov](G, EG) = min
α<γ

sup
α≤β<γ

|Gβ/Gα|+ = sup
α<γ

κ+α = κ.

Applying Theorem 2.2, we conclude that X is coarsely equivalent to the
homogeneous ballean (G, EG), and hence X is homogeneous according to
Proposition 3.1.

The following corollary of Theorems 2.2 and 3.3 shows that the cardinals
cof(X) and cov](X) fully determine the coarse structure of a homogeneous
cellular ordinal ballean X.

Theorem 3.4. For any homogeneous cellular ordinal balleans X,Y the
following conditions are equivalent:

(1) X and Y are coarsely equivalent;
(2) X is coarsely equivalent to a subspace of Y and vice versa;
(3) cof(X) = cof(Y ) and cov](X) = cov](Y ).

Proof. The implication (1)⇒(2) is trivial, (2)⇒(3) follows by the invari-
ance of cof and cov] under coarse equivalence and their monotonicity under
taking subspaces, and (3)⇒(1) follows from Theorems 2.2 and 3.3.

4. Recognizing the coarse structure of Cantor macro-cubes and
cardinal balleans. It is easy to see that for any ordinal γ and transfinite
sequence (κα)α∈γ of non-zero cardinals the asymptotic product

∐
α∈γ κα is

a homogeneous cellular ordinal ballean whose cofinality equals cf(γ), the
cofinality of the ordinal γ. In particular, the Cantor macro-cube 2<γ is a
homogeneous cellular ordinal ballean with cof(2<γ) = cf(γ).
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To evaluate the covering numbers of 2<γ , for an ordinal γ, consider the
ordinal

bγc := min{α : γ = β + α for some β < γ}
called the tail of γ, and the cardinal

dγe := min{α : γ ≤ β + |α| for some β < γ}
called the cardinal tail of γ. It is clear that bγc ≤ dγe. Moreover,

dγe =

{ |bγc| if bγc is a cardinal,

|bγc|+ otherwise.

The equality γ = bγc holds if and only if the ordinal γ is additively
indecomposable, which means that α+ β < γ for any ordinals α, β < γ.

The following proposition can be derived from the definition of 2<γ .

Proposition 4.1. For every ordinal γ the Cantor macro-cube 2<γ is a
cellular ordinal ballean with

add(2<γ) = cof(2<γ) = cf(γ) and cov[(2<γ) = cov](2<γ) = dγe.

The following theorem (which can be derived from Proposition 4.1 and
Theorem 2.2) shows that in the class of cellular ordinal balleans, the Cantor
macro-cubes 2<γ play a role analogous to the role of the Cantor cubes 2κ in
the class of zero-dimensional compact Hausdorff spaces.

Theorem 4.2. Let γ be any ordinal and X be any cellular ordinal ballean
such that cof(X) = cf(γ).

(1) If dγe ≤ cov[(X), then 2<γ is coarsely equivalent to a subspace of X.
(2) If cov](X) ≤ dγe, then X is coarsely equivalent to a subspace of 2<γ.
(3) If cov[(X) = cov](X) = dγe, then X is coarsely equivalent to 2<γ.

Proposition 4.1 and Theorem 4.2 imply the following characterization of
2<γ which extends the characterization of 2<ω proved in [3].

Theorem 4.3. For any ordinal γ and any ballean X the following con-
ditions are equivalent:

(1) X is coarsely equivalent to 2<γ.
(2) X is cellular, add(X) = cof(X) = cf(γ) and cov[(X) = cov](X) = dγe.

Corollary 4.4. For any ordinals β, γ the Cantor macro-cubes 2<β and
2<γ are coarsely equivalent if and only if cf(β) = cf(γ) and dβe = dγe.

Finally, we identify the coarse structure of the ballean
↔
γ supported by

an additively indecomposable ordinal γ. Given any non-zero ordinal γ we
consider the family {εα}α<γ of the entourages

εα = {(x, y) ∈ γ × γ : x ≤ y + α and y ≤ x+ α}
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for α < γ. It is easy to see that
↔
γ := (γ, {εα})α<γ is a ballean if and only

if the ordinal γ is additively indecomposable (which means that α + β < γ
for any ordinals α, β < γ).

The following theorem classifies the balleans
↔
γ up to coarse equivalence.

Theorem 4.5. For any additively indecomposable ordinal γ the ballean↔
γ is coarsely equivalent to:

• ↔ω if and only if γ = β · ω for some β;
• 2<γ, otherwise.

