
Mathematical Notes, vol. 71, no. 4, 2002, pp. 455–463.

Translated from Matematicheskie Zametki, vol. 71, no. 4, 2002, pp. 496–507.

Original Russian Text Copyright c©2002 by P. M. Akhmet ′ev, J. Malešič, D. Repovš.
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Abstract—We study the behavior of Milnor’s µ-invariants of three- and four-component links
with respect to the discriminant determined by ∆-moves of links. We introduce a new type
of ∆-move, balanced ∆-moves, or, briefly, B∆-moves. Since each four-component link is
equivalent to a standard link under a sequence of balanced ∆-moves, ∆-moves that involve at
most two components, and Reidemeister moves, we manage to define axiomatically µ-invariants
of length 3 for arbitrary semibounding links.
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1. INTRODUCTION

In his famous paper [1], Milnor introduced the notion of integer-valued µ-invariants of oriented
multicomponent links with ordered set of components satisfying the additional condition that the
link is semibounding. The µ-invariants are partially defined; this means that a µ-invariant of
order k is well defined only if all µ-invariants of order not greater than k−1 vanish on all sublinks
(determined by a subset of components) of the given link. Milnor’s µ-invariants are ambient isotopy
invariants of a link. Moreover, they are homotopy invariants with respect to homotopy allowing
the components to self-intersect, but not to intersect other components.
Invariants of length 3 are invariants of finite order (of order not greater than 3, to be precise)

in the sense of Vassiliev. There is exactly one µ-invariant which is Vassiliev of length 2; it is
well defined for arbitrary three-component link with pairwise nonlinked components. There are
precisely two distinct invariants of length 3 (see [1]), and each of these invariants is well defined
for four-component semibounding links (see Definition 2.1).
There is an equivalent elementary definition of µ-invariants of length 2 and 3 in geometric

terms of Seifert surfaces. By the Porter–Turaev Theorem [2, 3], Milnor’s µ-invariants coincide with
iterated Massey invariants. The Massey invariants are defined in terms of products of cocycles in
the complement to the link in the sphere S3 (or even in an arbitrary homology sphere, as in [3]).
The dual construction exploits only geometric properties of Seifert surfaces; it was discovered by
Cohran in [4].
There is no way to extend any Milnor invariant of length 2 or 3 to any finite order, in the

sense of Vassiliev, integer-valued homotopy invariant of arbitrary links (see [5]). If we omit the
first requirement, that is, if we do not require homotopy invariance, but require the finiteness
of the order, then, generally speaking, such an extension is possible. The simplest example of
a Milnor invariant, which is an invariant of order 3 well defined on isotopy classes of arbitrary
oriented two-component links with unordered components, is given by the generalized Sato-Levine
invariant (see [6, 7]). The Sato-Levine invariant for two-component link with zero linking number
is studied, as a Milnor µ-invariant, in [8].
In the general case, the problem of extending the integer-valued Milnor µ-invariant to an ambient

isotopy link invariant preserving the Vassiliev order of the invariant is very important for physical
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applications; in the simplest setting (without using Vassiliev’s construction) it was studied in [9].
No such extension for the invariant of order 2 is known, although we do not have the corresponding
nonexistence theorem. On the contrary, both invariants of order 3 admit such an extension; this
statement will be proved in the second part of the paper, which is now in preparation.
We solve this problem by giving an axiomatic definition of the invariants of order 3 by means of

a new kind of ∆-moves of link diagrams, the so-called balanced ∆-moves. The notion of a ∆-move
understood as a transformation of a link was introduced in [10]. It was intensively studied in the
last years from various points of view (see [11–13]). The study of µ-invariants naturally leads to
generalizations of this notion. For example, invariants of order 3 are studied in [13, p. 58] by means
of the generalized ∆-move such that all four components of the link are close to the singular point
of the move. Under this move the value of the invariant of order 3 is changed by ±1.
Our approach is based on a different generalization. First of all, a balanced ∆-move (for the

