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Abstract. We obtain results concerning Arnold’s problem about a generalization of the Pontrya-
gin–Thom construction in cobordism theory to real algebraic functions. The Pontryagin–Thom
construction in the Wells form is transferred to the space of real functions. The relation of the
problem with algebraic K -theory and the h-principle due to Eliashberg and Mishachev is revealed.
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The Cerf diagram of a family of functions fλ , λ ∈ [0, 1]k , on a manifold is the hypersurface with
singularities in [0, 1]k ×R consisting of all possible pairs (λ, x), where x is one of the critical values
of fλ . Akhmet ′ev [3] obtained some topological restrictions on the global structure of Cerf diagrams
that have proper local singularities and correspond to two-parameter families. In the present paper,
we prove a similar result for Cerf diagrams of one-parameter families.

1. Introduction

The starting point of our study is Arnold’s paper [1] (see also [2, Problem 1988-23], where a
reference to an earlier paper is given), which states the problem of generalizing the Pontryagin–
Thom construction [16, 19] to a new class of problems related to function spaces.

Simultaneously with Arnold’s work, there were papers in which the Pontryagin–Thom construc-
tion was transferred from the cobordism category of manifolds to the cobordism category of maps
with singularities. The idea of this generalization was suggested for the first time by Szűcs [18];
later it was developed for maps with more complex singularities in the joint paper [17] of the same
author with Rimányi. Recently, the Pontryagin–Thom construction has been applied to problems
of approximation of maps with singularities by smooth embeddings [5].

Arnold [1] noticed that the computation of the fundamental group of the space of real-valued
functions defined on the line, taking constant values in a neighborhood of infinity, and having no
singularities of type A3 or more complex types is equivalent to the computation of the cobordism
group of plane curves without points of horizontal inflection. This group was proved to be iso-
morphic to the additive group of integers. To solve Problem 1988-23, one should generalize these
computations to a function space on a higher-dimensional manifold. A study of this kind was carried
out by the first author in [3], where the Pontryagin–Thom construction is used in the Wells form
[20]. The considerations involved only the first two homotopy groups (i.e., were carried out for the
case in which there are at most two parameters in the problem); furthermore, higher singularities
on the function space, except for Morse singularities and singularities of birth-death of a pair of
Morse singular points, were prohibited.

Recently the authors became aware that the exclusion theorem in [3], whose proof is rather
complicated, can be obtained in a simpler way as a corollary to the Igusa–Laudenbach theorem
[11–13] cited below and the h-principle. As applied to pseudoisotopy theory, the h-principle was
developed by Eliashberg and Mishachev in the series of papers [7, 8]. A comprehensive survey of
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the main results concerning the h-principle can be found in the book [9]. We intend to reprove (and
generalize) the theorem in [3] in the framework of this method elsewhere.

In the present paper, we consider an analog of the exclusion theorem. In the one-dimensional
case, there are no restrictions on the Cerf diagram, but one encounters the important notion of
a false wrinkle, or a twisted wrinkle, if we use the term “wrinkle” in the sense of [7]. We mean a
component of the curve of singular points such that the image of this component in the space of
values and parameters is represented by the simplest Cerf diagram (a lens) with distinct incidence
coefficients of the separatrix disks at the birth-death points. It is shown below in Fig. 1β (see
p. 168). An odd number of such false wrinkles cannot form a Cerf diagram.

The Cerf diagram of a one-parameter family of functions on the manifold M × I is a curve
with cusps that lies with self-intersections in the space of values and parameters. At each cusp
of the diagram, the birth or death of a pair of Morse critical points with neighboring indices
occurs. Suppose that the stable separatrix disks of the Morse critical points are equipped with a
compatible family of orientations. At the cusps of the diagram, there is an additional structure
related to the intersection number of the stable and unstable separatrix disks that are born or die
in a neighborhood of the birth or death point.

