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Abstract. In this paper, we study the multiplicity and concentration of positive solutions for the following (p, q)-Laplacian
problem: {−Δpu − Δqu + V (εx)

(|u|p−2u + |u|q−2u
)

= f(u) in R
N ,

u ∈ W 1,p(RN ) ∩ W 1,q(RN ), u > 0 in R
N ,

where ε > 0 is a small parameter, 1 < p < q < N , Δru = div(|∇u|r−2∇u), with r ∈ {p, q}, is the r-Laplacian operator,
V : RN → R is a continuous function satisfying the global Rabinowitz condition, and f : R → R is a continuous function
with subcritical growth. Using suitable variational arguments and Ljusternik–Schnirelmann category theory, we investigate
the relation between the number of positive solutions and the topology of the set where V attains its minimum for small ε.
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1. Introduction

In this paper, we deal with the existence and multiplicity of solutions for the following p&q-Laplacian
problem: {

−Δpu − Δqu + V (εx)
(|u|p−2u + |u|q−2u

)
= f(u) in R

N ,

u ∈ W 1,p(RN ) ∩ W 1,q(RN ), u > 0 in R
N ,

(Pε)

where ε > 0 is a small parameter, 1 < p < q < N , Δru = div(|∇u|r−2∇u), with r ∈ {p, q}, is the
r-Laplacian operator, V : RN → R is a continuous potential and f : R → R is a continuous function with
subcritical growth.

We recall that this class of problems arises from a general reaction-diffusion system

ut = div(D(u)∇u) + f(x, u) x ∈ R
N , t > 0,

where D(u) = |∇u|p−2 + |∇u|q−2. As pointed out in [9], this equation appears in several applications such
as biophysics, plasma physics and chemical reaction design. In these applications, u describes a concen-
tration, div(D(u)∇u) corresponds to the diffusion with a diffusion coefficient D(u), and the reaction term
f(x, u) relates to source and loss processes. Classical (p, q)-Laplacian problems in bounded or unbounded
domains have been studied by several authors; see for instance [3,11–16,20] and references therein.

In order to precisely state our result, we introduce the assumptions on the potential V and the
nonlinearity f . Along the paper, we assume that V : RN → R is a continuous function satisfying the
following condition introduced by Rabinowitz [21]:

0 < inf
x∈RN

V (x) = V0 < lim inf
|x|→∞

V (x) = V∞ ∈ (0,∞], (V )
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and the nonlinearity f : R → R fulfills the following hypotheses:
(f1) f ∈ C0(R,R) and f(t) = 0 for all t < 0;

(f2) lim
|t|→0

|f(t)|
|t|p−1

= 0;

(f3) there exists r ∈ (q, q∗), with q∗ = Nq
N−q , such that lim

|t|→∞
|f(t)|
|t|r−1

= 0;

(f4) there exists ϑ ∈ (q, q∗) such that

0 < ϑF (t) = ϑ

t∫
0

f(τ) dτ ≤ tf(t) for all t > 0;

(f5) the map t �→ f(t)
tq−1

is increasing on (0,∞).

Since we deal with the multiplicity of solutions of (Pε), we recall that if Y is a given closed subset of
a topological space X, we denote by catX(Y ) the Ljusternik–Schnirelmann category of Y in X, that is
the least number of closed and contractible sets in X which cover Y (see [25] for more details).

Let us denote by

M = {x ∈ R
N : V (x) = V0} and Mδ = {x ∈ R

N : dist(x,M) ≤ δ}, for δ > 0.

Our main result can be stated as follows:

Theorem 1.1. Assume that conditions (V ) and (f1)–(f5) hold. Then for any δ > 0 there exists εδ > 0
such that, for any ε ∈ (0, εδ), problem (Pε) has at least catMδ

(M) positive solutions. Moreover, if uε

denotes one of these solutions and xε ∈ R
N is a global maximum point of uε, then

lim
ε→0

V (εxε) = V0,

and there exist C1, C2 > 0 such that

uε(x) ≤ C1e
−C2|x−xε| for all x ∈ R

N .

The proof of Theorem 1.1 will be obtained by using suitable variational techniques and category
theory. We note that Theorem 1.1 improves Theorem 1.1 in [3], in which the authors assumed f ∈ C1

and that there exist C > 0 and ν ∈ (p, q∗) such that

f ′(t)t2 − (q − 1)f(t)t ≥ Ctν for all t ≥ 0.

Since we require that f is only continuous, the classical Nehari manifold arguments used in [3] do not
work in our context, and in order to overcome the non-differentiability of the Nehari manifold, we take
advantage of some variants of critical point theorems from [23]. Clearly, with respect to [3], a more
accurate and delicate analysis will be needed to implement our variational machinery. To obtain multiple
solutions, we use a technique introduced by Benci and Cerami in [7], which consists of making precise
comparisons between the category of some sublevel sets of the energy functional Iε associated with (Pε)
and the category of the set M . Since we aim to apply Ljusternik–Schnirelmann theory, we need to prove
certain compactness property for the functional Iε. In particular, we will see that the levels of compactness
are strongly related to the behavior of the potential V at infinity. A similar approach has been recently
employed by the first author for fractional Schrödinger equations; see for example [5,6]. Finally, we prove
the exponential decay of solutions by following some ideas from [13]. We would like to point out that
our arguments are rather flexible and we believe that the ideas contained here can be applied in other
situations to study problems driven by (p, q)-Laplacian operators, φ-Laplacian operator, or also fractional
(p, q)-Laplacian problems, on the entire space.
The paper is organized as follows: in Sect. 2 we collect some facts about the involved Sobolev spaces and
some useful lemmas. In Sect. 3, we provide some technical results which will be crucial to prove our main
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theorem. In Sect. 4, we deal with the autonomous problems associated to (Pε). In Sect. 5, we obtain an
existence result for (Pε) for sufficiently small ε. Section 6 is devoted to the multiplicity result for (Pε),
and Sect. 7 to the concentration phenomenon.

2. Preliminaries

In this section, we recall some facts about the Sobolev spaces and we prove some technical lemmas which
we will use later.

Let p ∈ [1,∞] and A ⊂ R
N . We denote by |u|Lp(A) the Lp(A)-norm of a function u : R

N → R

belonging to Lp(A). When A = R
N , we simply write |u|p instead of |u|Lp(RN ). For p ∈ (1,∞) and N > p,

we define D1,p(RN ) as the closure of C∞
c (RN ) with respect to

|∇u|pp =
∫
RN

|∇u|pdx.

Let us denote by W 1,p(RN ) the set of functions u ∈ Lp(RN ) such that |∇u|p < ∞, endowed with the
natural norm

‖u‖p
1,p = |∇u|pp + |u|pp.

We begin by recalling the following embedding theorem for Sobolev spaces.

Theorem 2.1. (see [1]) Let N > p. Then there exists a constant S∗ > 0 such that, for any u ∈ D1,p(RN ),

|u|pp∗ ≤ S−1
∗ |∇u|pp.

Moreover, W 1,p(RN ) is continuously embedded in Lt(RN ) for any t ∈ [p, p∗
s ] and compactly in Lt

loc(R
N )

for any t ∈ [1, p∗).

We recall the following Lions compactness lemma.

Lemma 2.1. (see [17]) Let N > p and r ∈ [p, p∗). If {un} is a bounded sequence in W 1,p(RN ) and if

lim
n→∞ sup

y∈RN

∫
BR(y)

|un|rdx = 0, (2.1)

where R > 0, then un → 0 in Lt(RN ) for all t ∈ (p, p∗).

We also have the following useful lemma.

Lemma 2.2. (see [2,18]) Let ηn : RN → R
K , K ≥ 1, with ηn ∈ Lt(RN )×· · ·×Lt(RN ) (t > 1), ηn(x) → 0

a.e. in R
K and A(y) = |y|t−2y, y ∈ R

K . Then, if |ηn|t ≤ C for all n ∈ N, we have∫
RN

|A(ηn + w) − A(ηn) − A(w)|t′
dx = on(1)

for each w ∈ Lt(RN ) × · · · × Lt(RN ) fixed, and t′ = t
t−1 is the conjugate exponent of t.

For ε > 0, we define the space

Xε =

⎧⎨
⎩u ∈ W 1,p(RN ) ∩ W 1,q(RN ) :

∫
RN

V (εx) (|u|p + |u|q) dx < ∞
⎫⎬
⎭

endowed with the norm

‖u‖ε = ‖u‖V,p + ‖u‖V,q,
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where

‖u‖t
V,t = |∇u|tt +

∫
RN

V (εx)|u|t dx for all t > 1.

Then the following embedding lemma hold.

Lemma 2.3. (see [3]) The space Xε is continuously embedded into W 1,p(RN ) ∩ W 1,q(RN ). Therefore, Xε

is continuously embedded in Lt(RN ) for any t ∈ [p, q∗] and compactly embedded in Lt(BR), for all R > 0
and any t ∈ [1, q∗).

Lemma 2.4. (see [3]) If V∞ = ∞, the embedding Xε ⊂ Lm(RN ) is compact for any p ≤ m < q∗.

Finally we have the following splitting lemma which will be very useful in this work.

Lemma 2.5. Let {un} ⊂ Xε be a sequence such that un ⇀ u in Xε. Set vn = un − u. Then we have

(i) |∇vn|pp + |∇vn|qq =
(|∇un|pp + |∇un|qq

)− (|∇u|pp + |∇u|qq
)

+ on(1),

(ii)
∫
RN

V (εx) (|vn|p + |vn|q) dx =
∫
RN

V (εx) (|un|p + |un|q) dx −
∫
RN

V (εx) (|u|p + |u|q) dx + on(1)

(iii)
∫
RN

(F (vn) − F (un) + F (u)) dx = on(1),

(iv) sup
‖w‖ε≤1

∫
RN

| (f(vn) − f(un) + f(u)) w|dx = on(1).

Proof. It is clear that (i) and (ii) are consequences of the well-known Brezis-Lieb lemma [8]. The proofs
of (iii) and (iv) are given in [3] for f ∈ C1. Since here we are assuming f ∈ C0, we need to use different
arguments. We start by proving (iii). Let us note that un = vn + u and

F (un) − F (vn) =

1∫
0

d
dt

F (vn + tu) dt =

1∫
0

uf(vn + tu) dt.

In view of (f2) and (f3), for any δ > 0 there exists cδ > 0 such that

|f(t)| ≤ pδ|t|p−1 + cδ|t|q∗−1 for all t ∈ R, (2.2)

|F (t)| ≤ δ|t|p + c′
δ|t|q

∗
for all t ∈ R. (2.3)

Using (2.2) with δ = 1 and (|a| + |b|)r ≤ C(r)(|a|r + |b|r) for any a, b ∈ R and r ≥ 1, we can see that

|F (un) − F (vn)| ≤ C|vn|p−1|u| + C|u|p + C|vn|q∗−1|u| + C|u|q∗
. (2.4)

Fix η > 0. Applying the Young inequality ab ≤ ηar + C(η)br′
for all a, b > 0, with r, r′ ∈ (1,∞) such

that 1
r + 1

r′ = 1, to the first and the third term on the right hand side of (2.4), we deduce that

|F (un) − F (vn)| ≤ η(|vn|p + |vn|q∗
) + Cη(|u|p + |u|q∗

)

which together with (2.3) with δ = η implies that

|F (un) − F (vn) − F (u)| ≤ η(|vn|p + |vn|q∗
) + C ′

η(|u|p + |u|q∗
).

Let

Gη,n(x) = max
{

|F (un) − F (vn) − F (u)| − η(|vn|p + |vn|q∗
), 0
}

.
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Then Gη,n → 0 a.e. in R
N as n → ∞ (recall that vn → 0 a.e. in R

N as n → ∞), and 0 ≤ Gη,n ≤
C ′

η(|u|p + |u|q∗
) ∈ L1(RN ). As a consequence of the dominated convergence theorem, we get∫

RN

Gη,n(x) dx → 0 as n → ∞.

On the other hand, by the definition of Gη,n, it follows that

|F (vn) − F (un) + F (u)| ≤ η(|vn|p + |vn|q∗
) + Gη,n

which together with the boundedness of (un) in Lp(RN ) ∩ Lq∗
(RN ) yields

lim sup
n→∞

∫
RN

|F (vn) − F (un) + F (u)|dx ≤ Cη.

