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We prove that a topological group G is (locally) homeomorphic to an LF-space if
G =

⋃
n∈ω

Gn for some increasing sequence of subgroups (Gn)n∈ω such that

(1) for any neighborhoods Un ⊂ Gn, n ∈ ω, of the neutral element e ∈ Gn ⊂ G,
the set

⋃∞
n=1 U0U1 · · ·Un is a neighborhood of e in G;

(2) each group Gn is (locally) homeomorphic to a Hilbert space;
(3) for every n ∈ N the quotient map Gn → Gn/Gn−1 is a locally trivial bundle;
(4) for infinitely many numbers n ∈ N each Z-point in the quotient space

Gn/Gn−1 = {xGn−1: x ∈ Gn} is a strong Z-point.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The problem of recognizing the topological structure of topological groups traces its history back to
the fifth problem of Hilbert which asks if Lie groups can be characterized as topological groups whose
underlying topological spaces are manifolds. This problem was resolved by combined efforts of Gleason [18],
Montgomery and Zippin [27], Hofmann [22], and Iwasawa [17] who proved the following
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Theorem 1.1. A topological group G is (locally) homeomorphic to a finite-dimensional Hilbert space if and
only if G is locally compact and (locally) contractible.

We say that a topological space X is locally homeomorphic to a space E if each point x ∈ X has an open
neighborhood homeomorphic to an open subset of E. If in addition, X is paracompact, then X is called an
E-manifold. A Hilbert manifold is a paracompact space, locally homeomorphic to a Hilbert space.

Topological groups (locally) homeomorphic to separable Hilbert spaces were characterized by Dobrowolski
and Toruńczyk [15]:

Theorem 1.2 (Dobrowolski–Toruńczyk). A topological group G is (locally) homeomorphic to a separable
Hilbert space if and only if G is a (locally) Polish absolute (neighborhood) retract.

In this theorem a Hilbert space can be finite- or infinite-dimensional. A topological space is called locally
Polish if each point has a Polish (i.e., separable completely metrizable) neighborhood.

Topological groups which are (locally) homeomorphic to non-separable Hilbert spaces were characterized
by Banakh and Zarichnyi [7]:

Theorem 1.3 (Banakh–Zarichnyi). A topological group G is (locally) homeomorphic to an infinite-
dimensional Hilbert space if and only if G is a completely metrizable absolute (neighborhood) retract which
satisfies LFAP.

We say that a topological space X satisfies LFAP (the Locally Finite Approximation Property) if for any
open cover U of X there is a sequence of maps fn :X → X, n ∈ ω, such that each map fn is U-near to the
identity and the family (fn(X))n∈ω is locally finite in X. Two maps f, g :X → Y are called U-near for a
cover U of Y if for each point x ∈ X the doubleton {f(x), g(x)} lies in some set U ∈ U .

In this paper we address the problem of recognizing topological groups which are (locally) homeomorphic
to LF-spaces.

We recall that an LF-space is the direct limit lc-lim−→Xn of a tower

X0 ⊂ X1 ⊂ X2 ⊂ · · ·

of Fréchet (i.e., locally convex linear completely metrizable) spaces in the category of locally convex spaces.
More precisely, lc-lim−→Xn is the union X =

⋃
n∈ω Xn endowed with the strongest topology that turns X

into a locally convex space and makes the identity inclusions Xn → X, n ∈ ω, continuous.
The simplest non-trivial example of an LF-space is R

∞, the direct limit of the tower

R
1 ⊂ R

2 ⊂ R
3 ⊂ · · · ,

where each space R
n is identified with the hyperplane R

n × {0} in R
n+1. The space R

∞ can be identified
with the direct sum

⊕
n∈ω R of one-dimensional Banach spaces in the category of locally convex spaces.

The topological classification of LF-spaces was obtained by Mankiewicz [24] who proved that each LF-
space is homeomorphic to a direct sum

⊕
n∈ω l2(κi) of Hilbert spaces for some sequence of cardinals (κi)i∈ω.

Here l2(κ) denotes the Hilbert space with an orthonormal base of cardinality κ. A more precise version of
Mankiewicz’s classification says that the following spaces

• l2(κ) for some cardinal κ � 0,
• R

∞,
• l2(κ) × R

∞ for some κ � ω, and
•

⊕
l2(κi) for a strictly increasing sequence of infinite cardinals (κi)i∈ω
i∈ω
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are pairwise non-homeomorphic and represent all possible topological types of LF-spaces. In particular,
each infinite-dimensional separable LF-space is homeomorphic to one of the following spaces: l2, R

∞ or
l2×R

∞. The topological characterizations of the LF-spaces l2 and R
∞ were given by Toruńczyk [31,32] and

Sakai [28], respectively. Other LF-spaces were recently characterized by Banakh and Repovš [5].
The description of the topology of the direct sum

⊕
n∈ω Xn of locally convex spaces given in [29, II.§6.1]

implies that this topology coincides with the topology of the small box-product �n∈ω Xn. The construction
of the small box-product �n∈ω Xn of pointed topological spaces is purely topological and is defined as
follows.

