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Abstract. In the present work we study the multiplicity and concentration of positive solutions for the following class of
Kirchhoff problems:{

−(ε2a + εb
∫
R3 |∇u|2 dx)�u + V (x)u = f (u) + γ u5 in R

3,

u ∈ H 1(R3), u > 0 in R3,

where ε > 0 is a small parameter, a, b > 0 are constants, γ ∈ {0, 1}, V is a continuous positive potential with a local minimum,
and f is a superlinear continuous function with subcritical growth. The main results are obtained through suitable variational
and topological arguments. We also provide a multiplicity result for a supercritical version of the above problem by combining
a truncation argument with a Moser-type iteration. Our theorems extend and improve in several directions the studies made in
(Adv. Nonlinear Stud. 14 (2014), 483–510; J. Differ. Equ. 252 (2012), 1813–1834; J. Differ. Equ. 253 (2012), 2314–2351).
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1. Introduction

In this paper we focus our attention on the multiplicity and concentration of positive solutions for the
following class of Kirchhoff problems:{

−(ε2a + εb
∫
R3 |∇u|2 dx)�u + V (x)u = f (u) + γ u5 in R

3,

u ∈ H 1(R3), u > 0 in R
3,

(1.1)

where ε > 0 is a small parameter, a, b > 0 are constants, and γ ∈ {0, 1}. Throughout the paper we
will assume that the potential V : R3 → R is a continuous function satisfying the following hypotheses
introduced by del Pino and Felmer [14]:

(V1) there exists V0 > 0 such that V0 := infx∈R3 V (x),
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(V2) there exists a bounded open set � ⊂ R
3 such that

V0 < min
∂�

V and M := {
x ∈ � : V (x) = V0

} �= ∅.

We suppose that f : R → R is a continuous function such that f (t) = 0 for t � 0 and fulfills the
following conditions:

(f1) f (t) = o(t3) as t → 0,
(f2) if γ = 0 then there exists q ∈ (4, 6) such that f (t) = o(tq−1) as t → ∞, whereas if γ = 1 then

we suppose that there exist q, σ ∈ (4, 6), C0 > 0 such that

f (t) � C0t
q−1 for all t > 0, lim

t→∞
f (t)

tσ−1
= 0,

(f3) there exists ϑ ∈ (4, 6) such that

0 < ϑF(t) � tf (t) for all t > 0, where F(t) :=
∫ t

0
f (τ) dτ,

(f4) the map t 
→ f (t)

t3 is increasing on (0, ∞).

When b = 0 and R
3 is replaced by the more general space R

N , equation (1.1) reduces to a nonlinear
Schrödinger equation of the type

−ε2�u + V (x)u = g(u) in R
N, (1.2)

which has been widely investigated in the last thirty years. The main motivation for studying (1.2) arises
from seeking standing wave solutions, namely functions of the form ψ(x, t) = u(x)e− ıEt

ε , with E ∈ R

constant, for the time-dependent Schrödinger equation

ıε
∂ψ

∂t
= −ε2�ψ + (

V (x) + E
)
ψ − g(ψ) in R

N × R.

An interesting class of solutions of (1.2), sometimes called semi-classical states, are families of solutions
uε(x) which concentrate and develop a spike shape around one (or more) special points in R

N , while
vanishing elsewhere as ε → 0. We refer the interested reader to [3,13,14,17,19,31] and their references
for several existence and multiplicity results obtained by applying different variational and topological
methods.

On the other hand, problem (1.1) is related to the stationary analogue of the Kirchhoff equation

ρutt −
(

p0

h
+ E

2L

∫ L

0
|ux |2 dx

)
uxx = 0, (1.3)

which was proposed in 1883 by Kirchhoff [24] as an extension of the classical D’Alembert wave equa-
tions for free vibration of elastic strings. The Kirchhoff model takes into account changes in the length
of the string produced by transverse vibrations. In (1.3), u = u(x, t) denotes the transverse string dis-
placement at the spatial coordinate x and time t , L is the length of the string, h is the area of the cross
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section, E is Young’s modulus of the material, ρ is the mass density, and p0 is the initial tension. We re-
fer to [10,30] for the early classical studies dedicated to (1.3). We also note that nonlocal boundary value
problems like (1.3) model several physical and biological systems where u describes a process which
depends on the average of itself, as for example, the population density (see [2,12]). However, only
after the pioneering work of Lions [25], where a functional analysis approach was proposed to attack
(1.3), problem (1.1) began to attract the attention of several mathematicians (see [2,4,16,18,21–23,34],
and also [6–8,36–38] for some interesting results for fractional Kirchhoff problems). In particular, He
and Zou [22] obtained the existence and multiplicity of concentrating solutions for small ε > 0 of the
following perturbed Kirchhoff equation

−
(

aε2 + bε

∫
R3

|∇u|2 dx

)
�u + V (x)u = g(u) in R

3, (1.4)

assuming that V : R3 → R is a continuous potential satisfying the assumption introduced by Rabinowitz
[31]:

V∞ := lim inf|x|→∞ V (x) > inf
x∈RN

V (x) = V0, where V∞ � ∞, (V)

and g is a C1 subcritical nonlinearity. Subsequently, Wang et al. [34] investigated the multiplicity and
concentration phenomenon for (1.4) when g(u) = λf (u)+u5, f is a continuous subcritical nonlinearity
and λ is sufficiently large. Figueiredo and Santos Júnior [18] proved a multiplicity result for a subcritical
Schrödinger–Kirchhoff equation via the generalized Nehari manifold method, when the potential V has
a local minimum. He et al. [23] considered the existence and multiplicity of solutions for (1.4) when
g(u) = f (u) + u5, f ∈ C1 is a subcritical nonlinearity which does not satisfies the Ambrosetti–
Rabinowitz condition [5].

Motivated by the above works, in this paper we study the multiplicity and concentration of solutions
for (1.1) under conditions (V1)–(V2) on the potential V , and assuming (f1)–(f4) for the continuous
nonlinearity f . In order to state our main result more precisely, we recall that if Y is a given closed set
of a topological space X, we denote by catX(Y ) the Ljusternik–Schnirelmann category of Y in X, this
is the smallest number of closed contractible sets in X which cover Y (see [28,35] for more details). We
are able to prove the following main result:

Theorem 1.1. Assume that conditions (V1)–(V2) and (f1)–(f4) hold. Then for any δ > 0 such that

Mδ := {
x ∈ R

3 : dist(x, M) � δ
} ⊂ �,

there exists εδ > 0 such that for any ε ∈ (0, εδ), problem (1.1) admits at least catMδ
(M) positive

solutions. Moreover, if uε denotes one of these solutions and xε ∈ R
3 is a global maximum point of uε,

then

lim
ε→0

V (xε) = V0,

and there exist C1, C2 > 0 such that

0 < uε(x) � C1e
−C2

|x−xε |
ε for all x ∈ R

3.
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Our proof of Theorem 1.1 is obtained by applying appropriate variational arguments. First, motivated
by [14], we overcome the lack of information about the behavior of potential V at infinity by making
a suitable modification on the nonlinearity, solve the modified problem and then check that, for ε > 0
small enough, the solutions of the modified problem are indeed solutions of the original one. Due to
the fact that f is only continuous, the Nehari manifold associated with the modified problem is not
differentiable, so we cannot apply standard variational arguments for C1-Nehari manifolds developed,
for example, in [3,13,22,23]. For this reason we use certain versions of critical point theorems due to
Szulkin and Weth [33]. We also note that the presence of the Kirchhoff term creates some difficulties
in getting the compactness of the modified functional Jε. Indeed, it is not clear that weak limits of
bounded (PS) sequences are critical points of Jε. Moreover, when γ = 1, problem (1.1) presents an
extra difficulty due to the presence of the critical exponent, and in order to recover some compactness
properties for Jε, we invoke the Concentration–Compactness Lemma [27]. Since we are interested in
obtaining multiple critical points, we use a technique introduced by Benci and Cerami [9], which consists
in making precise comparisons between the category of some sublevel sets of Jε and the category of the
set M . Then we apply Ljusternik–Schnirelmann theory to deduce a multiplicity result for the modified
problem. Finally, we show that the solutions of the modified problem are also solutions for (1.1), when
ε > 0 is small enough, by using the Moser iteration technique [29].

In the last part of this paper we consider a supercritical version of problem (1.1). In this case, we deal
with the sum of two homogeneous nonlinearities and add a new positive parameter μ. More precisely,
we consider the following problem:{

−(ε2a + εb
∫
R3 |∇u|2 dx)�u + V (x)u = up−1 + μur−1 in R

3,

u > 0 in R
3, u(x) → 0 as |x| → ∞,

(1.5)

where ε, μ > 0 and the exponents satisfy 4 < p < 6 < r . Our multiplicity result for the supercritical
case can be stated as follows.

Theorem 1.2. Assume that conditions (V1)–(V2) hold. Then there exists μ0 > 0 such that for any δ > 0
satisfying

Mδ = {
x ∈ R

3 : dist(x, M) � δ
} ⊂ �,

and for any μ ∈ (0, μ0), there exists εδ,μ > 0 such that for any ε ∈ (0, εδ,μ), problem (1.5) admits at
least catMδ

(M) positive solutions. Moreover, if uε denotes one of these solutions and xε ∈ R
3 is a global

maximum point of uε, then

lim
ε→0

V (xε) = V0.

The main difficulty in the study of (1.5) is due to the fact that r > 6 is supercritical, and we cannot di-
rectly use variational techniques because the corresponding functional is not well-defined on the Sobolev
space H 1(R3). In order to overcome this obstacle, we use some arguments inspired by [11,17,32] which
can be summarized as follows. We first truncate in a suitable way the nonlinearity on the right hand side
of (1.5), so we deal with a new problem but with subcritical growth. In the light of Theorem 1.1, we
know that a multiplicity result for this truncated problem is available. Then we deduce a priori bound
(independent of μ) for these solutions and by using an appropriate Moser iteration technique [29], we
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show that, for μ > 0 sufficiently small, the solutions of the truncated problem also solve the original
one.

We stress that our theorems complement and improve the main results in [22,23,34], in the sense
that we are considering multiplicity results for subcritical, critical and supercritical Kirchhoff problems
involving continuous nonlinearities and imposing local conditions on the potential V .

The paper is organized as follows. In Section 2 we collect some notations and basic results. We also
modify the nonlinearity and prove some useful lemmas to overcome the non differentiability of the
Nehari manifold. In Section 3 we provide our first existence result. In Section 4 we deal with the au-
tonomous problems. In Section 5 we introduce some tools which are needed to establish a multiplicity
result. Section 6 is devoted to the proof of Theorem 1.1. In Section 7 we study the multiplicity of positive
solutions for the supercritical problem.

2. The functional setting

2.1. Notations and basic results

We start by giving some notations and collecting useful preliminary results. If A ⊂ R
3 and 1 � p �

∞, we denote by ‖u‖Lp(A) the Lp(A)-norm of a function u : R3 → R. Let us define D1,2(R3) as the
completion of C∞

0 (R3) with respect to the norm

‖∇u‖2
L2(R3)

=
∫
R3

|∇u|2 dx.

Then we can consider the Sobolev space

H 1
(
R

3
) = {

u ∈ L2
(
R

3
) : ‖∇u‖2

L2(R3)
< ∞}

endowed with the norm

‖u‖2
H 1(R3)

= ‖∇u‖2
L2(R3)

+ ‖u‖2
L2(R3)

.

We have the following well-known main Sobolev embeddings.

Theorem 2.1 (see [1]). H 1(R3) is continuously embedded in Lp(R3) for any p ∈ [2, 6] and compactly
embedded in L

p

loc(R
3) for any p ∈ [1, 6).

We denote by S∗ the best constant of the Sobolev embedding H 1(R3) ⊂ L6(R3), that is

S∗ := inf

{‖∇u‖2
L2(R3)

‖u‖2
L6(R3)

: u ∈ D1,2
(
R

3
) \ {0}

}
.

We also recall the following classical lemma of Lions:



6 V. Ambrosio and D. Repovš / Kirchhoff problems via local mountain pass

Lemma 2.1 (see [26]). If {un}n∈N is a bounded sequence in H 1(R3) and

lim
n→∞ sup

y∈R3

∫
BR(y)

|un|2 dx = 0

for some R > 0, then un → 0 in Lp(R3) for all p ∈ (2, 6).

2.2. The modified problem

In order to study (1.1), we use the change of variable x 
→ εx and we look for positive solutions to{
−(a + b

∫
R3 |∇u|2)�u + V (εx)u = f (u) + γ u5 in R

3,

u ∈ H 1(R3), u > 0 in R
3.

