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Algebraic Properties of Decorated
Splitting Obstruction Groups.

A. CAVICCHIOLI - Y. V. MURANOV - D. REPOVŠ (*)

Sunto. – In questo articolo si riassumono le definizioni e le principali proprietà dei
gruppi di ostruzione con decorazione di tipo LS e LP. Si stabiliscono nuove rela-
zioni fra questi gruppi e si descrivono le proprietà delle mappe naturali fra diffe-
renti gruppi con decorazione. Si costruiscono varie successioni spettrali, contenen-
ti questi gruppi con decorazione, e si studiano la loro connessione con le successio-
ni spettrali in K-teoria per certe estensioni quadratiche di antistrutture. Infine, si
introduce il concetto di diagramma geometrico di gruppi e si calcolano esplicita-
mente i gruppi di ostruzione per un diagramma formato da 2-gruppi finiti.

1. – Introduction.

Wall [43] introduced surgery obstruction groups L s
*(Z[p] ) as bordism

groups of normal maps between manifolds with fundamental group p . The su-
perscript s means that this group is the obstruction group to surgery, up to
simple homotopy equivalence. In a natural way, other L-groups were defined
in geometry as L h

*(Z[p] ) (obstructions to surgery, up to homotopy equiva-
lence) and projective Novikov groups L p

*(Z[p] ) [36]. It is possible to study all
these groups systematically from an algebraic point of view by using the con-
cept of decorated L-groups (see [21], [45], and [47]). The algebraic methods
give us good techniques for computing these groups, and for describing rela-
tions between L-groups with different decorations. The most effective method
for computing L-groups was developed by Wall in series of papers on the clas-
sification of Hermitian forms (see [47]). In particular, several deep results
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about L Y
n -groups were obtained. These groups coincide with the groups L 8n for

n even, whereas for n odd we must factor out the subgroup Z2 of L Y
n generated

by the automorphism t defined in Section 2 (see [47]). It follows from [45] that
the groups L 8* are intermediate in the sense of Cappell. In addition, for the
groups of odd order we have an isomorphism L 8*`L*

s . Further developments
of the Wall methods and their applications to computation of natural maps in
L-theory and Browder-Livesay groups were done in [29], [31], and [33].

We have an analogous situation with splitting obstruction groups LS* and
groups LP* of obstructions to surgery on manifold pairs. In simple cases,
these groups coincide with Wall groups of the ring with antistructure, so the
decorated groups can be defined in a natural way as shown in [17], [38] and
[43]. However, in general, the definition is more complicated. Some results on
decorated LS- and LP-groups, for the case which generalizes that of one-sided
submanifolds, were obtained in [28] and [34].

In the present paper, we extend these results, and obtain new relations be-
tween decorated LS- and LP-groups. We describe then new properties of nat-
ural maps between different decorated groups. In particular, we study
surgery spectral sequences involving these decorated groups and their rela-
tions with the spectral sequences in K-theory for twisted quadratic extensions
of antistructures [10] (see also [18]). Furthermore, we introduce the groups
LS Y

*(F) and LP Y
*(F), where F is a geometric diagram of groups (see [20], [23],

and [32]), and describe their properties. In the case of finite 2-groups (see [46]
and [47]) we obtain sufficiently complete results for computing the groups
LS Y

* and LP Y
* and their natural maps.

For general references on algebraic K- and L-theory see [11], [36], [38],
[39] and [45]. Concerning connections between algebraic geometry and alge-
braic K-theory see for example [12] and [37]. For surgery theory on compact
manifolds we refer to [27] and [43]. Basic concepts and definitions concerning
homotopy and homology can be found in monographs [4] and [42].

2. – Surgery obstruction groups.

Let X n be a closed connected n-dimensional manifold in the category H
(H4TOP, PL or DIFF) with fundamental group p 14p 1 (X), and orientation
character w : p 1K]61(. In higher dimensions the problem of determining
the homotopy type and the cobordism class of X was successfully reduced to
the determination of normal invariants and surgery obstruction groups. This
reduction works also in dimension four, provided p 1 is good in the sense of [14]
(see also [15], [16], and [24]). In recent years, many extensions of surgery ob-
struction groups have been successfully introduced to study various geometric
problems in the theory of compact manifolds (as for example the splitting
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problem treated in the next section) (see [13], [14], [17], [27], [31], [40], [41],
and [43]).

Let S h
n (X ) be the set of h-cobordism classes in the category H of orienta-

tion preserving homotopy equivalences h : MKX , where M is a closed con-
nected n-manifold in H . Two such maps are said to be equivalent if there is an
h-cobordism W between them, with a map from W to X extending the ones
given on the boundary.

The main tool to describe the set S h
n (X) is the surgery exact sequence (see

for example [14], [24], [40], and [43]).

THEOREM 2.1. – Let X n be a closed connected n-manifold in the category H
(H4TOP, PL, or DIFF ) with fundamental group p 14p 1 (X), and orienta-
tion character w : p 1K]61(. Then the surgery sequence

RK

K
v n

S h
n11 (X3I , ¯(X3I) )

S h
n (X)

K

K
h n

[SX , G/H]

[X , G/H]

K
s n11

K
s n

L h
n11 (p 1 , w)

L h
n (p 1 , w)

is exact, for every nF5. If n44, then the sequence is exact provided, p 1 is
good in the sense of [14].

There is a version for simple structures obtained by replacing L h and S h

with L s and S s . The superscript s means that the elements of the group L s are
the obstructions to surgery, up to simple homotopy equivalence. The definition
of S s uses the concept of s-cobordism which replaces that of h-cobordism.

Without the assumption that p 1 is good, we can still obtain interesting
results on the stable classification of closed connected orientable 4-mani-
folds, i.e. a classification modulo connected sum with factors homeomorphic to
S23S2 . Examples of groups which are not good are given by the free groups
of rank greater than one, and by the fundamental groups of the aspherical
surfaces of genus at least two. The classification of the homotopy type and the
determination of the s-cobordism class of a closed connected orientable 4-man-
ifold with fundamental group lying in such classes of groups were given in [6],
[7], [8] and [9].

From now on, we write Ln (p , w) for L s
n (p , w), and Ln (p) if moreover the

orientation character w is trivial. Finally, recall that the obstruction groups
are periodic of period four, i.e. Lm`Lm14 .

Subsequently, Wall [44] [45] defined the groups L*(R) of a ring R with an-
tistructure. These groups were described by Ranicki as the algebraic cobor-
dism groups of R-module chain complexes with Poincaré duality (see for
example [38]).

An antistructure [44] is a triple (R , a , u) where R is a ring with
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unity 1 , u�R * is an invertible element, and a : RKR is an antiautomorphism
such that a(u)4u 21 , and a 2 (x)4uxu 21 for any x�R .

Let X be a subgroup in K1 (R) which is invariant with respect to the involu-
tion T induced by a . The groups L X

n (R , a , u), n (mod 4), were defined in [44],
[45], and [47]. These groups are called the Wall surgery obstruction groups
with decoration (or briefly, decorated L-groups). They depend only on the an-
tistructure (R , a , u), on the invariant subgroup X%K1 (R), and on the natural
number n (mod 4).

Suppose, for example, that R is the group ring Z[p 1 ] with standard involu-
tion n : Sag gKSag w ( g) g 21 , where p 14p 1 (X) is the fundamental group of a
manifold X with orientation character w , ag�Z , and g�p 1 . Denote by U the
subgroup of K1 (Z[p 1 ] ) generated by the images of the elements 6g from the
group p 1 . Setting K4K1 (Z[p 1 ] ), X4SK1 (Z[p 1 ] )4Ker (K1 (Z[p 1 ] )K
K1 (Q[p 1 ] ) ) , and Y4X1U , we have isomorphisms (see [47])

L s
2n (p 1 )`L U

2n (Z[p 1 ] ) , L 82n (p 1 )`L Y
2n (Z[p 1 ] ) , L h

2n (p 1 )`L2n
K (Z[p 1 ] ) ,

while, in odd dimensions, the right-hand sides would be factorized by the sub-

group (`Z2 ) generated by the class of the automorphism t4g 0
61

1
0
h.