To define this additional structure, consider an arbitrary separatrix joining two Morse points
of neighboring indices i + 1 and i. Such a separatrix is a curve lying in the intersection of the
stable separatrix disk of the point of index i + 1 and the unstable separatrix disk of the point of
index i under the assumption that these disks meet each other transversally. Consider an arbitrary
orientation of the manifold M ×I in a neighborhood of a Morse point x of index i. This orientation
permits one to define an orientation of the unstable separatrix disk at the critical point in question
in such a way that the orientation of the manifold in a neighborhood of x is the sum of orienta-
tions of two separatrix disks at this point, namely, the stable disk (which bears an orientation by
assumption) and the unstable disk.

The choice of the above-mentioned orientations determines the incidence coefficient ±1 of the
separatrix disks. One can readily verify that the coefficient does not change if the orientation of the
manifold at x is changed to the opposite. By carrying out this argument for a pair of critical points
in a neighborhood of a birth or death point, one can assign a sign ±1 to the corresponding cusp in
the Cerf diagram. The choice of a sign at the cusp depends on the choice of the family of orientations
of stable separatrix disks and hence is ambiguous. It is determined modulo a simultaneous change
of the coefficients in an arbitrary pair of cusps joined by a common segment of Morse critical values
in the diagram. Hence each Cerf diagram can be characterized as nontwisted or twisted depending
on the parity (0 or 1 (mod 2), respectively) of the number of cusps with the same coefficients. Note
that wrinkles correspond to nontwisted diagrams.

It turns out that a Cerf diagram is twisted if and only if it has an odd number of points of
transversal self-intersection. This is proved in the theorem in Sec. 3. For example, the diagram in
Fig. 1γ is twisted, since it has a single point of self-intersection.

We give two independent proofs of this theorem. One of the proofs uses K -theoretic methods.
Our constructions are simple in that we do not consider higher levels of K -theory and deal solely
with the K1-functor, i.e., the determinant. The use of this functor provides a nontrivial algebraic
relation satisfied by Cerf diagrams of a function family representing an element of π1(P (M ×
I), E(M × I)). This approach is motivated by a visualization of the higher algebraic K -functor,
whose properties for integral group rings of the fundamental group have not been comprehensively
studied yet. (For possible applications in topology, see [4].)

The outline of the paper is as follows. In Sec. 2, we recall (in minimum generality) the main
definitions, which were actually explained above. Next, the main theorem is stated in Sec. 3 and
proved from the viewpoint of K -theory in Sec. 4 and by the Eliashberg–Mishachev method in
Sec. 5.
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2. Main Spaces

Let M be a closed manifold, and let I = [0, 1]. The pseudoisotopy space E(M × I) was studied
by Cerf [6]. (We retain the notation adopted in that paper.) It was defined there as the space
of functions f : M × I → I , f(M × {0}) = 0, f(M × {1}) = 1, such that f has no critical
points and coincides in some neighborhood (whose size is not fixed) of the boundary with the
standard projection onto the second factor. This space has the homotopy type of the space of
self-diffeomorphisms of M × I whose restriction to the lower base is the identity map.

The space of nonzero sections of the tangent bundle T (M ×I) coinciding in some neighborhood
of the boundary with a section in the direction of I serves as a formal analog hE(M × I) of
E(M × I). We assume M to be equipped with a Riemannian metric. Then we can consider the
map hE : E(M × I) → hE(M × I) that takes each function f to its gradient field. If M is simply
connected, then E(M × I) is connected by the Cerf theorem. For an arbitrary M , the map hE

is homotopic to the map into a point. This result is referred to in [7] as the Igusa–Laudenbach
theorem.

To study the homotopy type of E(M × I), one defines the space P (M × I) of functions with
generalized Morse singularities, i.e., Morse singularities and singularities of the type of birth or death
of a pair of Morse singular points. We define this space as well as its formal analog hP (M×I) in the
next section. It was proved in [7] that the natural inclusion E(M × I) ⊂ P (M × I) is contractible.
However, a close result on the contractibility of this map up to some dimension was originally
proved by Igusa [12]. It was proved in [8] that P (M × I) is weakly homotopically equivalent to its
formal analog hP (M × I). The proof is rather complicated and uses a special technique developed
in [7].