(2.1)

In what follows, we introduce a penalized function [14] which will be useful to obtain our results. Let
K > 2 and α > 0 be such that

f (α) + γα5 = V0

K
α (2.2)

and define

f̃ (t) :=
{

f (t) + γ (t+)5 if t � α,
V0
K

t if t > α,

and

g(x, t) := χ�(x)
(
f (t) + γ

(
t+

)5) + (
1 − χ�(x)

)
f̃ (t).

It is easy to check that g satisfies the following properties:

(g1) limt→0
g(x,t)

t3 = 0 uniformly with respect to x ∈ R
3,

(g2) g(x, t) � f (t) + γ t5 for all x ∈ R
3, t > 0,

(g3) (i) 0 < ϑG(x, t) � g(x, t)t for all x ∈ �, t > 0,
(ii) 0 � 2G(x, t) � g(x, t)t � V0

K
t2 for all x ∈ R

3 \ �, t > 0,
(g4) for each x ∈ � the function g(x,t)

t3 is increasing on (0, ∞), and for each x ∈ R
3 \ �, the function

g(x,t)

t3 is increasing on (0, α).

Let us consider the following modified problem{
−(a + b

∫
R3 |∇u|2)�u + V (εx)u = g(εx, u) in R

3,

u ∈ H 1(R3), u > 0 in R
3.

(2.3)

It is clear that if u is a positive solution of (2.3) with u(x) � α for all x ∈ R
3 \ �ε, then u is also a

positive solution for (2.1), where �ε := {x ∈ R
3 : εx ∈ �}.
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The energy functional associated with (2.3) is given by

Jε(u) = 1

2
‖u‖2

ε + b

4
‖∇u‖4

L2(R3)
−

∫
R3

G(εx, u) dx,

which is well-defined on the space

Hε :=
{
u ∈ H 1

(
R

3
) :

∫
R3

V (εx)u2 dx < ∞
}

endowed with the norm

‖u‖2
ε := a‖∇u‖2

L2(R3)
+

∫
R3

V (εx)u2 dx.

Clearly, Hε is a Hilbert space with inner product

(u, v)ε :=
∫
R3

a∇u∇v + V (εx)uv dx.

It is easy to check that Jε ∈ C1(Hε,R) and its differential is given by

〈
J ′

ε (u), v
〉 = (u, v)ε + b‖∇u‖2

L2(R3)

∫
R3

∇u∇v dx −
∫
R3

g(εx, u)v dx

for any u, v ∈ Hε. Let us introduce the Nehari manifold associated with (2.3), that is,

Nε := {
u ∈ Hε \ {0} : 〈

J ′
ε (u), u

〉 = 0
}
,

and we denote

H+
ε := {

u ∈ Hε : ∣∣supp
(
u+) ∩ �ε

∣∣ > 0
}

and S
+
ε := Sε ∩ H+

ε ,

where Sε is the unit sphere in Hε. Note that S+
ε is a non-complete C1,1-manifold of codimension one,

modelled on Hε and contained in the open H+
ε (see [33]). Then we have that Hε = TuS

+
ε ⊕ Ru for all

u ∈ H+
ε , where TuS

+
ε := {v ∈ Hε : (u, v)ε = 0}.

Now we prove that Jε possesses a mountain-pass geometry [5]:

Lemma 2.2. The functional Jε satisfies the following properties:

(a) there exist η, ρ > 0 such that Jε(u) � η with ‖u‖ε = ρ;
(b) there exists e ∈ Hε with ‖e‖ε > ρ such that Jε(e) < 0.

Proof. (a) By assumptions (g1) and (g2), we deduce that for any ξ > 0 there exists Cξ > 0 such that

Jε(u) � 1

2
‖u‖2

ε −
∫
R3

G(εx, u) dx � 1

2
‖u‖2

ε − ξC‖u‖2
ε − CξC‖u‖6

ε.

Then we can find η, ρ > 0 such that Jε(u) � η with ‖u‖ε = ρ.
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(b) Using (g3)-(i), we deduce that for any u ∈ H+
ε and t > 0

Jε(tu) = t2

2
‖u‖2

ε + b
t4

4
‖∇u‖4

L2(R3)
−

∫
�ε

G(εx, tu) dx

� t2

2
‖u‖2

ε + b
t4

4
‖∇u‖4

L2(R3)
− C1t

ϑ

∫
�ε

(
u+)ϑ

dx + C2

∣∣supp
(
u+) ∩ �ε

∣∣, (2.4)

for some constants C1, C2 > 0. Recalling that ϑ ∈ (4, 6), we can conclude that Jε(tu) → −∞ as
t → +∞. �

Since f is only continuous, the next results will be very useful to overcome the non-differentiability
of Nε and the incompleteness of S+

ε .

Lemma 2.3. Assume that conditions (V1)–(V2) and (f1)–(f4) hold. Then the following assertions are
true.

(i) For each u ∈ H+
ε , let h : R+ → R be defined by hu(t) = Jε(tu). Then, there is a unique tu > 0

such that

h′
u(t) > 0 for all t ∈ (0, tu) and h′

u(t) < 0 for all t ∈ (tu, ∞).

(ii) There exists τ > 0 independent of u, such that tu � τ for any u ∈ S
+
ε . Moreover, for each

compact set K ⊂ S
+
ε there is a positive constant CK such that tu � CK for any u ∈ K.

(iii) The map m̂ε : H+
ε → Nε given by m̂ε(u) = tuu, is continuous and mε := m̂ε|S+

ε
is a homeomor-

phism between S
+
ε and Nε. Moreover, m−1

ε (u) = u
‖u‖ε

.
(iv) If there is a sequence {un}n∈N ⊂ S

+
ε such that dist(un, ∂S

+
ε ) → 0, then ‖mε(un)‖ε → ∞ and

Jε(mε(un)) → ∞.

Proof. (i) Let us observe that hu ∈ C1(R+,R). By Lemma 2.2, we can infer that hu(0) = 0, hu(t) > 0
for t > 0 small enough and hu(t) < 0 for t > 0 sufficiently large. Then there exists tu > 0 such that
h′

u(tu) = 0 and tu is a global maximum for hu. Hence we can deduce that tuu ∈ Nε. Now we can prove
the uniqueness of tu. Assume by contradiction that there are two positive numbers t1 and t2 such that
t1 > t2 and h′

u(t1) = h′
u(t2) = 0. Hence

t1‖u‖2
ε + bt3

1 ‖∇u‖4
L2(R3)

=
∫
R3

g(εx, t1u)u dx (2.5)

and

t2‖u‖2
ε + bt3

2 ‖∇u‖4
L2(R3)

=
∫
R3

g(εx, t2u)u dx. (2.6)
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Exploiting (2.5), (2.6), t1 > t2 and (g4), we can see that(
1

t2
1

− 1

t2
2

)
‖u‖2

ε =
∫
R3

[
g(εx, t1u)

(t1u)3
− g(εx, t2u)

(t2u)3

]
u4 dx

=
∫
R3\�ε

[
g(εx, t1u)

(t1u)3
− g(εx, t2u)

(t2u)3

]
u4 dx

+
∫

�ε

[
g(εx, t1u)

(t1u)3
− g(εx, t2u)

(t2u)3

]
u4 dx

�
∫
R3\�ε

[
g(εx, t1u)

(t1u)3
− g(εx, t2u)

(t2u)3

]
u4 dx

= I1 + I2 + I3,

where

I1 :=
∫

(R3\�ε)∩{t2u>α}

[
g(εx, t1u)

(t1u)3
− g(εx, t2u)

(t2u)3

]
u4 dx,

I2 :=
∫

(R3\�ε)∩{t2u�α<t1u}

[
g(εx, t1u)

(t1u)3
− g(εx, t2u)

(t2u)3

]
u4 dx

and

I3 :=
∫

(R3\�ε)∩{t1u<α}

[
g(εx, t1u)

(t1u)3
− g(εx, t2u)

(t2u)3

]
u4 dx.

Now we estimate each Ii , i ∈ {1, 2, 3}. Considering I1, from the definition of g and using (g3)-(ii), we
have

I1 �
∫

(R3\�ε)∩{t2u>α}

[
V0

K

1

(t1u)2
− V0

K

1

(t2u)2

]
u4 dx = 1

K

(
1

t2
1

− 1

t2
2

) ∫
(R3\�ε)∩{t2u>α}

V0u
2 dx.

From the definition of g and using (g2), we can infer

I2 �
∫

(R3\�ε)∩{t2u�α<t1u}

[
V0

K

1

(t1u)2
− f (t2u) + γ (t2u

+)5

(t2u)3

]
u4 dx.

Finally, let us observe that by (g4) and from t1 > t2, it follow that I3 � 0. Thus we have(
1

t2
1

− 1

t2
2

)
‖u‖2

ε �
1

K

(
1

t2
1

− 1

t2
2

) ∫
(R3\�ε)∩{t2u>α}

V0u
2 dx

+
∫

(R3\�ε)∩{t2u�α<t1u}

[
V0

K

1

(t1u)2
− f (t2u) + γ (t2u

+)5

(t2u)3

]
u4 dx,
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from which, multiplying both sides by
t2
1 t2

2

t2
2 −t2

1
< 0 and using assumption (f4) and (2.2), we obtain

‖u‖2
ε �

1

K

∫
(R3\�ε)∩{t2u>α}

V0u
2 dx

+ t2
1 t2

2

t2
2 − t2

1

∫
(R3\�ε)∩{t2u�α<t1u}

[
V0

K

1

(t1u)2
− f (t2u) + γ (t2u

+)5

(t2u)3

]
u4 dx

= 1

K

∫
(R3\�ε)∩{t2u>α}

V0u
2 dx

− t2
2

t2
1 − t2

2

∫
(R3\�ε)∩{t2u�α<t1u}

V0

K
u2 dx

+ t2
1

t2
1 − t2

2

∫
(R3\�ε)∩{t2u�α<t1u}

f (t2u) + γ (t2u
+)5

t2u
u2 dx

� 1

K

∫
R3\�ε

V0u
2 dx � 1

K
‖u‖2

ε.

Since u �= 0 and K > 2, we get a contradiction.
(ii) Let u ∈ S

+
ε . By (i), there exists tu > 0 such that h′

u(tu) = 0, that is

tu + bt3
u‖∇u‖4

L2(R3)
=

∫
R3

g(εx, tuu)u dx. (2.7)

Using assumptions (g1) and (g2), (2.7) and Theorem 2.1, given ξ > 0, there exists a positive constant
Cξ such that

tu �
∫
R3

g(εx, tuu)tuu dx � ξ t3
uC1 + Cξ t

5
uC2.

This implies that there exists τ > 0, independent of u, such that tu � τ . Now, let K ⊂ S
+
ε be a

compact set. We prove that tu � CK for any u ∈ K. Assume to the contrary, that there exists a sequence
{un}n∈N ⊂ K such that tn := tun

→ ∞. Since K is compact, there exists u ∈ K such that un → u in
Hε. It follows from (2.4) that Jε(tnun) → −∞. Now, fix v ∈ Nε and using ϑ ∈ (4, 6) and (g3), we can
deduce that

Jε(v) = Jε(v) − 1

ϑ

〈
J ′

ε (v), v
〉

=
(

ϑ − 2

2ϑ

)
‖v‖2

ε + b

(
ϑ − 4

4ϑ

)
‖∇v‖4

L2(R3)
+ 1

ϑ

∫
R3\�ε

[
g(εx, v)v − ϑG(εx, v)

]
dx

+ 1

ϑ

∫
�ε

[
g(εx, v)v − ϑG(εx, v)

]
dx

�
(

ϑ − 2

2ϑ

)
‖v‖2

ε + 1

ϑ

∫
R3\�ε

[
g(εx, v)v − ϑG(εx, v)

]
dx
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�
(

ϑ − 2

2ϑ

)
‖v‖2

ε −
(

ϑ − 2

2ϑ

)
1

K

∫
R3\�ε

V (εx)v2 dx

�
(

ϑ − 2

2ϑ

)(
1 − 1

K

)
‖v‖2

ε. (2.8)

Taking v = tun
un ∈ Nε in (2.8) and using the facts ‖vn‖ε = tn and K > 2, we get

0 <

(
ϑ − 2

2ϑ

)(
1 − 1

K

)
� Jε(tnun)

t2
n

� 0

for n large, and this gives a contradiction.
(iii) First, we note that m̂ε, mε and m−1

ε are well defined. Indeed, by (i), for each u ∈ H+
ε there exists

a unique mε(u) ∈ Nε. On the other hand, if u ∈ Nε then u ∈ H+
ε . Otherwise, if u /∈ H+

ε , we have∣∣supp
(
u+) ∩ �ε

∣∣ = 0,

which together with (g3)-(ii) implies that

‖u‖2
ε + b‖∇u‖4

L2(R3)
=

∫
R3

g(εx, u)u dx

=
∫
R3\�ε

g(εx, u)u dx +
∫

�ε

g(εx, u)u dx

=
∫
R3\�ε

g
(
εx, u+)

u+ dx

� 1

K

∫
R3\�ε

V (εx)u2 dx � 1

K
‖u‖2

ε (2.9)

and this yields a contradiction because u �= 0 and K > 2. As a consequence, m−1
ε (u) = u

‖u‖ε
∈ S

+
ε , m−1

ε

is well defined and continuous. Moreover, for all u ∈ S
+
ε we have

m−1
ε

(
mε(u)

) = m−1
ε (tuu) = tuu

‖tuu‖ε

= u

‖u‖ε

= u

from which we deduce that mε is a bijection. Now we prove that m̂ε is a continuous function. Let
{un}n∈N ⊂ H+

ε and u ∈ H+
ε be such that un → u in H+

ε . Since m̂ε(tu) = m̂ε(u) for any t > 0, we may
assume that {un}n∈N ⊂ S

+
ε . Then by (ii), there exists t0 > 0 such that tn = tun

→ t0. Since tnun ∈ Nε,
we obtain

t2
n‖un‖2

ε + bt4
n‖∇un‖4

L2(R3)
=

∫
R3

g(εx, tnun)tnun dx,

and passing to the limit as n → ∞, we get

t2
0 ‖u‖2

ε + bt4
0 ‖∇u‖4

L2(R3)
=

∫
R3

g(εx, t0u)t0u dx
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which yields t0u ∈ Nε. This shows that

m̂ε(un) → m̂ε(u) in Hε.