By the arbitrariness of η > 0 we can deduce that (iii) holds. Finally, we prove (iv). For any fixed η > 0,
by (f2) we can choose r0 = r0(η) ∈ (0, 1) such that

|f(t)| ≤ η|t|p−1 for |t| ≤ 2r0. (2.5)

On the other hand, by (f3) we can pick r1 = r1(η) > 2 such that

|f(t)| ≤ η|t|q∗−1 for |t| ≥ r1 − 1. (2.6)

By the continuity of f , there exists δ = δ(η) ∈ (0, r0) satisfying

|f(t1) − f(t2)| ≤ rp−1
0 η for |t1 − t2| ≤ δ, |t1|, |t2| ≤ r1 + 1. (2.7)

Moreover, by (f3) there exists a positive constant c = c(η) such that

|f(t)| ≤ c(η)|t|p−1 + η|t|q∗−1 for all t ∈ R. (2.8)

In what follows, we shall estimate the following term:∫
RN \BR(0)

|f(un − u) − f(un) − f(u)||w|dx.

Using (2.8) and u ∈ Lp(RN ) ∩ Lq∗
(RN ), we can find R = R(η) > 0 such that

∫
RN \BR(0)

|f(u)w|dx ≤ c

⎛
⎜⎝ ∫
RN \BR(0)

|u|q∗
dx

⎞
⎟⎠

q∗−1
q∗

|w|q∗ + c

⎛
⎜⎝ ∫
RN \BR(0)

|u|p dx

⎞
⎟⎠

p−1
p

|w|p

≤ cη‖w‖1,q + cη‖w‖1,p ≤ cη‖w‖ε.

Set An = {x ∈ R
N \ BR(0) : |un(x)| ≤ r0}. Invoking (2.5) and applying the Hölder inequality, we get∫

An∩{|u|≤δ}

|f(un) − f(un − u)||w|dx ≤ η(|un|p−1
p + |un − u|p−1

p )|w|p ≤ cη‖w‖ε. (2.9)

Let Bn = {x ∈ R
N \ BR(0) : |un(x)| ≥ r1}. Then (2.6) and the Hölder inequality yield∫

Bn∩{|u|≤δ}

|f(un) − f(un − u)||w|dx ≤ η(|un|q∗−1
q∗ + |un − u|q∗−1

q∗ )|w|q∗ ≤ cη‖w‖ε. (2.10)
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Finally, define Cn = {x ∈ R
N \ BR(0) : r0 ≤ |un(x)| ≤ r1}. Since un ∈ W 1,p(RN ), it follows that

|Cn| < ∞. Now (2.7) gives∫
Cn∩{|u|≤δ}

|f(un) − f(un − u)||w|dx ≤ rp−1
0 η|w|p|Cn| p−1

p ≤ η|un|p|w|p ≤ cη‖w‖ε. (2.11)

Putting together (2.9), (2.10) and (2.11), we obtain that∫
(RN \BR(0))∩{|u|≤δ}

|f(un) − f(un − u)||w|dx ≤ cη‖w‖ε for all n ∈ N. (2.12)

Next, we note that (2.8) implies

|f(un) − f(un − u)| ≤ η(|un|q∗−1 + |un − u|q∗−1) + c(η)(|un|p−1 + |un − u|p−1),

so we can see that∫
(RN \BR(0))∩{|u|≥δ}

|f(un) − f(un − u)||w|dx

≤
∫

(RN \BR(0))∩{|u|≥δ}

[
η(|un|q∗−1 + |un − u|q∗−1)|w| + c(η)(|un|p−1 + |un − u|p−1)|w|

]
dx

≤ cη‖w‖ε +
∫

(RN \BR(0))∩{|u|≥δ}

c(η)(|un|p−1 + |un − u|p−1)|w|dx.

Since u ∈ W 1,p(RN ), we get |(RN \ BR(0)) ∩ {|u| ≥ δ}| → 0 as R → ∞. Then choosing R = R(η) large
enough we can infer ∫

(RN \BR(0))∩{|u|≥δ}

c(η)(|un|p−1 + |un − u|p−1)|w|dx

≤ c(η)(|un|p−1
q∗ + |un − u|p−1

q∗ ) |w|q∗ |(RN \ BR(0)) ∩ {u ≥ δ}| q∗−p
p ≤ η‖w‖ε,

where we have used the generalized Hölder inequality. Therefore,∫
(RN \BR(0))∩{|u|≥δ}

|f(un) − f(un − u)||w|dx ≤ cη‖w‖ε for all n ∈ N,

which combined with (2.12) yields∫
RN \BR(0)

|f(un) − f(u) − f(un − u)||w|dx ≤ cη‖w‖ε for all n ∈ N. (2.13)

Now, recalling that un ⇀ u in W 1,p(RN ), we may assume that, up to a subsequence, un → u strongly
converges in Lp(BR(0)) and there exists h ∈ Lp(BR(0)) such that |un(x)|, |u(x)| ≤ |h(x)| for a. e.
x ∈ BR(0).

It is clear that ∫
BR(0)

|f(un − u)||w|dx ≤ cη‖w‖ε (2.14)

provided that n is big enough. Let us define Dn = {x ∈ BR(0) : |un(x) − u(x)| ≥ 1}. Thus,∫
Dn

|f(un) − f(u)||w|dx ≤
∫

Dn

(
c(η)(|u|p−1 + |un|p−1) + η(|un|q∗−1 + |u|q∗−1)

)
|w|dx
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≤ cη‖w‖ε + 2c(η)
∫

Dn

|h|p−1|w|dx

≤ cη‖w‖ε + 2c(η)

⎛
⎝∫

Dn

|h|p dx

⎞
⎠

p−1
p

|w|p.

Observing that |Dn| → 0 as n → ∞, we can deduce that∫
Dn

|f(un) − f(u)||w|dx ≤ cη‖w‖ε. (2.15)

Since u ∈ W 1,p(RN ), we know that |{|u| ≥ L}| → 0 as L → ∞, so there exists L = L(η) > 0 such that
for all n ∫

(BR(0)\Dn)∩{|u|≥L}

|f(un) − f(u)||w|dx

≤
∫

(BR(0)\Dn)∩{|u|≥L}

[
η(|un|q∗−1 + |u|q∗−1)|w| + c(η)(|un|p−1 + |u|p−1)|w|

]
dx

≤ cη‖w‖ε + c(η)(|un|p−1
q∗ + |u|p−1

q∗ ) |w|q∗ |(BR(0) \ Dn) ∩ {|u| ≥ L}| q∗−p
p

≤ cη‖w‖ε. (2.16)

On the other hand, by the dominated convergence theorem we can infer∫
(BR(0)\Dn)∩{|u|≤L}

|f(un) − f(u)|p dx → 0 as n → ∞.

Consequently, ∫
(BR(0)\Dn)∩{|u|≤L}

|f(un) − f(u)||w|dx ≤ cη‖w‖ε (2.17)

for n large enough. Putting together (2.15), (2.16) and (2.17), we have∫
BR(0)

|f(un) − f(u)||w|dx ≤ cη‖w‖ε.

This and (2.14) yield ∫
BR(0)

|f(un) − f(u) − f(un − u)||w|dx ≤ cη‖w‖ε. (2.18)

Taking into account (2.13) and (2.18), we can conclude that for n large enough∫
RN

|f(un) − f(u) − f(un − u)||w|dx ≤ cη‖w‖ε.

This completes the proof of lemma. �
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3. Functional setting

In this section, we consider the following problem{
−Δpu − Δqu + V (εx)

(|u|p−2u + |u|p−2u
)

= f(u) in R
N ,

u ∈ W 1,p(RN ) ∩ W 1,q(RN ), u > 0 in R
N .

(Pε)

In order to study (Pε), we look for critical points of the functional Iε : Xε → R defined as

Iε(u) =
1
p
|∇u|pp +

1
q
|∇u|qq +

∫
RN

V (εx)
(

1
p
|u|p +

1
q
|u|q

)
dx −

∫
RN

F (u) dx.

It is easy to see that Iε ∈ C1(Xε,R) and its differential is given by

〈I ′
ε(u), ϕ〉 =

∫
RN

|∇u|p−2∇u · ∇ϕ dx +
∫
RN

|∇u|q−2∇u · ∇ϕ dx

+
∫
RN

V (εx)(|u|p−2u + |u|q−2u)ϕ dx −
∫
RN

f(u)ϕ dx

for any u, ϕ ∈ Xε. Now, let us introduce the Nehari manifold associated to Iε, that is

Nε = {u ∈ Xε \ {0} : 〈I ′
ε(u), u〉 = 0} ,

and define

cε = inf
u∈Nε

Iε(u).

Let us note that Iε possesses a mountain pass geometry [4].

Lemma 3.1. The functional Iε satisfies the following conditions:
(i) there exist α, ρ > 0 such that Iε(u) ≥ α with ‖u‖ε = ρ;

(ii) there exists e ∈ Xε with ‖e‖ε > ρ such that Iε(e) < 0.

Proof. (i) Using (f2) and (f3), for any given ξ > 0 there exists Cξ > 0 such that

|f(t)| ≤ ξ|t|p−1 + Cξ|t|r−1 for any t ∈ R, (3.1)

|F (t)| ≤ ξ

p
|t|p +

Cξ

r
|t|r for any t ∈ R. (3.2)

Hence, taking ξ ∈ (0, V0), we have

Iε(u) ≥ 1
p
‖u‖p

V,p +
1
q
‖u‖q

V,q − ξ

p
|u|pp − Cξ

r
|u|rr

≥ C1‖u‖p
V,p +

1
q
‖u‖q

V,q − C ′
ξ‖u‖r

ε.

Choosing ‖u‖ε = ρ ∈ (0, 1) and using 1 < p < q, we have ‖u‖V,p < 1 and therefore ‖u‖p
V,p ≥ ‖u‖q

V,p which
combined with at + bt ≥ Ct(a + b)t for any a, b ≥ 0 and t > 1, yields

Iε(u) ≥ C‖u‖q
ε − C ′

ξ‖u‖r
ε.

Since r > q we can find α > 0 such that Iε(u) ≥ α > 0 for ‖u‖ε = ρ.
(ii) By (f4), we can infer

F (t) ≥ C1|t|ϑ − C2 for any t ≥ 0,
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for some C1, C2 > 0. Taking v ∈ C∞
c (RN ) such that v ≥ 0, v �≡ 0, we have

Iε(tv) ≤ tp

p
‖v‖p

ε +
tq

q
‖v‖q

ε − tϑC1

∫
supp v

vϑdx + C2| supp v| → −∞ as t → ∞.

�

Now, in view of Lemma 3.1, we can use a version of mountain pass theorem without the Palais-Smale
condition [25] to deduce the existence of a (PS)-sequence {un} at level c′

ε, namely

Iε(un) → c′
ε and I ′

ε(un) → 0,

where c′
ε is the mountain pass level of Iε defined as

c′
ε = inf

γ∈Γ
max

t∈[0,1]
Iε(γ(t)),

and Γ = {γ ∈ C0([0, 1],Xε) : γ(0) = 0, Iε(γ(1)) < 0}.

Lemma 3.2. The following holds

c′
ε = cε = inf

u∈Xε\{0}
max
t≥0

Iε(tu).

Proof. For each u ∈ Xε \ {0} and t > 0, let us introduce the function h(t) = Iε(tu). Following the same
arguments as in the proof of Lemma 3.1, we deduce that h(0) = 0, h(t) < 0 for t sufficiently large and
h(t) > 0 for t sufficiently small. Hence, maxt≥0 h(t) is achieved at t = tu > 0 satisfying h′(tu) = 0 and
tuu ∈ Nε.

Note that, if u ∈ Nε then u+ �= 0. Indeed, from (f1), we can deduce that

‖u‖p
V,p + ‖u‖q

V,q =
∫
RN

f(u)u dx =
∫
RN

f(u+)u+ dx.

