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Abstract

We study Banach-Mazur compacta Q(n), that is, the sets of all isometry classes of n-dimensional Banach
spaces topologized by the Banach-Mazur metric. Our main result is that 2(2) is homeomorphic to the
compactification of a Hilbert cube manifold by a point, for we prove that Qe (2) = Q(2) \ (Eucl.) is a
Hilbert cube manifold. As a corollary it follows that 2(2) is not homogeneous.
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1. Introduction

This paper studies topological properties of Banach-Mazur compacta Q(n), that is,
the sets of all isometry classes of n-dimensional Banach spaces topologized by the
Banach-Mazur metric. Recently, substantial progress was made concerning these
spaces. It was proved in [ 14] that Q(2) is an absolute extensor (defined below). Later
this result was generalized to all n > 2 (see [5]). The long-standing problem about
topological equivalence of Q(n) and the Hilbert cube I°° was finally solved negatively
for n = 2 in [4].

THEOREM 1.1. Q{2) and I00 are not homeomorphic.

For any space X to be homeomorphic to the Hilbert cube I00, the following neces-
sary conditions must be satisfied for every point x e X:

(a) X \ [x] must be homotopically trivial; and
(b) X \ [x] must be a Hilbert cube manifold.
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The key idea of the proof of Theorem 1.1 was to show that Q(2) fails to possess the
property (a) at the Euclidean point {Eucl.}, which corresponds to the isometry class
of the Euclidean space. On the other hand, the main result of this paper, Theorem 1.2
stated below, implies that the complement Q(2) \ {x} of every other point x € Q(2)
turns out to be homotopically trivial. Furthermore, Theorem 1.2 demonstrates that as
far as the property (b) is concerned, everything turns out to be exactly the opposite:
(2(2) \ {Eucl.} is a Hilbert cube manifold, while the complement Q(2) \ {x} of every
other point x e Q(2) is not.

THEOREM 1.2. Qs(2) = Q(2) \ {Eucl.} is a Hilbert cube manifold.

As a corollary we prove that Q(2) is not homogeneous (recall that a space X is said
to be homogeneous if for every pair of points Xi,x2 6 X there exists a homeomorphism
h : X -> X such that h(x{) = x2).

COROLLARY 1.3. Q(2) is not a homogeneous space.

PROOF OF COROLLARY 1.3. By [4], {Eucl.} is not a Z-set in Q(2). On the other
hand, it follows by our Theorem 1.2 above that for every point x e Q(2) \ {Eucl.}, {x}
is a Z-set in Q(2) \ {Eucl.}, hence also a Z-set in Q(2). Therefore (g(2), {Eucl.}) £
((2(2), {*}). •

2. Preliminaries

We identify the set BAN(w) of all rc-dimensional Banach spaces with the set of all
norms in K". The Banach-Mazur distance p(X, Y) between spaces X = {W, \\ • \\x]
and Y = {IT, || • ||,-} e BAN(n) is defined as follows:

p(X, Y) = inf {|| 7|| • || Tl || | T : X -* Y is an isomorphism},

where ||7"||, | |r" ' | | are norms of the operators Tand T~l, respectively. It is well-known
that for every X,Y,Ze BAN(n), the following properties hold:

(1) p(X,Z)<p(X,Y)p(Y,Z);
(2) p(X, Y) = p(Y,X) > l;and
(3) p{X, Y) = 1 if and only if X and Y are isometric, X = Y, that is, there exists

an isomorphism T : X —• Y which preserves the norm ||;c||x = ||r(jc)||y for every
x eX.

It follows that the function lnp(X, Y) is a pseudometric on the space BAN(n),
which in the decomposition space Q(n) = BAN(n)/= becomes the metric d([X], [Y])
= lnp(X, Y), where

p(X, Y) = 1 <=• lnp(X, Y) = 0.
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The resulting metric space (Q(n), d) of all isometry classes of n-dimensional Banach
spaces is called the Banach-Mazur compactum.

This compactum allows for a different, more suitable presentation as a decompo-
sition of the space C(n) of all compact convex symmetric (rel 0) bodies in R". If one
measures the distance between subsets of K" by the Hausdorff metric pH(A, B) and
defines the linear combination £"=o A., A, by means of the Minkowski operation, then
(C(/i), pH) becomes a locally compact convex space.