By a pointed space X we understand a space with a distinguished point, which will be denoted by ∗X . Each
group G is a pointed space whose distinguished point ∗G is the neutral element of G. For a subgroup H ⊂ G

the quotient space G/H = {xH: x ∈ G} is a pointed space with the distinguished point ∗G/H = H ∈ G/H.
The small box-product of a sequence (Xn)n∈ω of pointed topological spaces is the subspace

�
n∈ω

Xn =
{
(xn)n∈ω ∈ �n∈ωXn: ∃m ∈ ω ∀n � m, xn = ∗Xn

}

of the box-product �n∈ωXn. The latter space is the product
∏

n∈ω Xn endowed with the topology generated
by the products

∏
n∈ω Un of open subsets Un ⊂ Xn, n ∈ ω.

Now let us return to the problem of recognizing topological groups that are (locally) homeomorphic to
LF-spaces. We say that a topological group G carries the strong topology with respect to a tower of subgroups

G0 ⊂ G1 ⊂ G2 ⊂ · · ·

if G =
⋃

n∈ω Gn and for any neighborhoods Un ⊂ Gn, n ∈ ω, of the neutral element e the group product
⋃∞

n=1 U0U1 · · ·Un is a neighborhood of e in the group G. The nature of this property will be discussed in
Section 3. Let us note that under different name this property was considered in [19, §11].

A closed subgroup H of a topological group G is defined to be (locally) topologically complemented in
G if the quotient map π :G → G/H, π :x �→ xH, is a (locally) trivial bundle. This happens if and only if
π has a section s :G/H → G, which is continuous on (some non-empty open subset of) the quotient space
G/H. It follows that for a (locally) topologically complemented subgroup H of G the group G is (locally)
homeomorphic to the product H × (G/H). In Proposition 4.2 we shall prove that a locally topologically
complemented subgroup H of an ANR-group G is topologically complemented in G if the quotient space
G/H is contractible or both groups G and H are contractible. By an ANR-group we understand a topological
group whose underlying topological space is an ANR. Therefore, each ANR-group is metrizable.

A tower of groups (Gn)n∈ω is called (locally) topologically complemented if each group Gn is (locally)
topologically complemented in Gn+1.

The topology of a topological group carrying the strong topology with respect to a (locally) topologically
complemented tower of subgroups is closely related to small box-products:

Theorem 1.4. A topological group G carrying the strong topology with respect to a (locally) topolog-
ically complemented tower of subgroups (Gn)n∈ω is (locally) homeomorphic to the small box-product
G0 × �n∈ω Gn+1/Gn.

Theorem 1.4 will be proved in Section 5. This theorem motivates the problem of studying the topological
structure of small box-products and recognizing small box-products that are (locally) homeomorphic to
LF-spaces. A corresponding criterion was proved in [5]. It involves the notion of a strong Z-point.

Let us recall that a closed subset A of a topological space X is called a (strong) Z-set in X if for any open
cover U of X there is a continuous map f :X → X such that f is U-near to the identity idX :X → X and
(the closure f(X) of) the set f(X) does not intersect A. It is clear that each strong Z-set is a Z-set. The
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converse is not true, see [12]. However each Z-set in a Hilbert manifold is a strong Z-set, see [11,32]. A point
x of a topological space X will be called a (strong) Z-point if the singleton {x} is a (strong) Z-set in X.

A pointed topological space X is called lz-pointed if the distinguished point ∗X is not isolated in X and
either X is locally compact or ∗X is a strong Z-point in X.

We shall use the following criterion proved in [5]:

Theorem 1.5 (Banakh–Repovš). The small box-product �n∈ω Xn of pointed topological spaces Xn, n ∈ ω,
is homeomorphic to (an open subspace of ) an LF-space if for every n ∈ ω the finite product

∏
i�n Xi is

homeomorphic to (an open subset of) a Hilbert space and the space Xn is lz-pointed for infinitely many
numbers n ∈ ω.

We shall say that a topological space has the Z-point property if each Z-point in X is a strong Z-point.
Since each Z-set in a Hilbert manifold is a strong Z-set, Theorem 1.2 implies that each Polish ANR-group
has the Z-point property.

In Proposition 6.3 we shall prove that for a locally topologically complemented subgroup H of an ANR-
group G the quotient space G/H is lz-pointed if and only if it is not discrete and has the Z-point property.
Combining this fact with Theorems 1.4, 1.5 and Proposition 4.2, we obtain the following criterion, which is
the main result of this paper. This criterion has been applied in [1] and [6] for recognizing the topology of
some homeomorphism and diffeomorphism groups.