It is useful to recall that there are decorated Wall groups whose decora-
tions lie in K0 (R) or in KAi (R) for any i40, 1 . These cases can be treated anal-
ogously without additional problems (as a reference see [21]).

For two L*-groups with different decorations X%Y%K1 (R) there exists
the following exact sequence

RKL X
n (R)KL Y

n (R)KH n (Y/X)KL X
n21 (R)KR(2.1)

called the Rothenberg exact sequence (see [21] and [45]). Here H *(Y/X) is the
Tate cohomology defined for any group A with an involution xK x. Recall
that

H 0 (A)4]a4 a : a�A( /]bb : b�A(

and

H 1 (A)4]a4 a21 : a�A( /]bb21 : b�A( .

A morphism of antistructures f : (R , a , u)K (R 8 , a 8 , u 8 ) is a ring homo-
morphism f : RKR 8 such that f (u)4u 8 , and a 8 i f4 f i a .

Consider two antistructures (R , a , u) and (R 8 , a 8 , u 8 ) with invariant sub-
groups X and X 8 , respectively. Let f : RKR 8 be a morphism of antistructures
such that f*(X)%X 8 . The relative groups Ln

X , X 8 ( f ) were also defined in [38]
and [43], which fit in the following exact sequence

RKL X
n (R)KL X 8

n (R 8 )KLn
X , X 8 ( f )KLn21

X (R)KR(2.2)
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In the sequel, we shall simply write Ln ( f ) instead of Ln
X , X 8 ( f ), if this will not

lead to any confusion.
We recall now the definition of the quadratic extension of an antistructure

[39]. Let (R , a , u) be an antistructure, and let (r , a) be a structure on the ring
R , i.e. r : RKR is an automorphism and a�R * is a unity such that r(a)4a ,
and r 2 (x)4axa 21 , for all x�R . The quadratic extension of an antistructure
(R , a , u) with respect to a structure (r , a) is defined as the antistructure
(S , a , u), where S4R[t] /(t 22a), tx4r(x) t , a(t) t�R , and a 2 (t)4utu 21 .

Denote by i the natural morphism (R , a , u)K (S , a , u) of antistructures
and by g the automorphism on the ring S over R given by setting g(x1yt)4
x2yt , for any x and y�R . Observe that the map i is the natural inclusion of
the rings. This map defines the transfer map i ! : K1 (S)KK1 (R) which is given
on modules by the restriction of the S-action onto R%S (see for details [21]
and [39]). Let Y%K1 (S) and X%K1 (R) be subgroups such that i ! (Y)%X . Then
there exist relative groups Ln

Y , X (i ! ) (where the index n is taken mod 4) of the
transfer map i ! which fit in the following exact sequence

RKL Y
n (S , a , u)K

i !

L X
n (R , a , u)KL Y , X

n (i ! )KL Y
n21 (S , a , u)KR(2.3)

Sometimes we shall simply write Ln (i ! ) if it is clear from the context what dec-
orations are currently considered. The automorphism r extends to the ring S
by the formula r(x1yt)4 t(x1yt) t 21 , for every x and y�R . So we obtain
another quadratic extension of antistructures iA : (R , aA, uA)K (S , aA, uA). The
morphism iA coincides with i as map of rings.

3. – Splitting problem.

Let f : MKY be a simple homotopy equivalence between PL or smooth
n-manifolds, and let X%Y be a submanifold of codimension q . We say
that the map f splits along the submanifold X if it is homotopic to a
map g such that g is transversal to X , and the restrictions

gNN : NKX , gNM0N : M0NKY0X

are simple homotopy equivalences. In particular, g 21 (X)4N%M is a codi-
mension q submanifold. There exists a group LSn2q (F) of obstructions
for splitting that depends functorially on the pushout square F of fundamental
groups with orientation

F4up 1 (¯U)
I

p 1 (X)

K

K

p 1 (Y0X)
I

p 1 (Y)
v ,(3.1)
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where U is a tubular neighborhood of X in Y , and on dimension n2q
(mod 4) (see [38] and [43]).

Let f : MKY be only a normal map of degree 1. In this case, the groups
LPn2q (F) of obstructions to surgery of manifold pairs were defined in [38] and
[43]. The LPn-groups depend functorially only on the square F and on the nat-
ural number n (mod 4).

If X is an one-sided submanifold of Y and the horizontal maps in the square
F are isomorphisms, then the groups LS*(F) coincide with the Browder-
Livesay groups LN* (p 1 (Y0X)Kp 1 (Y) ) (see [3], [5], [17], [22] and [26]). Such
pairs of manifolds are called Browder-Livesay pairs. We also have an isomor-
phism LPn (F)`Ln11 (i ! ), where

i ! : Ln11 (p 1 (X) )KLn11 (p 1 (¯U) )

is a transfer map.
For any index 2 inclusion pKG of groups with orientation, the Browder-

Livesay groups LN*(pKG) are the L-groups of the ring with antistructure
(Z[p], a , u), where a(x)4 txt 21 , u42w (t) t 2 , t�G0p , and the bar denotes
the standard involution of the ring Z[p].

The groups LS* and LP* are closely related to the Wall surgery obstruc-
tion groups L* (p 1 (Y) ) and L* (p 1 (X) ) . A deep result, proved by Wall in [43],
illustrates this connection by means of the following diagrams

K Ln1q11 (C) K Ln1q11 (D) K
U

LSn (F) K
6 7 6 7 6 7

LPn11 (F) Ln1q11 (CKD)
7 6 7 6 7 6

K LSn11 (F) K Ln11 (B) K Ln1q (C) K

and
K LNn2q (AKB) K Ln2q (B) K Ln (CKD) K

6 7 6 7 6 7
LSn2q (F) Ln (AKB)

7 6 7 6 7 6
K Ln11 (CKD) K Ln11 (F) K LNn2q21 (AKB) K

where A4p 1 (¯U), B4p 1 (X), C4p 1 (Y0X), and D4p 1 (Y).
Properties of maps in these diagrams are important for various geometric

applications. For example, let Y be a closed manifold of dim Y4n1qF6,
such that there is an isomorphism of oriented groups p 1 (Y)`D (the funda-
mental group of the manifold is equipped by the orientation). Consider a sub-
manifold X%Y of codimension q . The Wall group Ln1q11 (D) acts on the set
S s

n1q (Y) of homotopic triangulations of the manifold Y . Applying this action to
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the trivial triangulation and then taking the obstruction for splitting along the
submanifold X yields the map U : Ln1q11 (D)KLSn (F). Hence the map U in
the diagram is the composition of maps

Ln1q11
s (D)K

wn1q

S s
n1q (Y)KLSn (F) ,

where the first one arises from the Sullivan-Wall exact sequence described in
Theorem 2.1. From this description it follows that if U(x)c0 for an element
x�L s

n1q11 (D), then x acts nontrivially on the set S s
n1q (Y).

The following result was proved by Cappell and Shaneson in [5].

THEOREM 3.1. – Let CKD be an inclusion of index 2 between oriented
groups. If U(x)c0 for an element x�Ln (D), then x can not be realized by
normal maps of closed manifolds, and it acts nontrivially on the set of homo-
topic triangulations S s

n (Y) of any closed connected manifold Y with funda-
mental group p 1 (Y) isomorphic to D .

A natural extension of the concept of Browder-Livesay pair of manifolds is
given by a pair for which the horizontal maps in square (3.1) are epimor-
phisms. Such squares were studied in [1], [25], [28], [31], [34] and [35]. In this
situation, square (3.1) is called a geometric diagram. A geometric example of
such a square is obtained by setting X4RP 13M%Y4RP 23M , where M is
a compact connected m-manifold with fundamental group p .

In particular, the groups LS* and LP* can be defined for the square of an-
tistructures (see [28], [31], and [34]) in which the horizontal maps are epimor-
phisms and the vertical maps are quadratic extensions of antistructures [39].
Such squares of antistructures are a natural generalization of geometric dia-
grams of groups. For example the square of such type arises from a geometric
diagram F by passing to the square of group rings with the standard involu-
tions. The natural way to obtain such squares of antistructures is based on the
concept of a geometric antistructure (see [20], [22], [23], and [32]). This is a
group p with an additional structure which gives a possibility to introduce an
antistructure on the group ring R[p] in a natural way.