Now, if u+ ≡ 0, then ‖u‖p
V,p + ‖u‖q

V,q = 0, that is u ≡ 0, and this is a contradiction in view of u ∈ Nε.
Next, we prove that tu is the unique critical point of h. Assume by contradiction that there exist t1

and t2 such that t1u, t2u ∈ Nε, that is

tp−q
1 |∇u|pp + |∇u|qq + tp−q

1

∫
RN

V (εx)|u|p dx +
∫
RN

V (εx)|u|q dx =
∫

{u>0}

f(t1u)
(t1u)q−1

uq dx

and

tp−q
2 |∇u|pp + |∇u|qq + tp−q

2

∫
RN

V (εx)|u|p dx +
∫
RN

V (εx)|u|q dx =
∫

{u>0}

f(t2u)
(t2u)q−1

uq dx.

Subtracting term by term in the above equalities, we get

(tp−q
1 − tp−q

2 )|∇u|pp + (tp−q
1 − tp−q

2 )
∫
RN

V (εx)|u|p dx =
∫

{u>0}

[
f(t1u)

(t1u)q−1
− f(t2u)

(t2u)q−1

]
uqdx.

Now, if t1 < t2, from (f5) and recalling that p < q, we can infer

0 < (tp−q
1 − tp−q

2 )|∇u|pp + (tp−q
1 − tp−q

2 )
∫
RN

V (εx)|u|p dx =
∫

{u>0}

[
f(t1u)

(t1u)q−1
− f(t2u)

(t2u)q−1

]
uqdx < 0,

which gives a contradiction. Now we can argue as in [25] to complete the proof. �

Next, we prove the following useful result.

Lemma 3.3. Let {un} be a Palais-Smale sequence of Iε at level c. Then
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(i) {un} is bounded in Xε.
(ii) u−

n → 0 in Xε and we may assume that un ≥ 0 for any n ∈ N.

Proof. (i) From (f4), we have

C(1 + ‖un‖ε) ≥ Iε(un) − 1
ϑ

〈I ′
ε(un), un〉

=
(

1
p

− 1
ϑ

)
‖un‖p

V,p +
(

1
q

− 1
ϑ

)
‖un‖q

V,q +
1
ϑ

∫
RN

(f(un)un − ϑF (un)) dx

≥
(

1
p

− 1
ϑ

)
‖un‖p

V,p +
(

1
q

− 1
ϑ

)
‖un‖q

V,q

≥
(

1
q

− 1
ϑ

)
(‖un‖p

V,p + ‖un‖q
V,q).

Now, assume by contradiction that ‖un‖ε → ∞. We shall distinguish among the following cases:
Case 1. ‖un‖V,p → ∞ and ‖un‖V,q → ∞.
Since p < q, we have, for n sufficiently large, that ‖un‖q−p

V,q ≥ 1, that is ‖un‖q
V,q ≥ ‖un‖p

V,q, and thus

C(1 + ‖un‖ε) ≥
(

1
q

− 1
ϑ

)(
‖un‖p

V,p + ‖un‖p
V,q

)
≥ C1 (‖un‖V,p + ‖un‖V,q)

p = C1‖un‖p
ε ,

which gives a contradiction.
Case 2. ‖un‖V,p → ∞ and ‖un‖V,q is bounded.
We can see that

C (1 + ‖un‖V,p + ‖un‖V,q) ≥
(

1
q

− 1
ϑ

)
‖un‖p

V,p

implies

C

(
1

‖un‖p
V,p

+
1

‖un‖p−1
V,p

+
‖un‖V,q

‖un‖p
V,p

)
≥
(

1
q

− 1
ϑ

)
,

and letting n → ∞, we get 0 ≥
(

1
q − 1

ϑ

)
> 0, which yields a contradiction.

‖un‖V,p is bounded and ‖un‖V,q → ∞.
Case 3. We can proceed similarly as in the case (2).

Hence, {un} is bounded in Xε and we may assume that un ⇀ u in Xε and un → u a.e. in R
N .

(ii) Since 〈I ′
ε(un), u−

n 〉 = on(1), where u−
n = min{un, 0}, and f(t) = 0 for t ≤ 0, we have that∫

RN

|∇un|p−2∇un · ∇u−
n dx +

∫
RN

|∇un|q−2∇un · ∇u−
n dx

+
∫
RN

V (εx)(|un|p−2un + |un|q−2un)u−
n dx = on(1),

from which it follows

‖u−
n ‖p

V,p + ‖u−
n ‖q

V,q = on(1),

that is u−
n → 0 in Xε. Moreover, {u+

n } is bounded in Xε. Now, we prove that Iε(u+
n ) → c and I ′

ε(u
+
n ) =

on(1). Clearly, ‖un‖V,t = ‖u+
n ‖V,t + on(1) for t ∈ {p, q}. On the other hand, by (3.2), the mean value
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theorem, and since un = u+
n + u−

n , we have∣∣∣∣∣∣
∫
RN

F (un) dx −
∫
RN

F (u+
n ) dx

∣∣∣∣∣∣ ≤ C

∫
RN

(|un|p−1 + |un|r−1)|u−
n |dx

≤ C|u−
n |p + C|u−

n |r ≤ C‖u−
n ‖V,p + C‖u−

n ‖V,q ≤ C‖u−
n ‖ε = on(1).

This shows that Iε(u+
n ) → c. Next, we claim that I ′

ε(u
+
n ) = on(1). Fix ϕ ∈ Xε such that ‖ϕ‖ε ≤ 1. Then

we have∣∣〈I ′
ε(un), ϕ〉 − 〈I ′

ε(u
+
n ), ϕ〉∣∣

=
∣∣∣∫
RN

[|∇un|p−2∇un − |∇u+
n |p−2∇u+

n ]∇ϕ dx +
∫
RN

[|∇un|q−2∇un − |∇u+
n |q−2∇u+

n ]∇ϕ dx

+
∫
RN

V (εx)[(|un|p−2un + |un|q−2un) − (|u+
n |p−2u+

n + |u+
n |q−2u+

n )]ϕ dx

−
∫
RN

[f(un) − f(u+
n )]ϕ dx

∣∣∣.
Now, recalling that for all ξ > 0 there exists Cξ > 0 such that

||a + b|t−2(a + b) − |a|t−2a| ≤ ξ|a|t−1 + Cξ|b|t−1 for all a, b ∈ R
N and t > 1,

we see that for t ∈ {p, q} the following holds∣∣∣∫
RN

[|∇un|t−2∇un − |∇u+
n |t−2∇u+

n ]∇ϕ dx
∣∣∣

≤ ξ|∇u+
n |t−1

t |∇ϕ|t + Cξ|∇u−
n |t−1

t |∇ϕ|t
≤ ξC + C ′

ξ‖u−
n ‖t−1

ε .

Consequently,

lim sup
n→∞

∣∣∣∫
RN

[|∇un|t−2∇un − |∇u+
n |t−2∇u+

n ]∇ϕ dx
∣∣∣ ≤ ξC

and by the arbitrariness of ξ > 0 we get

lim
n→∞

∫
RN

[|∇un|t−2∇un − |∇u+
n |t−2∇u+

n ]∇ϕ dx = 0.

A similar argument shows that

lim
n→∞

∫
RN

V (εx)[(|un|p−2un + |un|q−2un) − (|u+
n |p−2u+

n + |u+
n |q−2u+

n )]ϕ dx = 0.

Observing that ∣∣∣∣∣∣
∫
RN

[f(un) − f(u+
n )]ϕ dx

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∫
RN

f(u−
n )ϕ dx

∣∣∣∣∣∣
≤ C

∫
RN

(|u−
n |p−1 + |u−

n |r−1)|ϕ|dx

≤ C(|u−
n |p−1

p |ϕ|p + |u−
n |r−1

r |ϕ|r)
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≤ C(‖u−
n ‖p−1

ε + ‖u−
n ‖r−1

ε ) = on(1),

we can deduce that |〈I ′
ε(un), ϕ〉 − 〈I ′

ε(u
+
n ), ϕ〉| = on(1). Since 〈I ′

ε(un), ϕ〉 = on(1), we conclude that
I ′

ε(u
+
n ) = on(1). �

Since f is only continuous, the next results are very important because they allow us to overcome the
non-differentiability of Nε. We begin by proving some properties of the functional Iε.

Lemma 3.4. Under assumptions (V ) and (f1)–(f5), for any ε > 0 we have:
(i) I ′

ε maps bounded sets of Xε into bounded sets of Xε.
(ii) I ′

ε is weakly sequentially continuous in Xε.
(iii) Iε(tnun) → −∞ as tn → ∞, where un ∈ K and K ⊂ Xε \ {0} is a compact subset.

Proof. (i) Let {un} be a bounded sequence in Xε and v ∈ Xε. Then from assumptions (f2) and (f3) we
can deduce that

〈I ′
ε(un), v〉 ≤ C1‖un‖p−1

ε ‖v‖ε + C2‖un‖q−1
ε ‖v‖ε + C3‖un‖r−1

ε ‖v‖ε ≤ C.

(ii) Let un ⇀ u in Xε. By Lemma 2.3, we have that un → u in Lt
loc(R

N ) for all t ∈ [1, q∗
s ) and un → u

a.e. in R
N . Then, for all v ∈ C∞

c (RN ), it follows from (3.1) and the dominated convergence theorem that

〈I ′
ε(un), v〉 → 〈I ′

ε(u), v〉. (3.3)

Since C∞
c (RN ) is dense in Xε, we can take {vj} ⊂ C∞

c (RN ) such that ‖vj − v‖ε → 0 as j → ∞. Note
that (3.1) and Lemma 2.3 yield

|〈I ′
ε(un), v〉 − 〈I ′

ε(u), v〉| ≤ |〈I ′
ε(un) − I ′

ε(u), vj〉| + |〈I ′
ε(un) − I ′

ε(u), v − vj〉|

≤ |〈I ′
ε(un) − I ′

ε(u), vj〉| + C

∫
RN

(|un|p−1 + |u|p−1 + |un|r−1 + |u|r−1)|v − vj |dx

≤ |〈I ′
ε(un) − I ′

ε(u), vj〉| + C‖vj − v‖ε.

For any ζ > 0, fix j0 ∈ N such that ‖vj0 − v‖ε < ζ
2C . By (3.3), there is n0 ∈ N such that

|〈I ′
ε(un) − I ′

ε(u), vj0〉| <
ζ

2
for all n ≥ n0.

Thus,

|〈I ′
ε(un), v〉 − 〈I ′

ε(u), v〉| < ζ for all n ≥ n0

and this shows that I ′
ε is weakly sequentially continuous in Xε.

(iii) Without loss of generality, we may assume that ‖u‖ε ≤ 1 for each u ∈ K. For un ∈ K, after passing
to a subsequence, we obtain that un → u ∈ Sε. Then, using (f4) and Fatou’s lemma, we can see that

Iε(tnun) =
tpn
p

‖un‖p
ε +

tqn
q

‖un‖q
ε −

∫
RN

F (tnun) dx

≤ tϑn

⎛
⎝‖un‖p

ε

tϑ−p
n

+
‖un‖q

ε

tϑ−q
n

−
∫
RN

F (tnun)
tϑn

dx

⎞
⎠ → −∞ as n → ∞.

�

Lemma 3.5. Under the assumptions of Lemma 3.4, for ε > 0 we have:
(i) for all u ∈ Sε, there exists a unique tu > 0 such that tuu ∈ Nε. Moreover, mε(u) = tuu is the unique

maximum of Iε on Xε, where Sε = {u ∈ Xε : ‖u‖ε = 1}.
(ii) The set Nε is bounded away from 0. Furthermore, Nε is closed in Xε.



ZAMP Multiplicity and concentration results for a. . . Page 13 of 33    33 

(iii) There exists α > 0 such that tu ≥ α for each u ∈ Sε and, for each compact subset W ⊂ Sε, there
exists CW > 0 such that tu ≤ CW for all u ∈ W .

(iv) For each u ∈ Nε, m−1
ε (u) = u

‖u‖ε
∈ Nε. In particular, Nε is a regular manifold diffeomorphic to the

sphere in Xε.
(v) cε = infNε

Iε ≥ ρ > 0 and Iε is bounded below on Nε, where ρ is independent of ε.