Theorem 1.6. A topological group G carrying the strong topology with respect to a tower of subgroups (Gn)n∈ω

is

(1) homeomorphic to (an open subset of ) an LF-space if for every n ∈ ω the group Gn is homeomorphic to
(an open subset) of a Hilbert space, Gn is topologically complemented in Gn+1, and for infinitely many
numbers n ∈ ω the quotient space Gn+1/Gn is not discrete and has the Z-point property;

(2) (locally) homeomorphic to an LF-space if for every n ∈ N the group Gn is (locally) homeomorphic to a
Hilbert space, Gn is locally topologically complemented in Gn+1, and for infinitely many numbers n ∈ ω

the quotient space Gn+1/Gn is not discrete and has the Z-point property.

Because of the lack of an Open Embedding Theorem for LF-manifolds, we distinguish between LF-
manifolds and open subspaces of LF-spaces. This is why we have two separate statements (1) and (2) in
Theorem 1.6. It should be mentioned that the topological structure of open subspaces of LF-spaces is quite
well understood, which cannot be said about LF-manifolds, see [25,26].

In light of Theorem 1.6 it is natural to ask if the quotient spaces Gn+1/Gn always have the Z-point
property.

Problem 1.7. Let G be a Polish ANR-group and H be a (locally) topologically complemented subgroup in G.
Does the quotient space G/H have the Z-point property?

The answer to this problem is (trivially) affirmative if G/H is a Hilbert manifold. This is why Theorem 1.6
implies the following criterion for recognition of topological groups which are locally homeomorphic to
LF-spaces.

Theorem 1.8. A topological group G carrying the strong topology with respect to a tower of subgroups

{∗G} = G0 ⊂ G1 ⊂ · · ·
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(1) is homeomorphic to (an open subset of ) an LF-space if for every n ∈ ω the group Gn is topologically
complemented in Gn+1 and the quotient space Gn+1/Gn is homeomorphic to (an open subset of ) a
Hilbert space;

(2) is (locally) homeomorphic to an LF-space if for every n ∈ N the group Gn is locally topologically
complemented in Gn+1 and the quotient space Gn+1/Gn is (locally) homeomorphic to a Hilbert space.

Considering Theorem 1.8, we can ask another open

Problem 1.9. Let G be a Polish ANR-group and H be a (locally) topologically complemented subgroup in G.
Is G/H a Hilbert manifold?

Banakh and Repovš obtained in [3, 2.2] an affirmative answer to this problem under the condition that
the subgroup H is balanced in G. The latter means that for each neighborhood U ⊂ G of the neutral element
∗G of G there is a neighborhood V ⊂ G of ∗G such that V H ⊂ HU .

Theorem 1.10 (Banakh–Repovš). If G is a Polish ANR-group and H is a balanced closed ANR-subgroup
in G, then the quotient space G/H is a Hilbert manifold and hence has the Z-point property.

Combining this theorem with Theorems 1.2, 1.6 and Proposition 4.2, we obtain the following criterion.

Theorem 1.11. A topological group G carrying the strong topology with respect to a (locally) topologically
complemented tower of Polish ANR-groups (Gn)n∈ω is (locally) homeomorphic to an open subset of the
LF-space R

∞ or l2 ×R
∞ if for infinitely many numbers n ∈ ω the subgroup Gn is balanced and not open in

Gn+1.

Next, we formulate another condition on a subgroup H of a topological group G which implies that the
quotient space G/H has the Z-point property. Note that the quotient space G/H is a G-space with the
natural left action of the group G.

Let us recall that a G-space is a topological space X endowed with a continuous action α :G×X → X,
α : (g, x) �→ gx, of a topological group G. We say that the action of G on X is locally bounded at a point
x0 ∈ X if there is a neighborhood U ⊂ G of the neutral element ∗G of G such that for every neighborhood
V ⊂ X of x0 there is a compact subset K ⊂ X which meets each shift xV , x ∈ U . In the opposite case, the
action is called locally unbounded at x0. The action of G on X is locally unbounded if this action is locally
unbounded at each point x0 ∈ X. If the action of G is locally unbounded at some point x0 ∈ X, then X is
not locally compact at x0.

In Proposition 6.4 we shall show that for a closed subgroup H of a locally path-connected topological
group G, each point of the quotient space G/H is a strong Z-point if the space G/H is a separable ANR
and the action of G on G/H is locally unbounded. Combining this fact with Theorems 1.2 and 1.6, we get
the following criterion:

Corollary 1.12. A topological group G carrying the strong topology with respect to a (locally) topologically
complemented tower of Polish ANR-groups (Gn)n∈ω is (locally) homeomorphic to an open subset of the
LF-space l2 ×R

∞ if for infinitely many numbers n ∈ ω the action of the group Gn+1 on Gn+1/Gn is locally
unbounded.