4. – LS*- and LP*-groups and K-theory.

In this section we study squares of antistructures which generalize the ge-
ometric diagrams of groups described in Section 3. In this case we introduce
decorated LS*- and LP*-groups and obtain new relations among these groups
and decorated L*-groups. The definition of these groups was given in [28] and
[34], where some preliminary results about them were obtained.

Let (R , a , u) and (P , b , v) be antistructures with structures (r , a) and
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(r 8 , a 8 ), respectively. Consider the commutative diagram of antistruc-
tures

F4u(R , a , u)
Ii

(S , a , u)

K
f

K
g

(P , b , v)
Ij

(Q , b , v)
v4uR

I
S

K

K

P
I
Q
v ,(4.1)

where the horizontal maps are epimorphisms of the rings and the pair of verti-
cal maps gives a quadratic extension of the morphism f (see [28] and [29] for
details). In particular, we have g(t)4 t 8 for t 24a and t 824a 8 . Diagram (4.1)
with these properties is called a geometric diagram since it is the natural ex-
tension of the diagram arising from the splitting problem for the one-sided
submanifold.

In this section we shall sometimes write for simplicity only the underlying
rings and we shall not mention antistructures unless this would lead to some
confusion.

Using the automorphism g and the quadratic extensions iA and jA we obtain
three additional geometric diagrams

FA4u(R , aA , uA)

IiA

(S , aA , uA)

K
f

A

K
gA

(P , b
A , vA)

IjA

(Q , b
A , vA)

v4uRA

I
SA

K

K

PA

I
QA
v ,(4.2)

FAg4u (R , aA , uA)

IiAg

(S , gaA , uA)

K
f

A

K
gA

(P , b
A , vA)

IjAg

(Q , gb
A , vA)

v4uRA

I

S
A

g

K

K

PA

I

Q
A

g

v ,(4.3)

and

Fg4u (R , a , u)
Iig

(S , ga , u)

K
f

K
gg

(P , b , v)
Ijg

(Q , gb , v)

v4uR
I
Sg

K

K

P
I
Qg

v .(4.4)

Consider a commutative diagram of K1-groups induced by the square F ,
i.e.

K1 (F)4uK1 (R)
Ii *

K1 (S)

K
f *

K
g *

K1 (P)
Ij *

K1 (Q)

v .

Note that the group K1 (R) is equipped with the involutions induced by the
anti-automorphisms a , r , and aA. We denote these involutions by T , V , and TA,
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respectively. Then, from the definition of the anti-automorphism aA, we have
TA4V i T . The group K1 (S) is equipped with the involutions induced by a , g ,
and aA which we denote by T , G , and TA, respectively. It is clear from the context
how to recognize the group on which the involution acts. In the group K1 (S),
we have TA4G i T . The situation for the groups K1 (P) and K1 (Q) is similar so
we can denote the corresponding involutions by the same letters.

Consider now the commutative square of subgroups of appropriate
K1-groups

k4u X
Ii *

Y

K
f *

K
g *

Z
Ij *

W

v%uK1 (R)
Ii *

K1 (S)

K
f *

K
g *

K1 (P)
Ij *

K1 (Q)

v4K1 (F) .(4.5)

All maps in the square k are obtained as the corresponding restrictions of the
maps from the square K1 (F). In what follows we shall assume that all groups
in the square k are T- and TA-invariant. In addition, we recall the list of condi-
tions for the square k:

i *(X)%Y , j *(Z)%W ,

i ! (Y)%X ,

f *(X)%Z ,

j ! (W)%Z

g *(Y)%W ,
(4.6)

when the decorated groups LS k
n (F) and LP k

n (F) are defined (see [28] and
[34]).

Denote by

C4u(R , a , u)
Ii

(S , a , u)

K
Id

K
Id

(R , a , u)
Ii

(S , a , u)
v , F4u(P , b , v)

Ij

(Q , b , v)

K
Id

K
Id

(P , b , v)
Ij

(Q , b , v)
v

the geometric diagrams which we can construct by using geometric diagram
(4.1). Then there exist natural maps of these diagrams

CK
s

FK
e

F .(4.7)

The squares of decorations kC and kF for the diagrams C and F are defined in
a natural way. The columns of the square kC are isomorphic to the left column
of the square k. The columns of the square kF are isomorphic to the right col-
umn of the square k. These squares evidently satisfy conditions (4.6). We now
recall some basic facts concerning spectra in L-theory (see for example [11],
[21], [28], [29], [34], [38], and [43]). For any antistructure (R , a , u) and sub-
group X%K1 (R) invariant under the involution induced by a , a simplicial V-
spectrum LX (R , a , u) is defined. It is natural with respect to both transfer
maps and maps induced by morphisms of antistructures. For such a spectrum,
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we have

p q (LX (R , a , u) )4Lq
X (R , a , u) .

In particular, for any quadratic extension i : (R , a , u)K (S , a , u) of anti-
structures and for any subgroups of decorations X%K1 (R) and Y%K1 (S) such
that i *(X)%Y and i ! (Y)%X , exact sequences (2.2) and (2.3) are homotopy long
exact sequences of the corresponding fibrations of spectra i* and i!. The
cofiber of i* is the spectrum LX , Y (i) and the cofiber of i! is the spectrum
LY , X (i ! ). Taking the L-spectra of square (4.2) yields the following homotopy
commutative diagram of spectra which is infinite in horizontal and vertical
directions

QQ
Q QQ

Q QQ
Q

I I I

Q Q Q K LX (RA) K LZ (PA) KLX , Z ( fA)K Q Q Q
I I I

Q Q Q K LY (SA) K LW (QA) KLY , W (gA)K Q Q Q(4.8)
I I I

Q Q Q K LX , Y (iA) K LZ , W ( jA) K Lk (FA) K Q Q Q

I I I
QQ
Q QQ

Q QQ
Q

The spectrum LS k (F) is defined as the homotopy cofiber of one of the follow-
ing maps arising from diagram (4.8) (see [28] for more details)

V 2 Lk (FA)KLX (RA) , VLY (SA)KVLZ , W ( jA) , VLZ (PA)KVLY , W (gA) .(4.9)

Observe that there are isomorphisms p q (LS k (F) )`LSq
k (F) for any q. Analo-

gously, by using square (4.3) we can construct the homotopy commutative dia-
gram of spectra

QQ
Q QQ

Q QQ
Q

I I I
Q Q Q K LY (Sg ) K LW (Qg ) KLY , W ( gg )K Q Q Q

I I I

Q Q Q K LX (R) K LZ (P) KLX , Z ( f ) K Q Q Q(4.10)
I I I

Q Q Q K LY , X (i !
g ) K LW , Z ( j !

g ) K Lk (F !
g ) K Q Q Q

I I I
QQ
Q QQ

Q QQ
Q
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The spectrum LP k (F) is defined as the homotopy fiber of one of the following
maps arising from diagram (4.10) (see [34] for more details)

VLX , Z ( f )KLY , X (i !
g ) , LY (Sg )KLZ (P) , VLW , Z ( j !

g )KLY , W ( gg ) .(4.11)

Observe that there are isomorphisms p q (LP k (F) )`LPq
k (F) for any q.

