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ON THE EULER CHARACTERISTIC OF MULTIPLE
SELFINTERSECTION POINTS OF IMMERSED MANIFOLDS
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Abstract: Various examples of immersed codimension 1 manifolds are studied from the viewpoint
of possible combinations of the Euler characteristics of the submanifolds of multiple selfintersection
points. A complete answer is given for the immersed 5-manifolds in the 6-dimensional Euclidean space.
Relations are discussed with other constructions in differential topology and singularity theory.

Keywords: immersion, Euler characteristic, singularity, selfintersection

1. Introduction

Let f : Mm → Rm+k be an immersion in general position. Denote by f(M)i the set of points
x ∈ Rm+k for each of which there are at least i distinct points x1, . . . , xi ∈ M in the inverse image such
that f(xj) = f(xk) for all 1 ≤ j < k ≤ i. The set f(M)i is endowed with a smooth immersed submanifold
structure gi : ∆i → Rm+k which is in most cases nongeneric, and the submanifold gi+1(∆i+1) ⊂ gi(∆i) of
points of multiplicity i+1 is the singular submanifold of gi(∆i) in the sense that gi(∆i) has a nongeneric
selfintersection along gi+1(∆i+1). It is convenient to put ∆1 = M . Then the immersion gi : ∆i → Rm+k,
dim(∆i) = m− k(i− 1), selfintersects along ∆̃i+1 ⊂ ∆i, Im(gi|∆̃i+1) = gi+1(∆i+1).

The purpose of this article is to study various examples of immersions f with different combinations
of the Euler characteristics χ(∆i) of the manifolds of multiple points and find some rules for constructing
various interesting examples in the framework of geometric methods.

2. Calculation of the Euler Characteristics
of Manifolds of Multiple Selfintersection

Let f : S1 → R2 be an immersion in general position. Whitney [1] discovered that the index Ind(f)
of f , i.e. the integer equal to the number of rotations of the tangent vector in the circuit along the oriented
immersed curve f in the positive direction, determines the regular homotopy class of this immersed curve.
In the same article, Whithey also found an important formula for restoring Ind(f) from the structure
of ∆2, the zero-dimensional submanifold of the plane defined by the set of double selfintersection points
of the immersed curve.

Arnol′d [2] noted that Whitney’s formula should admit a generalization to immersions of higher
dimensions. One of the possible generalizations, for codimension 1 immersions of oriented manifolds, was
found soon by Mikhalkin and Polyak [3]. Their generalization relates to integral formulas in which the
measure of integration is defined as the Euler characteristic of strata of different dimensions into which
the immersed submanifold f(M) decomposes the ambient space Rm+1 and into which the submanifold
∆i+1 decomposes the immersed submanifold ∆i.

Independently of the problem of generalizing Whitney’s formula to higher dimensions, the problem
of integration with respect to Euler characteristics was studied in Viro’s article [4]. This motivates the
statement of the following problem.
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The Euler Characteristic Problem 2.1. Let f : Mm → Rm+k be an immersion in general posi-
tion. Find all possible combinations of the numbers χ(∆i) for the Euler characteristics of the immersed
submanifolds of selfintersection points of multiplicity i.

Remark. The manifold ∆i is determined by the regular homotopy class of the original immersion
nonuniquely but to within an immersed cobordism with a given normal bundle structure. Therefore,
a more general problem consists in calculating the cobordism class of this immersion (the cobordism
class with a given normal bundle structure inclusively). In this case, the manifold ∆i happens to be
nonorientable as a rule. The parity of the Euler characteristic of the manifold serves as the simplest
invariant of the cobordism class.

An exception arises when the manifold M itself is oriented and k = 0(mod 2). In this event, the
element defined by ∆i in the cobordism group Ωm−(i−1)k has an infinite order in general. The cobordism
class of ∆i was found in this case by Szücs in [5]. It turns out that for dim(∆i) = 1(mod 2) we have
χ(∆i) = 0(mod 2).