2. Uniform direct limits

It turns out that the structure of topological groups G carrying the strong topology with respect to a
tower of subgroups (Gn)n∈ω can be described in terms of uniform direct limits of towers of uniform spaces.
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Therefore, in this section we recall the necessary information on this topic. For basic information on uniform
spaces we refer the reader to Chapter 8 of Engelking’s monograph [16].

All topological spaces considered in this paper are completely regular and all maps are continuous.
For a uniform space X we denote its uniformity by UX . Since uniform spaces are completely regular,
the intersection ∩UX coincides with the diagonal of X × X. A uniform space X is called metrizable if
its uniformity is generated by some metric. Elements of the uniformity UX are called entourages. For an
entourage U ∈ UX , a point x ∈ X and a subset A ⊂ X by B(x, U) = {y ∈ X: (x, y) ∈ U} we denote the
U -ball centered at x and by B(A,U) =

⋃
x∈A B(x, U) the U -neighborhood of A. A subset O(A) is called a

uniform neighborhood of A in X if B(A,U) ⊂ O(A) for some entourage U ∈ UX .
By a tower of uniform spaces we shall understand an increasing sequence

X0 ⊂ X1 ⊂ X2 ⊂ · · ·

of uniform spaces (so the uniformity of each space Xn coincides with the uniformity inherited from the
uniform space Xn+1).

For a tower of uniform spaces

X0 ⊂ X1 ⊂ X2 ⊂ · · ·

its uniform direct limit u-lim−→Xn is the union X =
⋃

n∈ω Xn endowed with the largest uniformity making
the identity inclusions Xn → X, n ∈ ω, uniformly continuous. The topology and the uniformity of the
uniform direct limit u-lim−→Xn were described in [2].

If each space Xn of the tower is locally compact, then the topology of u-lim−→Xn coincides with the topology
of the topological direct limit t-lim−→Xn of the tower (Xn)n∈ω. The topological direct limit t-lim−→Xn of a tower
(Xn)n∈ω of topological spaces is the union

⋃
n∈ω Xn endowed with the largest topology turning the identity

inclusions Xn → X, n ∈ ω, into continuous maps.
If (Xi)i∈ω is a sequence of pointed uniform spaces, then each finite (box-)product

�
i�n

Xi =
{
(xi)i∈ω ∈ �

i∈ω
Xi: ∀i > n, xi = ∗Xi

}
⊂ �

i∈ω
Xi

carries the product uniformity. Therefore, (�i�n Xi)n∈ω turns into a tower of uniform spaces whose union
⋃

n∈ω �i�n Xi coincides with the small box-product �n∈ω Xi. The following lemma was proved in [2, 5.5].

Lemma 2.1. For a sequence (Xi)i∈ω of pointed uniform spaces the identity map

u-lim−→ �
i�n

Xi → �
i∈ω

Xi

is a homeomorphism.

Next, we recall the definition of a (locally) complemented subset of a uniform space, introduced in [5].

Definition 2.2. Let Z be a pointed topological space. A subset A of a uniform space X is called
Z-complemented in X if there is a homeomorphism γ :A× Z → X such that

(1) for any neighborhood V ⊂ Z of ∗Z there is an entourage U ∈ UX such that B(A,U) ⊂ γ(A× V ), and
(2) for any entourage U ∈ UX there is a neighborhood V ⊂ Z of ∗Z such that γ({a} × V ) ⊂ B(a, U) for

each a ∈ A.
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A subset A ⊂ X is called locally Z-complemented in X if for some open neighborhood V ⊂ Z of ∗Z the set
A is V -complemented in some open uniform neighborhood U(A) of A in X.

The following important fact was proved in [5].

Lemma 2.3. Let (Zn)n∈ω be a sequence of pointed topological spaces and (Xn)n∈ω be a tower of uniform
spaces.

(1) If each set Xn is Zn-complemented in Xn+1, then the uniform direct limit u-lim−→Xn is homeomorphic
to the small box-product X0 × �n∈ω Zn.

(2) If each set Xn is locally Zn-complemented in Xn+1, then each point x0 ∈ X0 has an open neighborhood
O(x0) ⊂ u-lim−→Xn which is homeomorphic to an open subset of X0 × �n∈ω Zn.

3. Strong topology on topological groups

In this section we shall study the structure of topological groups G that carry the strong topology with
respect to a tower of subgroups (Gn)n∈ω. In this case the group G is the direct limit of this tower in the
categories of topological groups or uniform spaces.