THEOREM 4.1. – Let F be a geometric diagram of antistructures and let k
be the square of T and TA invariant subgroups of K1 (F) with properties (4.6).
There exist groups LS k

n (F) and LP k
n (F), where n is defined mod 4, fitting in

the following braids of exact sequences:

K L k
n11 (SA) K L Z , W

n12 ( j) K L k
n12 (F) K

6 7 6 7 6 7
(4.12) L X , Y

n12 (i) LS k
n (F)

7 6 7 6 7 6
K L k

n13 (F) K L X
n (RA) K L Y

n (SA) K,

K L Y
n11 (SA) K L Z , W

n12 ( j) K L Z
n (PA) K

6 7 6 7 6 7
(4.13) L W

n11 (QA) LS k
n (F)

7 6 7 6 7 6
K L Z

n11 (PA) K L Y , W
n11 ( gA) K L Y

n (SA) K,

K L Z
n11 (PA) K L Y , W

n11 ( gA) K L k
n12 (F) K

6 7 6 7 6 7
(4.14) L X , Z

n11 ( fA) LS k
n (F)

7 6 7 6 7 6
K L k

n13 (F) K L X
n (RA) K L Z

n (PA) K,

K L Y
n11 (Sg ) K L Z

n11 (P) K L X , Z
n11 ( f ) K

6 7 6 7 6 7
(4.15) L X

n11 (R) LP k
n (F)

7 6 7 6 7 6
K L X , Z

n12 ( f ) K L Y , X
n11 (i !

g ) K L Y
n (Sg ) K,

K L W , Z
n12 ( j !

g ) K L Y , W
n11 ( gg ) K L Y

n (Sg ) K
6 7 6 7 6 7

(4.16) L W
n11 (Qg ) LP k

n (F)
7 6 7 6 7 6

K L Y
n11 (Sg ) K L Z

n11 (P) K L W , Z
n11 ( j !

g ) K,



A. CAVICCHIOLI - Y. V. MURANOV - D. REPOVŠ658

K L X , Z
n12 ( f ) K L Y , X

n11 (i !
g ) K L W , Z

n11 ( j !
g ) K

6 7 6 7 6 7
(4.17) L k

n12 (F !
g ) LP k

n (F)
7 6 7 6 7 6

K L W , Z
n12 ( j !

g ) K L Y , W
n11 ( gg ) K L X , Z

n11 ( f ) K,

K L Z
n11 (P) K L W

n11 (Q) K LS k
n21 (F) K

6 7 6 7 6 7
(4.18) LP k

n (F) L Z , W
n11 ( j)

7 6 7 6 7 6
K LS k

n (F) K L Y
n (Sg ) K L Z

n (P) K,

and

K L Y , W
n11 ( gg ) K LP k

n (F) K L W
n11 (Q) K

6 7 6 7 6 7
(4.19) LS k

n (F) L W , Z
n11 ( j !

g )
7 6 7 6 7 6

K L W
n12 (Q) K L Z

n (PA) K L Y , W
n ( gg ) K.

In addition, there exists the following commutative diagram of abelian
groups with exact rows and columns

QQ
Q QQ

Q QQ
Q

I I I

Q Q Q K L X
n (RA) K L Y , X

n11 (i !
g ) K L Y

n11 (S)K Q Q Q

I I I

Q Q Q K LS k
n (F) K LP k

n (F) K L W
n11 (Q)K Q Q Q(4.20)

I I I

Q Q Q K L k
n12 (F) K L X , Z

n11 ( f ) K L Y , W
n11 ( g)K Q Q Q

I I I

QQ
Q QQ

Q QQ
Q

PROOF. – Let us consider a natural map of cofibrations

V 2 Lk (FA) K VLX , Y (iA) K VLZ , W ( jA)
V I I

V 2 Lk (FA) K LX (RA) K LS k (F)
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where the vertical map on the right side exists, in order to obtain a homotopy
commutative diagram, as shown in [42]. It follows from the diagram that the
right square is in fact a push-out since the fibers (and, hence, the cofibers) of
the horizontal maps are naturally homotopy equivalent. This implies that the
fibers and the cofibers of the vertical maps are naturally homotopy equivalent,
too. Now diagram (4.12) follows by considering homotopy long exact se-
quences of the maps in the right square of the diagram above if we use the fol-
lowing homotopy equivalences of spectra LX , Y (iA)CVLX , Y (i), LZ , W (jA)C
VLZ , W ( j), and Lk (FA)CVLk (F) (see [28] and [39]). Diagrams (4.13) and (4.14)
can be obtained similarly.

Diagrams (4.15), (4.16) and (4.17) can be treated in a similar way by using
definition (4.11) and diagram (4.10) (see [10], [28] and [34] for more
details).

Let us consider the following homotopy commutative diagram in which the
horizontal rows are fibrations

VLZ (SA) K VLZ , W ( jA) K LS k (F)
CI I I

VLZ (Sg )K VLZ (P) K LP k (F) .

The vertical map in the left side is a homotopy equivalence, and the commuta-
tivity of the left square follows from [39]. The vertical map in the right side
exists according to [42]. Hence the right square is a push-out. Taking now the
homotopy long exact sequences of this square yields diagram (4.18).

The natural map e : FKF in (4.7) induces the homotopy commutative
square of spectra

LS k (F) K LP k (F)
I I

LS kF (F)K LP kF (F) .

There exist homotopy equivalences LS kF (F)CL Z (PA) and LP kF (F)C
VLW , Z ( j !

g ) (see [29] and [39]). The cofibers of the horizontal maps are homo-
topy equivalent to VLW (Q), as follows from diagram (4.18). Hence the above
diagram is a push-out. A cofiber of any vertical map is homotopy equivalent to
LY , W (gA) by diagram (4.14). Passing to the homotopy long exact sequences of
all maps in the diagram above, we get diagram (4.19). Commutative diagram
(4.20) can be obtained similarly to (4.19) if we consider the map s : CKF in
(4.7). This completes the proof. r

Let X be a subgroup of K1 (Z[p] ) which is invariant under the involution in-
duced by a. Then we have LN X

*(pKG)`L X
* (Z[p], a , 2w (t) t 2 ) , where
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t�G0p (see [17], [21], and [47]). In the considered case the groups which play
the role of the LN-groups are given by LS kC

n (C). In this case, we have
Ln

kC (C)`0 for any n (see for example [38]). It follows from diagram (4.14)
that there are isomorphisms LSn

kC (C)`Ln
X (RA) for any n (see [28]).

PROPOSITION 4.2. – Let C be the geometric diagram of antistructures, con-
sidered above, with the square of decorations kC satisfying conditions
i *(X)%Y and i ! (Y)%X. Then there are natural isomorphisms

LPn
kC (C)`Ln11 (i !

g )

for all n.

PROOF. – Let us consider diagram (4.17) for the decorated square C. Since
the groups L *

X , X ( Id ) are trivial, the result follows from one of the exact se-
quences of this diagram. r

We now consider diagram (4.18) for the square C. Using the isomorphisms
obtained above, we can write it in the following way (see also [29] and [39])

K L X
n (R) K L Y

n (S) K L X
n22 (RA) K

6 7 6 7 6 7
(4.21) L Y , X

n (i !
g ) IG L X , Y

n (i)
7 6 7 6 7 6

K L X
n21 (RA) K L Y

n21 (Sg ) K L X
n21 (R) K.

Let us consider the square C g with the same decorations kC . Then we have
(C g )g4C , (ig )g4 i , and (Sg )g4S.

PROPOSITION 4.3. – For every n there exist isomorphisms

LS kC
n (C g )`L X

n12 (RA) .

PROOF. – Applying A to the map ig : (R , a , u)K (S , g i a , u) we get a new
antistructure on the ring R , that is

(R , aA, 2uA)4(R , r i g i g i a , 2tg(a(t 21 ) ) u)4 (R , r i a , ta(t 21 ) u)

since gNR is the identity map. In the considered case, diagram (4.14) yields the
isomorphisms

LS kC
n (C g )`Ln

X (R , aA, 2uA)`L X
n12 (R , aA, uA)

for all n. r
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By using the isomorphisms obtained above, we can write diagram (4.18) for
the decorated square C g in the following form:

K L X
n (R) K L Y

n (Sg ) K L X
n (RA) K

6 7 6 7 6 7
(4.22) L Y , X

n (i ! ) IG L X , Y
n (ig )

7 6 7 6 7 6
K L X

n11 (RA) K L Y
n21 (S) K L X

n21 (R) K.

Diagrams (4.21) and (4.22) are realized on the spectra level, i.e. to obtain them
it suffices to write only the central squares on the spectra level. This allows us
to construct a spectral sequence which generalizes the surgery spectral se-
quence obtained in [18]. It is necessary to remark, here, that the map G in dia-
grams (4.21) and (4.22) denotes the isomorphism between the homology
groups of the corresponding members in the top and the bottom chain
complexes.

THEOREM 4.4. – For the square C with decorations kC there exists a spec-
tral sequence which does not depend on decoration Y provided i *(X)%Y and
i ! (Y)%X. The first member is given by

E p , q
1 `Lq12

X (RA)4L X
q12 (R , aA, uA) .