Therefore, m̂ε and mε are continuous functions.
(iv) Let {un}n∈N ⊂ S

+
ε be such that dist(un, ∂S

+
ε ) → 0. Since for each v ∈ ∂S+

ε and n ∈ N we have

u+
n � |un − v| a.e. in �ε,

it follows that∥∥u+
n

∥∥
Lp(�ε)

� inf
v∈∂S+

ε

‖un − v‖Lp(�ε) for all p ∈ [2, 6], for all n ∈ N.

Hence, by (V1), (V2) and Theorem 2.1, there is a constant Cp > 0 such that∥∥u+
n

∥∥
Lp(�ε)

� inf
v∈∂S+

ε

‖un − v‖Lp(�ε) � Cp inf
v∈∂S+

ε

‖un − v‖ε � Cpdist
(
un, ∂S

+
ε

)
for all n ∈ N.

Using (g1), (g2) and (g3)-(ii), we can infer that, for each t > 0∫
R3

G(εx, tun) dx =
∫
R3\�ε

G(εx, tun) dx +
∫

�ε

G(εx, tun) dx

� t2

K

∫
R3\�ε

V (εx)u2
n dx +

∫
�ε

F (tun) + γ t6
(
u+

n

)6
dx

� t2

K
‖un‖2

ε + C1t
4
∫

�ε

(
u+

n

)4
dx + C2t

6
∫

�ε

(
u+

n

)6
dx

� t2

K
+ C ′

1t
4 dist

(
un, ∂S

+
ε

)4 + C ′
2 dist

(
un, ∂S

+
ε

)6

from which,

lim sup
n→∞

∫
R3

G(εx, tun) dx � t2

K
for all t > 0. (2.10)

Recalling the definition of mε(un) and using (2.10) we get

lim inf
n→∞ Jε

(
mε(un)

)
� lim inf

n→∞ Jε(tun)

= lim inf
n→∞

[
t2

2
‖un‖2

ε + b
t4

4
‖∇un‖4

L2(R3)
−

∫
R3

G(εx, tun) dx

]
�

(
1

2
− 1

K

)
t2
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which implies that

lim inf
n→∞

1

2

∥∥mε(un)
∥∥2

ε
+ b

4

∥∥∇mε(un)
∥∥4

L2(R3)
� lim inf

n→∞ Jε

(
mε(un)

)
�

(
1

2
− 1

K

)
t2.

Since K > 2 and t > 0 is arbitrary, we obtain that Jε(mε(un)) → ∞ and ‖mε(un)‖ε → ∞ as n → ∞.
This completes the proof of the lemma. �

Now, we define the maps

ψ̂ε : H+
ε → R and ψε : S+

ε → R,

by ψ̂ε(u) := Jε(m̂ε(u)) and ψε := ψ̂ε|S+
ε

. The next result is a direct consequence of Lemma 2.3 and
Corollary 2.3 in [33].

Proposition 2.1. Assume that conditions (V1)–(V2) and (f1)–(f4) hold. Then the following assertions
are true.

(a) ψ̂ε ∈ C1(H+
ε ,R) and

〈
ψ̂ ′

ε(u), v
〉 = ‖m̂ε(u)‖ε

‖u‖ε

〈
J ′

ε

(
m̂ε(u)

)
, v

〉
for every u ∈ H+

ε , v ∈ Hε.
(b) ψε ∈ C1(S+

ε ,R) and〈
ψ ′

ε(u), v
〉 = ∥∥mε(u)

∥∥
ε

〈
J ′

ε

(
mε(u)

)
, v

〉
,

for every v ∈ TuS
+
ε .

(c) If {un}n∈N is a (PS)d sequence for ψε, then {mε(un)}n∈N is a (PS)d sequence for Jε. If {un}n∈N ⊂
Nε is a bounded (PS)d sequence for Jε, then {m−1

ε (un)}n∈N is a (PS)d sequence for the functional
ψε.

(d) u is a critical point of ψε if, and only if, mε(u) is a nontrivial critical point for Jε. Moreover, the
corresponding critical values coincide and

inf
u∈S+

ε

ψε(u) = inf
u∈Nε

Jε(u).

Remark 2.1. As in [33], we have the following variational characterization of the infimum of Jε over
Nε:

cε := inf
u∈Nε

Jε(u) = inf
u∈H+

ε

max
t>0

Jε(tu) = inf
u∈S+

ε

max
t>0

Jε(tu) > 0.

Remark 2.2. Let us note that if u ∈ Nε, it follows from (g1)–(g2) that

0 = ‖u‖2
ε + b‖∇u‖4

L2(R3)
−

∫
R3

g(εx, u)u dx � 1

2
‖u‖2

ε − C‖u‖6
ε

which implies that ‖u‖ε � r > 0 for some r independent of u.
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3. An existence result for the modified problem

In this section we focus our attention on the existence of positive solutions to (2.3) for sufficiently
small ε > 0. We begin by showing that the functional Jε satisfies the Palais–Smale condition at any
level d > 0 if γ = 0, and d ∈ (0, c∗) for some suitable c∗ > 0 depending on S∗, when γ = 1. This last
fact is motivated by the following result:

Lemma 3.1. Let γ = 1. Then

cε <
1

4
abS3

∗ + 1

24
b3S6

∗ + 1

24

(
b2S4

∗ + 4aS∗
) 3

2 =: c∗

for all ε > 0.

Proof. One can argue as in the proof of Lemma 2.1 in [23]. �

In view of Lemma 2.2, we can apply a version of the mountain-pass theorem without (PS) condition
(see [35]) to obtain a sequence {un}n∈N ⊂ Hε such that

Jε(un) → cε and J ′
ε (un) → 0. (3.1)

We start with the following result:

Lemma 3.2. Every sequence satisfying (3.1) is bounded.

Proof. Arguing as in the proof of Lemma 2.3-(ii) (see formula (2.8) there), we can deduce that

C
(
1 + ‖un‖ε

)
� Jε(un) − 1

ϑ

〈
J ′

ε (un), un

〉
�

(
ϑ − 2

2ϑ

)(
1 − 1

K

)
‖un‖2

ε.

Since ϑ > 4 and K > 2, we can conclude that {un}n∈N is bounded in Hε. �

Lemma 3.3. There is a sequence {zn}n∈N ⊂ R
3 and R, β > 0 such that∫

BR(zn)

u2
n dx � β.

Proof. Assume to the contrary, that the conclusion of lemma is not true. By Lemma 2.1, we then have

un → 0 in Lr
(
R

3
)

for any r ∈ (2, 6),

so, in view of (f1) and (f2), we get∫
R3

F(un) dx =
∫
R3

f (un)un dx = on(1) as n → ∞. (3.2)

Since {un}n∈N is bounded in Hε, we may assume that un ⇀ u in Hε.
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If γ = 0, then we can use 〈J ′
ε (un), un〉 = on(1) and (3.2) to deduce that ‖un‖ε → 0, which in turn

implies that Jε(un) → 0, and this is impossible because cε > 0.
Now assume that γ = 1. Using the definition of g and (3.2), we can deduce that∫

R3
G(εx, un) dx � 1

6

∫
�ε∪{un�α}

(
u+

n

)6
dx + V0

2K

∫
(R3\�ε)∩{un>α}

u2
n dx + on(1) (3.3)

and ∫
R3

g(εx, un)un dx =
∫

�ε∪{un�α}

(
u+

n

)6
dx + V0

K

∫
(R3\�ε)∩{un>α}

u2
n dx + on(1). (3.4)

From 〈J ′
ε (un), un〉 = on(1) we have

‖un‖2
ε − V0

K

∫
(R3\�ε)∩{un>α}

u2
n dx + b‖∇un‖4

L2(R3)
=

∫
�ε∪{un�α}

(
u+

n

)6
dx + on(1). (3.5)

Let �1, �2 � 0 be such that

‖un‖2
ε − V0

K

∫
(R3\�ε)∩{un>α}

u2
n dx → �1 (3.6)

and

b‖∇un‖4
L2(R3)

→ �2. (3.7)

Note that �1 > 0, otherwise (3.5) would yield ‖un‖ε → 0 as n → ∞ and then Jε(un) → 0, which
contradicts cε > 0. Hence, putting together (3.5), (3.6) and (3.7), we have∫

�ε∪{un�α}

(
u+

n

)6
dx → �1 + �2. (3.8)

By (3.3), (3.6), (3.7), (3.8) and Jε(un) = cε + on(1), it follows that

cε �
1

3
�1 + 1

12
�2. (3.9)

On the other hand, from the definition of S∗ we can see that

‖un‖2
ε − V0

K

∫
(R3\�ε)∩{un>α}

u2
n dx � aS∗

(∫
�ε∪{un�α}

(
u+

n

)6
dx

) 1
3

and

b‖∇un‖4
L2(R3)

� bS2
∗

(∫
�ε∪{un�α}

(
u+

n

)6
dx

) 2
3

.
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This, together with (3.6), (3.7) and (3.8), implies that

�1 � aS∗(�1 + �2)
1
3 and �2 � bS2

∗(�1 + �2)
2
3 , (3.10)

which yields

�1 + �2 � aS∗(�1 + �2)
1
3 + bS2

∗(�1 + �2)
2
3 .

Consequently,

(�1 + �2)
1
3 � bS2∗ + (b2S4∗ + 4aS∗)

1
2

2
. (3.11)

Combining (3.9), (3.10), (3.11), it follows that

cε �
1

3
�1 + 1

12
�2 � 1

3
aS∗(�1 + �2)

1
3 + 1

12
bS2

∗(�1 + �2)
2
3

� 1

4
abS3

∗ + 1

24
b3S6

∗ + 1

24

(
b2S4

∗ + 4aS∗
) 3

2

and by Lemma 3.1, this is a contradiction. �

Lemma 3.4. The sequence {zn}n∈N given in Lemma 3.3 is bounded in R
3.

Proof. For any ρ > 0, let ψρ ∈ C∞(R3) be such that ψρ = 0 in Bρ(0) and ψρ = 1 in R
3 \ B2ρ(0), with

0 � ψρ � 1 and |∇ψρ | � C
ρ

, where C is a constant independent of ρ. Since {ψρun}n∈N is bounded in
Hε, it follows that 〈J ′

ε (un), ψρun〉 = on(1), namely

a

∫
R3

|∇un|2ψρ dx + a

∫
R3

∇un∇ψρun dx

+ b‖∇un‖2
L2(R3)

(∫
R3

|∇un|2ψρ dx +
∫
R3

∇un∇ψρun dx

)
+

∫
R3

V (εx)u2
nψρ dx = on(1) +

∫
R3

g(εx, un)unψρ dx.

Take ρ > 0 such that �ε ⊂ Bρ(0). Then, using (g3)-(ii) and Lemma 3.2, we get(
1 − 1

K

)
V0

∫
{|x|�2ρ}

u2
n dx

� −a

∫
R3

∇un∇ψρun dx − b‖∇un‖2
L2(R3)

(∫
R3

∇un∇ψρun dx

)
+ on(1)



V. Ambrosio and D. Repovš / Kirchhoff problems via local mountain pass 17

� C

ρ

∫
R3

|∇un||un| dx + C

ρ
‖∇un‖2

L2(R3)

(∫
R3

|∇un||un| dx

)
+ on(1)

� C

ρ
+ on(1),

which implies that∫
{|x|�2ρ}

u2
n dx � C

ρ
+ on(1). (3.12)

Now, if {zn}n∈N is unbounded, it follows by Lemma 3.3 and (3.12), that 0 < β � C
ρ

→ 0 as ρ → ∞,
which gives a contradiction. �

The next results will be essential for obtaining the compactness of bounded Palais–Smale sequences.