Now consider a manifold N of dimension m + 1 with boundary (in general, nonempty). By
F (N, ϕ) we denote the space of all smooth real-valued functions defined on N and coinciding in a
neighborhood of the boundary with a given function ϕ : N → R

1 regular in this neighborhood.
Let � ⊂ Jk(N) be an open subspace in the jet manifold such that � is invariant with respect

to left changes of coordinates and the complement of � is a semialgebraic set. The jet manifold has
the bundle structure κ : Jk(N) → N . We define the space A(N,�, ϕ) of functions with �-moderate
singularities as the subspace of F (N, ϕ) consisting of functions whose jets lie in � and which coincide
with ϕ in a sufficiently small neighborhood of the boundary ∂N . If N = M×I , p : M×I → I is the
natural projection, and � coincides with the entire space Jk(M ×I), then the space A(M ×I,�, p)
coincides with the space F (M × I, p).

For each given value of k, the formal analog of A(N,�, ϕ) is the space hA(N,�, ϕ) of sections of
κ that range in � and have a k-jet coinciding with the k-jet of a given regular map in a sufficiently
small neighborhood of the boundary. For N = S

m × I , the formal analog hA can be defined as the
subspace of maps with given boundary conditions in the space Map[Sm × I;�] of maps ranging
in �.

There is a map A(N,�, ϕ) → hA(N,�, ϕ) that takes each smooth function to its k-jet extension.
The original problem of computing the homotopy type of A can be solved with the use of meth-

ods of algebraic topology by computing the homotopy type of hA. This reduction is known as the
h-principle. In many problems, the formal analog hA proves to be weakly homotopically equivalent
to the original function space A; see Vasil ′ev’s papers [14, 15]. It follows from the Eliashberg–
Mishachev theorem that the h-principle holds for the space of functions that have only A1 and A2

singularities.
Definition of the space P (M×I) of generalized Morse functions. We say that a function

f : M × I → I , f ∈ F (M × I, p), is a generalized Morse function if for some i ∈ {0, . . . , m} the
singularities of f are given by the following formulas in some local coordinate system:

−x2
1 − · · · − x2

i + x2
i+1 + · · · + x2

m+1, (A1)

−x2
1 − · · · − x2

i + x2
i+1 + · · · + x2

m + x3
m+1. (A2)
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Points of the type A1 are called Morse singular points of index i. Points of the type A2 are called
birth-death points of a pair of Morse critical points of indices i and i + 1.

The space P (M ×I) of functions with generalized Morse singularities is defined as the subspace
of F (M × I, p) formed by functions that have only A1 and A2 singularities. According to the
preceding constructions, we have the formal analog hA(M × I,�, p), where � is the subspace of
the jet space formed by jets without A3 and more complex singularities and p is the standard
projection onto the second factor. For brevity, we denote hA(M × I,�, p) by hP (M × I).

The space hol P (M × I). In the space hP (M×I) of formal functions, we define the subspace
hol P (M × I) of formal functions hf : M × Ix → J3(M × I, R) satisfying the following additional
conditions: there exists an open subset U ⊂ M × Ix such that hf |M×I\U has no critical points and
hf |U coincides with the jet extension of some function f : M × Ix → Iy in P (M × I). In other
words, the formal function hf : M × Ix → Iy should be holonomic in a neighborhood of its critical
points. This space is included in the diagram

P
ihol⊂ hol P

ih⊂ hP. (1)

The space E(M × I) and its formal analog hE(M × I) for a stably parallelizable
manifold M . If M is a Riemannian manifold and k = 1, then hE(M × I) can be naturally
identified with the space of nonzero sections of the tangent bundle T (M × I) with the standard
conditions on the boundary. For a stably parallelizable M , the bundle T (M × I) is trivial, and
hE(M × I) can be described as the space of maps M × I → S