Proof. (i) The proof follows the same lines as the proof of Lemma 3.2.
(ii) Using (3.1) and Lemma 2.3, for any u ∈ Nε we have

‖u‖p
V,p + ‖u‖q

V,q =
∫
RN

f(u)u dx ≤ ξ

V0
‖u‖p

V,p + Cξ‖u‖r
ε.

Taking ξ > 0 sufficiently small, we can deduce that

C1‖u‖p
V,p + ‖u‖q

V,q ≤ C‖u‖r
ε.

Now, if ‖u‖ε ≥ 1, we are done. If ‖u‖ε < 1, then ‖u‖p
V,p ≥ ‖u‖q

V,p so we get

C‖u‖r
ε ≥ C1‖u‖p

V,p + ‖u‖q
V,q ≥ C1‖u‖q

V,p + ‖u‖q
V,q ≥ C2‖u‖q

ε,

which implies that ‖u‖ε ≥ κ for some κ > 0.
Next, we prove that Nε is closed in Xε. Let {un} ⊂ Nε be a sequence such that un → u in Xε. From
Lemma 3.4, we infer that I ′

ε(un) is bounded, so

〈I ′
ε(un), un〉 − 〈I ′

ε(u), u〉 = 〈I ′
ε(un) − I ′

ε(u), u〉 + 〈I ′
ε(un), un − u〉 → 0,

that is 〈I ′
ε(u), u〉 = 0, which combined with ‖u‖ε ≥ κ implies that

‖u‖ε = lim
n→∞ ‖un‖ε ≥ κ > 0,

hence u ∈ Nε.
(iii) For each u ∈ Sε, there exists tu > 0 such that tuu ∈ Nε. Then, using ‖u‖ε ≥ κ, we also have
tu = ‖tuu‖ε ≥ κ. It remains we prove that tu ≤ CW for all u ∈ W ⊂ Sε. We argue by contradiction: we
suppose that there exists a sequence {un} ⊂ W ⊂ Sε such that tun

→ ∞. Since W is compact, we can
find u ∈ W such that un → u in Xε and un → u a.e. in R

N .
Now, using (f4) we have

Iε(u) = Iε(u) − 1
q
〈I ′

ε(u), u〉

=
(

1
p

− 1
q

)
|∇u|pp +

(
1
p

− 1
q

) ∫
RN

V (εx)|u|pdx −
∫
RN

(
F (u) − 1

q
f(u)u

)
dx

=
(

1
p

− 1
q

)
‖u‖p

V,p −
∫
RN

(
F (u) − 1

q
f(u)u

)
dx ≥ 0,

and this is in contrast with Lemma 3.4-(iii) by which Iε(tun
un) → −∞ as n → ∞.

(iv) Let us define the maps m̂ε : Xε \ {0} → Nε and mε : Sε → Nε by setting

m̂ε(u) = tuu and mε = m̂ε|Sε
. (3.4)

In view of (i)–(iii) and Proposition 3.1 in [23], we can deduce that mε is a homeomorphism between Sε and
Nε and the inverse of mε is given by m−1

ε (u) = u
‖u‖ε

. Therefore, Nε is a regular manifold diffeomorphic
to Sε.
(v) For ε > 0, t > 0 and u ∈ Xε \ {0}, we can see that (3.2) yields

Iε(tu) ≥ tp

p
|∇u|pp +

tq

q
|∇u|qq +

∫
RN

V (εx)
(

tp

p
|u|p +

tq

q
|u|q

)
dx − ξtp

V0

∫
RN

V0|u|p dx − Cξt
r

∫
RN

|u|r dx
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≥ tp

p

(
1 − ξ

V0

)
‖u‖p

V,p +
tq

q
‖u‖q

V,q − Cξt
r‖u‖r

ε

so we can find ρ > 0 such that Iε(tu) ≥ ρ > 0 for t > 0 small enough. On the other hand, by using
(i)–(iii), we get (see [23]) that

cε = inf
u∈Nε

Iε(u) = inf
u∈Xε\{0}

max
t>0

Iε(tu) = inf
u∈Sε

max
t>0

Iε(tu) (3.5)

which implies cε ≥ ρ and Iε|Nε
≥ ρ. �

Now we introduce the following functionals Ψ̂ε : Xε \ {0} → R and Ψε : Sε → R defined by

Ψ̂ε = Iε(m̂ε(u)) and Ψε = Ψ̂ε|Sε
,

where m̂ε(u) = tuu is given in (3.4). As in [23], we have the following result:

Lemma 3.6. Under the assumptions of Lemma 3.4, we have that for ε > 0:
(i) Ψε ∈ C1(Sε,R), and

〈Ψ′
ε(w), v〉 = ‖mε(w)‖ε〈I ′

ε(mε(w)), v〉 for v ∈ Tw(Sε).

(ii) {wn} is a Palais-Smale sequence for Ψε if and only if {mε(wn)} is a Palais-Smale sequence for Iε. If
{un} ⊂ Nε is a bounded Palais-Smale sequence for Iε, then {m−1

ε (un)} is a Palais-Smale sequence
for Ψε.

(iii) u ∈ Sε is a critical point of Ψε if and only if mε(u) is a critical point of Iε. Moreover, the corre-
sponding critical values coincide and

inf
Sε

Ψε = inf
Nε

Iε = cε.

4. The autonomous problem

In this section, we deal with the autonomous problem associated with (Pε), that is{
−Δpu − Δqu + μ(|u|p−2u + |u|q−2u) = f(u) in R

N

u ∈ W 1,p(RN ) ∩ W 1,q(RN ), u > 0 in R
N , μ > 0.

(APμ)

The functional associated with (APμ) is given by

Jμ(u) =
1
p
|∇u|pp +

1
q
|∇u|qq + μ

[
1
p
|u|pp +

1
q
|u|qq

]
−
∫
RN

F (u) dx

which is well-defined on the space Yμ = W 1,p(RN ) ∩ W 1,q(RN ) endowed with the norm

‖u‖μ = ‖u‖μ,p + ‖u‖μ,q,

where

‖u‖t
μ,t = |∇u|tt + μ|u|tt for all t > 1.

It is easy to check that Jμ ∈ C1(Yμ,R) and its differential is given by

〈J ′
μ(u), ϕ〉 =

∫
RN

|∇u|p−2∇u · ∇ϕ dx +
∫
RN

|∇u|q−2∇u · ∇ϕ dx

+ μ

⎡
⎣∫
RN

|u|p−2uϕ dx +
∫
RN

|u|q−2uϕ dx

⎤
⎦−

∫
RN

f(u)ϕ dx
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for any u, ϕ ∈ Yμ. Let us define the Nehari manifold associated with Jμ

Mμ = {u ∈ Yμ \ {0} : 〈J ′
μ(u), u〉 = 0}.

We note that (f4) yields

Jμ(u) = Jμ(u) − 1
q
〈J ′

μ(u), u〉

=
(

1
p

− 1
q

)
‖u‖p

μ,p −
∫
RN

(
F (u) − 1

q
f(u)u

)
dx

≥
(

1
p

− 1
q

)
‖u‖p

μ,p for all u ∈ Mμ. (4.1)

Arguing as in the previous section and using (4.1), it is easy to prove the following lemma.

Lemma 4.1. Under the assumptions of Lemma 3.4, for μ > 0 we have:
(i) for all u ∈ Sμ, there exists a unique tu > 0 such that tuu ∈ Mμ. Moreover, mμ(u) = tuu is the

unique maximum of Jμ on Yμ, where Sμ = {u ∈ Yμ : ‖u‖μ = 1}.
(ii) The set Mμ is bounded away from 0. Furthermore, Mμ is closed in Yμ.

(iii) There exists α > 0 such that tu ≥ α for each u ∈ Sμ and, for each compact subset W ⊂ Sμ, there
exists CW > 0 such that tu ≤ CW for all u ∈ W .

(iv) Mμ is a regular manifold diffeomorphic to the sphere in Yμ.
(v) dμ = infMμ

Jμ > 0 and Jμ is bounded below on Mμ by some positive constant.
(vi) Jμ is coercive on Mμ.

Now we define the following functionals Ψ̂μ : Yμ \ {0} → R and Ψμ : Sμ → R by setting

Ψ̂μ = Jμ(m̂μ(u)) and Ψμ = Ψ̂μ|Sμ
.

Then we obtain the following result:

Lemma 4.2. Under the assumptions of Lemma 3.4, we have that for μ > 0:
(i) Ψμ ∈ C1(Sμ,R), and

〈Ψ′
μ(w), v〉 = ‖mμ(w)‖μ〈J ′

μ(mμ(w)), v〉 for v ∈ Tw(Sμ).

(ii) {wn} is a Palais-Smale sequence for Ψμ if and only if {mμ(wn)} is a Palais-Smale sequence for
Jμ. If {un} ⊂ Mμ is a bounded Palais-Smale sequence for Jμ, then {m−1

μ (un)} is a Palais-Smale
sequence for Ψμ.

(iii) u ∈ Sμ is a critical point of Ψμ if and only if mμ(u) is a critical point of Jμ. Moreover, the
corresponding critical values coincide and

inf
Sμ

Ψμ = inf
Mμ

Jμ = dμ.

Remark 4.1. As in (3.5), invoking (i)–(iii) of Lemma 4.1, we can see that dμ admits the following minimax
characterization

dμ = inf
u∈Mμ

Jμ(u) = inf
u∈Yμ\{0}

max
t>0

Jμ(tu) = inf
u∈Sμ

max
t>0

Jμ(tu). (4.2)

Lemma 4.3. Let {un} ⊂ Mμ be a minimizing sequence for Jμ. Then {un} is bounded in Yμ and there
exist a sequence {yn} ⊂ R

N and constants R, β > 0 such that

lim inf
n→∞

∫
BR(yn)

|un|qdx ≥ β > 0.
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Proof. Arguing as in the proof of Lemma 3.3, we can see that {un} is bounded in Yμ. Now, in order to
prove the other assertion of this lemma, we argue by contradiction. Assume that for any R > 0 it holds

lim
n→∞ sup

y∈RN

∫
BR(y)

|un|qdx = 0.

Since {un} is bounded in Yμ, it follows by Lemma 2.1 that

un → 0 in Lt(RN ) for any t ∈ (q, q∗). (4.3)

Fix ξ ∈ (0, μ). Then, taking into account that {un} ⊂ Mμ and (3.1), we have

0 = 〈J ′
μ(un), un〉

≥ |∇un|pp + |∇un|qq + μ
[|un|pp + |un|qq

]− ξ|un|pp − Cξ|un|rr
≥ C1‖un‖p

s,p + C2‖un‖q
s,q − C3|un|rr,

and in view of (4.3), we have that ‖un‖μ → 0. �

Next, we prove the following useful compactness result for the autonomous problem. For completeness,
we recall that a critical point u �= 0 of Jμ satisfying Jμ(u) = infMμ

Jμ = dμ is called a ground state
solution to (APμ); see chapter 4 in [25] for more details.

Lemma 4.4. The problem (APμ) has a positive ground-state solution.

Proof. By virtue of (v) of Lemma 4.1, we know that dμ > 0 for each μ > 0. Moreover, if u ∈ Mμ satisfies
Jμ(u) = dμ, then m−1

μ (u) is a minimizer of Ψμ and it is a critical point of Ψμ. In view of Lemma 4.2, we
can see that u is a critical point of Jμ. Now we show that there exists a minimizer of Jμ|Mμ

. By Ekeland’s
variational principle [25] there exists a sequence {νn} ⊂ Sμ such that Ψμ(νn) → dμ and Ψ′

μ(νn) → 0 as
n → ∞. Let un = mμ(νn) ∈ Mμ. Then, thanks to Lemma 4.2, Jμ(un) → dμ and J ′

μ(un) → 0 as n → ∞.
Therefore, arguing as in the proof of Lemma 3.3, {un} is bounded in Yμ which is a reflexive space, so we
may assume that un ⇀ u in Yμ for some u ∈ Yμ.