Lemma 3.5. Let {un}n∈N be a (PS)cε
sequence for Jε. Then for each ζ > 0, there exists R = R(ζ ) > 0

such that

lim sup
n→∞

[∫
R3\BR(0)

a|∇un|2 + V (εx)u2
n dx

]
< ζ. (3.13)

Proof. Let R > 0 be such that �ε ⊂ BR
2
(0), and ηR ∈ C∞(R3) such that ηR = 0 in BR

2
(0) and ηR = 1

in R
3 \ BR(0), with 0 � ηR � 1 and |∇ηR| � C

R
, where C is a constant independent of R. Since

{ηRun}n∈N is bounded in Hε, we have that 〈J ′
ε (un), ηRun〉 = on(1), and using (g3)-(ii), we get∫

R3
a∇un∇(ηRun) dx +

∫
R3

V (εx)u2
nηR dx + b‖∇un‖2

L2(R3)

∫
R3

∇un∇(ηRun) dx

= on(1) +
∫
R3

g(εx, un)ηRun dx

� on(1) + 1

K

∫
R3

V (εx)u2
nηR dx.

Accordingly,

a

∫
R3\BR

|∇un|2 dx +
(

1 − 1

K

) ∫
R3\BR

V (εx)u2
n dx

� C

R
‖∇un‖L2(R3)‖un‖L2(R3) + C

R
‖∇un‖3

L2(R3)
‖un‖L2(R3) + on(1) (3.14)

from which the assertion follows. �

Lemma 3.6. The functional Jε satisfies the (PS)d condition at any level d > 0 if γ = 0, and d ∈ (0, c∗)
if γ = 1.
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Proof. By Lemma 3.2, we know that any (PS)d sequence is bounded, so we may assume that un ⇀ u

in Hε and un → u in L
q

loc(R
3) for all q ∈ [1, 6). Let us start by proving that

lim
n→∞

∫
R3

g(εx, un)un dx =
∫
R3

g(εx, u)u dx. (3.15)

Using (3.13), (f1), (f2), (g2) and the Sobolev embedding, we have, for n large,∫
R3\BR(0)

g(εx, un)un dx � C

∫
R3\BR(0)

u4
n + |un|q + u6

n dx � C
(
δ2 + δ

q
2 + δ3

)
. (3.16)

On the other hand, choosing R sufficiently large, we may assume that∫
R3\BR(0)

g(εx, u)u dx � δ

2
.

From this and (3.16), we get for n large enough,∣∣∣∣∫
R3\BR(0)

g(εx, un)un dx −
∫
R3\BR(0)

g(εx, u)u dx

∣∣∣∣ < Cδ. (3.17)

Taking into account the definition of g, we know that

g(εx, un)un � f (un)un + α6 + V0

K
u2

n for any x ∈ R
3 \ �ε.

Since BR(0) ∩ (R3 \ �ε) is bounded, from (f1), (f2), (g2), the strong convergence in Lr
loc(R

3) for
r ∈ [1, 6), and by the dominated convergence theorem, it follows that

lim
n→∞

∫
BR(0)∩(R3\�ε)

g(εx, un)un dx =
∫

BR(0)∩(R3\�ε)

g(εx, u)u dx. (3.18)

Next, we aim to prove that∫
�ε

(
u+

n

)6
dx →

∫
�ε

(
u+)6

dx. (3.19)

Indeed, if (3.19) holds, we can infer from (g2), (f1), (f2), the strong convergence in Lr
loc(R

3) for r ∈
[1, 6) and the dominated convergence theorem that

lim
n→∞

∫
BR(0)∩�ε

g(εx, un)un dx =
∫

BR(0)∩�ε

g(εx, u)u dx.

Therefore (3.15) follows by the above limit, (3.17) and (3.18).
At this point, we show the validity of (3.19). Since {un}n∈N is bounded in Hε, we may assume that∣∣∇u+

n

∣∣2
⇀ μ and

∣∣u+
n

∣∣6
⇀ ν,
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where μ and ν are bounded nonnegative measures in R
3. By the Concentration Compactness Principle

[27], we obtain an at most countable index set I , sequence {xi}i∈I ⊂ R
3 and {μi}i∈I , {νi}i∈I ⊂ (0, ∞)

such that

μ �
∣∣∇u+∣∣2 +

∑
i∈I

μiδxi
, ν = (

u+)6 +
∑
i∈I

νiδxi
and S∗ν

1
3
i � μi for all i ∈ I. (3.20)

Now we prove that {xi}i∈I ∩ �ε = ∅. Assume to the contrary, that xi ∈ �ε for some i ∈ I . For any
ρ > 0, define the function ψρ(x) := ψ(x−xi

ρ
), where ψ ∈ C∞

0 (R3) is such that ψ = 1 in B1(0), ψ = 0 in

R
3\B2(0), 0 � ψ � 1 and ‖∇ψ‖L∞(R3) � C. Assume that ρ is chosen in a such way that supp ψρ ⊂ �ε.

Then 〈J ′
ε (un), ψρu

+
n 〉 → 0 as n → ∞, that is

a

∫
R3

∣∣∇u+
n

∣∣2
ψρ dx + a

∫
R3

∇u+
n ∇ψρu

+
n dx +

∫
R3

V (εx)
(
u+

n

)2
ψρ dx

+ b‖∇un‖2
L2(R3)

(∫
R3

∣∣∇u+
n

∣∣2
ψρ dx

)
+ b‖∇un‖2

L2(R3)

(∫
R3

∇u+
n ∇ψρu

+
n dx

)
−

∫
R3

g(εx, un)u
+
n ψρ dx = on(1). (3.21)

Note that by the boundedness of {un}n∈N, the Hölder inequality, and since H 1(R3) is compactly con-
tained in L2

loc(R
3), it follows that

lim sup
n→∞

∣∣∣∣∫
R3

∇u+
n ∇ψρu

+
n dx

∣∣∣∣ � lim sup
n→∞

‖∇un‖L2(R3)

(∫
R3

u2
n|∇ψρ |2 dx

) 1
2

� C

(∫
R3

u2|∇ψρ|2 dx

) 1
2

� C‖u‖L6(B2ρ(xi ))
‖∇ψρ‖L3(B2ρ(xi ))

� C‖u‖L6(B2ρ(xi ))
→ 0 as ρ → 0,

and we have the following relations of limits

lim sup
n→∞

a

∫
R3

∣∣∇u+
n

∣∣2
ψρ dx � a

∫
R3

∣∣∇u+∣∣2
ψρ dx + aμi → aμi as ρ → 0,

lim sup
n→∞

∫
R3

V (εx)
(
u+

n

)2
ψρ dx =

∫
R3

V (εx)
(
u+)2

ψρ dx → 0 as ρ → 0,

and

lim sup
n→∞

b‖∇un‖2
L2(R3)

(∫
R3

∣∣∇u+
n

∣∣2
ψρ dx

)
� lim sup

n→∞
b

(∫
R3

∣∣∇u+
n

∣∣2
ψρ dx

)2

� b

(∫
R3

∣∣∇u+∣∣2
ψρ dx + μi

)2

→ bμ2
i as ρ → 0.
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On the other hand, since ψρ has compact support and f has subcritical growth, we obtain

lim
ρ→0

lim
n→∞

∫
R3

f (un)u
+
n ψρ dx = lim

ρ→0

∫
Bρ(xi )

f (u)u+ψρ dx = 0,

which gives

lim sup
n→∞

∫
R3

g(εx, un)u
+
n ψρ dx = lim sup

n→∞

∫
R3

f (un)u
+
n ψρ dx +

∫
R3

(
u+

n

)6
ψρ dx → νi as ρ → 0.

Therefore

aμi + bμ2
i � νi,

which together with (3.20), gives

ν
1
3
i � 1

2

(
bS2

∗ +
√

b2S4∗ + 4aS∗
)
. (3.22)

Now, using (g3)-(ii), we obtain

d = Jε(un) − 1

4

〈
J ′

ε (un), un

〉 + on(1)

� 1

4

∫
R3

a
∣∣∇u+

n

∣∣2 + V (εx)
(
u+

n

)2
dx +

∫
R3\�ε

1

4
g(εx, un)un − G(εx, un) dx

+
∫

�ε

1

4
f (un)un − F(un) dx + 1

12

∫
�ε

(
u+

n

)6
dx + on(1)

� a

4

∫
�ε

∣∣∇u+
n

∣∣2
dx +

(
1

4
− 1

4K

) ∫
R3\�ε

V (εx)u2
n dx + 1

12

∫
�ε

(
u+

n

)6
dx

� a

4

∫
�ε

ψρ

∣∣∇u+
n

∣∣2
dx + 1

12

∫
�ε

ψρ

(
u+

n

)6
dx + on(1).

Taking the limit and using (3.20) and (3.22), we get

d � 1

4
a

∑
{i∈I :xi∈�ε}

ψρ(xi)μi + 1

12

∑
{i∈I :xi∈�ε}

ψρ(xi)νi

� 1

4
a

∑
{i∈I :xi∈�ε}

ψρ(xi)S∗ν
1
3
i + 1

12

∑
{i∈I :xi∈�ε}

ψρ(xi)νi

� 1

8
aS∗

(
bS2

∗ +
√

b2S4∗ + 4aS∗
) + 1

96

(
bS2

∗ +
√

b2S4∗ + 4aS∗
)3

= 1

6
abS3

∗ + 1

24
b3S6

∗ + 1

24

(
b2S4

∗ + 4aS∗
) 3

2

which yields a contradiction. This completes the proof of (3.15).
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At this point, we know that 〈J ′
ε (un), un〉 = on(1), that is

‖un‖2
ε + b‖∇un‖4

L2(R3)
=

∫
R3

g(εx, un)un dx + on(1). (3.23)

On the other hand, by the weak convergence, it is easy to see that u is a weak solution to

−(a + bA)�u + V (εx)u = g(εx, u) in R
3,

where A := limn→∞ ‖∇un‖2
L2(R3)

� ‖∇u‖2
L2(R3)

. Hence

‖u‖2
ε + bA‖∇u‖2

L2(R3)
=

∫
R3

g(εx, u)u dx. (3.24)

Taking into account (3.15), (3.23) and (3.24), we can infer that un → u in Hε as n → ∞. �

Corollary 3.1. The functional ψε satisfies the (PS)d condition on S
+
ε at any level d > 0 if γ = 0, and

d ∈ (0, c∗) if γ = 1.

Proof. Let {un}n∈N be a (PS) sequence for ψε at level d. Then we have

ψε(un) → d and ψ ′
ε(un) → 0 in

(
Tun

S
+
ε

)′
.

Using Proposition 2.1-(c), we can see that {mε(un)}n∈N is a (PS)d sequence for Jε in Hε. Then, we can
deduce from Lemma 3.6, that Jε fulfills the (PS)d condition in Hε, so there exists u ∈ S

+
ε such that, up

to a subsequence,

mε(un) → mε(u) in Hε.

Applying Lemma 2.3-(iii), we can infer that un → u in S
+
ε . �

Now, we give the proof of the main result of this section:

Theorem 3.1. Assume that conditions (V1)–(V2) and (f1)–(f4) hold. Then problem (2.3) admits a pos-
itive ground state for all ε > 0.