Let us recall that each topological group G carries four natural uniformities:

• the left uniformity UL generated by the entourages UL = {(x, y) ∈ G2: x ∈ yU},
• the right uniformity UR generated by the entourages UR = {(x, y) ∈ G2: x ∈ Uy},
• the two-sided uniformity ULR generated by the entourages ULR = {(x, y) ∈ G2: x ∈ yU ∩ Uy}, and
• the Roelcke uniformity URL generated by the entourages URL = {(x, y) ∈ G2: x ∈ UyU},

where U = U−1 runs over open symmetric neighborhoods of the neutral element e of G.
The group G endowed with one of the uniformities UL, UR, ULR, URL is denoted by GL, GR, GLR, GRL,

respectively. These four uniformities on G coincide if and only if the group G is a SIN-group, which means
that G has a neighborhood base at ∗G consisting of open sets U ⊂ G that are invariant in the sense that
UG = U where UG = {gug−1: g ∈ G, u ∈ U}.

Let G be a topological group and (Gn)n∈ω be a tower of subgroups of G such that G =
⋃

n∈ω Gn.
Endowing the subgroups Gn, n ∈ ω, with one of four canonical uniformities, we obtain four uniform direct
limits u-lim−→GL

n, u-lim−→GR
n, u-lim−→GLR

n , and u-lim−→GRL
n of the towers of uniform spaces (GL

n)n∈ω, (GR
n)n∈ω, and

(GLR
n )n∈ω, (GRL

n )n∈ω, respectively.
Besides those direct limits, the group G also carries the topology of the group direct limit g-lim−→Gn of the

tower (Gn)n∈ω. This is the strongest topology that turns G =
⋃

n∈ω Gn into a topological group and makes
the identity maps Gn → G, n ∈ ω, continuous.

For these direct limits we get the following diagram in which each arrow indicates that the corresponding
identity map is continuous:

u-lim−→GL
n

t-lim−→Gn u-lim−→GLR
n u-lim−→GRL

n g-lim−→Gn G

u-lim−→GR
n
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The following proposition was proved in [4] and [19, 11.8].

Proposition 3.1. For a topological group G and a tower of subgroups (Gn)n∈ω with G =
⋃

n∈ω Gn the
following conditions are equivalent:

(1) G carries the strong topology with respect to the tower (Gn)n∈ω;
(2) the identity map u-lim−→GL

n → G is a homeomorphism;
(3) the identity map u-lim−→GR

n → G is a homeomorphism.

The equivalent conditions (1)–(3) imply:

(4) the identity map g-lim−→Gn → G is a homeomorphism.

It should be mentioned that for a tower of metrizable topological groups (Gn)n∈ω the identity map
t-lim−→Gn → u-lim−→Gn is a homeomorphism if and only if all groups Gn are locally compact or there is a
number m ∈ ω such that for every n � m the group Gn is open in Gn+1, see [4,8,33] or [20, 7.1].

If (Xn)n∈ω is a tower of locally convex linear topological spaces, then besides the topology of the group
direct limit g-lim−→Xn, the union X =

⋃
n∈ω Xn carries also the topology of the direct limit in the category

of (locally convex) linear topological spaces. The corresponding direct limit space is denoted by l-lim−→Xn

(resp. lc-lim−→Xn). This is the union X =
⋃

n∈ω Xn endowed with the strongest topology that turns X into
a (locally convex) linear topological space and makes the identity maps Xn → X, n ∈ ω, continuous.

The following simple proposition implies that many direct limit topologies on X coincide. The proof of
this proposition can be found in [13, Exercise 14 to Ch. II.§4], [19, Lemma 2.7], [21, Proposition 3.1], and
[2, Proposition 5.3].

Proposition 3.2. For any tower (Xn)n∈ω of locally convex linear topological spaces the identity maps

u-lim−→Xn → g-lim−→Xn → l-lim−→Xn → lc-lim−→Xn

are homeomorphisms.

In particular, each LF-space has the topology of the uniform direct limit of a tower of Fréchet spaces.

4. (Locally) topologically complemented subgroups in topological groups

In this section we study (locally) topologically complemented subgroups of topological groups. Let us
recall that a closed subgroup H of a topological group is (locally) topologically complemented if the quotient
map q :G → G/H is a (locally) trivial bundle. Here G/H = {xH: x ∈ G} is the quotient space of left cosets
of H in G. It is a pointed topological space with a distinguished point ∗G/H = H. For the theory of bundles,
we refer the reader to [23].

Lemma 4.1. If H is a (locally) topologically complemented subgroup of a topological group G, then H is
(locally) G/H-complemented in the uniform space GR.

Proof. Since H is locally topologically complemented in G, the quotient map q :G → G/H has a continuous
section s :U → G defined in an open neighborhood U ⊂ G/H of the distinguished point ∗G/H . If H is
topologically complemented in G, then we can take U to be equal to G/H. Replacing s(x) by s(x)s(∗G/H)−1,
we can additionally assume that s(∗G/H) coincides with the neutral element ∗G of the group G. It follows
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from the definition of the uniformity UR that the preimage q−1(U) is an open uniform neighborhood of H
in the uniform space GR. Now we see that the homeomorphism

γ :H × U → q−1(U), γ(h, y) = s(y) · h

witnesses that H is U -complemented in the uniform neighborhood q−1(U) of H in GR and hence H is locally
G/H-complemented in GR.