It is clear that J ′
μ(u) = 0. Indeed, for all φ ∈ C∞

c (RN ),∫
RN

|∇un|t−2∇un · ∇φ dx →
∫
RN

|∇u|t−2∇u · ∇φ dx, for t ∈ {p, q},

∫
RN

|un|t−2unφ dx →
∫
RN

|u|t−2uφ dx, for t ∈ {p, q},

∫
RN

f(un)φ dx →
∫
RN

f(u)φ dx,

and using the fact that 〈J ′
μ(un), φ〉 = on(1), we can deduce that 〈J ′

μ(u), φ〉 = 0 for all φ ∈ C∞
c (RN ). By

the density of φ ∈ C∞
c (RN ) in Yμ, we obtain that u is a critical point of Jμ.

Now, if u �= 0, then u is a nontrivial solution to (APμ). Assume that u = 0. Then ‖un‖μ �→ 0 in Yμ.
Hence, arguing as in the proof of Lemma 4.3 we can find a sequence {yn} ⊂ R

N and constants R, β > 0
such that

lim inf
n→∞

∫
BR(yn)

|un|qdx ≥ β > 0. (4.4)

Now, let us define

ṽn(x) = un(x + yn).
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Due to the invariance by translations of RN , it is clear that ‖ṽn‖μ,t = ‖un‖μ,t, with t ∈ {p, q}, so {ṽn} is
bounded in Yμ and there exists ṽ such that ṽn ⇀ ṽ in Yμ, ṽn → ṽ in Lm

loc(R
N ) for any m ∈ [1, q∗) and

ṽ �= 0 in view of (4.4). Moreover, Jμ(ṽn) = Jμ(un) and J ′
μ(ṽn) = on(1), and arguing as before it is easy

to check that J ′
μ(ṽ) = 0.

Now, say u be the solution obtained before, and we prove that u is a ground-state solution. It is clear
that dμ ≤ Jμ(u). On the other hand, by Fatou’s lemma we can see that

Jμ(u) = Jμ(u) − 1
q
〈J ′

μ(u), u〉 ≤ lim inf
n→∞

[
Jμ(un) − 1

q
〈J ′

μ(un), un〉
]

= dμ,

which implies that dμ = Jμ(u).
Finally, we prove that the ground state obtained earlier is positive. Indeed, taking u− = min{u, 0} as

test function in (APμ), and applying (f1) and invoking the following inequality

|x − y|t−2(x − y)(x− − y−) ≥ |x− − y−|t ∀t > 1,

we can see that

‖u−‖p
μ,p + ‖u−‖q

μ,q ≤
∫
RN

|∇u|p−2∇u · ∇u− dxdy +
∫
RN

μ|u|p−2uu− dx

+
∫
RN

|∇u|q−2∇u · ∇u− dxdy +
∫
RN

μ|u|q−2uu− dx

=
∫
RN

f(u)u− dx = 0,

which implies that u− = 0, that is u ≥ 0 in R
N . By the regularity results in [13], we have that u ∈

L∞(RN )∩C1,α
loc (RN ) and u(x) → 0 as |x| → ∞ (in the exponential way). Applying the Harnack inequality

in [24], we can see that u > 0 in R
N . This completes the proof of the lemma. �

5. A first existence result for (Pε)

In this section, we focus on the existence of a solution to (Pε) provided that ε is sufficiently small. Let
us start with the following useful lemma.

Lemma 5.1. Let {un} ⊂ Nε be a sequence such that Iε(un) → c and un ⇀ 0 in Xε. Then one of the
following alternatives occurs:
(a) un → 0 in Xε;
(b) there are a sequence {yn} ⊂ R

N and constants R, β > 0 such that

lim inf
n→∞

∫
BR(yn)

|un|qdx ≥ β > 0.

Proof. Assume that (b) does not hold. Then, for any R > 0, the following holds

lim
n→∞ sup

y∈RN

∫
BR(y)

|un|qdx = 0.

Since {un} is bounded in Xε, it follows by Lemma 2.1 that

un → 0 in Lt(RN ) for any t ∈ (q, q∗). (5.1)

Now, we can argue as in the proof of Lemma 4.3 and deduce that ‖un‖ε → 0 as n → ∞. �
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In order to get a compactness result for Iε, we need to prove the following auxiliary lemma.

Lemma 5.2. Assume that V∞ < ∞ and let {vn} ⊂ Nε be a sequence such that Iε(vn) → d with vn ⇀ 0
in Xε. If vn �→ 0 in Xε, then d ≥ dV∞ , where dV∞ is the infimum of JV∞ over MV∞ .

Proof. Let {tn} ⊂ (0,∞) be such that {tnvn} ⊂ MV∞ . Our aim is to show that lim supn→∞ tn ≤ 1.
Assume by contradiction that there exist δ > 0 and a subsequence, denoted again by {tn}, such that

tn ≥ 1 + δ for any n ∈ N. (5.2)

Since {vn} ⊂ Xε is a bounded (PS) sequence for Iε, we have that 〈I ′
ε(vn), vn〉 = on(1), or equivalently

|∇vn|pp + |∇vn|qq +
∫
RN

V (εx)|vn|pdx +
∫
RN

V (εx)|vn|qdx −
∫
RN

f(vn)vn dx = on(1). (5.3)

Since tnvn ∈ MV∞ , we also have that

tp−q
n |∇vn|pp + |∇vn|qq + tp−q

n V∞
∫
RN

|vn|pdx + V∞
∫
RN

|vn|qdx −
∫
RN

f(tnvn)
(tnvn)q−1

vq
n dx = 0. (5.4)

Putting together (5.3) and (5.4), we get∫
RN

(
f(tnvn)

(tnvn)q−1
− f(vn)

(vn)q−1

)
vq

n dx ≤
∫
RN

(V∞ − V (εx))|vn|qdx. (5.5)

Now, using assumption (V ) we can see that, given ζ > 0, there exists R = R(ζ) > 0 such that

V (εx) ≥ V∞ − ζ for any |x| ≥ R. (5.6)

From this, taking into account that vn → 0 in Lq(BR) and the boundedness of {vn} in Xε, we can infer∫
RN

(V∞ − V (εx))|vn|qdx =
∫

BR(0)

(V∞ − V (εx))|vn|qdx +
∫

RN \BR(0)

(V∞ − V (εx))|vn|qdx

≤ V∞
∫

BR(0)

|vn|qdx + ζ

∫
RN \BR(0)

|vn|qdx

≤ on(1) + ζC. (5.7)

Combining (5.5) and (5.7), we have∫
RN

(
f(tnvn)

(tnvn)q−1
− f(vn)

(vn)q−1

)
vq

n dx ≤ on(1) + ζC. (5.8)

Since vn �→ 0 in Xε, we can apply Lemma 5.1 to deduce the existence of a sequence {yn} ⊂ R
N and two

positive numbers R̄, β such that ∫
BR̄(yn)

|vn|q dx ≥ β > 0. (5.9)

Let us consider ṽn = vn(x+yn). Then we may assume that, up to a subsequence, ṽn ⇀ ṽ in Xε. By (5.9),
there exists Ω ⊂ R

N with positive measure and such that ṽ > 0 in Ω. From (5.2), (f4) and (5.8), we can
infer that

0 <

∫
Ω

(
f((1 + δ)ṽn)

((1 + δ)ṽn)q−1
− f(ṽn)

(ṽn)q−1

)
ṽq

n dx ≤ on(1) + ζC.
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Taking the limit as n → ∞ and applying Fatou’s lemma, we obtain

0 <

∫
Ω

(
f((1 + δ)ṽ)

((1 + δ)ṽ)q−1
− f(ṽ)

(ṽ)q−1

)
ṽq dx ≤ ζC for any ζ > 0,

which is a contradiction.
Now we consider the following cases:
Case 1: Assume that lim supn→∞ tn = 1. Thus there exists {tn} such that tn → 1. Taking into

account that Iε(vn) → c, we have

c + on(1) = Iε(vn)

= Iε(vn) − JV∞(tnvn) + JV∞(tnvn)

≥ Iε(vn) − JV∞(tnvn) + dV∞ . (5.10)

Now, let us point out that

Iε(vn) − JV∞(tnvn)

=
(1 − tpn)

p
|∇vn|pp +

(1 − tqn)
q

|∇vn|qq +
1
p

∫
RN

(V (εx) − tpnV∞) |vn|pdx

+
1
q

∫
RN

(V (εx) − tqnV∞) |vn|qdx +
∫
RN

(F (tnvn) − F (vn)) dx.

(5.11)

Using condition (V ), vn → 0 in Lp(BR(0)), tn → 1, (5.6), and the fact that

V (εx) − tpnV∞ = (V (εx) − V∞) + (1 − tpn)V∞ ≥ −ζ + (1 − tpn)V∞ for any |x| ≥ R,

we get ∫
RN

(V (εx) − tpnV∞) |vn|pdx

=
∫

BR(0)

(V (εx) − tpnV∞) |vn|pdx +
∫

RN \BR(0)

(V (εx) − tpnV∞) |vn|pdx

≥ (V0 − tpnV∞)
∫

BR(0)

|vn|pdx − ζ

∫
RN \BR(0)

|vn|pdx + V∞(1 − tpn)
∫

RN \BR(0)

|vn|pdx

≥ on(1) − ζC. (5.12)

In a similar fashion, we can prove that∫
RN

(V (εx) − tqnV∞) |vn|qdx ≥ on(1) − ζC. (5.13)

Since {vn} is bounded in Xε, we can conclude that

(1 − tpn)
p

|∇vn|pp = on(1) and
(1 − tqn)

q
|∇vn|qq = on(1). (5.14)

Thus, putting together (5.11), (5.12), (5.13) and (5.14), we obtain

Iε(vn) − JV∞(tnvn) ≥
∫
RN

(F (tnvn) − F (vn)) dx + on(1) − ζC. (5.15)
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At this point, we aim to show that ∫
RN

(F (tnvn) − F (vn)) dx = on(1). (5.16)

Applying the mean value theorem and (3.1), we can deduce that∫
RN

|F (tnvn) − F (vn)|dx ≤ C|tn − 1|
∫
RN

|vn|pdx + C|tn − 1|
∫
RN

|vn|rdx.

Exploiting the boundedness of {vn}, we get the assertion. Gathering (5.10), (5.15) and (5.16), we can
infer that

c + on(1) ≥ on(1) − ζC + dV∞ ,

and taking the limit as ζ → 0 we get c ≥ dV∞ .
Case 2: Assume that lim supn→∞ tn = t0 < 1. Then there is a subsequence, still denoted by {tn},

such that tn → t0(< 1) and tn < 1 for any n ∈ N. Let us observe that

c + on(1) = Iε(vn) − 1
q
〈I ′

ε(vn), vn〉

=
(

1
p

− 1
q

)
‖vn‖p

V,p +
∫
RN

(
1
q
f(vn)vn − F (vn)

)
dx. (5.17)

Recalling that tnvn ∈ MV∞ , and using (f5) and (5.17), we obtain

dV∞ ≤ JV∞(tnvn)

= JV∞(tnvn) − 1
q
〈J ′

V∞(tnvn), tnvn〉

=
(

1
p

− 1
q

)
‖tnvn‖p

V,p +
∫
RN

(
1
q
f(tnvn)tnvn − F (tnvn)

)
dx

≤
(

1
p

− 1
q

)
‖vn‖p

V,p +
∫
RN

(
1
q
f(vn)vn − F (vn)

)
dx

= c + on(1).

Taking the limit as n → ∞, we get c ≥ dV∞ . �

At this point, we are able to prove the following compactness result.

Proposition 5.1. Let {un} ⊂ Nε be such that Iε(un) → c, where c < dV∞ if V∞ < ∞ and c ∈ R if
V∞ = ∞. Then {un} has a convergent subsequence in Xε.

Proof. It is easy to see that {un} is bounded in Xε. Then, up to a subsequence, we may assume that
un ⇀ u in Xε,

un → u in Lm
loc(R

N ) for any m ∈ [1, q∗),

un → u a.e. in R
N .

(5.18)

By using assumptions (f2)–(f3), (5.18) and the fact that C∞
c (RN ) is dense in Xε, it is easy to check that

I ′
ε(u) = 0.