Moreover, C(«) can be equipped with an action of the general linear group GL(n) x
C(n) - • C(n), given by T- V = T(V), where T : K" -> R" € GL(«) and V e C(n),
which agrees with the convex structure on C(n). We show that the orbit space
C{n)/ GL(n) is naturally homeomorphic to the Banach-Mazur compactum.

Indeed, for an arbitrary body V € C(n), the Minkowski functional pv(x) =
inf{r~' | tx € V] defines a norm on K" and consequently, induces a continuous
bijectionM : C(n) -> BAN(n) defined by M(V) = (Rn,pv)- Since it is well-known
that Banach spaces M(V) and M(W) are isomorphic if and only if V = T • W for
some T e GL(n), it follows that M induces a continuous bijection of the quotient
spaces

M : C(n)/GL(n) ->• Q(n) = BAN(n)/ = ,

which is a homeomorphism.
Hereafter, we shall consider only locally compact Lie groups (for example GL(n)),

metric spaces and continuous maps, unless otherwise specified. An action of G on
a space X is a homeomorphism T : G —• Aut X of the group G into the group
Aut X of all autohomeomorphisms of X such that the map G x X -> X, given by
(g, x) H>- T(g){x) = gx, is continuous. A space X with a fixed action of G is called
a G-space.

For any point x € X, the isotropy subgroup of A:, or the stabilizer of x, is defined
as Gx = {g € G | gx = x], and the orZnf of x as G(*) = {gx | g € G}. The
space of all orbits is denoted by X/G and the natural map n : X -*• X/G, given by
n(x) — G(x), is called the orbit projection. The orbit space X/G is equipped with
the quotient topology, induced by n.

Actions of noncompact groups G do not agree very well with the orbit structure of
X: the orbit of a point x can be dense in X, the orbit space X/ G can be non-Hausdorff,
two orbits with the same stabilizer can be nonhomeomorphic, etc. Palais [22] singled
out a class of G-spaces with the action of a locally compact group which do not have
such deficiencies—he called such spaces proper.

DEFINITION 2.1. (a) Given subsets A, B c X consider the following subset of
the group G:
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Then A is said to be thin with respect to B, if ((A, B)) is precompact, that is, it lies
in a compact subset of G. Since ((A, B)) = ((B, A))"1, it follows that B is also thin
with respect to A.
(b) A C X is said to be small if for every point x e X , there exists a neighbourhood
O(x) C X of x, which is thin with respect to A.
(c) A G-space X is said to be proper if it possesses a basis, consisting of small

neighbourhoods.

In general, the orbit projection n : X -*• X/ G of a proper G-space X fails to be
a closed map. This forces us to seek those closed subsets F C X of X for which the
restriction n \F : F —*• X/G is closed.

DEFINITION 2.2. A closed subset F c Z of a G-space Z is said to be fundamental
if F is small in Z and intersects every orbit, that is, F n G(z) ^ 0 for every z e Z.

PROPOSITION 2.3. Suppose that a G-space Z is proper and that the orbit space
Z/ G is metrizable. Then

(d) there exists a fundamental subset F C Z; and
(e) for every fundamental subset F c Z, f/ie restriction 7t\F : F -*• Z/G is a

proper map.

DEFINITION 2.4. An ocac/ slice at the point x € X is a G-map (p : U -+ G(x) of
some G-neighbourhood U C X (that is, G • £/ = U) of the orbit G(x), such that
^>(JC) = x. The preimage ^" ' (JC) of the point x is also called a s/fce or a Gx-kernel.

The principal results concerning slices belong to Abels [1] and Palais [22].

THEOREM 2.5 (Palais). A proper completely regular G-space X has a slice at every
point x.

THEOREM 2.6 (Abels). Let X be a proper G-space with a paracompact orbit space
and K a maximal compact subgroup of G. Then there exists a G-map f : X —>• G/K
(a so-called global AT-slice). Conversely, if there exists a global K-slice, then X is a
proper G-space.

In the sequel, we shall work in the class <$ of all metric proper G-spaces, whose
orbit space is also metric. The following properties of the class ^ are well known
(see [22]).