m that take the boundary of
M ×{0}∪M ×{1} to a marked point on S

m . By the Igusa–Laudenbach theorem, the forgetful map
hE : E(M ×I) → hE(M ×I) is contractible. (This map is not one-to-one on connected components
if M is not simply connected, since in this case hE(M × I) is connected but E(M × I) is not.)
The connected components of hE(M × I) are described in [10]. Although the spaces E(M × I)
and hE(M × I) proved to be homotopically different, Eliashberg and Mishachev [7] managed to
construct a function space whose formal analog is hE(M × I). This is the space of functions that
have only Morse and generalized Morse critical points with some additional structure determining
a coordinate system in some disk containing a pair of critical points with neighboring indices or
a birth-death point. The Cerf diagrams of functions belonging to this subspace have the simplest
form and are referred to as wrinkles. The standard wrinkle for a one-parameter family of functions
is shown in Fig. 1α.

The spaces constructed above are included in the commutative diagram

P (M × I) ⊃ E(M × I)
hP↓ ↓hE

h(P (M × I)) ⊃ hol P (M × I) ⊃ hE(M × I).
(2)

3. Statement of the Main Result

Recall that a representative of an element of the group π1(P ), or, which is the same, of the
group π0(ΩP ), can be studied with the use of a Cerf diagram; see [6, 7]. Consider the Cerf diagrams
α, β , γ , and δ depicted in Fig. 1.

+ +

α

+ –

β

+ –+ +

γ

+ ++ +

δ

Fig. 1

One can readily construct examples of families of functions fλ and gλ , λ ∈ [0, 1], with Cerf
diagrams α (wrinkle) and γ , respectively, equipped with a family of orientations O(λ) (e.g., see [6]).
Each of the families represented in this figure has only critical points with two neighboring indices,
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i + 1 and i. In what follows, the critical point of these families will be denoted by the letter x with
a subscript.

Let us choose some family of orientations O(λ) on the set of stable separatrix disks of Morse
critical points for each of the families α–δ . Here we assume that the orientation continuously
depends on the parameter of the family.

Consider the families O(λ) in a neighborhood of the birth-death points. Every critical point
x of this type (say, every singularity of the birth-death type in Fig. 1α) is equipped with a sign
o(x) = ±1 in accordance with the sign of the incidence coefficient for the pair of Morse critical
points that are born or die at this singular point. The family α obviously satisfies the relation

o(x1)o(x2) = +1, (3α)

whereas for the family γ one has

o(x1)o(x2)o(x3)o(x4) = −1. (3γ)

The diagrams β (a false wrinkle) and δ can also be viewed from the formal viewpoint as the Cerf
diagrams for families of functions lying in hol P (M × I). For the diagram β , we have

o(x1)o(x2) = −1, (3β)

while
o(x1)o(x2)o(x3)o(x4) = +1 (3δ)

for the diagram δ .
Cerf diagrams can also be defined for the formal families hol α and hol β , which model the

corresponding families in the group π1(hol P ). If we somehow choose families of orientations hO(λ)
on the stable separatrix disks of the critical points of the formal families, then for each birth-death
critical point hx the sign o(hx) = ±1 is also defined. Since the families of functions in hol P are
holonomic in a neighborhood of their critical points, it is meaningful to speak of Cerf diagrams for
such families.

Consider an element φ of the homotopy group π1(P, E) and a Cerf diagram representing this
element. Let us choose an additional structure O(λ) of orientations of separatrix manifolds. Ne-
glecting the additional structure O, the Cerf diagram is represented by the curve S of critical values
in the two-dimensional space of values and parameters. The curve S has singularities at the points
of the set Σ of birth-death critical values. By smoothing S along Σ, we obtain an immersed sub-
manifold, which we again denote by S . By the Pontryagin–Thom construction in the Wells form
[16, 19, 20], the manifold S represents an element κ(φ) in the stable homotopy group πn+1(Sn),
n > 2, of spheres. (This group will be denoted by Π1 .) The cobordism class of this element is
completely determined by the parity of the number of points of self-intersection on the immersed
curve S in the square I2 of values and parameters.