For any p, the differential map d1
p , q : E1

p , qKE1
p11, q is the composition

L X
q12 (RA)KL Y

q111 (21)p (S(gp11 ) )KL X
q12 (RA) .

For even p, the first map lies in diagram (4.21), and the second one lies in di-
agram (4.22). For odd p, the first map lies in diagram (4.22), and the second
one lies in diagram (4.21).

We remark that, for any even p , the higher differentials

dk : Ek
p , q

`L X
q12 (RA)KEk

p1k , q1k21
`L X

q1k11 (RA)

are given by the composition of the following maps

L X
q12 (RA)KL Y

q12 (Sg )

IG

L Y
q11 (S)

IG

Lq
Y (Sg )

QQ
Q

˜ KL X
q1k11 (RA) .
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Here in the place of ˜ we have the group L Y
q2k13 (Sgk ). For any odd p , the

higher differentials are described in a similiar way.

PROOF OF THEOREM 4.4. – Diagrams (4.21) and (4.22) are generated by the
push-out squares of the spectra (see also [29]) which can be written in the fol-
lowing form

LY (S)
6 7

LY , X (i !
g ) LX , Y (i)

7 6
SLY (Sg )
6 7

SLY , X (i ! ) SLX , Y (ig )
7 6
S 2 LY (S)

Q Q Q

where S is a functor which is defined on each spectrum A4]An( by the for-
mula (SA)n4An11 . Continuing with this procedure, we obtain the vertical
column of the push-out squares. We can now apply a method, which is due to
Hambleton and Kharshiladze [18] (see also [10]), to construct a further spec-
tral sequence. The description of E p , q

1 and the differentials are obtained simi-
larly as in [10] and [18]. From this description it follows that E1

p , q4
Lq12

X (R , aA, uA) does not depend on the decoration Y. It remains only to prove
the independence of the differentials in the spectral sequence from the deco-
ration Y. Let us consider the commutative diagram

Lq12
X (RA) K Lq12

Y (Sg ) K Lq12
X (RA)

cI H H̄
Lq12

i *(X) (Sg ) 1 Lq12
i *(X) (Sg ) 1 Lq12

i *(X) (Sg )

in which the middle vertical map exists, since i *(X)%Y by (4.6). For the dia-
gram above it follows that the differential d1

p , q is the composition ¯ i c for any
p even, and that it is independent of Y%K1 (S). The other cases can be treated
similarly by using the functorial properties of diagrams (4.21) and (4.22). Thus
the proof is completed. r

REMARK 4.23. – The composite map e i s : CKF induces a natural map be-
tween the geometric diagrams equipped with decorations kC and kF , respect-
ively. This map gives further maps (of vertical columns) between the corre-
sponding push-out squares. Considering the cofibers of all these maps yields
vertical columns of «relative» push-out squares which define a relative spec-
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tral sequence of the map e i s. In particular, if C4F and kCckF , then we
have a spectral sequence in K-theory for a twisted quadratic extension studied
in [10].

Let

F 84u(R 8 , a 8 , u 8 )
Ii 8

(S 8 , a 8 , u 8 )

K

K

(P 8 , b 8 , v 8 )
I

(Q 8 , b 8 , v 8 )
v

be a further geometric diagram of antistructures, and let

k 84uX 8
I
Y 8

K

K

Z 8
I
W 8
v

be a square of decorations which satisfy conditions (4.6). Let L : FKF 8 be a
morphism such that the induced map L*: kKk 8 is defined, i.e. there are in-
clusions L*(X)%X 8 , L*(Y)%Y 8 , L*(Z)%Z 8 , and L*(W 8 )%W , and the result-
ing diagram (having the form of a cube) is commutative.

THEOREM 4.5. – Under these hypotheses, the relative groups LSn (L) and
LPn (L) (n mod 4) are defined. These groups fit into the following long exact
sequences

Q Q Q K LS k
n (F) K LS k 8

n (F 8 ) K LSn (L) K LS k
n21 (F) K Q Q Q(4.24)

and

Q Q Q K LP k
n (F) K LP k 8

n (F 8 ) K LPn (L) K LP k
n21 (F) K R(4.25)

PROOF. – Let us denote by LP(L) the cofiber of the natural map LP k (F)K
LP k 8 (F 8 ) (see [42]), and set LPn (L) »4p n (LP(L) ). The homotopy long exact
sequence of the obtained cofibration gives exact sequence (4.25). The case of
LS-groups can be treated similarly (compare also with [28]). So the result is
completely proved. r

In particular, if F4F 8 and kck 8 , then exact sequences (4.24) and (4.25)
represent the analogues of the Rothenberg exact sequence, where the relative
groups are isomorphic to the Tate cohomology groups. This case was treated
in [28] and [34].

So we can write for L : FKF and kck 8 exact sequences (4.24) and (4.25)
in the following form

Q Q Q K LSn
k (F) K LS k 8

n (F) K H n (LS(k 8 /k) ) K LSn21
k (F) K R(4.26)
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and

Q Q Q K LPn
k (F) K LP k 8

n (F) K H n (LP(k 8 /k) ) K LPn21
k (F) K R(4.27)

where H n (LS(k 8 /k) ) and H n (LP(k 8 /k) ) are the Tate cohomology groups
(compare with exact sequence (2.1)). For two different involutions T and TA, we
shall write H *(A) if A is equipped with the involution T , and H *(AA) if A is
equipped with the involution TA.

If f : (R , a , u)K (P , b , v) is a morphism between antistructures, and
there exist two possible decorations X%X 8%K1 (R) and Z%Z 8%K1 (P), then we
denote by H *(X 8/XKZ 8/Z) the Tate cohomology groups which fit into the
following exact sequences

Q Q Q K Ln
X , Z ( f ) K Ln

X 8 , Z 8 ( f )KH n (X 8/XKZ 8/Z) K R

and

Q Q Q K H n (X 8/X) K H n (Z 8/Z) K H n (X 8/X K Z 8/Z) K R

and so on, similarly for other morphisms (see [38] for details). In the following
theorem we shall denote by H n (LS) the groups H n (LS(k 8 /k) ) and by H n (LP)
the groups H n (LP(k 8 /k) ).

THEOREM 4.6. – Under the above hypotheses, the Tate cohomology groups
H n (LS) and H n (LP) fit into the following braids of exact sequences:

K H n11 (Y 8/YA) K H n12 (Z 8/ZKW 8/W) K H n12 (k 8/k) K
6 7 6 7 6 7

(4.28) H n12 (X 8/XKY 8/Y) H n (LS)
7 6 7 6 7 6

K H n13 (k 8/k) K H n (X 8/XA) K H n (Y 8/YA) K,

K H n11 (Y 8/YA) K H n12 (Z 8/ZKW 8/W) K H n (Z 8/ZA) K
6 7 6 7 6 7

(4.29) H n11 (W 8/WA) H n (LS)
7 6 7 6 7 6

K H n11 (Z 8/ZA) K H n11 (Y 8/YA
KW 8/WA) K H n (Y 8/YA) K,

K H n11 (Z 8/ZA) K H n11 (Y 8/YA
KW 8/WA) K H n12 (k 8/k) K

6 7 6 7 6 7
(4.30) H n11 (H 8/XA

KZ 8/ZA) H n (LS)
7 6 7 6 7 6

K H n13 (k 8/k) K H n (X 8/XA) K H n (Z 8/Z) K,
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(4.31)

K H n11 (Y 8/YA) K H n11 (Z 8/Z) K H n11 (X 8/XKZ 8/Z) K
6 7 6 7 6 7

H n11 (X 8/X) H n (LP)
7 6 7 6 7 6

K H n12 (X 8/XKZ 8/Z) K H n11 (Y 8/YA
KX 8/X) K H n (Y 8/Y) K,

(4.32)

K H n12 (W 8/WAKZ 8/Z) K H n11 (Y 8/YKW 8/W) K H n (Y 8/YA) K
6 7 6 7 6 7

H n11 (W 8/WA) H n (LP)
7 6 7 6 7 6

K H n11 (Y 8/YA) K H n11 (Z 8/Z) K H n11 (Y 8/YA
KZ 8/Z) K,

(4.33)