PROPOSITION 2.7. LetXe& and let Y be a separable metric G-space. Then the
following properties hold:
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(f) The orbit G(x) is closed in X, the stabilizer Gx is compact and the natural map
G/Gx -> G(x), given by g • Gx \-+ gx, is a homeomorphism.
(g) X can be equipped with an invariant metric, that is, d(gx, gx') = d(x,x'), for

every g € G and X x Y €&.
(h) G/L € &, for every compact subgroup L < G.

Next, we introduce several notions connected with the property of absolute extend-
ability of maps. A space X is called an absolute neighbourhood extensor, X € ANE,
if every map <p : A —• X, defined on a closed subset A c Z o f a metric space Z,
and called a partial map, can be extended over some neighbourhood U C Z of A,
<p : U -*• X, 0\A = <p. If we can always take U = Z, then X is called an absolute
extensor, X e AE. We note that in the case when X is a metric space, the concepts
of the absolute (neighbourhood) retract and the absolute (neighbourhood) extensor
coincide.

If X € A[N]E, Z is a G-space from the class ̂  and <p is a G-map (which in this case
means that <p is constant along every orbit), then the extension (p can also be chosen
to be a G-map. This follows from the closedness of A/G in Z/G (which, in turn
follows by the closedness of A in Z). In connection with this example we introduce
some more general concepts.

DEFINITION 2.8. A G-space X is called an equivariant absolute neighbourhood
in

extensor, X G G-ANE, if every partial G-map Z •<-J A —*• X, where Z is a G-space
from the class 'S', can be extended to a G-map 0 : U —> X, defined on some G-
neighbourhood U c Z of A. If we can always take U = Z then X is called an
equivariant absolute extensor, X € G-AE.

DEFINITION 2.9. A G-space X is called an approximate G-A[N]E-space, X e
G-AA[N]E, if for every G-space Z from the class 'S, every fundamental subset F
of Z, and every covering co e cov(X), the following holds: For every partial G-map
Z -*-0 A \ X there is an 'approximate' G-extension <p : Z -> X [respectively
cp : U -*• X, where U c Z is a G-neighbourhood of A] such that the restrictions
<p\AnF and <p\AriF are to-close, that is, (<p\Anv, <P\AHF) < co (see [13]).

3. Equivariant extensors for locally compact Lie groups

For our purposes, the most important example of a proper GL(n)-space is the space
C(n) of all convex bodies.

.\. YOT everjiyv, CAnVis a proper <aY,Vn)-space.
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PROOF. It suffices to prove that the following closed set

C(r, R) = {Ve C{n) \ B"(r) C V C B"(

where B" (a) denotes the closed ball with center at 0 and of radius a, is thin for every
0 < r < R < oo, that is, that the set

® = «C(r, R), C(r, R)) = {g € GL(n) | gC(r, R) n C(r, R) ^ 0}

is precompact.
Suppose not. Then for some sequence gn = \\gy \\ e M and some indices (io,jo),

one of following cases occur

Suppose that gn Vn € C(r, R) for some Vn € C(r, R). Since the point A, for which
only the yVth coordinate is equal to r, while all others are 0, lies in Vn, it follows that
gnA e B"(R). But the io-th coordinate of gnA is equal to g^j and g^jo does not
converge to oo. On the other hand,

0<vol5"(r)< volfe, K)

and

volte, V.) = det ||sj || vol Vn < det \\g^ || vol B"(R).

Therefore, det \\g"j \\ does not converge to 0. •

The orthogonal group 0{n) is a maximal compact subgroup of GL(AZ). By Theo-
rem 2.6 there exists a global 0(n)-slice / : C(n) -> GL(«)/ O(n).

PROPOSITION 3.2. Let X be a proper G-ANE-space. Then

(y) For every G-neighbourhood U of the orbit G(x), there exist a G-neighbourhood
V and a G-map H : V x [0, 1] -+ U such that Ho = Id, Im(//,) C G(x), and
H,\G(x) = ldforallt€l.

PROOF. Consider in the proper G-space X x [0, 1] the partial G-map

X x [0, 1] <-> X x {0} U G(x) x [0, l ] U l / , x {1} \ X

such that vlxxio) = Id,^|GU)x[Oii] = Id, and ̂ |t/,X(i) is the existing retraction (provided
by Theorem 2.6) r : £/, -> G(x) of some G-neighbourhood U\ C U.

