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Abstract

Let X be a Cartesian product eftircles, p orientable 2-manifolds; non-orientable 2-manifolds,
r orientable 3-manifolds andnon-orientable 3-manifolds (all of them are closed). We prove that if
either some of these orientable 3-manifolds embed inRf* or p + ¢ + s + ¢ > 0, then the lowest
dimension of Euclidean space in whighis smoothly embeddable is+ 2p + 3(q + r) + 4r + 1.
If none of the closed orientable 3-manifoldg, ..., R, embed intoR4, then their product is
embeddable int®3 2 and, at least for some cases, non-embeddabldRitd . 0 2001 Elsevier
Science B.V. All rights reserved.
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1. Introduction

Throughout this paper we shall work in the smooth category. A classical problem in
topology is to find the lowest possible dimensiarsuch that a given manifolté embeds
into R™. The class of manifold& for which such am: is known is not very large, although
there exist many criteria for embeddability 8finto R™ for a givenm (for surveys see [5,
13]). The following is our main result.
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Theorem 1.1. Let Py,..., P, be orientable 2-manifolds, Qg, ..., Q, non-orientable 2-
manifolds, R1, ..., R, orientable 3-manifolds, 71, ..., T; hon-orientable 3-manifolds (all
closed). If either some R; is embeddable into R* or p + g + s + ¢t > 0, then the lowest
dimension of the Euclidean space into which the product

SlsxPlx-uxPx 1 XX XRyx-+ xR xTy x---xT;
)4 q

isembeddableiss +2p + 3(g +r) + 4t + 1.

If no R; is embeddable into R?, then the product Ry x --- x R, is embeddable into
R3+2

The embeddability is based on classical results on embeddabilty and immersability of
low-dimensional manifolds ifiR” and on the Brown lemma on embeddings of products
(Lemma 2.1). The non-embeddability follows from the calculation of the normal Stiefel—
Whitney classes. Theorem 1.1 should be compared with [1, Corollary 2.2]. Example 1.2
below shows that the dimensiom 3 2 in the second part of Theorem 1.1 is the best
possible forsome R, ..., R, (the proof, based on analysis of the cohomology ring of
the complement, is due to Rees, who kindly permitted us to include it in this paper). We
conjecture that nevertheless this dimension is not the best possilalé for, ..., R, i.e.,
that for eachr > 1 there exist closed orientable 3-manifolls, ..., R, which are non-
embeddable ilR* whereas their produd; x - -- x R, embeds int®¥ +1,

Example 1.2 (for r = 1 [7, Theorem 3]for r > 1 [12]). (RP3)" does not embed into
R3+1 for anyr.

The following graph analogue of Theorem 1.1 was announced without proof in [3].
(We tried to check whether a proof could be found in Galecki’s thesis [4]. However, after
an extensive search Daverman kindly informed us that there is no longer any copy of it
available at the University of Tennessee.)

Conjecture 1.3 [3]. Let G1,...,G, be connected graphs, distinct fromand $*. If
either someG; is planar (i.e., contains neither of the Kuratowski grapfssor K33) or

k >0 ork=s =u =0, then the lowest dimension of the Euclidean space into which the
product/* x (s1)* x G1 x --- x G, is embeddable, i& + s + 2u. If no G; is planar
ands + u > 0, then the lowest dimension of the Euclidean space into which the product
(8H* x G1 x --- x G, is embeddable, is+ 2u + 1.

2. Proofsand related results

Lemma2.1.
(d) [1,Lemma2.1Let M and N be any manifolds (possibly, nonclosed). If M embeds
into R¢, N immerses in R’ (or i =dimN and N x I immerses into Ri™1) and
e+i>2dimN, then M x N embedsinto R¢*.
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(b) Let M, N1,...,Ng be any manifolds (possibly, nonclosed). If M embeds into
R¢, N; immerses in R (or i; = dimN; and N; x I immerses into R%*1) and
et+ir+---+i;>2dimN;, foreachl =1,...,d,then M x Ny x --- x Ny embeds
into Euclidean space of dimensione + iy + -+ - + ig.