K H n12 (X 8/XKZ 8/Z) K H n11 (Y 8/YA
KX 8/X) K H n11 (W 8/WAKZ 8/Z) K

6 7 6 7 6 7
H n12 ((k 8/k)!

g) H n (LP)
7 6 7 6 7 6

K H n12 (W 8/WAKZ 8/Z) K H n11 (Y 8/YA
KW 8/WA) K H n11 (X 8/XKZ 8/Z) K,

K H n11 (Z 8/Z) K H n11 (W 8/W) K H n21 (LS) K
6 7 6 7 6 7

(4.34) H n (LP) H n11 (Z 8/ZKW 8/W)
7 6 7 6 7 6

K H n (LS) K H n (Y 8/YA) K H n (Z 8/Z) K,

and

(4.35)

K H n11 (Y 8/YA
KW 8/WA) K H n (LP) K H n11 (W 8/W) K

6 7 6 7 6 7
H n (LS) H n11 (W 8/WAKZ 8/Z)

7 6 7 6 7 6
K H n12 (W 8/W) K H n (Z 8/ZA) K H n (Y 8/YA

KW 8/WA) K.

Furthermore, there exists the following commutative diagram of abelian
groups with exact rows and columns

Q Q Q K H n (X 8/XA) K H n11 (Y 8 /YAKX 8/X) K H n11 (Y 8/Y) Q Q Q

I I I
Q Q Q K H n (LS) K H n (LP) K H n11 (W 8/W) Q Q Q

I I I
Q Q Q KH n12 (k 8 /k) K H n11 (X 8/XKZ 8/Z) K H n11 (Y 8/YKW 8/W) Q Q Q
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PROOF. – We consider diagrams (4.12)-(4.20) on the spectra level for the
squares F k and F k 8. Here F k (resp. F k 8) denotes the square F decorated by k
(resp. k 8). For each such diagram, it suffices to consider only the central
square of spectra as done in the proof of Theorem 4.4. Now the map L : F kK
F k 8 induces the natural map between these push-out squares. The cofibers of
the induced maps give rise to a new push-out square. The homotopy long exact
sequences of the obtained squares yield diagrams (4.28)-(4.36) from the state-
ment of the theorem. r

We now describe the relative decorated LP *-groups of the maps s and e
from sequence (4.7). The corresponding result for decorated LS *-groups can
be found in [28], i.e. there are isomorphisms LSn (e)`Ln

Y , W (gA) and LSn (s)`
Ln12

k (F), where the subscript indices are taken mod 4.

THEOREM 4.7. – Under these hypotheses, we have isomorphisms LPn (s)`
Ln11

X , Z ( f ) and LPn (e)`Ln
Y , W ( gg ), where the subscript indices are taken

mod 4.

PROOF. – The results follow from the commutative diagrams obtained from
the maps of diagram (4.18) written for the squares C , F , and F , respect-
ively. r

Let k1 be the square of decorations k in which Z4X. Another interesting
result can be obtained by considering the geometric diagram C with the
square of decorations k1. Of course, we assume that all decorations satisfy con-
ditions (4.6).

PROPOSITION 4.8. – Under the hypotheses above, we have isomorphisms
LS k1

n (C)`Ln
X (RA) and LPn

k1 (C)`Ln11
Y , X (i !

g ), where the subscript indices are
taken mod 4.

PROOF. – The result for LP *-groups follows directly from an exact se-
quence in diagram (4.15) since the groups Ln

X , X ( Id ) are trivial. To obtain the
result for LS *-groups, we use diagram (4.14). r

Let now consider the same square C equipped with decorations k4k2

(with W4Y) which satisfy conditions (4.6). Then we have the following
result.

PROPOSITION 4.9. – Under the hypotheses above, we have isomorphisms
LS k2

n (C)`Ln
Z (RA) and LPn

k2 (C)`Ln11
Y , Z (j !

g ), where the subscript indices are
taken mod 4.
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PROOF. – The proof is similar to that of Proposition 4.8, and it can
be obtained by considering diagrams (4.13) and (4.17). r

5. – The groups LS Y and LP Y of geometric diagrams of groups.

In a series of fundamental papers on the classification of Hermitian forms,
Wall developed some methods which produce deep results on computations of
Wall and Browder-Livesay groups, and on descriptions of natural maps in L-
theory (see [19], [23], [29], [31], [33], and [47]). For a finite group p , the group
L *

K (Z×2 [p] ), where K4K1 (Z×2 [p] ), was first computed. Recall, here, that U is
the subgroup of K1 (Z[p] ) generated by the images of the elements 6g from
the group p , X4SK1 (Z[p] )4Ker (K1 (Z[p] )KK1 (Q[p] ) ) , and Y4X1U.
We shall denote by U , X , and Y the subgroups of K4K1 (Z×2 [p] ) defined simi-
larly to the case of K1 (Z[p] ) in Section 2 (see [47]). Then the Rothenberg exact
sequence for the group ring Z×2 [p] and decorations Y%K allows us to compute
the groups L *

Y (Z×2 [p] ). Moreover, for a finite 2-group p there exist isomor-
phisms Ln

K (Z×2 [p] )`Z2 for any n (mod 4). At the final step of computation it
was used the relative long exact sequence

(5.1) K L Y
n (Z[p] ) K L Y

n (Z×2 [p] ) K L Y
n (Z[p] K Z×2 [p] ) K L Y

n21 (Z[p] )K,

where L Y
n (Z[p]KZ×2 [p] )`L X

n (Z[p]KZ×2 [p] ) [47].
Hereafter we shall develop the Wall methods to introduce and study

the decorated groups LS Y and LP Y of geometric diagrams of groups (see
[20], [22], [23], and [32]). First we recall some necessary definitions. A
geometric antistructure on a group p is a 4-tuple (p , w , u , b), where
w : pK]61( is an orientation homomorphism, u�Aut (p), and b�p such
that

(i)

(ii)

(iii)

wu( g)4w ( g), for every g�p ,

u 2 ( g)4bgb 21 , for every g�p ,

u(b)4b , and w (b)41 .

(5.2)

For any ring R with involution and invertible element (orientation)
e�R *, such that e4e21 , we can define an associated antistructure
(R[p], a , u). Here the anti-automorphism a is defined by

a : Srg gKSrg w ( g) u( g 21 )

and we have u4eb as unit. In what follows we shall suppose that the
involution on the ring R is trivial and e461. Whenever this does not
lead to any confusion we shall denote the oriented geometric antistructure
(p , w , u , b , e) by (p , e). It is necessary to remark, here, that the group
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p with orientation homomorphism w : pK]61( gives the geometric an-
tistructure (p , w , u , e), where u is the identity map, and e is the unity
element.

A morphism of oriented geometric antistructures f : (p , e)K (p 8 , e 8 ) is
defined as a homomorphism f : pKp 8 such that

(i)

(ii)

(iii)

w 8 f ( g)4w ( g), for every g�p ,

u 8 f ( g)4 fu( g), for every g�p ,

f (b)4b 8 , and e4e 8 i f .

The map f induces the morphism of the associated antistructures which we de-
note by f , too. The inclusion i : (p , w 8 , u 8 , b 8 , e 8 )K (G , w , u , b , e) of index 2
of oriented geometric antistructures is defined in a natural way as a morphism
for which the underlying map i : pKG is the inclusion of index 2. Then the
group p is identified with a subgroup of G , and hence we have b4b 8 , w 84
wNp , e4e 8. We can write such an inclusion as (pKG , w , u , b , e). An element
t�G0p defines the quadratic extension of the associated antistructures
(R[p], a , u)K (R[G], a , u) with respect to the structure (r , a), where u4eb ,
a(Srg g)4Sw ( g) rg u( g 21 ), a4 t 2 , r(Srg g)4Srg tgt 21 , for any rg�R and
g�G (see [20] and [32] for details).