The additional structure O described at the beginning of the present section permits one to
define a canonical partition Σ = Σ+∪Σ− of the zero-dimensional set Σ of birth-death critical values
into two subsets (zero-dimensional manifolds) according to the value of the incidence coefficient
of a pair of Morse singularities in a small neighborhood of the component of critical points. The
cobordism class of either of the manifolds Σ+ and Σ− (which are cobordant as immersed manifolds)
determines an element ρ(φ) in the stable homotopy group Π0 = πn(Sn), n � 1, of spheres. This
element in general depends on the choice of the structure O on the manifold of separatrix disks.
The ambiguity in the choice of O does not affect ρ(φ) treated as an element of the quotient group
Π0/2Π0 . Indeed, each segment on S consisting of Morse singularities is bounded by a pair of
singularities in Σ. The change of orientation on the manifold of stable separatrix disks along this
segment changes the types of singularities in Σ at its endpoints. Consequently, the element ρ(φ)
(mod 4) is independent of the choice of O. On the other hand, singularities in Σ annihilate in pairs
under a cobordism. For a coordinated choice of the structure O on the curve of singular points
before (after) the surgery, the signs in the corresponding pair of cusps of S in a neighborhood
of the point where a pair of birth-death critical points disappears (appears) are opposite and the
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structure O can be extended to the cobordism. Hence the element in the quotient group Π0/2Π0

determines an invariant on the cobordism class of the Cerf diagram.
Let t be the generator of Π1 represented by the homotopy class of the suspension over the Hopf

map S
3 → S

2 ; in terms of the Pontryagin–Thom construction, this generator is represented by the
cobordism class of a plane immersed horizontal figure eight curve.

Theorem. One has
t ◦ ρ(φ) = κ(φ), (4)

where the left-hand side is the composition of stable spheroids.
Example. For a path in the function space with Cerf diagram shown in Fig. 1α or 1δ , one has

κ = t. For the families in Fig. 1β or 1γ , the element ρ is of odd order in the group Π1 .

4. Proof of the Theorem via the K1-Functor

In this section, we assume that dim(M) = m � 5. Using the parametric version of the Smale
lemma (see [10]), one can readily show that the homotopy class φ ∈ π1(P (M × I), E(M × I))
contains a path fλ , λ ∈ [0, 1], such that the following conditions hold:

1) the family of functions fλ has only critical points of indices i + 1 and i, where i = [m/2];
2) the critical values of index i + 1 (respectively, i) lie in the interval (1/2, 1) (respectively,

(0, 1/2)).
If we replace fλ by a homotopic path, then the Cerf diagram is replaced by a cobordant diagram.

Obviously, both parts of (4) are preserved in this process, since A3 singularities (swallowtails) do not
arise under the cobordism. Let us prove formula (4) assuming that the element φ is represented by
a family of functions fλ satisfying conditions 1) and 2). For an arbitrary value λ ∈ [0, 1] except for
finitely many singular values, there is a well-defined incidence coefficient matrix A(λ) (we assume
that the structure O(λ) has been chosen) of critical points in the Morse complex of M×I generated
by the function fλ . The critical points of index i + 1 (respectively, i) are numbered starting from
1 in descending (respectively, ascending) order of critical values. Let us adopt the convention that
the matrix A(λ) is stabilized by the (0, 0)th entry +1; this will be useful if there are no critical
points. Consider the singular values of the parameter λ, which are classified by the following list
of singularities.

(a) Singularities of the type of birth-death of a pair of Morse critical points with neighboring
indices. Note that by an additional transformation of the stable separatrix disk for the point of
index i + 1 and the unstable separatrix disk for the point of index i in a neighborhood of the birth
or death point one can ensure that the set of singular separatrix trajectories lying on these disks
contains a unique trajectory that joins these two critical points with incidence coefficient ±1. (In
the definition of this coefficient, we assume that the structure O has been chosen.) Then the sign
of this trajectory, i.e., the incidence coefficient of the pair of singular points, permits one to define
the partition of Σ into Σ+ and Σ− .

(b) Singularities of the type of addition-subtraction of a handle in the cell decomposition gen-
erated by the Morse function.

(c) Singularity of the type of coincidence of two critical values. (According to condition 2, these
values have the same index.)