Now, let vn = un − u. By Lemma 2.5, we have

Iε(vn) = Iε(un) − Iε(u) + on(1)

= c − Iε(u) + on(1) = d + on(1). (5.19)
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Now, we prove that I ′
ε(vn) = on(1). For t ∈ {p, q}, by using Lemma 2.2 with ηn = vn and w = u, we get∫∫

R2N

|A(un) − A(vn) − A(u)|t′
dx = on(1), (5.20)

and arguing as in the proof of Lemma 3.3 in [18], we can see that∫
RN

V (εx)||vn|t−2vn − |un|t−2un + |u|t−2u|t′
dx = on(1). (5.21)

Hence, by using the Hölder inequality, for any ϕ ∈ Xε such that ‖ϕ‖ε ≤ 1, we get

|〈I ′
ε(vn) − I ′

ε(un) + I ′
ε(u), ϕ〉|

≤
⎛
⎝∫∫

R2N

|A(un) − A(vn) − A(u)|p′
dxdy

⎞
⎠

1
p′

[ϕ]s,p

+

⎛
⎝∫∫

R2N

|A(un) − A(vn) − A(u)|q′
dxdy

⎞
⎠

1
q′

[ϕ]s,q

+

⎛
⎝∫
RN

V (εx)||vn|p−2vn − |un|p−2un + |u|p−2u|p′
dx

⎞
⎠

p′ ⎛
⎝∫
RN

V (εx)|ϕ|pdx

⎞
⎠

1
p

+

⎛
⎝∫
RN

V (εx)||vn|q−2vn − |un|q−2un + |u|q−2u|q′
dx

⎞
⎠

q′ ⎛
⎝∫
RN

V (εx)|ϕ|qdx

⎞
⎠

1
q

+
∫
RN

|(f(vn) − f(un) + f(u))ϕ|dx,

and in view of (iv) of Lemma 2.5, (5.20), (5.21), I ′
ε(un) = 0 and I ′

ε(u) = 0 we obtain the assertion.
Now, we note that by using (f4) we can see that

Iε(u) = Iε(u) − 1
q
〈I ′

ε(u), u〉 ≥ 0. (5.22)

Assume V∞ < ∞. It follows from (5.19) and (5.22) that

d ≤ c < dV∞

which together Lemma 5.2 gives vn → 0 in Xε, that is un → u in Xε.
Let us consider the case V∞ = ∞. Then, we can use Lemma 2.4 to deduce that vn → 0 in Lm(RN ) for
all m ∈ [p, q∗). This, combined with assumptions (f2) and (f3), implies that∫

RN

f(vn)vndx = on(1). (5.23)

Since 〈I ′
ε(vn), vn〉 = on(1), and applying (5.23) we can infer that

‖vn‖p
ε = on(1),

which yields un → u in Xε. �

We conclude this section by giving the proof of the existence of a ground-state solution to (Pε) (that is
a nontrivial critical point u of Iε such that Iε(u) = infNε

Iε = cε) whenever ε > 0 is small enough.
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Theorem 5.1. Assume that (V ) and (f1)–(f5) hold. Then there exists ε0 > 0 such that, for any ε ∈ (0, ε0),
problem (Pε) admits a ground-state solution.

Proof. By (v) of Lemma 3.5, we know that cε ≥ ρ > 0 for each ε > 0. Moreover, if uε ∈ Nε satisfies
Iε(uε) = cε, then m−1

ε (uε) is a minimizer of Ψε and it is a critical point of Ψε. By virtue of Lemma 3.6,
we can see that uε is a critical point of Iε. It remains to show that there exists a minimizer of Iε|Nε

.
By Ekeland’s variational principle [25], there exists a sequence {vn} ⊂ Sε such that Ψε(vn) → cε and
Ψ′

ε(vn) → 0 as n → ∞. Let un = mε(vn) ∈ Nε. Then, by Lemma 3.6, we deduce that Iε(un) → cε,
〈I ′

ε(un), un〉 = 0 and I ′
ε(un) → 0 as n → ∞. Therefore, {un} is a Palais-Smale sequence for Iε at level

cε. It is easy to check that {un} is bounded in Xε and we denote by u its weak limit. It is also easy to
verify that I ′

ε(u) = 0.
When V∞ = ∞, by using Lemma 2.4, we have Iε(u) = cε and I ′

ε(u) = 0.
Now, we deal with the case V∞ < ∞. In view of Proposition 5.1, it is enough to show that cε < dV∞ for
small ε. Without loss of generality, we may suppose that

V (0) = V0 = inf
x∈RN

V (x).

Let μ ∈ R be such that μ ∈ (V0, V∞). Clearly, dV0 < dμ < dV∞ . Let us prove that there exists a function
w ∈ Yμ with compact support such that

Jμ(w) = max
t≥0

Jμ(tw) and Jμ(w) < dV∞ . (5.24)

Let ψ ∈ C∞
c (RN , [0, 1]) be such that ψ = 1 in B1(0) and ψ = 2 in R

N \ B2(0). For any R > 0, we set
ψR(x) = ψ( x

R ). We consider the function wR(x) = ψR(x)wμ(x), where wμ is a ground-state solution to
(APμ). By the dominated convergence theorem, we can see that

lim
R→∞

‖wR − wμ‖1,p + ‖wR − wμ‖1,q = 0. (5.25)

Let tR > 0 be such that Jμ(tRwR) = maxt≥0 Jμ(twR). Then, tRwR ∈ Mμ. Now there exists r̄ > 0 such
that Jμ(tr̄wr̄) < dV∞ . Indeed, if Jμ(tRwR) ≥ dV∞ for any R > 0, using tRwR ∈ Mμ, (5.25) and wμ is a
ground state, we can deduce that tR → 1 and

dV∞ ≤ lim inf
R→∞

Jμ(tRwR) = Jμ(wμ) = dμ < dV∞ ,

which gives a contradiction. Then, taking w = ψr̄w
μ, we can conclude that (5.24) holds.

Now, by (V ), we obtain that for some ε̄ > 0

V (εx) ≤ μ for all x ∈ suppw and ε ∈ (0, ε̄). (5.26)

Then, in the light of (5.24) and (5.26), we have for all ε ∈ (0, ε̄)

max
t>0

Iε(tw) ≤ max
t>0

Jμ(tw) = Jμ(w) < dV∞ .

It follows from (3.5) that cε < dV∞ for all ε ∈ (0, ε̄). �

6. Multiple solutions for (Pε)

This section is devoted to the study of the multiplicity of solutions to (Pε). We begin by proving the
following result which will be needed to implement the barycenter machinery.

Proposition 6.1. Let εn → 0 and {un} ⊂ Nεn
be such that Iεn

(un) → dV0 . Then there exists {ỹn} ⊂ R
N

such that the translated sequence

vn(x) = un(x + ỹn)

has a subsequence which converges in YV0 . Moreover, up to a subsequence, {yn} = {εnỹn} is such that
yn → y ∈ M .
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Proof. Since 〈I ′
εn

(un), un〉 = 0 and Iεn
(un) → dV0 , we know that {un} is bounded in Xε. Since dV0 > 0,

we can infer that ‖un‖εn
�→ 0. Therefore, as in the proof of Lemma 5.1, we can find a sequence {ỹn} ⊂ R

N

and constants R, β > 0 such that

lim inf
n→∞

∫
BR(ỹn)

|un|q dx ≥ β. (6.1)

Let us define

vn(x) = un(x + ỹn).

In view of the boundedness of {un} and (6.1), we may assume that vn ⇀ v in YV0 for some v �= 0. Let
{tn} ⊂ (0,∞) be such that wn = tnvn ∈ MV0 , and we set yn = εnỹn.
Thus, by using the change of variables z �→ x + ỹn, V (x) ≥ V0 and the invariance by translation, we can
see that

dV0 ≤ JV0(wn) ≤ Iεn
(tnvn) ≤ Iεn

(un) = dV0 + on(1).

Hence, we can infer JV0(wn) → dV0 . This fact and {wn} ⊂ MV0 imply that there exists K > 0 such
that ‖wn‖V0 ≤ K for all n ∈ N. Moreover, we can prove that the sequence {tn} is bounded in R. In fact,
vn �→ 0 in YV0 , so there exists α > 0 such that ‖vn‖V0 ≥ α. Consequently, for all n ∈ N, we have

|tn|α ≤ ‖tnvn‖V0 = ‖wn‖V0 ≤ K,

which yields |tn| ≤ K
α for all n ∈ N. Therefore, up to a subsequence, we may suppose that tn → t0 ≥ 0.

Let us show that t0 > 0. Otherwise, if t0 = 0, by the boundedness of {vn}, we get wn = tnvn → 0 in YV0 ,
that is JV0(wn) → 0 which is in contrast with the fact dV0 > 0. Thus, t0 > 0 and, up to a subsequence,
we may assume that wn ⇀ w = t0v �= 0 in YV0 .
Therefore,

JV0(wn) → dV0 and wn ⇀ w �= 0 in YV0 .

From Lemma 4.4, we can deduce that wn → w in YV0 , that is vn → v in YV0 .
Now, we show that {yn} has a subsequence satisfying yn → y ∈ M . First, we prove that {yn} is bounded
in R

N . Assume by contradiction that {yn} is not bounded, that is there exists a subsequence, still denoted
by {yn}, such that |yn| → ∞.
First, we deal with the case V∞ = ∞. By using {un} ⊂ Nεn

and by changing the variable, we can see
that ∫

RN

V (εnx + yn)(|vn|p + |vn|q)dx

≤ |∇vn|pp + |∇vn|qq +
∫
RN

V (εnx + yn)(|vn|p + |vn|q)dx

=
∫
RN

f(un)un dx =
∫
RN

f(vn)vn dx.

By applying Fatou’s lemma and vn → v in YV0 , we deduce that

∞ = lim inf
n→∞

∫
RN

V (εnx + yn)(|vn|p + |vn|q)dx ≤ lim inf
n→∞

∫
RN

f(vn)vndx =
∫
RN

f(v)v dx < ∞,

which gives a contradiction.
Let us consider the case V∞ < ∞. Taking into account that wn → w strongly converges in YV0 , condition
(V ) and using the change of variable z = x + ỹn, we have

dV0 = JV0(w) < JV∞(w)
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≤ lim inf
n→∞

⎡
⎣1

p
|∇wn|pp +

1
q
|∇wn|qq +

∫
RN

V (εnx + yn)
(

1
p
|wn|p +

1
q
|wn|q

)
dx −

∫
RN

F (wn) dx

⎤
⎦

= lim inf
n→∞

⎡
⎣ tpn

p
|∇un|pp +

tqn
q

|∇un|qq +
∫
RN

V (εnz)
(

tpn
p

|un|p +
tqn
q

|un|q
)

dz −
∫
RN

F (tnun) dz

⎤
⎦

= lim inf
n→∞ Iεn

(tnun) ≤ lim inf
n→∞ Iεn

(un) = dV0 (6.2)

which is a contradiction. Thus, {yn} is bounded and, up to a subsequence, we may assume that yn → y.
If y /∈ M , then V0 < V (y) and we can argue as in (6.2) to get a contradiction. Therefore, we can conclude
that y ∈ M . �

Let δ > 0 be fixed and let ψ ∈ C∞([0,∞), [0, 1]) be a nonincreasing function such that ψ = 1 in [0, δ
2 ],

ψ = 0 in [δ,∞) and |ψ′| ≤ C for some C > 0. For any y ∈ M , we define

Υε,y(x) = ψ(|εx − y|)ω
(

εx − y

ε

)
,

where ω ∈ XV0 is a ground-state solution to (APV0) which exists by virtue of Lemma 4.4.
Let tε > 0 be the unique positive number such that

Iε(tεΥε,y) = max
t≥0

Iε(tΥε,y).