A geometric diagram of groups is a commutative square of oriented geo-
metric antistructures

F4u(p , w , u , b , e)
I

(G , w , u , b , e)

K

K

(r , w 8 , u 8 , b 8 , e 8 )
I

(H , w 8 , u 8 , b 8 , e 8 )
v4u p

Ii

G

K
f

K
g

r
Ij

H
v(5.3)

where the vertical maps are inclusions of index 2 of geometric antistructures,
and the horizontal maps pKr and GKH are epimorphisms.

In what follows we shall sometimes write p instead of (p , w , u , b , e) if this
does not lead to any confusion. We shall use analogous agreements for the
maps and squares of geometric antistructures.

For a ring T , the square F defines the geometric diagram of antistruc-
tures

F4u(R , a , u)
Ii

(S , a , u)

K
f

K
g

(P , b , v)
Ij

(Q , b , v)
v4uR

I
S

K

K

P
I
Q
v(5.4)

where all rings R4Tp , P4Tr , S4TG , and Q4TH are equipped with the
associated antistructures. In diagram (5.4) the vertical maps are quadratic ex-
tensions of antistructures and the horizontal maps are epimorphisms of anti-
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structures. Hence for square (4.5) of decorations k%K1 (F) satisfying condi-
tions (4.6) we can define the decorated LS and LP-groups of the geometric di-
agram of groups in (5.3) as follows:

LS k
n (F)4

def
LS k

n (F) and LP k
n (F)4

def
LP k

n (F) .

By definition, these groups satisfy all properties of the LS and LP-groups of
the corresponding geometric diagram of antistructures described in Section 4.

For T4Z×2 we denote by F×2 the geometric diagram of associated antistruc-
tures shown in (5.4), and for T4Z we denote the corresponding geometric di-
agram by F. Let K be the square of decorations

K4K1 (F×2 )4uK1 (Z×2 [p] )
I

K1 (Z×2 [G] )

K

K

K1 (Z×2 [r] )
I

K1 (Z×2 [H] )
v

for the square F×2 .

THEOREM 5.1. – Suppose that the groups in the square F are finite 2-
groups. Then we have the following isomorphisms (subscript indices
mod 4)

LSn
K (Z×2 [F] )`Z2 and LP K

n (Z×2 [F] )`Ln11
K ( j !

g )`Ln11
K (i !

g )`Z25Z2 .

PROOF. – For any morphism of geometric antistructures the induced map
of groups L K is an isomorphism, and hence the corresponding relative groups
are trivial (see for example [47]). This implies the first isomorphism of the the-
orem. Finally, we obtain the other isomorphisms by diagram (4.18) r

The square of decorations Y%K4K1 (F×2 ), for which conditions (4.6) are
satisfied, is defined in a natural way. Hence the groups LSn

Y (F×2 ) and LPn
Y (F×2 )

are defined for all n. Applying Theorem 5.1 we can write exact sequences
(4.26) and (4.27) in the following forms

Q Q Q K LSn
Y (F×2 ) K

n s
Z2 K H n (LS(K/Y) ) K LSn21

Y (F×2 ) K R(5.5)

and

R K LPn
Y (F×2 ) K

n p

Z25Z2KH n (LP(K/Y) ) K LPn21
Y (F×2 ) K R(5.6)

We now describe how to reduce computations of the maps n s and n p to pre-
vious results proved by Wall in [47]. Assume that all groups in diagram (5.3)
are finite 2-groups. Then for T4Z×2 and the associated geometric diagram of
antistructures in (5.4) F we have the following result.
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THEOREM 5.2. – If one of the maps

Ln
Y (Z×2 [G]
A

)KLn
K (Z×2 [G]
A

)`Z2 or Ln
Y (Z×2 [r]
A

)KLn
K (Z×2 [r]
A

)`Z2

is trivial, then the map n s in (5.5) is trivial.
If one of the maps

Ln
Y (Z2 [p]
A

)KLn
K (Z×2 [p]
A

)`Z2 or Ln12
Y (Z×2 [H] )KLn

K (Z×2 [H] )`Z2

is an epimorphism, then the map n s in (5.5) is an epimorphism.

PROOF. – The results follow by considering natural maps from diagrams
(4.12) and (4.19) for the square F×2 with decorations Y to the similar diagrams
with decorations K. r

Diagram (4.18) gives a natural decomposition of the group LPn
K (F×2 ) into a

direct sum of two groups, each of them isomorphic to Z2 , i.e.

LPn
K (F×2 )`LSn

K (F×2 )5LSn
K (Z×2 [H] )`LSn

K (Z×2 [r] )5LSn
K (Z×2 [G]
A

) .

Now the results of [47], Theorems 4.1 and 5.2 give us the possibility of comput-
ing the map n p in the long exact sequence (5.6). To describe the Tate cohomol-
ogy groups H n (LS(K/Y) ) and H n (LP(K/Y) ) in the exact sequences (5.5) and
(5.6) we can use the diagrams of Theorem 4.6. In order to use the Wall
methods for computing the groups LS Y

n (F) and LP Y
n (F) we must now deter-

mine the relative members LS Y
n (FKF×2 ) and LP Y

n (FKF×2 ) which fit in the fol-
lowing long exact sequences:

Q Q Q K LS Y
n (F) K LS Y

n (F×2 ) K LS Y
n (F K F×2 ) K Q Q Q(5.7)

and

Q Q Q K LP Y
n (F) K LP Y

n (F×2 ) K LP Y
n (F K F×2 ) K Q Q Q(5.8)

Let us consider, in addition, the square of decorations X4SK1 (F). It is
clear that the decorated groups LS X

n (F) and LP X
n (F) are well defined. Follow-

ing [47], we denote similarly by X the square of decorations SK1 (F×2 ). Then the
groups LS X

n (F×2 ) and LP X
n (F×2 ) are well defined. For the groups decorated by X

there exist relative exact sequences similar to (5.7) and (5.8).

THEOREM 5.3. – Under the hypotheses above, we have isomorphisms

LS X
n (FKF×2 )`LS Y

n (FKF×2 ) and LP X
n (FKF×2 )`LP Y

n (FKF×2 ) .
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PROOF. – It follows from Theorem 4.6 and [47] that relative Tate cohomolo-
gy groups H n

rel (LS(Y/X) ) fitting in the following commutative diagram

KLSn
X (FKF×2 )KLSn

Y (FKF×2 )KH n
rel (LS(Y/X) )K

are trivial. The case of the groups LP can be treated similarly. r

Now we describe how to reduce the computation of relative members
LS X

n (FKF×2 ) and LP X
n (FKF×2 ) to the corresponding results of Wall [47]. The

group ring Q[p] splits into a direct sum of simple algebras

Q[p]4» Af ,

where Af4af (Q[p] ) for a central idempotent af , 14!af , and each af is not
expressed as a sum of nontrivial central idempotents (see [22], [23], and [47]).

This decomposition induces a decomposition of the associated antistruc-
ture

(Q[p], a , u)4 »
f4a(f)

(Af , a f , uf )3 »
f`a(f)

(Af3Aa(f) , a f3a(f) , uf3ua(f) ) ,

where aa(c) denotes a(ac ). We have similar decompositions

(Z[1 /2][p], a , u)4 »
f4a(f)

(L f , a f , uf )3 »
f`a(f)

(L f3L a(f) , a f3a(f) , uf3ua(f) ) ,

(Q×2 [p], a , u)4 »
f4a(f)

(L f 2
×, a f , uf )3 »

f`a(f)
(L f 2
×3L a(f)2
×, a f3a(f) , uf3ua(f) ) .

THEOREM 5.4. – [22] For any geometric antistructure (p , w , u , b , e) we
have the following decomposition of the relative L Y

`L X-groups with the as-
sociated antistructure

Ln
X (Z[p]KZ×2 [p], a , u)K

` »
f4a(f)

Ln
S (L fKL f 2

×, a f , uf ) ,

where the decorations S denote the trivial subgroups of the corresponding
groups K1 .

Let g : (G , w , u , b , e)K (H , w 8 , u 8 , b 8 , e 8 ) be the epimorphism of geo-
metric antistructures, where the finite 2-groups G and H arise from square
(5.3).