Proof. In view of Lemma 2.2, we can apply a version of the mountain-pass theorem without (PS) con-
dition (see [35]) to obtain a sequence {un}n∈N such that Jε(un) → cε and J ′

ε (un) → 0. By Lemma 3.2,
{un}n∈N is bounded in Hε, so we may assume that un ⇀ u in Hε. Taking into account Lemma 3.3 and
Lemma 3.4, we can assume that u is nontrivial. Now, we can prove that u is a critical point of Jε. Indeed,
for all ϕ ∈ Hε we see that∫

R3
a∇u∇ϕ + V (εx)uϕ dx + bA

(∫
R3

∇u∇ϕ dx

)
=

∫
R3

g(εx, u)ϕ dx

where A := limn→∞ ‖∇un‖2
L2(R3)

. Taking ϕ = u in the above identity and noting that A � ‖∇u‖2
L2(R3)

(by Fatou’s Lemma), we obtain that 〈J ′
ε (u), u〉 � 0. Let us prove that 〈J ′

ε (u), u〉 = 0. Suppose to
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the contrary, that 〈J ′
ε (u), u〉 < 0. Then there exists a unique 0 < t < 1 such that 〈J ′

ε (tu), tu〉 = 0.
Therefore, by (g3), (g4) and 0 < t < 1, it follows that

cε � Jε(tu) − 1

ϑ

〈
J ′

ε (tu), tu
〉

= t2

(
1

2
− 1

ϑ

)
‖u‖2

ε + t4

(
1

4
− 1

ϑ

)
‖∇u‖4

L2(R3)
+

∫
R3

1

ϑ
g(εx, tu)tu − G(εx, tu) dx

<

(
1

2
− 1

ϑ

)
‖u‖2

ε +
(

1

4
− 1

ϑ

)
‖∇u‖4

L2(R3)
+

∫
R3

1

ϑ
g(εx, u)u − G(εx, u) dx

� lim inf
n→∞

[
Jε(un) − 1

ϑ

〈
J ′

ε (un), un

〉] = cε

which gives a contradiction. Hence, 〈J ′
ε (u), u〉 = 0 and A = ‖∇u‖2

L2(R3)
. From the above argument we

can also deduce that t = 1 so that Jε(u) = cε. Since 〈J ′
ε (u), u−〉 = 0, where u− = min{u, 0}, and

g(x, t) = 0 for t � 0, it is easy to check that u � 0 in R
3. Standard arguments (see [22,23,34]) show

that u ∈ L∞(RN) ∩ C
1,α
loc (RN) for some α ∈ (0, 1), and using the Harnack inequality [20] we deduce

that u > 0 in R
3. �

4. The autonomous problem

In this section we consider the limit problem associated with (2.3). More precisely, we deal with the
following autonomous Kirchhoff problem:{

−(a + b
∫
R3 |∇u|2)�u + V0u = f (u) + γ u5 in R

3,

u ∈ H 1(R3), u > 0 in R
3.

(4.1)

The Euler–Lagrange functional associated with (4.1) is given by

J0(u) = 1

2

(
a

∫
R3

|∇u|2 + V0u
2 dx

)
+ b

4
‖∇u‖4

L2(R3)
−

∫
R3

F(u) + γ

6

(
u+)6

dx

which is well defined on the Hilbert space H0 := H 1(R3) endowed with the inner product

(u, ϕ)0 :=
∫
R3

a∇u∇ϕ + V0uϕ dx.

The norm induced by the inner product is

‖u‖2
0 :=

∫
R3

a|∇u|2 + V0u
2 dx.

The Nehari manifold associated with J0 is given by

N0 := {
u ∈ H0 \ {0} : 〈

J ′
0(u), u

〉 = 0
}
.
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We denote by H+
0 the open subset of H0 defined as

H+
0 := {

u ∈ H0 : ∣∣supp
(
u+)∣∣ > 0

}
,

and S
+
0 := S0 ∩ H+

0 , where S0 is the unit sphere of H0. We note that S+
0 is a incomplete C1,1-manifold

of codimension 1 modelled on H0 and contained in H+
0 . Thus H0 = TuS

+
0 ⊕Ru for each u ∈ S

+
0 , where

TuS
+
0 := {u ∈ H0 : (u, v)0 = 0}. As in Section 2, we can see that the following results hold.

Lemma 4.1. Assume that conditions (f1)–(f4) hold. Then the following assertions are true.

(i) For each u ∈ H+
0 , let h : R+ → R be defined by hu(t) = J0(tu). Then there is a unique tu > 0

such that

h′
u(t) > 0 for t ∈ (0, tu) and h′

u(t) < 0 for t ∈ (tu, ∞).

(ii) There exists τ > 0 independent of u such that tu � τ for any u ∈ S
+
0 . Moreover, for each compact

set K ⊂ S
+
0 there is a positive constant CK such that tu � CK for any u ∈ K.

(iii) The map m̂0 : H+
0 → N0 given by m̂0(u) = tuu, is continuous and m0 := m̂0|S+

0
is a homeomor-

phism between S
+
0 and N0. Moreover, m−1

0 (u) = u
‖u‖0

.

(iv) If there is a sequence {un}n∈N ⊂ S
+
0 such that dist(un, ∂S

+
0 ) → 0, then ‖m0(un)‖0 → ∞ and

J0(m0(un)) → ∞.

Let us define the maps

ψ̂0 : H+
0 → R and ψ0 : S+

0 → R,

by ψ̂0(u) := J0(m̂0(u)) and ψ0 := ψ̂0|S+
0

.

Proposition 4.1. Assume that conditions (f1)–(f4) hold. Then the following assertions are true.

(a) ψ̂0 ∈ C1(H+
0 ,R) and

〈
ψ̂ ′

0(u), v
〉 = ‖m̂0(u)‖0

‖u‖0

〈
J ′

0

(
m̂0(u)

)
, v

〉
for every u ∈ H+

0 and v ∈ H0.
(b) ψ0 ∈ C1(S+

0 ,R) and〈
ψ ′

0(u), v
〉 = ∥∥m0(u)

∥∥
0

〈
J ′

0

(
m0(u)

)
, v

〉
,

for every v ∈ TuS
+
0 .

(c) If {un}n∈N is a (PS)d sequence for ψ0, then {m0(un)}n∈N is a (PS)d sequence for J0. If {un}n∈N ⊂
N0 is a bounded (PS)d sequence for J0, then {m−1

0 (un)}n∈N is a (PS)d sequence for the functional
ψ0.
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(d) u is a critical point of ψ0 if, and only if, m0(u) is a nontrivial critical point for J0. Moreover, the
corresponding critical values coincide and

inf
u∈S+

0

ψ0(u) = inf
u∈N0

J0(u).

Remark 4.1. As in Section 2, we have the following variational characterization of the infimum of J0

over N0:

c0 := inf
u∈N0

J0(u) = inf
u∈H+

0

max
t>0

J0(tu) = inf
u∈S+

0

max
t>0

J0(tu) ∈ (0, c∗).

Arguing as in Lemma 3.3, we can prove that:

Lemma 4.2. Let {un}n∈N ⊂ H0 be a (PS)d sequence for J0, with d > 0 if γ = 0 and d ∈ (0, c∗) if
γ = 1, and un ⇀ 0. Then only one of the alternatives below holds:

(a) un → 0 in H0;
(b) there exist a sequence {yn}n∈N ⊂ R

3 and constants R, β > 0 such that

lim inf
n→∞

∫
BR(yn)

u2
n dx � β > 0.

Remark 4.2. Let us observe that, if {un}n∈N is a (PS) sequence at level c0 for the functional J0 such that
un ⇀ u, then we can assume that u �= 0. Otherwise, if un ⇀ 0 and, if un → 0 does not occur, in view
of Lemma 4.2 we can find {yn}n∈N ⊂ R

3 and R, β > 0 such that

lim inf
n→∞

∫
BR(yn)

u2
n dx � β > 0.

Setting vn(x) := un(x + yn), we can see that {vn}n∈N is a (PS) sequence for J0 at the level c0, {vn}n∈N is
bounded in H0 and there exists v ∈ H0 such that vn ⇀ v and v �= 0.

Now, we prove the following existence result for the autonomous problem:

Theorem 4.1. Problem (4.1) admits a positive ground state solution.

Proof. Since J0 has a mountain pass geometry, we can find (see [35]) a (PS)-sequence {un} for J0 at
level c0. It is easy to see that {un}n∈N is bounded in H 1(R3), so we may assume that un ⇀ u in H 1(R3).
By Remark 4.2, we may suppose that u is nontrivial. Now, we prove that u is a critical point of J0.
Indeed, for all ϕ ∈ H0 we can see that∫

R3
a∇u∇ϕ + V0uϕ dx + bA

(∫
R3

∇u∇ϕ dx

)
−

∫
R3

[
f (u) + γ

(
u+)5]

ϕ dx,

where A = limn→∞ ‖∇un‖2
L2(R3)

� ‖∇u‖2
L2(R3)

(by Fatou’s Lemma). Taking ϕ = u we have
〈J ′

0(u), u〉 � 0. Let us prove that 〈J ′
0(u), u〉 = 0. Suppose to the contrary that 〈J ′

0(u), u〉 < 0, then
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there exists a unique 0 < t < 1 such that 〈J ′
0(tu), tu〉 = 0. Therefore, by (f3) and (f4), it follows that

c0 � J0(tu) − 1

4

〈
J ′

0(tu), tu
〉

= t2

4
‖u‖2

0 +
∫
R3

1

4
f (tu)tu − F(tu) dx +

∫
R3

1

4

(
tu+)6 − 1

6

(
u+)6

<
1

4
‖u‖2

0 +
∫
R3

1

4
f (u)u − F(u) dx +

∫
R3

1

4

(
u+)6 − 1

6

(
u+)6

� lim inf
n→∞

[
J0(un) − 1

4

〈
J ′

0(un), un

〉] = c0

which gives a contradiction. Hence, 〈J ′
0(u), u〉 = 0 and A = ‖∇u‖2

L2(R3)
. From the above argument

we can also deduce that t = 1 so that J0(u) = c0. Since 〈J ′
0(u), u−〉 = 0, where u− = min{u, 0},

and f (t) = 0 for t � 0, it is easy to check that u � 0 in R
3. Using the arguments in [22,23,34],

u ∈ L∞(RN) ∩ C
1,α
loc (RN) for some α ∈ (0, 1), and from Harnack inequality [20] we obtain that u > 0

in R
3. Finally, we use a comparison argument to show the exponential decay of u. Since u(x) → 0 as

|x| → ∞ and using (f1), we can find R > 0 such that

f
(
u(x)

) + γ u5(x) � V0

2
for all |x| � R.

Let M � ‖u‖2
0, and define φ(x) := Ce−c|x| with c2 < V0

2(a+bM)
and Ce−cR � u(x) for all |x| = R. It is

easy to check that

�φ � c2φ for all x �= 0. (4.2)

Since u > 0, we have

−�u + V0

2(a + bM)
u � −�u + V0

2(a + b
∫
R3 |∇u|2 dx)

u

= 1

(a + b
∫
R3 |∇u|2 dx)

(
f (u) + γ u5 − V0

2

)
� 0 for |x| � R. (4.3)

Set v := φ − u. Taking into account (4.2) and (4.3), we get⎧⎪⎨⎪⎩
−�v + V0

2(a+bM)
v � 0 in |x| � R,

v � 0 on |x| = R,

v(x) → 0 as |x| → ∞.

The maximum principle [20] implies that v � 0 in |x| � R and we deduce that u(x) � Ce−c|x| for all
|x| � R. This completes the proof of theorem. �

The next lemma is a compactness result for the autonomous problem which will be useful later.
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Lemma 4.3. Let {un}n∈N ⊂ N0 be a sequence such that J0(un) → c0. Then {un}n∈N has a convergent
subsequence in H 1(R3).

Proof. Since {un}n∈N ⊂ N0 and J0(un) → c0, we can apply Lemma 4.1-(iii) and Proposition 4.1-(d)
and Remark 4.1 to infer that

vn = m−1
0 (un) = un

‖un‖0
∈ S

+
0

and

ψ0(vn) = J0(un) → c0 = inf
v∈S+

0

ψ0(v).

Let us introduce the map F : S+
0 → R ∪ {∞} defined as follows

F(u) :=
{

ψ0(u) if u ∈ S
+
0 ,

∞ if u ∈ ∂S+
0 .

We note that

• (S
+
0 , d0), where d(u, v) = ‖u − v‖0, is a complete metric space;

• F ∈ C(S
+
0 ,R ∪ {∞}), by Lemma 4.1-(iii);

• F is bounded from below, by Proposition 4.1-(d).

Hence, applying the Ekeland variational principle [15] to F , we can find {v̂n}n∈N ⊂ S
+
0 such that {v̂n}n∈N

is a (PS)c0 sequence for ψ0 on S
+
0 and ‖v̂n − vn‖0 = on(1). Then, using Proposition 4.1, Theorem 4.1

and arguing as in the proof of Corollary 3.1, the assertion follows. �

Finally, we prove the following useful relation between cε and c0:

Lemma 4.4. limε→0 cε = c0.