Now consider the singularities corresponding to points of discontinuity of the function det(A(λ)),
which takes the values ±1. A discontinuity of this function can be caused either by the coincidence
of a pair of critical values (which results in the multiplication of the matrix A on the left or on
the right by an elementary transposition matrix depending on the index of these critical values) or
by the presence of a birth-death point in Σ− , which results in the splitting of the one-dimensional
scalar matrix −1 from the right bottom diagonal entry. The number of points of discontinuity of
det(A(λ)) is even, since f0 and f1 have no critical points and A(0) = A(1) = +1. Hence the parity
of the number x of points of self-intersection on the Cerf diagram coincides with the parity of the
number y of singularities in Σ− . Now note that the value of the homomorphism κ constructed
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from this diagram determines a generator in Π1 if and only if x = 1 (mod 2). Next, the value y
(mod 2) determines an element of Π0/2Π0 . Thus x = y (mod 2), or, equivalently, κ = t ◦ ρ. The
proof of the theorem is complete.

5. Proof of the Theorem with the Use of the h-Principle

Throughout the proof, we assume that M is stably parallelized and simply connected. Consider
the sequence

π1(P (M × I), E(M × I))
(hP ,hE)�−−−−−→ π1(hol P (M × I), E(M × I))

holκ⊕holρ−−−−−−−→ Π1 ⊕ Π1. (5)

We define the homomorphism hol κ ⊕ hol ρ of the group π1(hol P (M × I), E(M × I)) by analogy
with the homomorphism κ ⊕ ρ so as to ensure that (hol κ ⊕ hol ρ) ◦ hP = κ ⊕ ρ.

Let us compute the range of κ⊕ ρ in the group Π1 ⊕Π0/2Π0 . Let hfλ , λ ∈ [0, 1], be the family
of formal functions to be studied, holonomic in a small regular neighborhood of its critical points
as well as in a neighborhood of the boundary ∂(M × I) ∪ (M × {0} ∪M × {1}). In particular, the
functions hf0 and hf1 are holonomic and have no critical points.

Let us make a surgery of the Cerf diagram of the family hfλ into one of the simplest diagrams
shown in Fig. 1. Note that all a priori possible cobordism classes of diagrams are represented in
this figure. Moreover, without loss of generality one can extend a cobordism of the diagram to a
homotopy of some holonomic function family in a regular neighborhood of the curve of singular
points. Next, note that the family of formal functions can also be deformed with the preservation
of holonomy conditions in a neighborhood of the curve of singular points. Indeed, a cobordism of
the diagram preserving all birth-death points can be extended to a homotopy of the formal family
by a standard argument.

Let τ be the homotopy parameter. Consider a disk Dn+2
0 ⊂ M × I × I centered at a singular

point where a pair of birth-death points disappears. Further, we assume that the disk Dτ0−ε =
Dn+2

0 ∩ M × I × {τ0 − ε} entirely contains a regular neighborhood of two branches S1 and S2 of
critical points of the families hfλ(τ0−ε) mirror symmetric in λ as well as singularities in Σ, one on
either branch. The disk Dτ0+ε = Dn+2

0 ∩ M × I × {τ0 + ε} contains a regular neighborhood of the
modified branch S of the curve of singular points of the family hfλ(τ0 + ε) and does not contain
singularities in Σ.

One can readily verify that a deformation given in a neighborhood of the curve of singular
points can be extended to a deformation of the entire formal family for the parameter τ ranging in
[τ0−ε, τ0 +ε]. Indeed, for τ = τ0−ε let us join the birth and death points lying on the branches S1

and S2 by a small segment J . By an additional deformation of the formal family hfλ with support
in D0 on the interval τ0 − ε � τ � τ0 − ε/2, we can ensure that the gradient field of the formal
family hfλ(τ0 − ε/2) coincides with the gradient field of the standard holonomic family inside D0 .

After this construction, the continuation of the deformation of the formal family for τ0 − ε/2 �
τ � τ0 + ε in D0 is obvious, and outside D0 it is constructed in a standard manner.