If U = G/H, then the homeomorphism γ witnesses that H is G/H-complemented in GR. �
In some cases the local topological complementability implies the topological complementability.

Proposition 4.2. A locally topologically complemented subgroup H of a topological ANR-group G is topolog-
ically complemented if the quotient space G/H is contractible or both spaces G and H are contractible.

Proof. First we show that the quotient space G/H is a (metrizable) ANR. Being metrizable, the group G

admits a right invariant metric d generating the topology of G. Then the topology of the quotient space
G/H is generated by the metric ρ defined by

ρ(xH, yH) = inf
{
d(a, b): a ∈ xH, b ∈ yH

}
, xH, yH ∈ G/H.

Hence G/H, being metrizable, is paracompact.
Since H is locally topologically complemented in G, the quotient map q: G → G/H is a locally trivial

bundle with fiber H. This implies that the space H × (G/H) is locally homeomorphic to G. Since G is
an ANR, each point of the quotient space G/H has an ANR-neighborhood, which implies that G/H is an
ANR, see Hanner’s Theorem 5.1 in [10, Ch. II].

If the quotient space G/H is contractible, then the locally trivial bundle q :G → G/H is trivial according
to Corollary 4.10.3 of [23].

Now assume that the spaces G and H are contractible. We claim that the quotient space G/H is con-
tractible. Since G is path-connected, so is G/H. Since both the total space G and the fiber H of the bundle
q :G → G/H are contractible, the exact sequence of the fibration π :G → G/H implies that all homotopy
groups πi(G/H) = 0, i ∈ N, of G/H are trivial. Therefore, by Whitehead’s Theorem (see II.6.1 in [10]), the
ANR-space G/H is contractible. �
5. Proof of Theorem 1.4

In this section we shall prove Theorem 1.4. Assume that a topological group G carries the strong topology
with respect to a (locally) topologically complemented tower (Gn)n∈ω of subgroups.

By Proposition 3.1, the topology of G coincides with the topology of the uniform direct limit u-lim−→GR
n

of the tower (GR
n)n∈ω of the groups Gn endowed with their right uniformities. By Lemma 4.1, each set

Gn is (locally) Gn+1/Gn-complemented in GR
n+1. Taking into account that the space G is topologically

homogeneous and applying Lemma 2.3, we conclude that G = u-lim−→GR
n is (locally) homeomorphic to the

small box-product G0 × �n∈ω Gn+1/Gn.

6. The Z-point property in quotient spaces of topological groups

In this section we shall study the Z-point property in quotient spaces of topological groups. Let us recall
that a topological space X has the Z-point property if each Z-point in X is a strong Z-point. In fact, it is
more convenient to work not with (strong) Z-point but with an equivalent notion of a (strong) Z∞-point.
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Let κ be a cardinal. A closed subset A of a topological space X is called a (κ×Z∞)-set if for each open
cover U of X any map f :κ× I

ω → X can be approximated by a map f̃ :κ× I
ω → X such that f̃ is U-near

to f and A does not intersect the closure of the set f̃(κ× I
ω) in X.

We shall refer to (1×Z∞)-sets and (ω×Z∞)-sets as Z∞-sets and strong Z∞-sets, respectively. Such sets
were studied in [30], [14, §2.2] and [9, §1.4]. A point x of a topological space X will be called a (strong)
Z∞-point if the singleton {x} is a (strong) Z∞-set in X.

The following characterization of (strong) Z-sets in (separable) ANR’s is well known, see [30] and [14,
2.2.3 and 2.2.6].

Lemma 6.1. A point x of a (separable) ANR-space X is a (strong) Z-point if and only if it is a (strong)
Z∞-point.

Lemma 6.2. Let H be a locally topologically complemented subgroup in a topological group G. If the quotient
space G/H is not locally compact, then each compact subset K of G/H is a Z∞-set in G/H.

Proof. Assume that the quotient space G/H is not locally compact and take any compact subset K ⊂ G/H.
To prove that K is a Z∞-set in G/H, fix an open cover U of G/H and a continuous map f : Iω → G/H

from the Hilbert cube.
By the local complementability of the subgroup H in G, the quotient map q :G → G/H is a locally

trivial bundle. Using this fact and the contractibility of the Hilbert cube I
ω, we can find a continuous map

g : Iω → G such that q ◦ g = f . By compactness of g(Iω), there is a neighborhood U ⊂ G of the neutral
element ∗G of G so small that for every u ∈ U the map fu : Iω → G/H defined by fu(x) = q(g(x)u) for
x ∈ I

ω is U-near to f . Since the quotient map q :G → G/H is open, the set q(U) is an open neighborhood
of ∗G/H .