Proof. Let ω be a positive ground state given by Theorem 4.1, and set ωε(x) = ψε(x)ω(x), where
ψε(x) = ψ(εx) with ψ ∈ C∞

0 (R3), ψ ∈ [0, 1], ψ = 1 if |x| � 1
2 and ψ = 0 if |x| � 1. For simplicity,

we assume that supp(ψ) ⊂ B1(0) ⊂ �. Invoking the dominated convergence theorem, we see that

ωε → ω in H 1
(
R

3
)

as ε → 0. (4.4)

For each ε > 0 there exists tε > 0 such that

Jε(tεωε) = max
t�0

Jε(tωε). (4.5)

Then d
dt

[Jε(tωε)]t=tε = 0 and this implies that

1

t2
ε

∫
R3

a|∇ωε|2 + V (εx)ω2
ε dx + b

(∫
R3

|∇ωε|2 dx

)2

=
∫
R3

f (tεωε)

(tεωε)3
ω4

ε dx + t2
ε

∫
R3

ω6
ε dx.
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By (f1), (f2), (f4) and ω ∈ N0, it is easy to check that tε → 1 as ε → 0. On the other hand, from the
definition of cε and (4.5) we can see that

cε � max
t�0

Jε(tωε) = Jε(tεωε),

and using the fact that g(x, t) = f (t) + γ (t+)5 in � × R and supp ωε ⊂ �ε, we have

Jε(tεωε) = J0(tεωε) + t2
ε

2

∫
R3

(
V (εx) − V0

)
ω2

ε dx.

Taking into account that V (εx) is bounded on the support of ωε, tε → 1 as ε → 0 and (4.4), we can
deduce that

lim sup
ε→0

cε � J0(ω) = c0.

On the other hand, in view of (V1) and (g2), we know that cε � c0 for all ε > 0, so we can conclude that
cε → c0 as ε → 0. �

5. The barycenter map and multiplicity of solutions to (1.1)

In this section, our main purpose is to apply the Ljusternik–Schnirelmann category theory to obtain a
multiplicity result for problem (2.3). We begin proving the following technical results.

Lemma 5.1. Let εn → 0+ and {un}n∈N ⊂ Nεn
be such that Jεn

(un) → c0. Then there exists {ỹn}n∈N ⊂
R

3 such that the translated sequence

ũn(x) := un(x + ỹn)

has a subsequence which converges in H 1(R3). Moreover, up to a subsequence, {yn}n∈N := {εnỹn}n∈N is
such that yn → y0 ∈ M .

Proof. Since 〈J ′
εn

(un), un〉 = 0 and Jεn
(un) → c0, we can argue as in Lemma 3.2 to show that {un}n∈N

is bounded in Hεn
. Let us observe that ‖un‖εn

� 0 since c0 > 0. Therefore, proceeding as in Lemma 3.3,
we can find a sequence {ỹn}n∈N ⊂ R

3 and constants R, β > 0 such that

lim inf
n→∞

∫
BR(ỹn)

|un|2 dx � β.

Set ũn(x) := un(x + ỹn). Then {ũn}n∈N is bounded in H 1(R3) and we may assume that

ũn ⇀ ũ weakly in H 1
(
R

3
)
,



28 V. Ambrosio and D. Repovš / Kirchhoff problems via local mountain pass

for some ũ �= 0. Let {tn}n∈N ⊂ (0, +∞) be such that ṽn := tnũn ∈ N0 (see Lemma 4.1-(i)), and set
yn := εnỹn. Then, using (g2) and un ∈ Nεn

, we can see that

c0 � J0(ṽn) �
1

2

∫
R3

a|∇ṽn|2 + V (εnx + yn)ṽ
2
n dx + b

4
‖∇ṽn‖4

L2(R3)
−

∫
R3

F(ṽn) + γ

6

(
ṽ+

n

)6
dx

� t2
n

2

∫
R3

a|∇un|2 + V (εnz)u
2
n dx + b

4
t4
n‖∇un‖4

L2(R3)
−

∫
R3

G(εnz, tnun) dx

= Jεn
(tnun) � Jεn

(un) = c0 + on(1), (5.1)

which gives

J0(ṽn) → c0 and {ṽn}n∈N ⊂ N0. (5.2)

In particular, (5.2) yields that {ṽn}n∈N is bounded in H 1(R3), so we may assume that ṽn ⇀ ṽ. Obviously,
{tn}n∈N is bounded and we may assume that tn → t0 � 0. If t0 = 0, we get from the boundedness of
{ũn}n∈N, that ‖ṽn‖0 = tn‖ũn‖0 → 0, that is J0(ṽn) → 0, in contrast with the fact that c0 > 0. Hence,
t0 > 0. By the uniqueness of the weak limit, we have that ṽ = t0ũ and ṽ �= 0. Using Lemma 4.3, we
deduce that

ṽn → ṽ in H 1
(
R

3
)
, (5.3)

which implies that ũn → ũ in H 1(R3) and

J0(ṽ) = c0 and
〈
J ′

0(ṽ), ṽ
〉 = 0.

Now, we show that {yn}n∈N admits a subsequence, still denoted by the same, such that yn → y0 ∈ M .
Assume to the contrary, that {yn}n∈N is not bounded, that is there exists a subsequence, still denoted by
{yn}n∈N, such that |yn| → +∞. Since un ∈ Nεn

, we can see that

‖ũn‖2
0 � a‖∇ũn‖2

L2(R3)
+

∫
R3

V (εnx + yn)ũ
2
n dx + b‖∇ũn‖4

L2(R3)
=

∫
R3

g(εnx + yn, ũn)ũn dx.

Take R > 0 such that � ⊂ BR(0), and assume that |yn| > 2R. Then for any x ∈ BR/εn
(0) we get

|εnx + yn| � |yn| − |εnx| > R. From the definition of g we can deduce that

‖vn‖2
0 �

∫
BR/εn (0)

f̃ (ũn)ũn dx +
∫
R3\BR/εn (0)

f (ũn)ũn + γ
(
ũ+

n

)6
dx.

Since ũn → ũ in H 1(R3), we can apply the dominated convergence theorem to get∫
R3\BR/εn (0)

f (ũn)ũn dx = on(1).
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Hence

‖ũn‖2
0 � 1

K

∫
BR/εn (0)

V0ũ
2
n dx + on(1),

which yields(
1 − 1

K

)
‖ũn‖2

0 � on(1).

Since ũn → ũ �= 0 and K > 2, we get a contradiction. Thus {yn}n∈N is bounded and, up to a subsequence,
we may assume that yn → y0. If y0 /∈ M , then there exists r > 0 such that yn ∈ Br/2(y0) ⊂ R

3 \ M

for any n large enough. Reasoning as before, we get a contradiction. Hence y ∈ M . Now, we show that
V (y0) = V0. Assume to the contrary, that V (y0) > V0. Taking into account (5.3), Fatou’s Lemma and
the invariance of R3 by translations, we have

c0 < lim inf
n→∞

[
1

2

(∫
R3

a|∇ṽn|2 + V (εnz + yn)ṽ
2
n

)
+ b

4
‖∇ṽn‖4

L2(R3)
−

∫
R3

(
F(ṽn) + γ

6

(
ṽ+

n

)6
)

dx

]
� lim inf

n→∞ Jεn
(tnun) � lim inf

n→∞ Jεn
(un) = c0

which is impossible. �

Now, we aim to relate the number of positive solutions of (2.3) to the topology of the set �. For this
reason, we take δ > 0 such that

Mδ = {
x ∈ R

3 : dist(x, M) � δ
} ⊂ �,

and consider a smooth non increasing function η defined in [0, ∞) such that η(t) = 1 if 0 � t � δ
2 ,

η(t) = 0 if t � δ, 0 � η � 1, and |η′(t)| � c for some c > 0.
For any y ∈ �, we define

�ε,y(x) := η
(|εx − y|)w(

εx − y

ε

)
where w ∈ H 1(R3) is a positive ground state solution to (4.1) (such a solution exists by virtue of
Theorem 4.1).

Let tε > 0 be the unique number such that

Jε(tε�ε,y) := max
t�0

Jε(t�ε,y).

Finally, we consider �ε : M → Nε defined by setting

�ε(y) := tε�ε,y.
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Lemma 5.2. The functional �ε satisfies the following limit

lim
ε→0

Jε

(
�ε(y)

) = c0 uniformly in y ∈ M.

Proof. Assume to the contrary, that there exist δ0 > 0, {yn}n∈N ⊂ M and εn → 0 such that∣∣Jεn

(
�εn

(yn)
) − c0

∣∣ � δ0. (5.4)

Let us observe that using the change of variable z = εnx−yn

εn
, if z ∈ B δ

εn
(0), it follows that εnz ∈ Bδ(0)

and then εnz + yn ∈ Bδ(yn) ⊂ Mδ ⊂ �ε.
Then, recalling that G(x, t) = F(t) + γ

6 (t+)6 for (x, t) ∈ � × R and η(t) = 0 for t � δ, we have

Jε

(
�εn

(yn)
) = t2

εn

2

(∫
R3

a
∣∣∇(

η
(|εnz|

)
w(z)

)∣∣2
dz +

∫
R3

V (εnz + yn)
(
η
(|εnz|

)
w(z)

)2
dz

)

+ bt4
εn

4

(∫
R3

∣∣∇(
η
(|εnz|

)
w(z)

)∣∣2
dz

)2

−
∫
R3

F
(
tεn

η
(|εnz|

)
w(z)

)
dz

− t6
εn

γ

6

∫
R3

(
η
(|εnz|

)
w(z)

)6
dz. (5.5)

Now, we verify that the sequence {tεn
}n∈N satisfies tεn

→ 1 as εn → 0. It follows from the definition of
tεn

that 〈J ′
εn

(�εn
(yn)), �εn

(yn)〉 = 0, namely,

t2
εn

(∫
R3

a
∣∣∇(

η
(|εnz|

)
w(z)

)∣∣2 + V (εnz + yn)
(
η
(|εnz|

)
w(z)

)2
dz

)

+ bt4
εn

(∫
R3

∣∣∇(
η
(|εnz|

)
w(z)

)∣∣2
dz

)2

=
∫
R3

g
(
εnz + yn, tεn

η
(|εnz|

)
w(z)

)
tεn

η
(|εnz|

)
w(z) dz. (5.6)

Since η = 1 in Bδ
2
(0) ⊂ B δ

εn
(0) for all n large enough, we get from (5.6)

1

t2
εn

∫
R3

a|∇�εn,yn
|2 + V (εnx)�2

εn,yn
dx + b

(∫
R3

|∇�εn,yn
|2 dz

)2

=
∫
R3

f (tεn
�εn,yn

) + γ (tεn
�εn,yn

)5

(tεn
�εn,yn

)3
�4

εn,yn
dx.

By the continuity of w we can find a vector ẑ ∈ R
3 such that

w(ẑ) := min
z∈B̄ δ

2
(0)

w(z) > 0,
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so that, using (f4), we can deduce that

1

t2
εn

∫
R3

a|∇�εn,yn
|2 + V (εnx)�2

εn,yn
dx + b

(∫
R3

|∇�εn,yn
|2 dx

)2

�
{

f (tεnw(ẑ))

(f (tεnw(ẑ))3 w
4(ẑ)|Bδ

2
(0)| if γ = 0,

t2
εn

w6(ẑ)|Bδ
2
(0)| if γ = 1.

(5.7)

Now, assume to the contrary, that tεn
→ ∞. Let us observe that the dominated convergence theorem

yields

‖�εn,yn
‖2

εn
→ ‖w‖2

0 ∈ (0, ∞),

‖�εn,yn
‖L6(R3) → ‖w‖L6(R3) and

∫
R3

f (tεn
�εn,yn

)

(tεn
�εn,yn

)3
�4

εn,yn
dx →

∫
R3

f (t0w)

(t0w)3
w4 dx.

(5.8)

Hence, by tεn
→ ∞, (5.7) and (5.8), we obtain a contradiction.

Therefore {tεn
}n∈N is bounded and, up to subsequence, we may assume that tεn

→ t0 for some t0 � 0.
Let us prove that t0 > 0. Suppose to the contrary, that t0 = 0. Then, taking into account (5.8) and
assumptions (g1) and (g2), we can see that (5.6) yields

‖tεn
�εn,yn

‖2
εn

→ 0

which is impossible in view of Remark 2.2. Hence t0 > 0. Thus, by passing to the limit as n → ∞ in
(5.6), we deduce from (5.8) that

1

t2
0

‖w‖2
0 + b‖∇w‖4

L2(R3)
=

∫
R3

f (t0w) + γ (t0w)5

(t0w)3
w4 dx.

Taking into account w ∈ N0 and using (f4) we can infer that t0 = 1. Then, letting n → ∞ in (5.5) and
using tεn

→ 1 and (5.8) we obtain

lim
n→∞Jεn

(�εn,yn
) = J0(w) = c0,

which contradicts (5.4). �

At this point, we are in a position to define the barycenter map. For any δ > 0, we take ρ = ρ(δ) > 0
such that Mδ ⊂ Bρ(0), and we consider Υ : R3 → R

3 given by

Υ (x) :=
{

x if |x| < ρ
ρx

|x| if |x| � ρ.

We define the barycenter map βε : Nε → R
N as follows

βε(u) :=
∫
R3 Υ (εx)u2(x) dx∫

R3 u2(x) dx
.
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Applying the dominated convergence theorem, it is easy to check that the function βε fulfills the follow-
ing limit:

Lemma 5.3.

lim
ε→0

βε

(
�ε(y)

) = y uniformly in y ∈ M.