Thus it suffices to show that the diagrams β and γ in Fig. 1 cannot be realized for any formal
family hfλ . Since the map hE : E → hE is contractible, it follows that the functions hf0 and hf1

viewed as formal functions are homotopic to a constant. Let us study the possibility of realizing
the Cerf diagram in the form of the false wrinkle β in Fig. 1. First, we describe a function family
in a neighborhood of a false wrinkle in closed from.

Let fλ be a family of functions with proper boundary conditions whose Cerf diagram is the
standard wrinkle α shown in Fig. 1. Let I0 ⊂ Iλ be an interval in the parameter space of germ
deformations, and let a ∈ Mm × I(x). We take a deformation of the family fλ satisfying the
following technical condition: in some given ball neighborhood Ur(a) ⊂ Mm × I of radius r of the
point a, the function fλ is independent of λ ∈ I0 and is given by the standard quadratic form q of
index i + 1. To simplify the subsequent notation, we set r = 2 and I0 = [1/3, 2/3].
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We redefine the values of the family of germs fλ in the balls U1(a) = U1 for these values of the
parameter λ; outside the ball, the family fλ remains unchanged. By doing so, we obtain a family
gλ defined in the interior of U1 × [1/3, 2/3] whose restriction to U1 × {1/3, 2/3} coincides with fλ .

Let us make auxiliary constructions. By ∆ we denote the two-dimensional plane passing through
the center a of the ball U2 and determined by the coordinates x1 and xi+2 . Note that the restrictions
of the quadratic parts of the functions fλ to the plane ∆ are not sign definite. Without loss of
generality, we can assume that all these restrictions coincide with each other and with q. Consider
a one-parameter family of rotations Zλ : U1 → U1 , λ ∈ I0 , in the positive direction in the plane ∆
such that Z1/3 is the identity transformation and Z2/3 is the rotation by an angle of π. We define
gλ(b), b ∈ U1 , by the formula gλ(b) = q(Zλ(b)). The pairs (g2/3(x), f2/3(x)) and (g1/3(x), f1/3(x)) of
germs coincide for each point x ∈ U1 . Hence the family of functions gλ is defined in a neighborhood
of the false wrinkle.

By V1 ⊂ V2 ⊂ M×I×I we denote a pair of neighborhoods of the false wrinkle thus constructed
in the product of the source space by the parameter space; these neighborhoods are assumed to be
an extension of the pair of neighborhoods U1 × I0 ⊂ U2 × I0 of the arc of the false wrinkle over the
interval a × I0 . Let us compute the obstruction to the extension into the solid torus V2 \ V1 of the
formal family coinciding with the holonomic family fλ on the external boundary ∂V2 and with gλ

on the internal boundary ∂V1 .
The family gλ is given on ∂V1 (∂V2) by a nonzero section of the bundle T (M × I) and is

determined by a map G : ∂U1×I0 → S
m (G : ∂U2×I0 → S

m). Likewise, the family fλ is determined
on ∂V1 (∂V2) by a map F : ∂U1 × I0 → S

m (F : ∂U2 × I0 → S
m).

One can readily see that on ∂V1 and ∂V2 the map G is obtained from F by a composition
with the family of rotations of the sphere S

m around the circle S
1 ⊂ S

m by angles from 0 to
2π parametrized by the coordinate on I0 . Note that F and G coincide on the lateral part (U1 \
U2) × {∂I0} of the annulus K = U1 × I0 \ U2 × I0 . The obstruction o(F, G) to the continuation
of the map into the interior of K lies in the cohomology group Hm+1(∂K; πm+1(Sm)). The value
of the obstruction is determined by the value of the generator ψ ∈ π1(SO(m)) under the James–
Whitehead homomorphism J : π1(SO(m)) → πm+1(Sm) = Π1 . It is known that [J(ψ)] = t, where
t ∈ Π1 is a generator. Hence our problem of continuation of the map into the interior of K has no
solution. The problem of continuation of the map into the interior of the solid torus V2 \ V1 is also
unsolvable for similar reasons.