By the local triviality of q, there is a compact subset K̃ ⊂ G such that q(K̃) = K. Consider the compact
subset C = g(Iω) of G and the compact subset q(C−1K̃) ⊂ G/H, which does not contain the neighborhood
q(U) of ∗G/H as G/H is not locally compact at ∗G/H . Consequently, there is an element u ∈ U with
q(u) /∈ q(C−1K̃), which implies that u /∈ C−1K̃H and hence Cu ∩ K̃H = ∅. Then the map fu : Iω → G/H

has the required property: it is U-near to f and fu(Iω) ∩K = q(g(Iω) · u) ∩ q(K̃H) = ∅. �
Proposition 6.3. Let H be a locally topologically complemented subgroup of an ANR-group G. The quotient
space G/H is an lz-pointed space if and only if it is not discrete and has the Z-point property.

Proof. To prove the “only if” part, assume that the quotient space G/H is lz-pointed. Then the distinguished
point ∗G/H of G/H is not isolated and hence G/H is not discrete. If G/H is locally compact, then by [14,
2.2.4], each Z-set in G/H is a strong Z-set and hence G/H has the Z-point property. If G/H is not locally
compact, then ∗G/H is a strong Z-point in G/H and by the topological homogeneity of G/H, each point of
G/H is a strong Z-point. Then the space G/H trivially has the Z-point property.

To prove the “if” part, assume that the quotient space G/H is not discrete and has the Z-point property.
We should prove that the distinguished point ∗G/H of G/H is not isolated and either G/H is locally compact
or ∗G/H is a strong Z-point in G/H.

The space G/H is not discrete and hence contains a non-isolated point. Then by the topological ho-
mogeneity of G/H, no point of G/H is isolated. If G/H is not locally compact, then ∗G/H is a Z∞-point
according to Lemma 6.2. Since G/H is an ANR as shown in the proof of Proposition 4.2, by Lemma 6.1,
∗G/H is a Z-point in G/H and by the Z-point property, it is a strong Z-point in G/H. �

Finally, we consider the problem of detecting quotient spaces G/H all whose points are strong Z-points.
Let us recall that an action of a topological group G on a topological space X is called locally bounded
at a point x0 ∈ X if there is a neighborhood U ⊂ G of the neutral element ∗G of G such that for every
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neighborhood V ⊂ X of x0 there is a compact subset K ⊂ X that meets each shift xV , x ∈ U . If this fails
at each x0 ∈ X, then the action is called locally unbounded.

Proposition 6.4. Let H be a closed subgroup of a locally path-connected group G. If the action of G on the
quotient space G/H is locally unbounded, then ∗G/H is a strong Z∞-point in G/H. If G/H is a separable
ANR-space, then ∗G/H is a strong Z-point in G/H.

Proof. Fix an open cover U of G/H and a continuous map f :ω × I
ω → G/H. Find a set U0 ∈ U that

contains the distinguished point ∗G/H . The continuity of the action of G on G/H yields a neighborhood
V1 ⊂ G of ∗G and a neighborhood U1 ⊂ G/H of ∗G/H such that V1 ·U1 ⊂ U0. Since the quotient space G/H

is completely regular, there is a continuous function λ :G/H → [0, 1] such that G/H \ U1 ⊂ λ−1(0) and
λ−1(1) is a neighborhood of ∗G/H . By continuity of the action of G, there are neighborhoods V2 ⊂ G and
U2 ⊂ G/H of ∗G and ∗G/H such that V −1

2 ⊂ V1 and V2 · U2 ⊂ λ−1(1). Since G is locally path-connected,
there is a neighborhood V3 ⊂ G of ∗G such that each point x ∈ V3 can be connected with ∗G by a continuous
path lying in V2.

Since the action of G in G/H is locally unbounded, for the neighborhood V3 there is a neighborhood
U3 ⊂ U2 of ∗G/H such that for any compact subset K ⊂ G/H there is a point x ∈ V3 such that the shift
xU3 does not intersect K.

Now we shall construct a map f̃ :ω × I
ω → G/H such that f̃ is U-near to f and f̃(ω × I

ω) ∩ U3 = ∅. It
suffices for every n ∈ ω to approximate the map fn : Iω → G/H, fn : t �→ f(n, t), by a map f̃n : Iω → G/H

such that f̃n is U-near to fn and f̃n(Iω) ∩ U3 = ∅.
For every n ∈ ω consider the compact subset Kn = f({n} × I

ω) of G/H. By the choice of U3 there is a
point xn ∈ V3 such that xnU3 ∩Kn = ∅. Then x−1

n Kn ∩U3 = ∅. By the choice of the neighborhood V3 there
is a continuous path γn : [0, 1] → V2 such that γn(0) = ∗G and γn(1) = xn. Define the map f̃n : Iω → G/H

by the formula

f̃n(t) = γn
(
λ
(
fn(t)

))−1
fn(t)

for t ∈ I
ω.