Let ^ : W - • X be any extension of (p onto the G-neighbourhood W, which
contains a G-neighbourhood of the type V x / D G(JC). We get the desired map /f
by restricting <p onto V x / . •
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The following theorem of Abels [2, 4.4] allows us to reduce the studying of non-
compact group actions to compact ones.

THEOREM 3.3. For every X € <#, X € G-A[N]E if and only ifX € L-A[N\Efor
every compact subgroup L < G.

THEOREM 3.4. For every n, C(n) is a GL(n)-AE space.

By Theorem 3.3, C(n) € GL(n)-AEif and only if C(n) 6 L-AE, for every compact
subgroup L < GL(n). Another theorem of Abels [2, 4.2] asserts that every locally
convex complete topological vector G-space is G-AE, for every compact group G.
Let us apply the argument from this paper to prove that C(n) e L-AE.

Since C(n) is convex (with respect to the Minkowski linear combination of convex
bodies), Dugunji's theorem implies that C(n) € AE. Therefore every partial L-map
Z •<-* A —• C(n) can be continuously extended over Z, F : Z —• C(n). Now define

F(Z) -L - i

where 3 /x is the normalized Haar measure and fL means the integral of the set-valued
mapping [9]:

d>2 : L w W, <t>z(g) = g~l • F(gz) C 01".

On account of the continuous dependence <t>z(g) on z and g, the convexity and the
closeness of its images, F is a continuous map with closed convex values [9]. It is
easy to see that F is an L-map from Z into C(n) and that F | A = f. •

Let (X, d) be a metric G-space of diameter 1 from #'. Then we can introduce a
metric on the cone ConX = X x [0, l]/X x {0} as follows:

2-d2(x,x')
p((x, t), (x', t')) = y/t2 + (t')2 -2tt'cosy, where cos y =

It is easy to see that (Con X, p) is a metric G-space (the group G acts along X) and
the natural embedding X ^ X x j l j ^ Con X is an isometry, while Con X is not a
proper space.

PROPOSITION 3.5. If a metric G-space X is a G-ANE space, then Con X is a G-AE
space.

PROOF. Suppose that a proper G-space Z e 5f and a partial G-map Z •<-J A \
ConX are given. Let Ao = <p~l(*) C A, where (*) is the vertex of Con X. Then
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for every a € A \ Ao, cp(a) can be represented in the form (<pi(a), ^ (a ) ) , where
q>i : A \ Ao -> X is a continuous G-map and <p2 : A —*• [0,1 ] is a continuous function,
constant on the orbits and such that (P2(A \ Ao) C (0,1] and <P2(A0) = 0.

Since X € G-ANE, the map (px (a) can be extended to a G-map \{r : U -*• X, denned
on an open subset U of Z/G, Z \ Ao D U D A \ Ao. Since the orbit space Z/G
is metrizable, there exists a continuous function £ : Z -> [0,1], constant on orbits,
such that tj\A = <p2 and %\Z\u = 0 by the Urysohn theorem. The desired extension
<j>: Z -*• Con X of the G-map <p is then defined by the formula:

<p =
[(*) ziu. n

PROPOSITION 3.6. Let Hbea compact subgroup of the locally compact Lie group G.
Then G/H is a G-ANE-space.

PROOF. Every compact subgroup H < G smoothly acts on the differentiable man-
ifold G/H. By [21, 1.6.6], G € H-ANE. By Theorem 3.3, G € G-ANE. D

It is convenient to reduce the studying of the equivariant extensors to the cor-
responding easier problem for approximate equivariant extensors. For example, if
some class 3$ of G-spaces is invariant under the product on the semiopen segment
J = [0,1), then 38 is contained in the class G-A[N]E if and only if SS is contained in
the class of the approximate G-A[N]E.

THEOREM 3.7. Suppose that the product XxJofa metric G-space X and J =
[0,1) is a G-AANE-space. Then X is a G-ANE-space.

For the trivial group G this is a well-known fact, which follows from [12] and [18].

PROOF OF THEOREM 3.7. First, we consider any (not necessarily locally finite) cov-
ering a) € cov(X x J) adjoining to the subset X x {1} of X x [0,1]. The latter means
by definition that:

(5) For every neighbourhood U(x, 1) of the point (x, 1) e X x {1} in X x [0,1],
there exists a smaller neighbourhood V(x, 1) such that W c U(x, 1), for every W e co
such that WD V(;c, 1) ^ 0.