Proof. If γ = β · ω for some ordinal β, then
↔
γ is coarsely equivalent to

↔
ω since

↔
γ contains the large subset L = {β · n : n ∈ ω}, which is coarsely

isomorphic to
↔
ω .

Now assume that γ 6= β · ω for any ordinal β. Since γ is additively
indecomposable, this means that β ·ω < γ for any β < γ, which implies that
↔
γ is cellular. Since add(

↔
γ ) = cof(

↔
γ ) = cf(γ) and cov[(

↔
γ ) = cov](

↔
γ ) = dγe,

the cellular ordinal ballean
↔
γ is coarsely equivalent to 2<γ according to

Theorem 4.3.

Remark 4.6. For any ordinal γ the balleans 2<γ and
↔
ω are not coarsely

equivalent, since 2<γ is cellular, whereas
↔
ω is not.

5. Embedding cellular ordinal balleans into asymptotic prod-
ucts of cardinals. In this section, we construct coarse embeddings of cellu-
lar ordinal balleans into asymptotic products of cardinals. Such embeddings
will play a crucial role in the proof of Theorem 2.2 presented in the next
section.

Observe that for any transfinite sequence (κα)α<γ of cardinals, the asym-
ptotic product

∐
α<γ κα carries an operation of coordinatewise addition of

sequences induced by addition of ordinals. For β < γ and y ∈ κα let y · δβ
denote the sequence (xα)α<γ ∈

∐
α<γ κα such that xα = y if α = β, and

xα = 0 otherwise. It follows that each (xα)α<γ ∈
∐
α<γ κα can be written

as
∑

α∈A xα · δα for the finite set A = {α < γ : xα 6= 0}.
The following lemma exploits and develops the decomposition technique

used in [9], [11, §10], and [13].

Lemma 5.1. Let X be an ordinal ballean of infinite cofinality γ, and
(εα)α<γ be a well-ordered base of the coarse structure of X consisting of cel-
lular entourages such that εβ =

⋃
α<β εα for all limit ordinals β < γ. For ev-

ery α < γ and x ∈ X let κα(x) = covεα(B(x, εα+1)). Set κα = minx∈X κα(x)
and κ̄α = supx∈X κα(x). Then the ballean X is coarsely equivalent to a sub-
ballean Y ⊂

∐
α<γ κ̄α containing

∐
α<λ κα.
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Proof. For any x, y ∈ X, let

d(x, y) := min{α < γ : (x, y) ∈ εα},
and observe that if (x, y) /∈ ε0, then the ordinal d(x, y) is not limit (as
εβ =

⋃
α<β εα for any limit β < γ). Consequently, we can find an ordinal

d−(x, y) such that d(x, y) = d−(x, y) + 1.
Fix any well-ordering � of X. Given a non-empty subset B ⊂ X, denote

by minB the smallest point of B with respect to the well-order �, and for
every α < γ let cα : X → X be the map assigning to each x ∈ X the smallest
element cα(x) = minB(x, εα) of the ball B(x, εα). Since εα is an equivalence
relation, B(x, εα) = B(cα(x), εα). To simplify the notation, we shall denote
B(x, εα) by Bα(x).

Observe that for every α < γ and B ∈ {Bα+1(x) : x ∈ X}, the set
cα(X) ∩ B has cardinality κα(minB), so we can fix a map nα,B : B →
κα(minB) such that {Bα(x) : x ∈ B} = {n−1α,B(β) : β ∈ κα(minB)} and

n−1α,B(0) = Bα(minB). Finally, define a map nα : X → κ̄α by assigning to

each y ∈ X the number nα(y) := nα,Bα+1(y)(y) of the εα-ball containing y
in the partition of the εα+1-ball Bα+1(y). The definition of κα implies that
κα ⊂ κα(x) = nα(Bα+1(x)) for every x ∈ X.

For every x ∈ X, define fx : X →
∐
α<γ κ̄α by the recursive formula

fx(y) =

{
0 if d(x, y) = 0,

fminBd−(x,y)(y)
(y) + nd−(x,y)(y) · δd−(x,y) otherwise.

Since d(minBd−(x,y)(y), y) < d(x, y), the function fx is well-defined.
It can be shown that for every x ∈ X, the function fx : X →

∐
α<γ κ̄α

determines a coarse equivalence of X with the subspace f(X) of
∐
α<γ κ̄α

containing
∐
α<γ κα.