Note that it was not assumed in [1, Lemma 2.1] thatdim N andN x I immerses into
Ri*+1 s possible, however the proofis the same under this assumption. Since Lemma 2.1(a)
plays a key role in our proof, we sketch the idea of its proof here. Lemma 2.1(b) follows
by applying Lemma 2.1(a) consecutively for

(M9N):(M’N1)a (MXNlaNZ)a"'a(MXN].X"'XNdflaNd)'

Idea of the proof of Lemma 2.1(a). To illustrate the idea, we show how to embed
RP3xRP?intoR’. Take a composition of an immersi@®P3 x I — R* and the inclusion
R* — R’. We obtain an immersioR P23 — R’ with normal bundle ¥ 3 (this bundle is
the Whitney sum of the two trivial bundlé® P2 x R andRP3 x R® over RP3). Shift
this immersion to general position to get an embed®®} — R’ with the same normal
bundle. We obtain an embeddifig?® x R* — R’. SinceR P? embeds intd®?, it follows
thatR P® x RP? embeds int®R’. O

Proof of embeddability in Theorem 1.1. Recall thats® x I embeds intdR?, P; x I
embeds intdR3, Q; immerses intdk3, R; and7; embed intdR® [17,14],R; x I immerses
into R* [8], and7; immerses intdR* [2]. The normal bundle of any orientable 3-manifold,
embedded intdR>, is trivial [9,16]. Hence for every orientable 3-manifoR] R x I
embeds intdR>. So in the case wheR; embeds intdR?, embeddability in Theorem 1.1
follows from Lemma 2.1(b) for

(Mlea"'7Nd)Z(Rlv'-~eraP19~-~7Pp9S17~-~9S17Q17~-~7Qq7Tla"'7T[)a

where there are copies ofS™. Note that the order of the manifolds in the above formula
is important. Embeddability oRy x --- x R, x I? into R¥+2 follows by embeddability

of R; x I? into R®. For the case whep + ¢ + s 4t > 0, embeddability in Theorem 1.1
follows by embeddability oRy x --- x R, x I? into R¥+2 and of

(Sl)‘YxPlx~-~><Pp><Ql><~~~><quTlx~~~th

into Rs+2p+3¢+4r+1 O

Proof of Example 1.2 [12]. Let N = (RP3)". Suppose to the contrary thatc ¥ +1is

an embedding. Let; andA; be the closures of the connected componen®of!l — N
andletiy: N — A1, i2: N — Ap be the inclusions. Using the Mayer—Vietoris sequence for
§3+1—= A1U A», one sees thal 4 i5: H" (A1) @ H (A2) — H'(N) is an isomorphism.
We have

H*(N»Zz)=<x1,...,xr |xi4=0>_

Therefore by relabeling, if necessary, we can assume that there is an etem&rit(A1)
such thatia =x1-----x, +---, where dots denote summands containifidor some.
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So,ifa? = (x1----- xr)?andifa® = (xg-- - x,)3 # 0. But from the above Mayer-Vietoris
sequence it follows thati® (A1) = 0, which is a contradiction. O

Note thatQ x I does not embed int&* for any closed surfac® with an odd Euler
characteristic (this shows that Lemma 2.1 is indeed necessary in the proof of embeddability
in Theorem 1.1). In fact, although is non-orientable, the normal Euler clag®)) € Z of
anembedding Q0 c R* is well-defined and(Q) = 2x (Q) mod 4 [18], see also [11,15,6,

p. 98]. Hence the normal bundle of an embeddidg- R* has no cross-sections. Note
that O x I embeds intdR* for any closed non-orientable surfagewith an even Euler
characteristic. For the Klein bottlE?, this is evident by the usual immersig? — R3,

and the general case can easily be proved by attaching handles. Also note ¢hat if
is a closedn-manifold such thawwi ,-1(Q) = 1 (in this casen is a power of 2, e.g.,

N =RP?), thenQ x I does not embed int@2" [10].