Let F be a fundamental set of Z (see Proposition 2.3). Then F x / is a fundamental
set of Z x J. After these preliminaries, we begin the extending of the partial G-map
Z «-J A -^ X. Recall that X x J e G-AA[N]E and construct for the other partial
G-map

Z X J <-* A X J > X X J
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a G - m a p i(r: ZxJ^XxJ [ respect ively \jr : U ->• X x J] such that

yP\(AnF)xj,

We give all details of the proof only for the case when X x J e G-AAE. The
case when X x J e G-AANE is dealt with similarly. Extending \fr over A x {1} by
the formula rfr(a, 1) = (<p(a), 1), we obtain a G-map (which we denote by the same
letter) t/r : Z x J U A x [0, 1] -»• X x 7, the restrictions of which onto the closed G-set
A x [0, 1] and the open G-set Z x J are continuous. Now we apply the following
lemma.

LEMMA 3.8. Suppose that a G-map f : H U £ - > Y is defined on the union HUE
of a closed G-space H €& and open G-subset E of a proper G-space T €&, such
that f\H andf \E are continuous. Then there exists a closed G-subspace K C T such
that HcKcHUE, HHUc lnt(K) andf \Kisa continuous G-map.

Apply Lemma 3.8 for T = Z x [0, 1], H = A x [0, 1], E = Z x J and/ = ijr.
We get a closed G-subset L of Z x [0, 1] such that A x [0, 1] c L, A x [0, 1) C Int L
and -ijr \L is a continuous G-map.

Next, we construct a decreasing sequence L = Ui D Cl U2 D • • • of open G-
neighbourhoods of the set A and a monotone sequence of numbers 0 = t{ < t2 < • • •,
such that lim^oo ?, = 1 and Uk x [0, tk] C L.

Let £ : Z -»• [0, 1] be a continuous real-valued function, constant on the orbits and
such that £([/, \ U2) = 0, £(ty \ ty+1) C [$_,, /,-] for every i > 2, and £(A) = 1.
Clearly, the graph GR = {(z, f (z)) | z e Z) of/ lies in L and the restriction of tfr
onto GR is a continuous G-map. The desired extension is now given by the formula:

0(z) is the projection of \jr(z, |(z)) e X x [0, 1] onto X.

Using diam Wn -> 0, Wn e <y, whenever dist((x, 1), Wn) ->• 0 for some point
(x, 1) e X x {1}, it is easy to check the continuity of <p. •

4. Orbit spaces of equivariant absolute extensors

This section is dedicated to a proof of the following result.

THEOREM 4.1. Let G be a locally compact Lie group and X a proper G-A[N]E
from &. Then the orbit space X/G is an absolute [neighbourhood] extensor.

Since C(«) is a proper GL(n)-space from <3 which is an equivariant absolute
extensor, we obtain as an immediate corollary of Theorem 4.1 that for every closed
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subgroup H < GL(H), the orbit space C(n)/H belongs to the class of absolute
extensors.

We begin with the following embedding theorem.

PROPOSITION 4.2. Let X € &. Then there exist a countable number of finite-
dimensional G-ANE-spaces Rnm in, m e Z+), from the class &, and a topological
G-embeddingi: X «-• n~ m ConR n m .

Let X be equipped by the invariant metric (see Proposition 2.7 (g)). For every point
x and every e > 0, we fix a G-map <pxe : X -> Con(G(;c)) satisfying the properties of
the following proposition.

PROPOSITION 4.3. Let X € <S. Then for every point x € X and every e > 0, there
exists a G-map <p : X -*• Con(G(x)) with q>(x) = x, such that

(5) diam^~'(( V • x) x (0,1]) < s, for some neighbourhood V of the stabilizer Gx

in G.

PROOF. Let r : U(x) -* G(x) be a G-retraction. We may assume that not only
does the G^-kernelr"1^) have diameter less than e, but also diamCVr"1 (x)) < s, for
some neighbourhood V of the compact stabilizer Gx. This is possible by Theorem 2.5
and the following lemma.