Define the map Φε : M → Nε by setting Φε(y) := tεΥε,y. Then we can prove that

Lemma 6.1. The functional Φε satisfies the following limit

lim
ε→0

Iε(Φε(y)) = dV0 uniformly in y ∈ M. (6.3)

Proof. Assume by contradiction that there exist δ0 > 0, {yn} ⊂ M and εn → 0 such that

|Iεn
(Φεn

(yn)) − dV0 | ≥ δ0. (6.4)

Let us observe that the dominated convergence theorem implies

|∇Υεn,yn
|pp +

∫
RN

V (εnx)|Υεn,yn
|p dx → |∇ω|pp +

∫
RN

V0|ω|p dx (6.5)

and

|∇Υεn,yn
|qq +

∫
RN

V (εnx)|Υεn,yn
|q dx → |∇ω|qq +

∫
RN

V0|ω|q dx. (6.6)

Since 〈I ′
εn

(tεn
Υεn,yn

), tεn
Υεn,yn

〉 = 0, we can use the change of variable z = εnx−yn

εn
to see that

tpεn
|∇Υεn,yn

|pp + tqεn
|∇Υεn,yn

|qq +
∫
RN

V (εnx) (|tεn
Υεn,yn

|p + |tεn
Υεn,yn

|q) dx

=
∫
RN

f(tεn
Υεn

)tεn
Υεn

dx

=
∫
RN

f(tεn
ψ(|εnz|)ω(z))tεn

ψ(|εnz|)ω(z) dz. (6.7)
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Now, we prove that tεn
→ 1. First we show that tεn

→ t0 < ∞. Assume by contradiction that |tεn
| → ∞.

Then, using the fact that ψ(|x|) = 1 for x ∈ B δ
2
(0) and that B δ

2
(0) ⊂ B δ

2εn
(0) for n sufficiently large, we

can see that (6.7) and (f5) imply

tp−q
εn

|∇Υεn,yn
|pp + |∇Υεn,yn

|qq +
∫
RN

V (εnx)
(
tp−q
εn

|Υεn,yn
|p + |Υεn,yn

|q) dx

≥
∫

B δ
2
(0)

f(tεn
ω(z))

(tεn
ω(z))q−1

(ω(z))qdz ≥ f(tεn
ω(z̄))

(tεn
ω(z̄))q−1

∫
B δ

2
(0)

(ω(z))qdz (6.8)

where z̄ ∈ R
N is such that ω(z̄) = min{ω(z) : |z| ≤ δ

2} > 0 (note that ω ∈ C(RN ) and ω > 0
in R

N ). Putting together (f4), p < q, tεn
→ ∞, (6.5) and (6.6), we can see that (6.8) implies that

‖Υεn,yn
‖q

V,q → ∞, which gives a contradiction. Therefore, up to a subsequence, we may assume that
tεn

→ t0 ≥ 0. If t0 = 0, we can use (6.5), (6.6), (6.7), p < q and (f2), to get

‖Υεn,yn
‖p

V,p → 0,

which is a contradiction. Hence, t0 > 0. Now, we show that t0 = 1. Letting n → ∞ in (6.7), we can see
that

tp−q
0 |∇ω|pp + |∇ω|qq +

∫
RN

V0(t
p−q
0 ωpdx + ωq) dx =

∫
RN

f(t0ω)
(t0ω)q−1

ωq dx. (6.9)

Since ω ∈ MV0 , we have

|∇ω|pp + |∇ω|qq +
∫
RN

V0(ωpdx + ωq) dx =
∫
RN

f(ω)ω dx. (6.10)

Putting together (6.11) and (6.10), we find

(tp−q
0 − 1)|∇ω|pp + (tp−q

0 − 1)
∫
RN

V0ω
p dx =

∫
RN

(
f(t0ω)

(t0ω)q−1
− f(ω)

ωq−1

)
ωq dx. (6.11)

By (f5), we can deduce that t0 = 1. This fact and the dominated convergence theorem yield

lim
n→∞

∫
RN

F (tεn
Υεn,yn

) dx =
∫
RN

F (ω) dx. (6.12)

Hence, taking the limit as n → ∞ in

Iεn
(Φεn

(yn)) =
tpεn

p
|∇Υεn,yn

|pp +
tqεn

q
|∇Υεn,yn

|qq

+
∫
RN

V (εnx)
(

tpεn

p
|Υεn,yn

|p +
tqεn

q
|Υεn,yn

|q
)

dx

−
∫
RN

F (tεn
Υεn,yn

) dx

and exploiting (6.5), (6.6) and (6.12), we can deduce that

lim
n→∞ Iεn

(Φεn
(yn)) = JV0(ω) = dV0

which is impossible in view of (6.4). �
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Now, we are in the position to introduce the barycenter map. We take ρ > 0 such that Mδ ⊂ Bρ(0), and
we set χ : RN → R

N as follows

χ(x) =

{
x if |x| < ρ,
ρx
|x| if |x| ≥ ρ.

We define the barycenter map βε : Nε → R
N by

βε(u) =

∫
RN

χ(εx) (|u|p + |u|q) dx∫
RN

(|u|p + |u|q) dx
.

Lemma 6.2. The functional Φε verifies the following limit

lim
ε→0

βε(Φε(y)) = y uniformly in y ∈ M. (6.13)

Proof. Suppose by contradiction that there exist δ0 > 0, {yn} ⊂ M and εn → 0 such that

|βεn
(Φεn

(yn)) − yn| ≥ δ0. (6.14)

Using the definitions of Φεn
(yn), βεn

, ψ and the change of variable z = εnx−yn

εn
, we can see that

βεn
(Φεn

(yn)) = yn +

∫
RN

[χ(εnz + yn) − yn](|ψ(|εnz|)ω(z)|p + |ψ(|εnz|)ω(z)|q) dz∫
RN

(|ψ(|εnz|)ω(z)|p + |ψ(|εnz|)ω(z)|q) dz
.

Taking into account {yn} ⊂ M ⊂ Bρ(0) and applying the dominated convergence theorem, we can infer
that

|βεn
(Φεn

(yn)) − yn| = on(1)

which contradicts (6.14). �

At this point, we introduce a subset Ñε of Nε by taking a function h : R+ → R+ such that h(ε) → 0 as
ε → 0, and setting

Ñε = {u ∈ Nε : Iε(u) ≤ dV0 + h(ε)},

where h(ε) = supy∈M |Iε(Φε(y)) − dV0 |. By Lemma 6.1, we know that h(ε) → 0 as ε → 0. By definition
of h(ε), we can deduce that for all y ∈ M and ε > 0, Φε(y) ∈ Ñε and Ñε �= ∅. Moreover, we have the
following lemma.

Lemma 6.3. For any δ > 0, the following holds

lim
ε→0

sup
u∈Ñε

dist(βε(u),Mδ) = 0.

Proof. Let εn → 0 as n → ∞. For any n ∈ N, there exists {un} ⊂ Ñεn
such that

sup
u∈Ñεn

inf
y∈Mδ

|βεn
(u) − y| = inf

y∈Mδ

|βεn
(un) − y| + on(1).

Therefore, it suffices to prove that there exists {yn} ⊂ Mδ such that

lim
n→∞ |βεn

(un) − yn| = 0. (6.15)

Thus, recalling that {un} ⊂ Ñεn
⊂ Nεn

, we can deduce that

dV0 ≤ cεn
≤ Iεn

(un) ≤ dV0 + h(εn)
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which implies that Iεn
(un) → dV0 . By Proposition 6.1, there exists {ỹn} ⊂ R

N such that yn = εnỹn ∈ Mδ

for n sufficiently large. Thus,

βεn
(un) = yn +

∫
RN

[χ(εnz + yn) − yn](|un(z + ỹn)|p + |un(z + ỹn)|q) dz∫
RN

(|un(z + ỹn)|p + |un(z + ỹn)|q) dz
.

Since un(·+ỹn) strongly converges in YV0 and εnz+yn → y ∈ M , we can deduce that βεn
(un) = yn+on(1),

that is (6.15) holds. �
Now we show that (Pε) admits at least catMδ

(M) solutions. In order to achieve our aim, we recall the
following result for critical points involving Ljusternik–Schnirelmann category. For more details, one can
see [10].

Theorem 6.1. Let U be a C1,1 complete Riemannian manifold (modeled on a Hilbert space). Assume that
h ∈ C1(U,R) is bounded from below and satisfies −∞ < infU h < d < k < ∞. Moreover, suppose that h
satisfies the Palais-Smale condition on the sublevel {u ∈ U : h(u) ≤ k} and that d is not a critical level
for h. Then

card{u ∈ hd : ∇h(u) = 0} ≥ cathd(hd),

where hd = {u ∈ U : h(u) ≤ d}.
With a view to apply Theorem 6.1, the following abstract lemma provides a very useful tool since relates
the topology of some sublevel of a functional to the topology of some subset of the space R

N ; see [10].

Lemma 6.4. Let Ω,Ω1 and Ω2 be closed sets with Ω1 ⊂ Ω2 and let π : Ω → Ω2, ψ : Ω1 → Ω be continuous
maps such that π◦ψ is homotopically equivalent to the embedding j : Ω1 → Ω2. Then catΩ(Ω) ≥ catΩ2(Ω1).

Since Nε is not a C1 submanifold of Xε, we cannot directly apply Theorem 6.1. Fortunately, by Lemma 3.5,
we know that the mapping mε is a homeomorphism between Nε and Sε, and Sε is a C1 submanifold of
Xε. So we can apply Theorem 6.1 to Ψε(u) = Iε(m̂ε(u))|Sε

= Iε(mε(u)), where Ψε is given in Lemma 3.6.
In the light of the above observations, we are ready to give the proof of the main result of this work.

Proof of Theorem 1.1. For any ε > 0, we define αε : M → Sε by setting αε(y) = m−1
ε (Φε(y)). By using

Lemma 6.1 and the definition of Ψε, we can see that

lim
ε→0

Ψε(αε(y)) = lim
ε→0

Iε(Φε(y)) = dV0 uniformly in y ∈ M.

Set S̃ε = {w ∈ Sε : Ψε(w) ≤ dV0 + h(ε)}, where h(ε) = supy∈M |Ψε(αε(y)) − dV0 | → 0 as ε → 0. Thus,
αε(y) ∈ S̃ε for all y ∈ M , and this yields S̃ε �= ∅ for all ε > 0.

Taking into account Lemma 6.1, Lemma 3.5, Lemma 3.6 and Lemma 6.3, we can find ε̄ = ε̄δ > 0 such
that the following diagram

M
Φε→ Ñε

m−1
ε→ S̃ε

mε→ Ñε
βε→ Mδ

is well defined for any ε ∈ (0, ε̄). By using Lemma 6.2, there exists a function θ(ε, y) with |θ(ε, y)| < δ
2

uniformly in y ∈ M , for all ε ∈ (0, ε̄), such that βε(Φε(y)) = y + θ(ε, y) for all y ∈ M . We can see that
H(t, y) = y + (1 − t)θ(ε, y), with (t, y) ∈ [0, 1] × M , is a homotopy between βε ◦ Φε = (βε ◦ mε) ◦ αε

and the inclusion map id : M → Mδ. This fact and Lemma 6.4 imply that cat
S̃ε

(S̃ε) ≥ catMδ
(M). On

the other hand, let us choose a function h(ε) > 0 such that h(ε) → 0 as ε → 0 and such that dV0 + h(ε)
is not a critical level for Iε. For ε > 0 small enough, we deduce from Proposition 5.1 that Iε satisfies
the Palais-Smale condition in Ñε. So, by (ii) of Lemma 3.6, we infer that Ψε satisfies the Palais-Smale
condition in S̃ε. Hence, by using Theorem 6.1, we obtain that Ψε has at least cat

S̃ε
(S̃ε) critical points on

S̃ε. Then, in view of (iii) of Lemma 3.6, we can infer that Iε admits at least catMδ
(M) critical points.

�
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7. Concentration of solutions to (Pε)

Let us start with the following result which plays a fundamental role in the study of the behavior of
maximum points of solutions to (Pε).

Lemma 7.1. Let vn be a weak solution of the problem{
−Δpvn − Δqvn + Vn(x)(|vn|p−2vn + |vn|q−2vn) = f(vn) in R

N

vn ∈ W 1,p(RN ) ∩ W 1,q(RN ), vn > 0 in R
N ,

(PVn
)

where Vn(x) ≥ V0 and vn → v in W 1,p(RN ) ∩ W 1,q(RN ) for some v �≡ 0. Then vn ∈ L∞(RN ) and there
exists C > 0 such that |vn|∞ ≤ C for all n ∈ N. Moreover,

lim
|x|→∞

vn(x) = 0 uniformly in n ∈ N.