Now let us prove that the problem of continuation of the map G from ∂V1 to a family hgλ of
formal functions on the entire space M ×I×I with the standard conditions on the boundary of the
product of the source space by the parameter space is also unsolvable. To this end, we study the am-
biguity in the continuation of a family hgλ of formal functions on ∂(M×I×I) to a family of formal
functions on ∂V2 . The diagram S is contained in the ball ∂D0 , and the restriction of hgλ to ∂D0 is
uniquely, modulo a homotopy, specified by a constant map. Indeed, the manifold Mm × I × I \D0

is a stably parallelized manifold realizing a cobordism between ∂D0 and the external boundary
Mm × ∂(I × I). The family hgλ of formal functions on this manifold has no critical points and is
represented by a map Mm × I × I \ D0 → S

m . Since D0 \ V2 is also a stably parallelized (m + 2)-
dimensional manifold, we see that the obstruction to the continuation of the map ∂(D0 \V1) → S

m

from the boundary to the entire D0 \ V1 lies in πm+1(Sm). On the one hand, the restrictions
hgλ : ∂D0 → S

m and hfλ : ∂D0 → S
m of the formal families are homotopic. (They are homotopic

to a constant map.) Here by hfλ we denote the formal family determined by the holonomic family
fλ . On the other hand, we have proved that G : ∂V1 → S

m differs from F : ∂V1 → S
m by a generator

of πm+1(Sm). Since the problem of continuation from ∂(D0\V1) to D0\V1 is solvable for F , it follows
that for G the problem has no solutions. Thus we have proved that a false wrinkle cannot be realized
by a Cerf diagram for any family of formal functions. The case of the diagram δ can be analyzed in
a similar way. We have computed the range of the homomorphism hκ⊕hρ and proved the theorem.
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6. Discussion

We have studied one-parameter families of functions with generalized Morse singularities and
proved that the invariants κ and ρ constructed from the Cerf diagrams of the corresponding families
in the stable homotopy groups of spheres are dependent even for families of formal functions. From
the algebraic viewpoint, the relation between the values of κ and ρ is related to the functor K1(Z),
i.e., the determinant, and from the viewpoint of homotopy the relation is expressed via the generator
of the group Π1 .

For two-parameter families of functions, a similar algebraic relation is connected to the functor
K2(Z). The first author [3] conjectured that some Cerf diagrams of families of functions possess
admissible local structure but are excluded for families of holonomic functions (if treated as Cerf
diagrams of families of formal functions). It was assumed in the conjecture that a family of functions
without critical values on the boundary of the parameter space is formal. We would like to restate
the conjecture in connection with the latest results in [8]. It would be meaningful to consider the
following problem.

Problem. In the framework of the h-principle due to Eliashberg and Mishachev, prove the
result in [3] that the Cerf diagrams of two-parameter families of functions are not realizable. Infor-
mally speaking, show that the h-principle in pseudoisotopy theory “remembers” K -theory on the
level of spaces of formal functions with moderate singularities.

The authors are grateful to the anonymous referee, who has carefully read the manuscript and
found an error in the original version of the paper.

The first author is grateful to P. E. Pushkar ′ for useful remarks.

References

1. V. I. Arnold, “Spaces of functions with moderate singularities,” Funkts. Anal. Prilozhen., 23,
No. 3, 1–10 (1989).

2. V. I. Arnold, Arnold Problems [in Russian], Fazis, Moscow, 2000.
3. P. M. Akhmet ′ev, “Embeddings of compacta, stable homotopy groups of spheres, and singularity

theory,” Uspekhi Mat. Nauk, 55, No. 3, 3–62 (2000).
4. P. M. Akhmet ′ev, “K2 for simple integral group rings and topological applications,” Mat. Sb.,

194, No. 1, 23–30 (2003).
5. P. M. Akhmetiev, “Pontrjagin–Thom construction for approximation of mappings by embed-

dings,” Topology Appl., 140, No. 2–3, 133–149 (2004).
6. J. Cerf, “La stratification naturelle des espaces de fonctions différentiables réelles et le théorème
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