sake of brevity we use below the term B∆-move) preserves the class of semibounding links. On
the other hand, if we allow to pass from one link to another by means of B∆-moves, then the
space of semibounding links becomes connected. This means that if we know how an invariant of
order 3 changes under balanced ∆-moves, then it can be calculated for arbitrary semibounding
link. We set the value of the invariants on links whose components can be bounded by pairwise
nonintersecting balls equal to 0 . In part II of the present paper, which is in preparation now, we
intend to generalize the definition of µ-invariants of order 3 and define them for arbitrary, not
necessarily semibounding, four-component links.
Let us describe the contents of the present paper in more detail. In Sec. 2, we give a new

definition of a semibounding three- or four-component link; in contrast to the definition above, it
does not assume that each component of the link is connected. We define the notion of a bordism
of a multicomponent link (which simulates, as it was remarked in [9], the process of reclosing of
trajectories of magnetic fields in a medium with high magnetic conductivity). This new notion is
an analog of the well-known notion of homotopy of links; the latter is much better studied.
In Sec. 3, we switch to the study of three-component links (with connected components), recall

the definition of the µ-invariant of order 2 , and prove its main properties. We conclude this
section by illustrating our approach to invariants of order 3 on a simpler example and introduce
the notion of a balanced ×-move, which preserves the class of semibounding three-component links.
The space of three-component semibounding links becomes connected with respect to these moves.
Note that we did not manage to extend invariants of order 2 to total invariants by means of the
balanced ×-moves.
In Sec. 4, we formulate the theorem stating that the space of four-component semibounding

links (with connected components) is the unique equivalence class of links modulo B∆-moves. We
recall the definition of invariants of order 3 and prove their main properties. The jump rule of
a µ-invariant under a B∆-move is formulated. The concluding Sec. 5 is devoted to the proofs.

2. MULTICOMPONENT SEMIBOUNDING LINKS
(IN THE GENERALIZED SENSE)

AND THEIR CLASSIFICATION PROBLEM

Let I = {1, . . . , s} be a segment of integers; we shall usually have s = 2 or 3 . Let L ⊂ R3
be a smooth closed oriented one-dimensional submanifold, and suppose an element of I is as-
signed to each component of L (the components can well be disconnected or even empty). The
submanifold L is called a multicomponent (in the generalized sense) link. We denote the com-
ponents (generally speaking, disconnected) of a generalized multicomponent link by Li , i ∈ I .
For the sake of brevity we omit below the adjective “generalized.” Now let us recall the standard
notion of a cobordism of submanifolds. In our case a cobordism is a sequence of regular homotopy
transformations of submanifolds and Morse bifurcations or the components’ surgery (see [9]). The
reconstructions preserve both the orientation of the components and the value of I .
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Let Li be the submanifold corresponding to a given i ∈ I . We mark the connected components
of this submanifold by the second subscript j , j ∈ {1, . . . , si} , e.g., L2,4 ⊂ L2 ⊂ L .
Definition 2.1. A two- or three-component link is said to be semibounding if for any two pairs
of indices i, j , i ∈ {1, 2} or i ∈ {1, 2, 3} , j ∈ {1, . . . , si} , we have lk(Li1 ,j1 ; Li2 ,j2) = 0.
A four-component link is said to be semibounding if the following two conditions are satisfied.

First, for any two pairs of indices i, j , i ∈ {1, 2, 3, 4} , j ∈ {1, . . . , si} , we have lk(Li1 ,j1 ; Li2 ,j2) =
0. Second, for any three pairs of indices, i, j we have µ(Li1 ,j1 ; Li2 ,j2 ; Li3 ,j3) = 0, where µ
denotes Milnor’s integer-valued invariant of length 2; we recall the definition of this invariant in
Sec. 3.

Definition 2.2. Two s-component semibounding links L and L′ , s = 2, 3, 4, are called bordant
if they are bordant in the class of semibounding links. In other words, if there is a bordism
preserving the semiboundedness of the link under each surgery.

The elementary argument from [9] easily shows that two general multicomponent links (not
necessarily semibounding) are bordant if the symmetric s× s-matrices formed by the sums (over
the pairs of the second subscripts) of linking numbers of each pair of components with given pair
of first subscripts coincide. Semibounding bordisms are more complicated. The s-component links
with zero pairwise linking numbers of the components form a subspace, and the discriminant in
this subspace consists of components resulting from a number of surgeries (here a surgery is a
Morse critical point of the time function on the cobordism manifold; see the details in [9]). It
seems that the classification problem for Vassiliev invariants in this theory was not studied yet.
On the other hand, nontrivial invariants exist. The generalized Sato-Levine invariant provides the
simplest example.