LEMMA 4.4. For every neighbourhood O(x) C X, there exists a smaller neigh-
bourhood Oi(x) such that

(6) Gx n cl{£ I g Oi(*) \ O(x) ^ 0} = 0; and
(7) G-O1(x)nr-'(x)C O(x).

The desired G-map of X is then given by the formula:

[(/•(*'),£(*')) x'eU(x);
<PX [(*) x'4U(x).

Here, the function £:X-*[0,1] is constant on orbits, £(x)=l and%(X\U(x))=0. D

Since by hypothesis X/G is metrizable, there exists a a -disjoint basis 38 =
{W/Ĵ eM of open subsets, such that 2 = \_\@n, where @n = {W }̂MgM,cM i s a

disjoint family and L I ^ Mn = M.

DEFINITION 4.5. A pair v = (fit, fi2) £ MxM of indices is said to be canonical, if

(8) WMI <E W^ (that is, WMl C Ww); and
there exist x € X and E > 0 such that:
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(9) x € n~l Ww C Vxe and Uxe C n~l W^, where

V*e = 9»(GX x (1/2,1]) and Uxe = tp;t\Gx x (0,1]),

and n : X -*• X/G is the orbit projection.

We denote the set of all canonical pairs by K c M x M.

PROPOSITION 4.6. There exists a correspondence v e K i—• (*„, ev) € X x R+

JMCA f/iaf (*,,, ev) satisfies (9) anJ

(10) For every closed subset F C X andx & F there exists a canonical pair v e K
with <pXt,Eu(x) £ <px%,eXF) (that is, (px^v separates the point x from the closed subset F).

PROOF. Let

j(v) = inf{e > 0 | (x, s) satisfies (9) for some point x e X).

It is evident that i(v) > 0. Therefore, every v e K yields a pair (xv, ev) possessing
(9) and such that

(11) ev <2i(v) .

Let 4a = p(x, F). Since SS is a basis, there exist v = (jii, fi2) G K and e < a
such that

x € 7T"1 WM, C V« C t/« C JT"1 Wm.

It follows from (11) that sv < 2a.
Let us prove that v is a desired pair. Suppose that a neighbourhood V of Gx,

satisfies the hypotheses of Proposition 4.3:

diam^"^((Vxy) x (0,1]) < ev < 2a.

Since x € Vx^, it follows that<p,^(*) = (gxv, t), t > 1/2.
Pick a neighbourhood W = g Vg~l of e € G. Then

(1/2,1]

and

A = «C(W-SJCMx (1/2,1])

C ^ ; i ( g • V • x» x (1/2, l]) = g. cp;X(V- xM x (1/2, 1]).

By the invariance of the metric, the latter set has diameter smaller than 2a, hence the
diameter of the open neighbourhood A of x is also less than 2a. As a consequence, it
follows that A n F = 0 and ipx^ (x) <£. <px.Sv(F). D
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PROOF OF PROPOSITION 4.2. Let us introduce a countable family of spaces:

Rnm = H (G(*x) I V = 0*1. A*2) € * , Ml € # „ M2 € ^ m } .

Since G(xv) e G-ANE, Rnm is also a G-ANE. Since ^ m is a disjoint family and

<Px^Ux\^-'wn) = (*) G Con(G(jcw)),

we obtain that

\//nm:X -* COIiRnm, fnm\^Wn = <Px,8,, VOimlxXUff-'W,., = (* )

is a well-defined G-map. Since [ifrnm] separates points from closed subsets, the
diagonal product

is a topological G-embedding. D

PROPOSITION 4.7. Suppose that a G-space H is the limit of the inverse spectrum
[Hi +- H2 «— H3 •<—•••} of G-spaces H, and G-maps qit and that

(12) The stabilizer Gh of any point h € Ht\ H? is compact.

Then the orbit spaces H/ G and hm {Hi/ G t- H2/ G $- H3/ G < } are homeo-

morphic.

PROOF. The homeomorphism <p : H/G -> lim{////G, qt} is given by the formula:

<p([h]) = ( [ A , ] , [h2],...), w h e r e h = (ht) € H.

It is easy to verify that <p is continuous and surjective. We shall thus only verify that
<p is injective. Assume that [h] ^ [e], where h = (hi), e = (e,) € H and let us show
that then <p([h]) ^ <p([e]). It suffices to prove the following lemma. •

LEMMA 4.8. There exists an integer i such that e, $ G(ht).