Claim 6.5. The map f̃n is U-near to fn.

Proof. Fix any t ∈ I
ω. If λ(fn(t)) = 0, then f̃n(t) = ∗G · fn(t) and hence {f̃n(t), fn(t)} is a singleton lying

in some element of the cover U .
If λ(fn(t)) > 0, then fn(t) ∈ U1 and f̃n(t) = γn(λ(fn(t)))−1 · fn(t) ⊂ V −1

2 · U1 ⊂ V1 · U1 ⊂ U0. In this
case {fn(t), f̃n(t)} ⊂ U0 ∈ U . �
Claim 6.6. f̃n(Iω) ∩ U3 = ∅.

Proof. Given any point t ∈ I
ω, we must prove that f̃n(t) /∈ U3.

If λ(fn(t)) < 1, then fn(t) /∈ V2 · U2. We claim that f̃n(t) /∈ U2. Otherwise

fn(t) = γn
(
λ
(
fn(t)

))
f̃n(t) ∈ V2 · U2.

Then f̃n(t) ∈ (G/H) \ U2 ⊂ (G/H) \ U3.
If λ(fn(t)) = 1, then

f̃n(t) = γn
(
λ
(
fn(t)

))−1
fn(t) = x−1

n fn(t) ∈ x−1
n Kn ⊂ (G/H) \ U3

by the choice of the point xn. �
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Claims 6.5 and 6.6 complete the proof that ∗G/H is a strong Z∞-point. If G/H is a separable ANR, then
∗G/H is a strong Z-point, according to Lemma 6.1. �
7. Topological groups, (locally) homeomorphic to small box-products of typical model spaces

In fact, Theorem 1.6 holds in a more general context of small box-products of typical model spaces.
Typical model spaces were introduced in [5] so that manifolds modeled on such spaces have many properties
in common with Hilbert manifolds.

Definition 7.1. A pointed topological space E is called a typical model space if

(1) E is a topologically homogeneous absolute retract containing a topological copy of the Hilbert cube
Q = [0, 1]ω;

(2) For any neighborhood U ⊂ E of ∗E there are neighborhoods V,W ⊂ U of ∗E such that W and E \ V
are homeomorphic to E and the boundary ∂V of V is a retract of V and a Z-set in E \ V ;

(3) each contractible E-manifold is homeomorphic to E;
(4) each connected E-manifold M is homeomorphic to an open subset of E;
(5) any homeomorphism h : A → B between Z-sets A,B ⊂ E extends to a homeomorphism h̄ :E → E

of E;
(6) for any E-manifold M the projection E ×M → M is a near homeomorphism;
(7) for any retract X of an open subset of E the product X ×E is homeomorphic to an open subset of E;
(8) for any retract X of an E-manifold and a strong Z-point ∗X ∈ X the reduced product X � E is an

E-manifold, homeomorphic to X × E.

Remark 7.2. A typical example of a completely metrizable typical model space is any infinite-dimensional
Hilbert space, see [5, 4.2]. Many incomplete typical model spaces can be found among absorbing and
coabsorbing spaces, see [11] and [9].

The following criterion was proved in [5, 6.1].

Theorem 7.3. Let (Xn)n∈ω be a sequence of pointed topological spaces such that for every n ∈ ω the finite
product

∏
i�n Xn is homeomorphic to (an open subspace of ) some typical model space En. Assume that for

infinitely many numbers n ∈ ω the pointed space Xn is lz-pointed. Then the small box-product �n∈ω Xn is
homeomorphic to (an open subset of ) the small box-product �n∈ω En.

Theorems 1.4, 7.3 and Propositions 6.3 and 4.2 imply the following “typical” version of Theorem 1.6.

Theorem 7.4. Let (En)n∈ω be a sequence of typical model spaces. A topological group G carrying the strong
topology with respect to a tower of subgroups (Gn)n∈ω is

(1) homeomorphic to (an open subset of ) �n∈ω En if for every n ∈ ω the group Gn is homeomorphic to (an
open subset of ) En, Gn is topologically complemented in Gn+1 and for infinitely many numbers n ∈ ω

the quotient space Gn+1/Gn is not discrete and has the Z-point property;
(2) (locally) homeomorphic to �n∈ω En if for every n ∈ N the group Gn is (locally) homeomorphic to En

and is locally topologically complemented in Gn+1 and for infinitely many numbers n ∈ ω the quotient
space Gn+1/Gn is not discrete and has the Z-point property.
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