The converse problem was studied by Ekholm in [6] and reads as follows: Can a given immersion f
be restored in the regular homotopy class from the cobordism class [∆2(f)] in the group of cobordisms
with a given normal bundle structure?

The results of [6] can be considered as a generalization of Whitney’s [7] who answered the above
problem in the affirmative in the case of immersions of manifolds into Euclidean space for k = m.
Ekholm used the theory of Vasil′ev’s invariants in his studies.

Surely, in the general case the answer to the converse problem is negative. For example, it turns out
that the regular homotopy class of an immersion f : S3 → R5 cannot be restored from the cobordism class
of the manifold ∆2(f). Moreover, it happens that there are infinitely many embeddings ϕi : S3 → R5 no
two of which are connected by a regular homotopy. More precisely, the classes of regular homotopies of
immersed spheres modulo the operation of taking connected sums with embedded spheres make a cyclic
group of order 24, whereas the structure of selfintersection merely allows us to recognize an element in
the factor-group of order 12. A complete solution of the problem of recognizing the regular homotopy
class of an immersed sphere remains an important open problem.

Problem 2.1 was studied from various viewpoints in several articles (see [5, 8–11]). For i = 1(mod 2)
the problem of calculating the parity of χ(∆i) becomes essentially simpler. A canonical i-fold covering
∆i → ∆i is well defined; moreover, the manifold ∆i is immersed in M . Hence, χ(∆i) = χ(∆i)/i. Basing
on the results of [12], define ∆i as representing the cobordism class of the embedded submanifold of zeros
of a section in general position of the bundle (i− 1)νf (here νf is the normal bundle of the immersion f)
which is the direct sum of i− 1 isomorphic copies.

This observation readily enables us to calculate χ(∆i)(mod 2) and so χ(∆i)(mod 2). It was noted in
[12] that for i = 1(mod 2) the value of χ(∆i) depends only on the cobordism class of M and is independent
of the choice of the immersion f .

In the case of an oriented M and k = 0(mod 2), the value of χ(∆i) for each i = 0(mod 2) was
calculated in [5]. A new idea was that in this case ∆i represents an element of the group Ωm−(i−1)k and
the equality χ(∆i) = 0 can be proved by transfer also for even-fold coverings.

It turned out in particular that in the case when m 6= 2(mod 4) we have χ(∆i) = 0 for all i. Note
that for i = 0(mod 2) the problem is extremely difficult. It is the case to whose consideration we now
proceed.

An algebraic apparatus for solving Problem 2.1 in the most general form is exposed in the survey
article [13] by Eccles. Now, we do not presume M orientable. The most lucid picture is available for
calculating the parity of the 0-dimensional set of selfintersection points of maximal multiplicity m + 1.

In this case, the answer depends on the value of m(mod 4). For m = 0, 2, 3, 6 and for the more general
case of m = 2j − 3 if we additionally assume that in dimension 2j − 2 there is a manifold with Kervaire
invariant 1, there exists an immersion f : Mm → Rm+1 with an odd number Θ(f) of selfintersection
points of maximal multiplicity m + 1 [14]. On the other hand, Θ(f) takes only even values for the other
values of m.
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The case of m + 1 = 2(mod 4) is most interesting. An elementary proof of triviality of the Kervaire
invariants for m 6= 2j − 3 was given recently in the joint article of the first author and Eccles [15]. Note
that the calculation of χ(∆i) becomes more complicated as m increases. Thus, a complete solution of
Problem 2.1 is closely related with the main open problems of homotopy theory.

3. The Main Results

In this section we consider various examples of immersions f : Mm → Rm+1 for m ≤ 5 and formulate
the main theorem.

Example 3.1 [16]. There exists an immersion of the projective plane RP 2 into R3 with χ(∆1) =
χ(∆3) = 1 (also see [10]).

Example 3.1 was generalized in [9] to the case of immersions of arbitrary even-dimensional manifolds.
The idea of the proof bases on applying the Fubini theorem (a general idea is exposed in [4]). The proof
itself is elementary and does not use homotopy theory.