PROOF. If e, h € HG, then et ^ /i, = G • ht, for some i. So we may assume that
h i HG, that is, Gh = DGh. ^ G. By (12) and inclusion GA|+I C Ghl, almost all
Ghj 's differ from G and almost all Ghi are compact.

Suppose to the contrary, that e, = giht, gt e G for every /. It is easy to show that
then

= gk+ihk = • • • = gthk
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for every k < I. Therefore, gi € gk- Ght, for every k < I.
Since the stabilizer Ghm is compact for some m, it follows that the sequence

{gi}i>m C gm • Ghm converges to gQ e gm • Ghm. Analogously, one can show that
go e gp • Ghp, for all p > m. Consequently, gohp = gphp = ep, for all p > m, that
is, e = goh. Contradiction. •

PROOF OF THEOREM 4.1. Using the hypotheses, let us fix a topological G-embed-
ding (Proposition 4.2):

Con Rnm = D

and a closed topological embedding j : X/ G «->• L of the orbit space X/G into a
linear normed space L. It is obvious that

ix(jo:r)=e: X^->LxD

is a closed topological G-embedding. Since the image e{X) does not contain points
with a noncompact stabilizer, e(X) does not intersect the closed set L x {*}, where
{*} is the product of the vertices of the cone-factors of D. Therefore, e(X) lies in the
proper open G-space If = L x (D \ {*}).

Since L x D € G-A£, it follows that If € G-AN£. Since X € G-AtfE, there
exists a G-retraction r : U -*• X of some G-neighbourhood {/, e(X) C U C U.
Hence, r : U/G -*• X/G is a retraction and the inclusion X/G € ANE is reduced to
another inclusion U/G e ANE.

If we now prove that D/G € A£, then (L x £>)/G = L x (D/G) e AE, and
therefore, £// G e A/VE as an open subset of the orbit space. To complete the proof of
the theorem, it thus remains to verify that D/G € AE.

Let us introduce the following notations: Dp = nn+m<r ^-on ^«« a n^ Qr '• &r+i -*•
Dr is a projection. Since Rnm is metrized by a complete invariant metric, it follows
that Con Rnm and Dr are also metrized by a complete invariant metric. Thus, the orbit
space Dr/ G is also metrized by a complete metric. It follows from Dr e G-AE and
Proposition 3.2 that Dr/G e LCnC. Due to its countable-dimensionality and the
Haver theorem [15] we obtain that Dr/ G 6 AE.

Since Con Rr+\ e AE, the projection qm is a fiberwise G-contractible map, that is,
there exist fiberwise G-maps s : Dr -*• Dr+l, qr o s = Id and // : Dr+] x [0,1] -»•
£>r+i, qr o H — qr, such that //0 = Id and Im(tfi) = Im(5). Passing to the orbit
spaces we obtain fiberwise contractible maps qr : Dr+l/G -*• Dr/G, that is, qr is
a fine homotopy equivalence. Since all the conditions of Curtis's theorem [11] are
satisfied, we conclude that lgm{D,7 G, qt] is an AE. But by Proposition 4.7 this inverse
limit coincides with the orbit space D/ G. •
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5. Proof of Theorem 1.2

By Theorem 2.6 and Proposition 3.1, there exists a GL(n)-retraction r : C(n) -»•
GL(n)/O(n) = <£, which is nevertheless unacceptable for us because of its noncon-
structibility. Another geometric GL(n)-retraction, generated by the Lowner ellipsoid,
will be more convenient.

THEOREM 5.1 (see [17]). For every convex body V e C(n), there exists a unique
ellipsoid Ev € C(n), which contains V and has the minimal Euclidean volume.

The GL(n)-invariance of £V(thatis, EAV = AEvforai\A e GL(AO) then follows
by minimality of the volume. A continuous dependence Ev on V with respect to
the Hausdorff metric was proved in [5]. Therefore, JSf : C(n) -*• <£, J£?(V) = Ev,
is a GL(n)-retraction of C(n) onto the ellipsoid orbit <£ (J£f is called the Lowner
retraction).