These invariants arise in the classification of divergence-free vector fields. Suppose a vector
field is the union of s vector subfields with pairwise nonintersecting supports (each summand in
this sum models a set of magnetic tubes). We wish to study the behavior of invariants under
evolution of the system of magnetic tubes with a weak reclosing of the vector field trajectories.
It is important, for example, to predict the statistics of the space spectrum of the field’s spirality
(i.e., the magnitude of the vector field in domains with dominating positive or negative linking
numbers of the magnetic tubes) if we know something about higher invariants of the linking of the
trajectories.

In the context of the present paper, below we use only standard multicomponent links, meaning
that each component of a link is connected and nonempty. Conjecturally, our constructions can be
generalized to the case of multicomponent (in the generalized sense) semibounding links and provide
some knowledge of finite order invariants in the theory above. For example, the corresponding µ-
invariants can be extended to multicomponent links by additivity. The behavior of such invariants
under bordisms requires additional study.

3. THREE-COMPONENT SEMIBOUNDING LINKS

Let L = L1 ∪ L2 ∪ L3 be a three-component semibounding link with connected and nonempty
components, and let S1 , S2 and S3 be Seifert surfaces of the components L1 , L2 and L3 ,
respectively, such that Li ∩ Sj = ∅ for i 
= j . The intersection S1 ∩ S2 ∩ S3 is finite. Let us
fix the order of the components (i.e., a permutation ijk of the indices 1 , 2 and 3). Recall that
the components of the link are oriented, and therefore the Seifert surfaces also are oriented by
the standard consistency rule for orientations of a manifold and the boundary. This means that
we can assign to each intersection point of the surfaces a sign according to the standard choice
of orientation on the transversal intersection submanifold of an ordered set of submanifolds in an
oriented ambient space. Define the function µijk(L) as the sum of signs over all intersection points.
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Proposition 3.1. The value µijk(L) is well defined, i.e., it is independent of the choice of Seifert
surfaces. It changes sign under each change of orientation, as well as under the change of parity
of the permutation ijk .

Remark. Proposition 3.1 and the equivalence of the definition of µijk to the algebraic definitions
from [14] were established in [8] (see also [4]).

Consider, for example, the two Borromean links from Fig. 1.
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Fig. 1. Borromean links

Let us compute the invariant µ123(L) for the link on the left-hand side with positive orientation
of the projection of each component and the chosen order L1 , L2 , L3 . Following Gauss, the preim-
ages of the intersection points of a link projection are studied in their order along the projection
axis (the left-hand side of Fig. 2).
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Fig. 2. Gauss diagrams

Each arrow connects the two preimages of the same double point; the end of the arrow marks

the lower preimage. Similarly, consider the disks Ŝ1 , Ŝ2 and Ŝ3 , bounded by L1 , L2 and L3 .
These disks intersect pairwise along the segments [aibi] , i = 1, 2, 3. The arrows connect pairs of
segments projected to a single segment.
In order to obtain Seifert surfaces S1 , S2 , and S3 , satisfying the condition Si ∩ Lj = ∅ for

i 
= j , let us make a reconstruction of the disks Ŝ1 , Ŝ2 , and Ŝ3 . We cut two small disks centered
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at a1 and b1 from Ŝ1 and attach to it a small tube concentric to the arc a
′
1b
′
1 of the circle L2 .