Proof. We follow some ideas in [3,13] by developing a suitable Moser iteration argument [19]. For any
R > 0, 0 < r ≤ R

2 , let η ∈ C∞(RN ) such that 0 ≤ η ≤ 1, η = 1 in R
N \ BR(0), η = 0 in BR−r(0) and

|∇η| ≤ 2/r. For each n ∈ N and for L > 0, let

zL,n = ηqvnv
q(β−1)
L,n and wL,n = ηvnvβ−1

L,n ,

where vL,n = min{vn, L} and β > 1 to be determined later. Choosing zL,n as a test function in (PVn
),

we have∫
RN

|∇vn|p−2∇vn · ∇zL,n + |∇vn|q−2∇vn · ∇zL,n + Vn(vp−1
n + vq−1

n )zL,n dx =
∫
RN

f(vn)zL,n dx.

By assumptions (f1) and (f2), for any ξ > 0 there exists Cξ > 0 such that

|f(t)| ≤ ξ|t|p−1 + Cξ|t|q∗−1 for all t ∈ R.

Hence, using (V1) and choosing ξ ∈ (0, V0), we have∫
RN

ηqv
q(β−1)
L,n |∇vn|q dx ≤ Cξ

∫
RN

vq∗
n ηqv

q(β−1)
L,n dx − q

∫
RN

ηq−1v
q(β−1)
L,n vn|∇vn|q−2∇vn · ∇η dx.

For each τ > 0, we can use Young’s inequality to obtain∫
RN

ηqv
q(β−1)
L,n |∇vn|q dx ≤ Cξ

∫
RN

vq∗
n ηqv

q(β−1)
L,n dx + qτ

∫
RN

|∇vn|qvq(β−1)
L,n ηq dx

+ qCτ

∫
RN

vq
n|∇η|qvq(β−1)

L,n dx

and taking τ > 0 sufficiently small, we get∫
RN

ηqv
q(β−1)
L,n |∇vn|q dx ≤ C

∫
R3

vq∗
n ηqv

q(β−1)
L,n dx + C

∫
RN

|∇η|qvq
nv

q(β−1)
L,n dx. (7.1)

On the other hand, using the Sobolev inequality and the Hölder inequality, we can infer

|wL,n|qq∗ ≤ C

∫
RN

|∇wL,n|q dx = C

∫
RN

|∇(ηvβ−1
L,n vn)|q dx

≤ Cβq

⎛
⎝∫
RN

|∇η|qvq
nv

q(β−1)
L,n dx +

∫
RN

ηqv
q(β−1)
L,n |∇vn|q dx

⎞
⎠ . (7.2)



ZAMP Multiplicity and concentration results for a. . . Page 29 of 33    33 

Combining (7.1) and (7.2), we find

|wL,n|qq∗ ≤ Cβq

⎛
⎝∫
RN

|∇η|qvq
nv

q(β−1)
L,n dx +

∫
RN

vq∗
n ηqv

q(β−1)
L,n dx

⎞
⎠ . (7.3)

We claim that vn ∈ L
(q∗)2

q (|x| ≥ R) for R large enough and uniformly in n. Let β = q∗

q . From (7.3), we
have

|wL,n|qq∗ ≤ Cβq

⎛
⎝∫
RN

|∇η|qvq
nvq∗−q

L,n dx +
∫
RN

vq∗
n ηqvq∗−q

L,n dx

⎞
⎠

or equivalently

|wL,n|qq∗ ≤ Cβq

⎛
⎝∫
RN

|∇η|qvq
nvq∗−q

L,n dx +
∫
RN

vq
nηqvq∗−q

L,n vq∗−q
n dx

⎞
⎠ .

Using the Hölder inequality with exponents q∗

q and q∗

q∗−q , we obtain

|wL,n|qq∗ ≤ Cβq

⎛
⎝∫
RN

|∇η|qvq
nvq∗−q

L,n dx

⎞
⎠+ Cβq

⎛
⎝∫
RN

(vnηv
q∗−q

q

L,n )q∗
dx

⎞
⎠

q
q∗
⎛
⎜⎝ ∫

|x|≥ R
2

vq∗
n dx

⎞
⎟⎠

q∗−q
q∗

.

From the definition of wL,n, we have⎛
⎝∫
RN

(vnηv
q∗−q

q

L,n )q∗
dx

⎞
⎠

q
q∗

≤ Cβq

⎛
⎝∫
RN

|∇η|qvq
nvq∗−q

L,n dx

⎞
⎠

+ Cβq

⎛
⎝∫
RN

(vnηv
q∗−q

q

L,n )q∗
dx

⎞
⎠

q
q∗
⎛
⎜⎝ ∫

|x|≥ R
2

vq∗
n dx

⎞
⎟⎠

q∗−q
q∗

.

Since vn → v in W 1,p(RN ) ∩ W 1,q(RN ), for R > 0 sufficiently large, we get∫
|x|≥ R

2

vq∗
n dx ≤ ε uniformly in n ∈ N.

Hence, ⎛
⎜⎝ ∫

|x|≥R

(vnηv
q∗−q

q

L,n )q∗
dx

⎞
⎟⎠

q
q∗

≤ Cβq

∫
RN

vq
nvq∗−q

L,n dx ≤ Cβq

∫
RN

vq
n dx ≤ K < ∞.

Using Fatou’s lemma, as L → ∞, we deduce that∫
|x|≥R

v
(q∗)2

q
n dx < ∞
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and therefore the assertion holds. Next, choosing β = q∗ t−1
qt with t = (q∗)2

q(q∗−q) , we have β > 1, qt
t−1 < q∗

and vn ∈ L
βqt
t−1 (|x| ≥ R − r). From (7.3), we find

|wL,n|qq∗ ≤ Cβq

⎛
⎜⎝ ∫

R≥|x|≥R−r

vq
nv

q(β−1)
L,n dx +

∫
|x|≥R−r

vq∗
n v

q(β−1)
L,n dx

⎞
⎟⎠

or equivalently

|wL,n|qq∗ ≤ Cβq

⎛
⎜⎝ ∫

R≥|x|≥R−r

vqβ
n dx +

∫
|x|≥R−r

vq∗−q
n vqβ

n dx

⎞
⎟⎠ .

Using the Hölder inequality with exponents t
t−1 and t, we get

|wL,n|qq∗ ≤ Cβq

⎧⎪⎪⎨
⎪⎪⎩
⎡
⎢⎣ ∫
R≥|x|≥R−r

v
qβt

t−1
n dx

⎤
⎥⎦

t−1
t

⎡
⎢⎣ ∫
R≥|x|≥R−r

dx

⎤
⎥⎦

1
t

+

⎡
⎢⎣ ∫
|x|≥R−r

v(q∗−q)t
n dx

⎤
⎥⎦

1
t

⎡
⎢⎣ ∫
|x|≥R−r

v
qβt

t−1
n dx

⎤
⎥⎦

t−1
t

⎫⎪⎪⎬
⎪⎪⎭ .

Since (q∗ − q)t = (q∗)2, we deduce that

|wL,n|qq∗ ≤ Cβq

⎛
⎜⎝ ∫

R≥|x|≥R−r

v
qβt
t−1
n dx

⎞
⎟⎠

t−1
t

.

Note that

|vL,n|qβ

Lq∗β(|x|≥R)
≤

⎛
⎜⎝ ∫

|x|≥R−r

vq∗β
L,n dx

⎞
⎟⎠

q
q∗

≤
⎛
⎝∫
RN

ηqvq∗
n v

q∗(β−1)
L,n dx

⎞
⎠

q
q∗

= |wL,n|qq∗

≤ Cβq

⎛
⎜⎝ ∫

R≥|x|≥R−r

v
qβt
t−1
n dx

⎞
⎟⎠

t−1
t

= Cβq|vn|βq

L
qβt
t−1 (|x|≥R−r)

which combined with Fatou’s lemma with respect to L gives

|vn|qβ

Lq∗β(|x|≥R)
≤ Cβq|vn|βq

L
qβt
t−1 (|x|≥R−r)

.

Taking χ = q∗(t−1)
qt and s = qt

t−1 , it follows from the above inequality that

|vn|qβ

Lχm+1s(|x|≥R)
≤ C

∑m
i=1 χ−i

χ
∑m

i=1 iχ−i |vn|Lq∗ (|x|≥R−r)

which implies that |vn|L∞(|x|≥R) ≤ C|vn|Lq∗ (|x|≥R−r). Since vn → v in W 1,q(RN ), for all ε > 0 there
exists R > 0 such that

|vn|L∞(|x|≥R) < ε for all n ∈ N.

This completes the proof of the lemma. �
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Lemma 7.2. There exists δ > 0 such that |vn|∞ ≥ δ for all n ∈ N.

Proof. Assume to the contrary that |vn|∞ → 0 as n → ∞. By (f2), there exists n0 ∈ N such that
f(|vn|∞
|vn|p−1∞

< V0
2 for all n ≥ n0. Therefore, in view of (f5), we can see that

|∇vn|pp + |∇vn|qq + V0(|vn|pp + |vn|qq) ≤
∫
RN

f(|vn|∞)
|vn|p−1∞

|vn|pdx ≤ V0

2
|vn|pp,

which leads to a contradiction. �

End of the proof of Theorem 1.1. Let uεn
be a solution to (Pεn

). Then vn(x) = uεn
(x + ỹn) is a solution

to (PVn
) with Vn(x) = V (εnx + εnỹn), where {ỹn} is given by Proposition 6.1. Moreover, in view of

Proposition 6.1, up to subsequence, vn → v �= 0 in YV0 and yn = εnỹn → y ∈ M . If pn denotes a global
maximum point of vn, we can use Lemma 7.1 and Lemma 7.2 to see that pn ∈ BR(0) for some R > 0.
Consequently, zεn

= pn + ỹn is a global maximum point of uεn
, and then εnzεn

= εnpn + εnỹn → y
because {pn} is bounded. This fact and the continuity of V yield V (εnzεn

) → V (y) = V0 as n → ∞.
Finally, we prove the exponential decay of uεn

. We use some arguments from [13]. Since vn(x) → 0 as
|x| → ∞ uniformly in n ∈ N, and using (f1), we can find R > 0 such that

f(vn(x)) ≤ V0

2
(vp−1

n (x) + vq−1
n (x)) for all |x| ≥ R.

Then, by using (V1), we obtain

−Δpvn − Δqvn +
V0

2
(vp−1

n + vq−1
n ) = f(vn) −

(
Vn − V0

2

)
(vp−1

n + vq−1
n )

≤ f(vn) − V0

2
(vp−1

n + vq−1
n ) ≤ 0 for |x| ≥ R.

(7.4)

Let φ(x) = Me−c|x| with c,M > 0 such that cp(p − 1) < V0
2 , cq(q − 1) < V0

2 and Me−cR ≥ vn(x) for all
|x| = R. We can see that

− Δpφ − Δqφ +
V0

2
(φp−1 + φq−1)

= φp−1

(
V0

2
− cp(p − 1) +

N − 1
|x| cp−1

)
+ φq−1

(
V0

2
− cq(q − 1) +

N − 1
|x| cq−1

)
> 0 for |x| ≥ R.

(7.5)

Using η = (vn − φ)+ ∈ W 1,q
0 (RN \ BR) as a test function in (7.4) and (7.5), we find

0 ≥
∫

{|x|≥R}∩{vn>φ}

[
(|∇vn|p−2∇vn − |∇φ|p−2∇φ) · ∇η + (|∇vn|q−2∇vn − |∇φ|q−2∇φ) · ∇η

]

+
V0

2
[
(vp−1

n − φp−1) + (vq−1
n − φq−1)

]
η dx.

Since for t > 1 the following holds (see formula (2.10) in [22])

(|x|t−2x − |y|t−2y) · (x − y) ≥ 0 for all x, y ∈ R
N ,

and U, vn are continuous in R
N , we deduce that vn(x) ≤ φ(x) for all |x| ≥ R. Recalling that uεn

(x) =
vn(x− ỹn) and {pn} is bounded, we conclude that uεn

(x) ≤ C1e
−C2|x−zεn | for all x ∈ R

N . This completes
the proof of Theorem 1.1. �
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