Now, we introduce a subset Ñε of Nε by taking a function h1 : R+ → R
+ such that h1(ε) → 0 as

ε → 0, and setting

Ñε = {
u ∈ Nε : Jε(u) � c0 + h1(ε)

}
.

It follows from Lemma 5.2 that h1(ε) := supy∈M |Jε(�ε(y)) − c0| → 0 as ε → 0. By the definition of
h1(ε), for any y ∈ M and ε > 0, �ε(y) ∈ Ñε and Ñε �= ∅. Moreover, we can prove a very interesting
relation between Ñε and βε:

Lemma 5.4.

lim
ε→0

sup
u∈Ñε

dist
(
βε(u), Mδ

) = 0.

Proof. Let εn → 0 as n → ∞. For any n ∈ N there exists un ∈ Ñεn
such that

sup
u∈Ñεn

inf
z∈Mδ

∣∣βεn
(u) − z

∣∣ = inf
z∈Mδ

∣∣βεn
(un) − z

∣∣ + on(1).

Therefore, it is suffices to prove that there exists {yn}n∈N ⊂ Mδ such that∣∣βεn
(un) − yn

∣∣ = on(1). (5.9)

We note that {un}n∈N ⊂ Ñεn
⊂ Nεn

, from which we deduce that

c0 � cεn
� Jεn

(un) � c0 + h1(εn).

This yields Jεn
(un) → c0. Using Lemma 5.1, we can find a sequence {ỹn}n∈N ⊂ R

3 such that yn =
εnỹn ∈ Mδ for n sufficiently large. Set ũn = un(· + ỹn) and we see that

βεn
(un) = yn +

∫
R3[ϒ(εnz + yn) − yn]ũ2

n dz∫
R3 ũ2

n dz
.

Since εnz + yn → y0 ∈ Mδ, we can deduce that βεn
(un) = yn + on(1), that is (5.9) indeed holds. �

In order to prove that (2.3) admits at least catMδ
(M) positive solutions, we recall the following useful

abstract result whose proof can be found in [9,28].



V. Ambrosio and D. Repovš / Kirchhoff problems via local mountain pass 33

Lemma 5.5. Let I , I1 and I2 be closed sets with I1 ⊂ I2, and let π : I → I2 and ψ : I1 → I be
two continuous maps such that π ◦ ψ is homotopically equivalent to the embedding j : I1 → I2. Then
catI (I ) � catI2(I1).

Since S
+
ε is not a complete metric space, we cannot directly apply standard Ljusternik–Schnirelmann

theory [28,35]. However, in the light of results in Section 2, we can make use of some abstract category
results contained in [33].

Theorem 5.1. Assume that conditions (V1)–(V2) and (f1)–(f4) hold. Then, given δ > 0, there exists
ε̄δ > 0 such that, for any ε ∈ (0, ε̄δ), problem (2.3) has at least catMδ

(M) positive solutions.

Proof. For any ε > 0, we consider the map αε : M → S
+
ε defined by αε(y) := m−1

ε (�ε(y)).
Using Lemma 5.2, we see that

lim
ε→0

ψε

(
αε(y)

) = lim
ε→0

Jε

(
�ε(y)

) = c0 uniformly in y ∈ M. (5.10)

Set

S̃+
ε := {

w ∈ S
+
ε : ψε(w) � c0 + h1(ε)

}
,

where h1(ε) := supy∈M |ψε(αε(y)) − c0| → 0 as ε → 0+ by (5.10). Since ψε(αε(y)) ∈ S̃+
ε , we have

that S̃+
ε �= ∅ for all ε > 0.

By Lemma 2.3-(iii), Lemma 5.2, Lemma 5.3 and Lemma 5.4, we can find ε̄ = ε̄δ > 0 such that the
following diagram

M
�ε→ �ε(M)

m−1
ε→ αε(M)

mε→ �ε(M)
βε→ Mδ

is well defined for any ε ∈ (0, ε̄).
Thanks to Lemma 5.3, and decreasing ε̄ if necessary, we see that βε(�ε(y)) = y + θ(ε, y) for all

y ∈ M , for some function θ(ε, y) such that |θ(ε, y)| < δ
2 uniformly in y ∈ M and for all ε ∈ (0, ε̄).

Then it is easy to check that H(t, y) := y + (1 − t)θ(ε, y) with (t, y) ∈ [0, 1] × M is a homotopy
between βε ◦ �ε = (βε ◦ mε) ◦ (m−1

ε ◦ �ε) and the inclusion map id : M → Mδ. This fact together with
Lemma 5.5 implies that

catαε(M) αε(M) � catMδ
(M). (5.11)

Using Corollary 3.1, Lemma 4.4 and Theorem 27 in [33] with c = cε � c0 + h1(ε) = d and K =
αε(M), we can deduce that ψε has at least catαε(M) αε(M) critical points on S̃+

ε . Taking into account
Proposition 2.1-(d) and (5.11), we can infer that Jε admits at least catMδ

(M) critical points in Ñε. �

6. Proof of Theorem 1.1

This section is devoted to the proof of Theorem 1.1. Here we prove that the solutions obtained in
Section 5 are indeed solutions of the original problem (1.1) for ε > 0 small enough.

First, we use a Moser iteration argument [29] to prove the following useful L∞-estimate for the solu-
tions of the modified problem (2.3).
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Lemma 6.1. Let εn → 0 and un ∈ Ñεn
be a solution to (2.3). Then, up to a subsequence, the translated

sequence vn = un(· + ỹn) ∈ L∞(R3), and there exists C > 0 such that

‖vn‖L∞(R3) � C for all n ∈ N,

where {ỹn}n∈N is given in Lemma 5.1. Furthermore, lim|x|→∞ vn(x) = 0 uniformly in n ∈ N.

Proof. Since Jεn
(un) � c0 + h1(εn) with h1(εn) → 0, we can argue as in the proof of (5.1) to prove

that Jεn
(un) → c0. From Lemma 5.1 we can deduce that there is a sequence {yn}n∈N ⊂ R

3 such that
vn := un(· + ỹn) → v in H 1(R3), for some v ∈ H 1(R3), v �≡ 0, and yn = εnỹn → y0 ∈ M .

Note that vn is a solution of the following problem{
−(a + b

∫
R3 |∇vn|2 dx)�vn + Vn(x)vn = gn(vn) in R

3,

vn ∈ H 1(R3), vn > 0 in R
3,

(6.1)

where Vn(x) = V (εnx + εnỹn) and gn(vn) = g(εnx + εnỹn, vn).
For any R > 0, 0 < r � R

2 , let η ∈ C∞(R3) such that 0 � η � 1, η = 1 in R
3 \ BR(0), η = 0 in

BR−r (0) and |∇η| � 2/r . For each n ∈ N and for L > 0, let

zL,n := η2vnv
2(β−1)

L,n and wL,n := ηvnv
β−1
L,n ,

where vL,n := min{vn, L}, and β > 1 to be determined later. Choosing zL,n as a test function in (6.1)
we have

0 =
∫
R3

a∇vn∇zL,n + VnvnzL,n dx + b‖∇vn‖2
L2(R3)

∫
R3

∇vn∇zL,n dx −
∫
R3

gn(vn)zL,n dx,

namely

(
a + b‖∇vn‖2

L2(R3)

) ∫
R3

|∇vn|2η2v
2(β−1)

L,n + 2∇vn∇ηηvnv
2(β−1)

L,n + 2(β − 1)∇vn∇vL,nvnv
2β−3
L,n η2 dx

+
∫
R3

Vnv
2
nη

2v
2(β−1)

L,n dx =
∫
R3

gn(vn)η
2vnv

2(β−1)

L,n dx.

Set An := a + b‖∇vn‖2
L2(R3)

. Since vn → v in H 1(R3) with v �= 0, we get a � An � C for some
positive constant C. Hence,

An

∫
R3

η2v
2(β−1)

L,n |∇vn|2 dx =
∫
R3

gn(vn)η
2vnv

2(β−1)

L,n dx − 2An

∫
R3

ηv
2(β−1)

L,n vn∇vn∇η dx

− 2An(β − 1)

∫
R3

η2v
2β−3
L,n vn∇vn∇vL,n dx −

∫
R3

Vnv
2
nη

2v
2(β−1)

L,n dx.

By assumptions (g1) and (g2), for any ξ > 0 there exists Cξ > 0 such that∣∣g(εnx, t)
∣∣ � ξ |t | + Cξ |t |5 for all (x, t) ∈ R

3 × R.
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Hence, using (V1) and choosing ξ ∈ (0, V0), we have

An

∫
R3

η2v
2(β−1)

L,n |∇vn|2 dx � Cξ

∫
R3

v6
nη

2v
2(β−1)

L,n dx − 2An

∫
R3

ηv
2(β−1)

L,n vn∇vn∇η dx.

For each τ > 0 we can use Young’s inequality to obtain

An

∫
R3

η2v
2(β−1)

L,n |∇vn|2 dx � Cξ

∫
R3

v6
nη

2v
2(β−1)

L,n dx + 2Anτ

∫
R3

|∇vn|2v2(β−1)

L,n η2 dx

+ 2AnCτ

∫
R3

v2
n|∇η|2v2(β−1)

L,n dx

and taking τ ∈ (0, 1
2), we get∫

R3
η2v

2(β−1)

L,n |∇vn|2 dx � C

∫
R3

v6
nη

2v
2(β−1)

L,n dx + C

∫
R3

|∇η|2v2
nv

2(β−1)

L,n dx. (6.2)

On the other hand, using the Sobolev inequality and the Hölder inequality, we can infer

‖wL,n‖2
L6(R3)

� C

∫
R3

|∇wL,n|2 dx = C

∫
R3

∣∣∇(
ηv

β−1
L,n vn

)∣∣2
dx

� Cβ2

(∫
R3

|∇η|2v2
nv

2(β−1)

L,n dx +
∫
R3

η2v
2(β−1)

L,n |∇vn|2 dx

)
. (6.3)

Gathering (6.2) and (6.3), we have

‖wL,n‖2
L6(R3)

� Cβ2

(∫
R3

|∇η|2v2
nv

2(β−1)

L,n dx +
∫
R3

v6
nη

2v
2(β−1)

L,n dx

)
.

At this point we can argue as in Lemma 4.5 in [3] to deduce the assertion. �

Now, we are ready to give the proof of our main multiplicity result:

Proof of Theorem 1.1. Take δ > 0 such that Mδ ⊂ �. We begin by proving that there exists ε̃δ > 0
such that for any ε ∈ (0, ε̃δ) and any solution uε ∈ Ñε of (2.3),

‖uε‖L∞(R3\�ε) < α. (6.4)

Assume to the contrary that for some subsequence {εn}n∈N such that εn → 0, we can find un := uεn
∈

Ñεn
such that J ′

εn
(un) = 0 and

‖un‖L∞(R3\�εn) � α. (6.5)

Since Jεn
(un) � c0 + h1(εn) and h1(εn) → 0, we can argue as in the proof of (5.1) to deduce that

Jεn
(un) → c0. In view of Lemma 5.1, we can find {ỹn}n∈N ⊂ R

3 such that vn = un(· + ỹn) → v �= 0 in



36 V. Ambrosio and D. Repovš / Kirchhoff problems via local mountain pass

H 1(R3) and εnỹn → y0 ∈ M . Now, if we choose r > 0 such that Br(y0) ⊂ B2r (y0) ⊂ �, we have that
B r

εn
(

y0
εn

) ⊂ �εn
. Then for any y ∈ B r

εn
(ỹn)∣∣∣∣y − y0

εn

∣∣∣∣ � |y − ỹn| +
∣∣∣∣ỹn − y0

εn

∣∣∣∣ <
1

εn

(
r + on(1)

)
<

2r

εn

for n sufficiently large.

Therefore, for any n big enough,

R
3 \ �εn

⊂ R
3 \ B r

εn
(ỹn). (6.6)

Applying Lemma 6.1, there exists R > 0 such that

vn(x) < α, for |x| � R, n ∈ N,

from which

un(x) = vn(x − ỹn) < α for x ∈ Bc
R(ỹn), n ∈ N.

On the other hand, there exists ν ∈ N such that for any n � ν we have

R
3 \ �εn

⊂ R
3 \ B r

εn
(ỹn) ⊂ R

3 \ BR(ỹn).