6. Proof of Theorem 2.2. Assume that X,Y are cellular balleans with
γ = add(X) = cof(X) = cof(Y ) = add(X) and κ = cov[(X) = cov](X) =
cov](Y ) = cov[(Y ) for some cardinals γ and κ. Let EX , EY denote the
respective ballean structures.

We shall consider four cases.

1) γ = 0. In this case X,Y are empty, and hence coarsely equivalent.
2) γ = 1. Then X,Y are bounded, and hence coarsely equivalent.
3) γ = ω. Since X is a cellular ballean with cof(X) = γ = ω, the coarse

structure ↓EX has a well-ordered base {εn}n∈ω consisting of equivalence
relations such that ε0 = ∆X . In this case the formula

dX(x, x′) = min{n ∈ ω : (x, x′) ∈ εn}
defines an ultrametric dX : X×X → ω generating the coarse structure of X.
By analogy, we can define an ultrametric dY generating the coarse structure
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of Y . Since cov[(X) = cov](X) = cov](Y ) = cov[(Y ), we can apply [1,
Theorem 1.2] (proved by the technique of towers created in [3]) to conclude
that the ultrametric spaces X and Y are coarsely equivalent.

4) γ > ω. Since X,Y are ordinal balleans with cof(X) = cof(Y ) = γ, we
can fix well-ordered bases {ε̃α}α<γ and {δ̃α}α<γ of the coarse structures ↓EX
and ↓EY , respectively. By induction on α < γ we shall construct well-ordered
sequences {εα}α<γ ⊂ ↓EX and {δα}α<γ ⊂ ↓EY such that for every α < γ
the following conditions will be satisfied:

(a) εα =
⋃
β<α εβ and δα =

⋃
β<α δβ if the ordinal α is limit;

(b) εα and δα are cellular entourages;
(c) ε̃α ⊂ εα+1 and δ̃α ⊂ δα+1;
(d) min

x∈X
covεα(B(x, εα+1)) = sup

x∈X
covεα(B(x, εα+1))

= min
y∈Y

covδα(B(y, δα+1)) = sup
y∈Y

covδα(B(y, δα+1)) = κα

for some cardinal κα.

We start the inductive construction by choosing cellular entourages ε0 ∈ EX
and δ0 ∈ EY such that

sup
x∈X

covε0(B(x, ε)) < κ and sup
y∈Y

covδ0(B(y, δ)) < κ

for any ε ∈ ↓EX and δ ∈ ↓EY . The existence of ε0 and δ0 follows from the
cellularity ofX,Y and the definition of cov](X) = cov](Y ) = κ. Assume that
for some ordinal α < γ and all ordinals β < α, the cellular entourages εβ and
δβ have already been constructed. If α is limit, then we set εα =

⋃
β<α εβ

and δα =
⋃
β<α δβ. Observe that the entourages εα and δβ are cellular as

unions of increasing chains of cellular entourages. Moreover, εα ∈ ↓EX and
δβ ∈ ↓EY as α < γ = add(X) = add(Y ).

Next, assume that α is not limit, and hence α = β + 1 for some ordi-
nal β. Taking into account the choice of ε0, δ0 and using the definitions of
cov[(X) = cov[(Y ), we can construct two increasing sequences of cellular
entourages, {ε′n}n∈ω ⊂ ↓EX and {δ′n}n∈ω ⊂ ↓EY , such that

sup
x∈X

covε′n(B(x, ε′n+1)) ≤ min
y∈Y

covδ′n(B(y, δ′n+1)),

sup
y∈Y

covδ′n(B(y, δ′n+1)) ≤ min
x∈X

covε′n+1
(B(x, ε′n+2)).

The entourages ε′1 and δ′1 can be chosen so that ε̃α ⊂ ε′1 and δ̃α ⊂ δ′1. Since
add(X) = add(Y ) > ω, the entourages εα+1 =

⋃
n∈ω ε

′
n and δα+1 =

⋃
n∈ω δ

′
n

belong to ↓EX and ↓EY , respectively, and have the properties (b)–(d), re-
quired in the inductive construction.

By Lemma 5.1, there are coarse equivalences fX : X →
∐
α<γ κα and

fY : Y →
∐
α<γ κα. Then the multi-map f−1Y ◦ fX : X ( Y is a coarse

equivalence.
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[6] P. Nowak and G. Yu, Large Scale Geometry, EMS Textbooks Math., Eur. Math.
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