In the rest of the paper we show that one cannot construct examples of closed
orientable 3-manifoldsRs, ..., R, such thatRy x --- x R, does not embed int&3 +1
(cf. Example 1.2) by means of the following necessary condition for embeddability in
codimension 1 [7, Theorem 3]: If a closed orientablenanifold N embeds intdR"*1,
then the'th Betti number otV is even fom = 2/ and all the'th torsion coefficients are even
forn =2/ 4+ 1. Observe that for even this result is true under a weaker assumption¥hat
is the boundary of a compact orientable manifold, but the examipteR P2 shows that
for oddn this result is false under the weaker assumption. Nowjif. .., N, are closed
orientable manifolds (not necessarily 3-dimensional), some of which are boundaries of
compact orientable manifolds, and divy x - - - x N,) = 21, then the produc¥y x - - - X N,
is a boundary of a compact orientable manifold, hencétthBetti number of this product
is even, therefore [7, Theorem 3] does not apply to even-dimensional examples. It follows
from Theorem 2.2 below that it also does not apply to oddtf-dimensional examples.
Note that Theorem 2.2 is false for= 1, as shown by the examphe = R P3.

Theorem 2.2. Letr > 1 beanyinteger and Ny, ..., N, any closed orientable manifolds of
even Euler characteristic. If dim(N1 x --- x N,) =2[ + 1, then TorsH;(N,7Z) = G & G,
for some Abelian group G.

Proof. For anyr-dimensional polyhedroi such that

tij
H(N,Z)=7" & @Z;_j
i,j !
(p1, p2, ... are distinct prime numbers) define tb@mplete Poincaré polynomial of N as
follows:

Py (x, yij}) = Fy () + > Ty (i)
i,J
where

FN(x) =bo+bix +---+byx" and Ty (yij) =13 yij +--- +t}{i/yzlj'
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The proof of Theorem 2.2 is based on the following representation of the Kiinneth formula:

Py xn = Py * Py, wherex is the (unique) commutative distributiviifnneth) product

defined on generators by # x” = x9?, x@ x y& = y@*P, y s yh = 1+ yij)y{t for

Jj <kandyf «y), =0fori #i'. Equivalently,
Puscn (x, {ij}) = Pu(x, {yij}) = Py (x, {yij})
Fy(x)Fy(x)+ Z |:(FMT]i/j + T/ZFN)
ij

+(1+ y,-,,->(T;3' Srik+1y ZT;})}@,;,-).

kzj k>j

Consider the complete Poincaré polynomials modulo 2. SRgél) = x (N;) =0 mod 2,
it follows from the Kiinneth Formula thdtl’\-,’lxmer (1) =0forr > 1. Theorem 2.2 now

h

follows, since by duality and the Universal Coefficients Formula one;has= tliﬂr for all

r>0. O

Note that Theorem 2.2 can also be proved by localization, i.e., from the Kiinneth
formulae with Z,, -coefficients. By the Universal Coefficients Formula, the complete
Poincaré polynomial oV with Z ;-coefficients is

i

.. ] .
Py, v)) = FNGj) + A+ 3 T ),
k=1

whereyy is the shorthand foy;; from above. Then we have
(Fny + (L4 yD T - (Fn, + A+ yDTiH) — Fay -+ Fw,
1 + y1 y1=1

’

i1
T/lV]_XmXN, (1) =

where all the polynomials are of; (the polynomial in the denominator of the above
fraction is clearly divisible by & y1). This is zero wherFy, (1) = 0. Forj > 1 the proof

of T;\',llxmer (1) = 0is analogous, but it is not easier than the direct proof above (since we
have to apply the Kiinneth Formula with coefficieﬂg,?, which is not a field).
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