Theorem 3.2 [9]. If f : Mm → Rm+1, m = 0(mod 2), is an arbitrary immersion then∑
i

χ(∆2i+1) = 0.

Szücs recently obtained a complete solution of Problem 2.1 in the case when m is even by means of
homotopy theory.

Theorem 3.3 [17]. If f : Mm→Rm+1, m ≥ 8 or m = 4, is an arbitrary immersion then χ(∆2i+1) = 0
for every i. If m = 6 then χ(∆7) = χ(∆5) = χ(∆3) = χ(∆1) = 0 or 1. If m = 2 then χ(∆1) = χ(∆3) = 0
or 1.

Remark. If χ(∆2i+1) = 1 then the submanifold ∆2i+1 is (up to cobordism) the projective space
RPm−2i.

We turn now to considering the case m = 1(mod 2).
Example 3.4. There exists an immersion of a curve into the plane with a single selfintersection

point, i.e., χ(∆2) = 1 and dim(∆2) = 0.
This simplest example shows that the value of χ(∆2) is in general independent of the cobordism class

of the original manifold M , and the analog of Theorem 3.3 for an odd m is false.
Example 3.5 [14]. There exists an immersion f : M5 → R6 with χ(∆6)=1.

Construction. Choose an immersion g : S3 → R6 with a single selfintersection point by following
Whitney’s construction [7]. The immersion g admits framing; i.e., there is a trivialization ν(g) = 3ε of
the normal bundle. Hence, there exists an immersion f : S3 × RP 2 → R6 which is defined in the local
coordinates of the framing by the formula f = g × g′, where g′ is the Boy immersion of Example 3.1.

The main result of this article is the following theorem answering the question of [9].

Theorem 3.6. If f : M5 → R6 is an arbitrary immersion then χ(∆2) = χ(∆6) = 0 or 1, but
χ(∆4) = 0.

Remarks. (1) In the case of χ(∆2) = 1 the manifold ∆2 is cobordant to RP 2 ×RP 2.
(2) If M5 is orientable then χ(∆6) = 0 (see [13] or [9, Remark 3]). Hence, in this case χ(∆2) =

χ(∆4) = χ(∆6) = 0.

Corollary 3.7. For the immersion RP 2 × S3 of Example 3.5, we have χ(∆2) = χ(∆6) = 1 and
χ(∆4) = 0.

Proving Theorem 3.6, we develop a new technique for resolution of singularities of the manifolds of
multiple selfintersection points. This technique is a direct generalization of Freedman’s construction in
[11]. Eccles communicated to us that our result can be proved by calculations in the Dyer–Lashof algebra
as it was done for similar problems in [13]. Our approach bases on elementary geometric considerations.

Theorem 3.6 generalizes the following Koschorke theorem [18] which was rediscovered and re-proved
by another method in [8]. It generalizes the main theorem of [11] to the nonorientable case.
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Theorem 3.8 [18]. Let f : M3 → R4 be an arbitrary immersion; moreover, the manifold M is not
presumed orientable. Then χ(∆2) = χ(∆4) = 0 or 1.

The following conjecture shows that Problem 2.1 could be difficult and not reducible to the calcu-
lation of the Euler characteristic of the zero-dimensional manifold of selfintersection points of maximal
multiplicity.

Conjecture 3.9. There exists an immersion M9 → R10 with χ(∆2) = χ(∆6) = 1 and χ(∆4) =
χ(∆8) = χ(∆10) = 0.

4. Proof of the Main Theorem

Proof of Theorem 3.6. The equality χ(∆2) = χ(∆6) ensues easily from the results of [14] wherein
all assertions are formulated in algebraic terms (a geometric statement is given in [15, Theorem 1.6]).
More precisely, we have χ(∆6) = 〈e(ν2)2, [∆2]〉, where ν2 is the normal bundle of the immersed manifold
g′2 : ∆2 → R6. Example 3.5 shows that there exists an immersion with χ(∆2) = χ(∆6) = 1.