THEOREM 5.5. – The epimorphism g of geometric antistructures induces
the splitting projections

g *: L X
n (Z[G]KZ×2 [G] )KL X

n (Z[H]KZ×2 [H] )

for every n40, 1 , 2 , 3 mod 4.
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PROOF. – The statement follows from the natural decompositions given by
Theorem 5.4, and by using results proved in [20] and [21]. r

The results of [47] give a complete description of the relative groups
L X

n (Z[H]KZ×2 [H] ) and L X
n (Z[G]KZ×2 [G] ) in the considered case. So Theo-

rem 5.5 gives the groups L X( rel )
n11 ( g) for any epimorphism g : GKH of geometric

antistructures in the case of finite 2-groups G and H.

THEOREM 5.6. – Let F be a square of geometric antistructures with finite 2-
groups. Then there are isomorphisms

LSn
X (FKF×2 )`L X( rel )

n11 ( g 2 )5Ln
X (Z[r]
A

KZ×2 [r]
A

)

for every n40, 1 , 2 , 3 mod 4.

PROOF. – The result follows from diagram (4.14) for the relative groups and
from Theorem 5.5. r

THEOREM 5.7. – Under the hypotheses of Theorem 5.6, we have isomor-
phisms

LPn
X (FKF×2 )`L X( rel )

n11 ( g 2 )5Ln11
X( rel ) (j !

2 )

for every n40, 1 , 2 , 3 mod 4, where Ln11
X( rel ) ( j !

2 ) are the relative groups of the
transfer map j !

2 fitting in the following exact sequence

Q Q Q K L X
n (Z[H 2 ] K Z×2 [H 2 ] ) K L X

n (Z[r] K Z×2 [r] ) K Ln
X( rel ) ( j !

2 ) K R

PROOF. – The result follows from diagram (4.16) for the relative groups and
from Theorem 5.5. r
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L-teoria, to appear.

[12] R. K. DENNIS - C. PEDRINI - M. R. STEIN (Eds.), Algebraic K-Theory, Commutative
Algebra, and Algebraic Geometry, Proceed. U.S.-Italy Joint Sem. (S. Margherita
Ligure, June 18-24, 1989), Contemporary Math., 126 Amer. Math. Soc. Providence,
R.I., 1992.

[13] S. C. FERRY - A. A. RANICKI - J. ROSENBERG (Eds.), Novikov Conjectures, Index
Theorems and Rigidity, Vol. 1, London Math. Soc. Lecture Notes, 226, Cambridge
Univ. Press, Cambridge, 1995.

[14] M. H. FREEDMAN - F. QUINN, Topology of 4-Manifolds, Princeton Univ. Press,
Princeton, N. J., 1990.

[15] M. H. FREEDMAN - P. TEICHNER, 4-Manifold topology I: Subexponential groups,
Invent. Math., 122 (1995), 509-529.

[16] R. I. GRIGORCHUK, Degrees of growth of finitely generated groups and the theory of
invariant means, Izv. Akad. Nauk. SSSR Ser. Mat., 48 (5) (1984), 939-985 (in Rus-
sian); English transl. in Math. USSR Izvestiya, 25 (1985), 259-300.

[17] I. HAMBLETON, Projective surgery obstructions on closed manifolds, Algebraic
K-theory, Part II (Oberwolfach 1980), Lect. Notes Math. 967, Springer-Verlag,
Berlin (1982), 101-131.

[18] I. HAMBLETON - A. F. KHARSHILADZE, A spectral sequence in surgery theory, Mat.
Sb., 183 (9) (1992), 3-14 (in Russian); English transl. in, Russian Acad. Sci. Sb.
Math., 77 (1994).

[19] I. HAMBLETON - I. MADSEN, On the computation of the projective surgery obstruc-
tion groups, K-theory, 7 (1993), 537-574.

[20] I. HAMBLETON - YU. V. MURANOV, Projective splitting obstruction groups for one-
sided submanifolds, Mat. Sbornik, 190 (1999), to appear.

[21] I. HAMBLETON - A. RANICKI - L. TAYLOR, Round L-theory, J. Pure Appl. Algebra, 47
(1987), 131-154.

[22] I. HAMBLETON - L. TAYLOR - B. WILLIAMS, An introduction to maps between
surgery obstruction groups (1984), in Algebraic Topology (Aarhus, 1982), Lect.
Notes in Math. 1051, Springer-Verlag, Berlin-New York (1984), pp. 49-127.

[23] I. HAMBLETON - L. R. TAYLOR - B. WILLIAMS, Detection theorems in K and L-the-
ory, J. Pure Appl. Algebra, 63 (1990), 247-299.

[24] J. A. HILLMAN, The Algebraic Characterization of Geometric 4-Manifolds, London
Math. Soc. Lect. Note Ser. 198, Cambridge Univ. Press, Cambridge, 1994.

[25] A. F. KHARSHILADZE, The generalized Browder-Livesay invariant, Izv. Akad.
Nauk. SSSR: Ser. Mat., 51 (2) (1987), 379-401 (in Russian); English transl. in, Math.
USSR Izv., 30 (2) (1988), 353-374.



A. CAVICCHIOLI - Y. V. MURANOV - D. REPOVŠ674
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[35] YU. V. MURANOV - D. REPOVŠ, Obstructions to reconstructions from a pair of man-
ifolds, Uspehi Mat. Nauk., 51 (4) (1996), 165-166 (in Russian); English transl. in
Russian Math. Surveys, 51 (4) (1996), 743-744.

[36] S. P. NOVIKOV, Algebraic construction and properties of Hermitian analogs of K-
theory over rings with involution from the viewpoint of Hamiltonian formalism.
Applications to differential topology and theory of characteristic classes, I, II, Izv.
Akad. Nauk SSSR. Ser. Mat., 34 (1970), 253-288 and 475-500 (in Russian); English
transl. in Math. USSR Izv., 4 (1970), 257-292 and 479-505.

[37] C. PEDRINI - C. A. WEIBEL, K-theory and Chow groups on singular varieties, in
Applications of Algebraic K-Theory to Algebraic Geometry and Number Theory I,
II (Boulder, Colorado, 1983), Contemporary Math., 55 Amer. Math. Soc., Provi-
dence, R.I. (1986), 339-370.

[38] A. A. RANICKI, Exact Sequences in the Algebraic Theory of Surgery, Math. Notes
26, Princeton Univ. Press, Princeton, N. J., 1981.

[39] A. A. RANICKI, The L-theory of twisted quadratic extensions, Canad. J. Math., 39
(1987), 345-364.

[40] A. A. RANICKI, Algebraic L-theory and Topological Manifolds, Cambridge Tracts
in Mathematics, Cambridge University Press, 1992.

[41] A. A. RANICKI, High-dimensional knot theory, Math. Monograph, Springer-Ver-
lag, Berlin-Heidelberg-New York, 1998.

[42] R. SWITZER, Algebraic Topology-Homotopy and Homology, Grund. Math. Wiss.
212, Springer-Verlag, Berlin-Heidelberg-New York, 1975.

[43] C. T. C. WALL, Surgery on Compact Manifolds, Academic Press, London - New
York, 1970; Second Edition, A. A. Ranicki, Editor, Amer. Math. Soc., Providence,
R. I., 1999.



ALGEBRAIC PROPERTIES OF DECORATED SPLITTING ETC. 675

[44] C. T. C. WALL, On the axiomatic foundations of the theory of Hermitian forms,
Proc. Cambridge Phil. Soc., 67 (1970), 243-250.

[45] C. T. C. WALL, Foundations of Algebraic L-Theory, Proc. Conf. Battelle Memorial
Inst. (Seattle, WA. 1972), Lect. Notes Math. 343 Springer-Verlag, Berlin,
1973.

[46] C. T. C. WALL, Formulae for surgery obstructions, Topology, 25 (1976), 189-
210.

[47] C. T. C. WALL, Classification of Hermitian forms, VI. Group rings, Ann. of Math.
(2), 103 (1976), 1-80.

Alberto Cavicchioli: Dipartimento di Matematica, Università di Modena e Reggio Emilia
Via Campi 213/B, 41100 Modena, Italia; email: albertocHunimo.it

Yurij V. Muranov: Department of Mathematics, Vitebsk State Technical University
Moskovskii 72, 210028 Vitebsk, Belorussia; email: murHvstu.unibel.by
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