Similar surgery is applied to Ŝ2 and Ŝ3 . (The methods of constructing Seifert surfaces in the
general case are described in [4].)
Now we can compute the algebraic sum of intersection points S1 ∩S2 ∩S3 as the algebraic sum

of intersection points of the surface S3 with the curve S1∩S2 , or, what is the same, as the linking
number of the oriented curves L3 and S1 ∩ S2 . The closed curve S1 ∩ S2 consists of the segment
[b1a1] , lying on the disc, and the arc [a1b1] , lying on the tube. The linking number is 1 , whence
µ123(L) = 1. In the same way we obtain µ123(L) = −1 for the Borromean link on the right-hand
side of Fig. 1.
In [10] Murakami and Nakanishi introduced a special type of link transformations, called a ∆-

move. In terms of the link projection, this transformation looks like a fake Reidemeister move; it
does not correspond to the projection of a link isotopy. This move is shown in the central and the
left parts of Fig. 3.
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Fig. 3. A ∆-move

The central picture is called the vanishing triangle. Define the sign of the vanishing triangle
whose sides belong to pairwise distinct components of the link according to the following rule.
First, let ρ be the number of the sides of the triangle with orientation opposite to the positive
orientation of the triangle on the plane (i.e., the counter clockwise orientation), and set ε1 = (−1)ρ .
Let ε2 be the parity of the permutation of the indices 1 , 2 , and 3, determined by the positive
orientation of the triangle (i.e., +1 for an even permutation, and −1 for an odd one). Let x be a
double point of the link projection, and let ξ and η be the tangent vectors at x , ξ being tangent
to the upper strand. The sign O(x) of the point x is defined as the sign of the frame (ξ , η) . The
product of the signs of the vertices of a vanishing triangle does not depend on the choice of the
components’ orientation, and it determines the type of the triangle. We denote this product by ε3 .
Finally, we call the product ε = ε1ε2ε3 the sign of the vanishing triangle.
Since the signs of double points are invariant under ∆-moves, the linking numbers of the compo-

nents also remain the same. Hence any semibounding link remains semibounding after a ∆-move.
The statement below was proved recently in [11] in the algebraic framework. We present an

essentially shorter proof based on the geometry of Seifert surfaces.

Proposition 3.2. Under a ∆-move, the sign of the vanishing triangle is added to the invari-
ant µijk .

Proof. The right-hand side of Fig. 3 shows that a ∆-move can be realized as the direct sum of a
Borromean link inside the vanishing triangle and three consequent Reidemeister moves, each leading
to the birth and the death of a pair of close double points with distinct values of O . The vanishing
triangle in the center of the Borromean link must coincide with the external triangle. Since the
new Seifert surface is obtained simply by attaching the Seifert surface of the Borromean link, the
sign of the vanishing triangle in the center of the Borromean link is added to the invariant µ . �
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In the final part of this section we study some constructions that are not used in the proof of
the main result concerning µ-invariants of order 3 stated in the next section. Nevertheless, these
constructions give a nice illustration to the general idea of our approach.

We introduce a new transformation, which we call a balanced ×-move. Under a balanced ×-
move, the projection of a link remains unchanged, while the value of the function O at a pair
of self-intersection points of a component projection changes. We assume that the values of the
function O at the pair of points under consideration are distinct. Obviously, no balanced ×-move
changes the linking numbers of the components. In particular, it takes a semibounding link to a
semibounding one.

By definition, a B×-move involves only two components that form a pair of diangles. The signs
of the vertices of each diangle are always opposite.

Let ijk be a permutation of the indices 1 , 2 , and 3. Suppose that two components, Li and Lj ,
participate in a given balanced ×-move. Denote by L+i and L+j the arcs of the curves Li and Lj
such that before the move their starting points are at the positive vertices, while their ends are at
the negative ones taking the orientation of the components into account. Similarly, the two other
arcs are denoted by L−i and L−j .

Proposition 3.3. Under a balanced ×-move of a semibounding three-component link L = L1 ∪
L2 ∪ L3 the linking number lk(L+i ∪ L−j , Lk) is added to the value of the invariant µijk(L) .