Prove that χ(∆4(f)) = 0. Choose g′2 : ∆2 → R6 and consider ∆2(g′2). We can naturally define
∆2(g′2) = M ∪ N , where M is a 3-fold covering of the surface ∆4(f) and N results from resolving the
singularities of the immersion g2 along the submanifold ∆̃3 by means of a general position deformation
g2 → g′2.

More formally, let D1 and D2 be two sheets of ∆2 intersecting along a sheet of the surface l ∈
g′2(D1) ∩ g′2(D2) ⊂ ∆2(g′2). By definition, l ∈ M if g2(D1) ∩ g2(D2) ⊂ ∆4(f). Otherwise l lies on the
surface N . Clearly, if l ∈ N then g2(D1) ∩ g2(D2) ⊂ ∆3(f).

We now describe the surface N . Let p : ∆3 → ∆3(f) be a canonical 3-fold covering (I3 : ∆3 ⊂ M

is a canonical immersion). The manifold ∆̃3 ⊂ ∆2 is defined by resolving the singularities of triple
selfintersection points (∆̃3 ⊂ ∆2). We identify ∆̃3 and ∆3 by means of the tautological diffeomorphism H.
Consider an immersion g̃′3 : ∆̃3 → R6 in general position which approximates g̃.

The canonical 2-fold covering q : ∆̂3 → ∆̃3 is induced by the canonical covering ∆2 → ∆2. Note
that the manifold ∆̂3 admits a canonical immersion h : ∆̂3 → ∆1 that is induced by the canonical
immersion I2 : ∆2 → ∆1. Moreover, the immersion h can be defined as the composition h = I3 ◦ q. In
particular, the cohomology class w1(ν ′) ∈ H1(∆̄3) is well defined, where ν ′ → ∆̄3 is the 1-dimensional
bundle induced from the normal 1-bundle ν → ∆1 by the immersion ∆̄3 ⊂ ∆1 (taking liberties with
notation, we henceforth denote ν ′ again by ν).

The diffeomorphism ∆̄3 = H(∆̃3) allows us to consider ν as a bundle over ∆̃3.
Define j : N ⊂ ∆̃3 as a submanifold representing the homological Euler class of a cross-section of

the 1-bundle γ → ∆̃3, where w1(γ) = w1(q) + w1(ν). Equivalently, it can be described in terms of the
covering q as follows. Consider ∆̂3 as a manifold immersed in the total space of the bundle ν → ∆̃3 as
a result of a small general position deformation of the 2-fold covering q of the base of the bundle ∆̃3.

Thus, put q(∆̂3) in general position, q → q′, and define j(N) = ∆2(q′). Projecting onto the base
of the bundle, we can consider j(N) ⊂ ∆̃3. Observe that dim(N) = 2 as required in the construction.
Furthermore, the immersion j′ = g◦j : N → ∆̃3 → R6 is well defined. For an arbitrary small deformation
of g′2 with a suitable choice of j, the surface N is diffeormorphic to the surface ∆2(g′2) \M .

Lemma 4.1. χ(N) = 0.

Proof. Recall that the surface N ⊂ ∆̃3 = H−1(∆3) is defined by the Euler class of the 1-bundle
κ → ∆3, w1(κ) = w1(q) + w1(ν). Moreover, the manifold ∆3, considered as an immersed submanifold
of ∆1, can itself be defined as the submanifold of selfintersection points of the immersed submanifold
I2(∆2) in ∆1. The results of [12] readily imply that the immersed submanifold I2(∆2) ⊂ ∆1 is cobordant
as an immersed submanifold to the embedded submanifold represented by the zeros of a cross-section of
the bundle ν → ∆1.
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Hence, the submanifold N ⊂ ∆̃3 bounds, since under a regular cobordism of ∆2 both characteristic
classes w1(q) and w1(ν) remain defined on the three-dimensional selfintersection submanifold. This
completes the proof of Lemma 4.1. Theorem 3.6 ensues from the equality χ(∆2(g′2)) = 0 which is
a consequence of the main theorem of [19].
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