Consequently, un(x) < α for any x ∈ R
3 \ �εn

and n � ν. which is impossible in view of (6.5).
Now, let ε̄δ > 0 be given by Theorem 5.1, and we fix ε ∈ (0, εδ) where εδ = min{ε̃δ, ε̄δ}. In light of

Theorem 5.1, we know that problem (2.3) admits at least catMδ
(M) nontrivial solutions. Let us denote by

uε one of these solutions. Since uε ∈ Ñε satisfies (6.4), it follows by definition of g that uε is a solution
of (2.1). Then û(x) = u(x/ε) is a solution to (1.1), and we can conclude that (1.1) has at least catMδ

(M)

solutions.
Finally, we study the behavior of the maximum points of solutions for problem (2.1). Take εn → 0

and consider a sequence {un}n∈N ⊂ Hεn
of solutions for (2.1) as above. Let us observe that (g1) implies

that we can find μ > 0 such that

g(εx, t)t � V0

K
t2 for any x ∈ R

3, t � μ. (6.7)

Arguing as before, we can find R > 0 such that

‖un‖L∞(R3\BR(ỹn)) < μ. (6.8)

Moreover, up to extract a subsequence, we may assume that

‖un‖L∞(BR(ỹn)) � μ. (6.9)

Indeed, if (6.9) does not hold, in view of (6.8), we see that ‖un‖L∞(R3) < μ. Then, using 〈J ′
εn

(un), un〉 =
0 and (6.7), we can infer

‖un‖2
εn
� ‖un‖2

εn
+ b‖∇un‖4

L2(R3)
=

∫
R3

g(εnx, un)un dx � V0

K

∫
R3

u2
n dx
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which yields ‖un‖εn
= 0, and this is impossible. Hence (6.9) holds. Taking into account (6.8) and

(6.9), we can deduce that if pn ∈ R
3 is a global maximum point of un, then pn ∈ BR(ỹn). Therefore

pn = ỹn + qn for some qn ∈ BR(0). As a consequence, ηεn
= εnỹn + εnqn is a global maximum point of

ûn(x) = un(x/εn). Since |qn| < R for any n ∈ N and εnỹn → y0 ∈ M (in view of Lemma 5.1), we can
infer from the continuity of V that

lim
n→∞ V (ηεn

) = V (y0) = V0.

In what follows we prove the exponential decay of solutions of (1.1). Since vn(x) → 0 as |x| → ∞
uniformly in n ∈ N, and using (g1), we can find R > 0 such that

gn

(
vn(x)

)
� V0

2
for all |x| � R.

Let M � ‖vn‖2
εn

, and define φ(x) := Ce−c|x| with c2 < V0
2(a+bM)

and Ce−cR � vn(x) for all |x| = R. It
is easy to verify that

�φ � c2φ for all x �= 0. (6.10)

On the other hand, by (V1), we have

−�vn + V0

2(a + bM)
vn � −�vn + V0

2(a + b
∫
R3 |∇vn|2 dx)

vn

= 1

(a + b
∫
R3 |∇vn|2 dx)

(
gn(vn) −

(
Vn − V0

2

))
� 1

(a + b
∫
R3 |∇vn|2 dx)

(
gn(vn) − V0

2

)
� 0 for |x| � R. (6.11)

Set wn := φ − vn. Putting together (6.10) and (6.11), we get⎧⎪⎨⎪⎩
−�wn + V0

2(a+bM)
wn � 0 in |x| � R,

wn � 0 on |x| = R,

wn(x) → 0 as |x| → ∞.

The maximum principle [20] implies that wn � 0 in |x| � R and we deduce that vn(x) � Ce−c|x| for all
|x| � R and n ∈ N. Since ûn(x) = un(x/εn) = vn(

x
εn

− ỹn) = vn(
x+εnqn−ηεn

εn
) solves (1.1), we obtain the

desired estimate. This completes the proof of Theorem 1.1. �

7. Supercritical Kirchhoff problems

In this section we deal with the multiplicity of positive solutions for (1.5). After rescaling, we study
the following Kirchhoff problem{

−(a + b
∫
R3 |∇u|2 dx)�u + V (εx)u = uq−1u + μur−1 in R

3,

u > 0 in R
3, u(x) → 0 as |x| → ∞,

(7.1)
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where μ > 0 and the powers are such that 4 < q < 6 < r . In what follows, we truncate the nonlinearity
φ(u) := |u|q−2u + μ|u|r−2u in a suitable way.

Let K > 0 be a real number, whose value will be fixed later, and set

φμ(t) :=

⎧⎪⎨⎪⎩
0 if t < 0,

tq−1 + μtr−1 if 0 � t < K,

(1 + μKr−q)tq−1 if t � K.

It is clear that φμ satisfies the assumptions (f1)–(f4) ((f3) with ϑ = q > 4). Moreover,

φμ(t) �
(
1 + μKr−q

)
tq−1 for all t � 0. (7.2)

Therefore, we can consider the following truncated problem{
−(a + b

∫
R3 |∇u|2 dx)�u + V (εx)u = φμ(u) in R

3,

u ∈ H 1(R3), u > 0 in R
3.

(7.3)

It is easy to see that weak solutions of (7.3) are critical points of the energy functional Jε,μ : Hε → R

defined by

Jε,μ(u) = 1

2
‖u‖2

ε + b

4
‖∇u‖4

L2(R3)
−

∫
R3

�μ(u) dx,

where �μ(t) := ∫ t

0 φμ(s)ds. We also consider the autonomous functional

J0,μ(u) = 1

2
‖u‖2

0 + b

4
‖∇u‖4

L2(R3)
−

∫
R3

�μ(u) dx.

Using Theorem 1.1, we know that for any μ � 0 and δ > 0, there exists ε̄(δ, μ) > 0 such that, for any
ε ∈ (0, ε̄(δ, μ)), problem (7.3) admits at least catMδ

(M) positive solutions uε,μ. Now, we prove that it is
possible to estimate the Hε-norm of these solutions uniformly with respect to μ. More precisely:

Lemma 7.1. There exists C̄ > 0 such that ‖uε,μ‖ε � C̄ for any ε > 0 sufficiently small and uniformly
in μ.

Proof. A simple inspection of the proof of Theorem 1.1 shows that any solution uε,μ of (7.3) satisfies
the following inequality

Jε,μ(uε,μ) � c0,μ + hμ(ε),

where c0,μ is the mountain pass level related to the functional J0,μ, and hμ(ε) → 0 as ε → 0. Then,
decreasing ε̄(δ, μ) if necessary, we can assume that

Jε,μ(uε,μ) � c0,μ + 1 (7.4)
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for any ε ∈ (0, ε̄(δ, μ)). Using the fact that c0,μ � c0,0 for any μ � 0, we can deduce that

Jε,μ(uε,μ) � c0,0 + 1 (7.5)

for any ε ∈ (0, ε̄(δ, μ)). We can also note that

Jε,μ(uε,μ) = Jε,μ(uε,μ) − 1

q

〈
J ′

ε,μ(uε,μ), uε,μ

〉
=

(
1

2
− 1

q

)
‖uε,μ‖2

ε +
(

1

4
− 1

q

)
‖∇uε,μ‖4

L2(R3)
+

∫
R3

1

q
φμ(uε,μ)uε,μ − �μ(uε,μ) dx

�
(

1

2
− 1

q

)
‖uε,μ‖2

ε (7.6)

where in the last inequality we have used assumption (f3). Putting together (7.5) and (7.6), we can infer
that

‖uε,μ‖ε �
[(

2q

q − 2

)
(c0,0 + 1)

] 1
2

for any ε ∈ (0, ε̄(δ, μ)). �

Now, our plan is to prove that uε,μ is a solution of the original problem (7.1). To this end, we will
show that we can find K0 > 0 such that for any K � K0, there exists μ0 = μ0(K) > 0 such that

‖uε,μ‖L∞(R3) � K for all μ ∈ [0, μ0]. (7.7)

In order to achieve our goal, we use a version of the Moser iteration technique [29]. For simplicity, we
set u := uε,μ. For any L > 0, we define uL := min{u, L} � 0, where β > 1 will be chosen later, and let
wL := uu

β−1
L . Taking u

2(β−1)

L u in (7.3), we see that

a

∫
R3

u
2(β−1)

L |∇u|2 dx +
∫

{u<L}
2(β − 1)u

2(β−1)

L |∇u|2 dx + b‖∇u‖2
L2(R3)

∫
R3

∇u∇(
u

2(β−1)

L u
)
dx

=
∫
R3

φμ(u)u
2(β−1)

L u dx −
∫
R3

V (εx)u2u
2(β−1)

L dx. (7.8)

Putting together (7.8), (7.2) and (V1), we get

∫
R3

u
2(β−1)

L |∇u|2 dx � Cμ,K

∫
R3

uqu
2(β−1)

L dx (7.9)
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where Cμ,K := a−1(1 + μKr−q). On the other hand, by Theorem 2.1 and β > 1, we have

‖wL‖2
L6(R3)

� S∗
∫
R3

|∇wL|2 dx

= S∗
∫
R3

∣∣uβ−1
L ∇u + (β − 1)uu

β−2
L ∇uL

∣∣2
dx

� 2S∗
(∫

R3
(β − 1)2u

2(β−1)

L |∇u|2 dx dy +
∫
R3

∣∣uβ−1
L ∇uL

∣∣2
dx

)
� 2S∗

(
(β − 1)2 + 1

) ∫
R3

u
2(β−1)

L |∇u|2 dx

= 2S∗β2

[(
β − 1

β

)2

+ 1

β

2] ∫
R3

u
2(β−1)

L |∇u|2 dx

� 4S∗β2
∫
R3

u
2(β−1)

L |∇u|2 dx. (7.10)

Taking into account (7.9) and (7.10), and using the Hölder inequality, we can deduce that

‖wL‖2
L6(R3)

� C1β
2Cμ,K‖u‖q−2

L6(R3)
‖wL‖2

L
12

6−(q−2) (R3)

(7.11)

where 2 < 12
6−(q−2)

< 6 and C1 > 0. In view of Lemma 7.1 and Lemma 2.1, we can see that

‖wL‖2
L6(R3)

� C2β
2Cμ,KC̄

q−2
2 ‖wL‖2

Lα∗
(R3)

(7.12)

where

α∗ := 12

6 − (q − 2)
.

Now, we observe that if uβ ∈ Lα∗
(R3), we obtain from the definition of wL, uL � u, and (7.12),

‖wL‖2
L6(R3)

� C3β
2Cμ,KC̄

q−2
2 ‖u‖2β

Lβα∗
(R3)

< ∞. (7.13)

Passing to the limit as L → +∞ in (7.13), the Fatou Lemma yields

‖u‖L6β(R3) � (C4Cμ,K)
1

2β β
1
β ‖u‖Lβα∗

(R3) (7.14)

whenever uβα∗ ∈ L1(R3).
Now, we set β := 6

α∗ > 1, and observe that, since v ∈ L6(R3), the above inequality holds for this
choice of β. Then, using the fact that β2α∗ = 6β, it follows that (7.14) holds with β replaced by β2.
Therefore,

‖u‖
L6β2

(R3)
� (C4Cμ,K)

1
2β2 β

2
β2 ‖u‖

Lβ2α∗
(R3)

� (C4Cμ,K)
1
2 ( 1

β
+ 1

β2 )
β

1
β
+ 2

β2 ‖u‖Lβα∗
(R3).
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Iterating this process and recalling that βα∗ := 6, we can infer that for every m ∈ N,

‖u‖L6βm
(R3) � (C4Cμ,K)

∑m
j=1

1
2βj β

∑m
j=1 jβ−j ‖u‖L6(R3). (7.15)

Taking the limit in (7.15) as m → +∞ and using Lemma 7.1, we get

‖u‖L∞(R3) � (C4Cμ,K)γ1βγ2C5 (7.16)

where C5 := S
− 1

2∗ C̄ and

γ1 := 1

2

∞∑
j=1

1

βj
< ∞ and γ2 :=

∞∑
j=1

j

βj
< ∞.

Next, we will find some suitable values of K and μ such that the following inequality holds

(C4Cμ,K)γ1βγ2C5 � K,

or equivalently,

1 + μKr−q � C−1
4 β

− γ2
γ1

(
KC−1

5

) 1
γ1 .

Take K > 0 such that

(KC−1
5 )

1
γ1

C4β
γ2
γ1

− 1 > 0,

and fix μ0 > 0 satisfying

μ � μ0 �
[
(KC−1

5 )
1
γ1

C4β
γ2
γ1

− 1

]
1

Kr−q
.

Then, thanks to (7.16), we obtain that

‖u‖L∞(R3) � K for all μ ∈ [0, μ0],

that is u = uε,μ is a solution of (7.1). This completes the proof of Theorem 1.2.
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[37] M. Xiang, B. Zhang and V.D. Rădulescu, Multiplicity of solutions for a class of quasilinear Kirchhoff system involving

the fractional p-Laplacian, Nonlinearity 29 (2016), 3186–3205. doi:10.1088/0951-7715/29/10/3186.
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