Proof. Let Si and Sj be Seifert surfaces of the curves Li and Lj , respectively, that satisfy
the condition Si ∩ Lj = Sj ∩ Li = ∅ before a balanced ×-move. In order to construct Seifert
surfaces Ŝi and Ŝj that satisfy a similar requirement after the move, it suffices to cut a pair of
disks from each surface Si and Sj and attach tubes instead of them. It is easy to verify that the

intersection curves Ŝi∩Ŝj and Si∩Sj differ in a single closed component K such that lk(K, Lk) =
lk(L−i ∪L+j , Lk) . Therefore, the value − lk(L−i ∪L+j , Lk) is added to µijk(L) and, because of the
equations lk(Li , Lk) = lk(Lj , Lk) = 0, this value coincides with lk(L

+
i ∪ L−j , Lk) . �

Using the proposition above, we can suggest the following axiomatic construction of the invari-
ant µijk for arbitrary three-component semibounding links. It is easy to see that adding singular
elements arising in balanced ×-moves to the space of semibounding three-component links, we
obtain a connected space. Let us set µijk equal to 0 on arbitrary link whose components can be
bounded by pairwise nonintersecting balls. The jump of the invariant under a balanced ×-move is
described by Proposition 3.3. Now the proof of the proposition becomes the proof of the fact that
the invariant with required properties is well defined, and the uniqueness of the invariant follows
from the construction.

4. FOUR-COMPONENT SEMIBOUNDING LINKS

Let L = L1∪L2∪L3∪L4 ⊂ R3 be an oriented four-component semibounding link with connected
nonempty components. For each permutation ijkl of the indices {1, 2, 3, 4} the Milnor invariant
µijkl(L) ∈ Z is uniquely determined (see [1]). Only two of the invariants corresponding to all
permutations are independent, say µ1234 and µ1342 ; all other invariants can be expressed in terms
of these two.

Now let us define the invariants µijkl by means of families of Seifert surfaces. In Proposition 4.2
we state and prove some properties of the constructed invariants and then switch to the study of
these invariants using balanced ∆-moves.

Let S1 , S2 , S3 , S4 be a family of Seifert surfaces for each of the components, and suppose the
following geometric equalities hold for arbitrary i, j , l, k:

Si ∩ Lj = Sj ∩ Lk = Sj ∩ Sl = ∅.
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The existence of a family of surfaces with such a property is a consequence of the definition of
the semiboundedness of a link. If the Seifert surfaces are in general position, then the curves of
their pairwise transversal intersections Γi,j = Si ∩ Sj , Γk,l = Sk ∩ Sl are embedded and do not
intersect.

Definition 4.1. We define the value of the invariant µijkl as the difference of linking numbers by
the formula

lk(Γik ; Γjl)− lk(Γil ; Γjk) = µijkl(L). (1)

Proposition 4.2 (cf. [4]).

1. The invariants above are well defined, and their values do not depend on the choice of
Seifert surfaces.

2. The following identities hold for arbitrary four-component semibounding link L :

µijkl(L) + µiljk(L) + µiklj(L) = 0, (2)

µijkl(L) = −µjikl(L) = µijlk(L) = −µijkl(L), (3)

µijkl(L) = µklij(L). (4)

As was explained in the previous section, there are two kinds of moves taking a semibounding
three-component link to semibounding ones: ∆-moves and balanced ×-moves. The higher analog
of a ∆-move for four-component links is the move described in [13]. Under this move, all four
components of the link are present in a neighborhood of the point of surgery, and whence the
projection of the link to the plane is not generic in contrast to the ∆-move. Depending on the
type of the move, the Milnor invariants are changed by ±1.
The analog of a balanced ×-move is a balanced ∆-move or, briefly, a B∆-move, which we define

in the following way. A B∆-move is a pair of simultaneous ∆-moves such that precisely three arcs
of the same components participate in each move, and the signs of the vanishing triangles of the
two moves are opposite. Therefore, each balanced ∆-move takes a semibounding four-component
link to a semibounding link.
Now we are going to define the jump of the invariant µijkl under a balanced ∆-move. In order

to do this, introduce the following notation. Let L+i , L
+
j , and L

+
k be the arcs of the curves Li ,

Lj , and Lk starting at the positive vanishing triangle and ending at the negative one with respect
to the given orientations of the components Li , Lj , and Lk , respectively. Let L

−
i , L

−
j , and L

−
k

be the complemental arcs.

Theorem 4.3.

1. Under a balanced ∆-move of a semibounding four-component link L , in which arcs of the
curves Li , Lj , Lk participate, the difference of the linking numbers

lk(L+i ∪ L−j , Ll)− lk(L+i ∪ Lk , Ll) (5)

is added to the invariant µijkl(L) . Under a balanced ∆-move, in which arcs of the compo-
nents Li′ , Lj′ , Lk′ participate, the jump of the invariant is determined by the same rule,

but is additionally multiplied by the sign of the permutation
(
i j k
i′ j′ k′

)
.

2. Under an (unbalanced) ∆-move, in which only arcs of two or one component participate,
the value µijkl remains unchanged.

Definition 4.4. We say that two four-component links L and L′ are ∆-homotopy equivalent
if there is a chain of Reidemeister moves and ∆-moves connecting there projections. Further,
two four-component links L and L′ are balanced ∆-homotopy equivalent if there is such a chain
of Reidemeister moves, ∆-moves, in which at most two components of the link participate, and
balanced ∆-moves.
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Theorem 4.5. Any two semibounding four-component links are balanced ∆-homotopy equivalent.

Theorem 4.3 allows us to give an axiomatic definition of the invariant µijkl by means of Eq. (5),
which defines the jump of the invariant under the change of the isotopy class of the link. The value
of the invariant on a link whose components can be bounded by pairwise nonintersecting balls is set
to zero. The uniqueness of the invariant possessing properties (2)–(4) follows from Theorem 4.5,
and its existence follows from Proposition 4.2.

5. PROOFS COMPLETED

In this section we complete the proofs of Propositions 3.1 and 4.2, and of Theorems 4.3 and 4.5.

The proof of Proposition 3.1 is obvious. Details can be found in [8]. �
Proof of Proposition 4.2. A Seifert surface Si , i = 1, 2, 3, 4, for a given component of the
link L is determined uniquely up to an embedded cobordism and a disjoint union of embedded non-
intersecting tori that enclose the other three components of the link; this means that each of these
tori is the boundary of a small tubular neighborhood and it is endowed with some coorientation.
When adding one such torus, which encloses, say, the jth component, we add to the self-intersection
curve Γij the component parallel (taking the orientation into account) to the component Lj . Then
the linking number lk(Γij ; Γkl) remains unchanged since the link is semibounding, and whence
µijk(L) = µijl(L) = 0. Therefore, neither of the µ-invariants changes.
Now let us verify that under an embedded cobordism of one of the Seifert surfaces, say, of Si , ex-

pression (1) and all other expressions obtained from it by permuting the indices remain unchanged.
If the cobordism contains no points of intersection of all four Seifert surfaces, then the statement
is obvious. At a point of quadruple intersection, both linking numbers entering the difference (1)
change, and the jump of both of them is either +1, or −1 simultaneously. Therefore, the value
of µ is independent of the choice of the family of Seifert surfaces. Properties (2)–(4) follow from
the definition. The proposition is proved. �
Proof of Theorem 4.3. If less than three components participate in a ∆-move, then all linking
numbers are preserved. Consider the case of a balanced ∆-move. To be definite, we assume that
the components participating in the move are L2 , L3 , L4 , and we study the behavior of the
invariant µ1234 .
It was explained in Sec. 3 that in a single ∆-move for a three-component semibounding link

with components i, j , k it is convenient to choose the system of Seifert surfaces in such a way that
a point of triple intersection arises after the move, or, in other words, three cycles γij ⊂ Γij each
linked with the component Lk with coefficient ±1 depending on the sign of the corresponding
vanishing triangle under the ∆-move arise. Similarly, a balanced ∆-move causes the birth of a
pair of triple points, and each of the two points belongs to a neighborhood of the corresponding
intersection surgery point after the balanced ∆-move.
Note that a neighborhood of the pair of triples of closed cycles on the curves Γ23 , Γ34 , Γ41 ,

each of which is linked with the corresponding component of the link, contains, generally speaking,
components of the curves Γ13 and Γ14 . Obviously, starting with arbitrary Seifert surfaces (even
if neighboring surfaces intersect each other) we can obtain, after a number of tube surgeries as
explained in Sec. 3, Seifert surfaces such that the chosen components are situated only in a neigh-
borhood of a single singular point in parallel to the component L2 . The algebraic number of arcs of
corresponding components is precisely the linking numbers lk(L+2 ∪L−3 , L1) and lk(L+2 ∪L4 , L1) ,
which, according to (5) determine the jump of the invariant µ1234 . The theorem is proved. �
Proof of Theorem 4.5. Below we only give an outline of the proof and postpone a more general
construction until further publications. It is shown in Fig. 3 that a ∆-move can be realized by
attaching the Borromean link inside the vanishing triangle and using three Reidemeister moves of
the type two (we follow the terminology from [15]). A direct verification shows that two operations
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of attaching two Borromean links mutually commute up to a simultaneous attachment of some
pairs of Borromean links having opposite signs to the same triples of components, and a number
of Borromean links to one or two components of the link (i.e., each operation of attaching a pair
of Borromean links can be transformed into another one under an isotopy and some number of
moves described above). This means that replacing ∆-homotopy with balanced ∆-homotopy we
can change the sequence of ∆-moves in the initial homotopy in arbitrary way.
It is known that any two four-component links with coinciding matrices of linking numbers of

pairs of corresponding components are ∆-homotopy equivalent (see [10]), i.e., there is a sequence
of Reidemeister moves and ∆-moves connecting the projections of the links. Since the links are
semibounding, by Proposition 3.2, the sum of signs of all ∆-moves in which given three components
participate, is zero. Now let us change the order of the ∆-moves in the sequence in such a way
that it splits into pairs of consecutive ∆-moves with opposite signs and ∆-moves with less than
three participating components. The resulting homotopy is the required one. �

ACKNOWLEDGMENTS

The authors wish to express their gratitude to S. A. Melikhov, V. P. Leksin, and A. I. Rez for
useful discussions.
This research was supported by the Russian Foundation for Basic Research under grants no. 99-

01-0009, no. 96-01-00211, and no. 00-05-64015, by INTAS-CNES under grant no. 1048, and by the
Ministry of Science and Technology of Republic Slovenia.

REFERENCES

1. J. W. Milnor, “Link groups,” Ann. of Math., 59 (1954), no. 2, 177–195.
2. R. Porter, “Milnor µ-invariants and Massey products,” Trans. Amer. Math. Soc., 257 (1980), 39–71.
3. V. G. Turaev, “Milnor’s invariants and Massey’s products,” Ucheb. Zapiski LOMI, 66 (1976), 189–203.
4. T. D. Cochran, “Derivatives of links: Milnor’s concordance invariants and Massey’s products,” Mem.
Amer. Math. Soc., 84 (1990), no. 427, 1–73.

5. B. Mellor, Finite Type Homotopy Invariants, I, E-print math.GT/9807162u4, 1999.
6. P. Kirk and C. Livingston, “Vassiliev invariants of two components links and the Casson–Walker

invariant,” Topology, 36 (1997), 1333–1353.
7. P. M. Akhmet′ev and D. Repovš, “Generalization of the Sato-Levine invariant,” Trudy Mat. Inst.
Steklov [Proc. Steklov Inst. Math.], 221 (1998), 69–80.

8. T. D. Cochran, “Concordance invariance of the coefficients of Conway’s link polynomial,” Invent.
Math., 82 (1985), 527–541.

9. P. M. Akhmet’ev and A. Ruzmaikin, “Borromeanism and Bordism,” in: Topological Aspects of the
Dynamics of Fluids and Plasma (H. K. Moffatt et al., editor), Kluwer, Dordrecht, 1992, pp. 249–260.

10. H. Murakami and Y. Nakanishi, “On a certain move generating link-homology,” Math. Ann., 284
(1989), 75–89.

11. B. Mellor, Finite Type Homotopy Invariants, II: Milnor’s mu-Invariants, E-print math.GT/9812119,
1998.

12. T. Stanford, Braid Commutators and ∆ Finite-type Invariants, E-print math.GT/9907071, 1999.
13. K. Habiro, “Claspers and finite type invariants of links,” Geom. Topol., 4 (2000), 1–83.
14. J. P. Levine, “An approach to homotopy classification of links,” Trans. Amer. Math. Soc., 306 (1988).
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(J. Malešič, D. Repovš) Ljubljana University, Slovenia
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