Since the symmetry group SymB» of B" is O(n), the O(n)-slice L(n) = 3f~l(B")
is an 0(/j)-space. In other words, L(n) consists of all bodies V e C(n) whose
minimal Lowner ellipsoid coincides with B". The orbit space Q(n) = C(/i)/GL(n)
is homeomorphic to L(n)/O(n). Therefore, by Theorem 4.1,

L(n)/O(n) = Q(n) € AE and Qg = Q(n) \ {Eucl.} = Lg(n)/O(n) € ANE,

where Lg = L(n) \ [B"), and so Theorem 1.2 is reduced to the following:

THEOREM 5.2. Qg(2) = Lg{2)/0{2) is a Hilbert cube manifold.

We prove Theorem 5.2 in three main steps which are carefully outlined below.

Step 1. Reduction of Theorem 5.2 to Proposition 5.3 and the Toruriczyk
characterization for <2-manifoIds

PROPOSITION 5.3. For every integer n > 2 and every 8 > 0, there exist O(n)-maps
ft : Lg(n) -» Lg(n), i e{ l ,2J , such that

(1) / , and Idi,,(n) are 8-close; and
(2) ifn = 2 then Im/, f~l Im/2 = 0.

PROOF OF THEOREM 5.2. According to the Toruriczyk characterization criterion
[19], in order to prove Theorem 5.2, it suffices to check that for every e > 0 and
for all pairs of maps <pt : I°° —*• Qg(n), i € {1,2}, there are continuous maps
gt : 700 -> Qg (n), e-close to <ph i € {1,2}, such that if n = 2 then Im g, n Im g2 = 0.
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Since F = Ulm^, and Fi = n~x{F) are compact (here n : Le{n) -*• Lg(n)/O(n)
is the orbit projection), there exists S > 0 such that dist(7r(a), n(b)) < s, for every
a, b e Fu with dist(a, b) < S.

By Proposition 5.3 for every n > 2, there are 0(n)-maps / , : Le (n) - • Lg(n),
i e {1,2}, satisfying (l)for<5 > 0and(2)forn = 2. The induced maps/" of the orbit
spaces, i € {1,2}, have the following properties for n = 2:

p (fi\F, ldf\ < e and n Im/~ = 0.

Finally, the desired maps g, : I°° -* QgQ), i e {1,2}, are defined by the formula
gi=fi°<Pi- •

Step 2. Construction of/.

Let us consider so-called contact map a : L(n) -*• exp(5n"'), defined by a ( V) =
V n S""1. The following lemma, whose routine verification is omitted, records several
basic properties of a.

LEMMA 5.4. (3) a preserves the action ofO(n), a(A • V) = A • a(V), for every
A € O(n);
(4) a(V) ^ 0,forevery V 6 L(n);
(5) a(V) is a central symmetric subset ofS"~l; and
(6) a(V) = S"-' if and only ifV = B".

LEMMA 5.5. (7) Let V C W C B", where V e L(n) and W € C(n). Then
W € L(n).
(8) For every subset A c Bn, a(Conv(A)) = Conv(A) D 5""1 = A D 5""'.

PROOF. (7) The minimal Lowner ellipsoid for W and V coincides with B". Hence
WeL(n).

In order to prove (8), it suffices to observe that every point s e Conv(A) n S"~l is
an extreme point of B" and therefore is also an extreme point of Conv(A) c B". But
all extreme points of Conv(A) are contained in A. Therefore s € A. •

Unfortunately, the contact map a is discontinuous. The following reasoning com-
pensates for this unpleasant moment. Let us denote by JtOy the nonoriented angle
between the rays [Ox) and [0v), wherex, y € B" and*, v ^ 0. Next, we introduce a
version of the closed e-neighbourhood of a set, which will be convenient for us. Let
B > 0 and V e L(n). By Vc we denote

V U {x € B" \ {0} | there exists v e V with ||JC|| = ||v|| andxOy < s}.
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It is clear that Ve preserves the action of O(n) : (g • V)s = g • Vs, for every g e
O(n), V e LE(n). The compactness of V implies that Ve is compact; the inequality
||x — y\\ < xOy, for every ||x|| = \\y\\, implies that

(9) V c VE c ~N( V; e), where 77( V; s) is a closed e-neighbourhood of V in Bn.

We need Ve to be continuously dependent on V and e.

PROPOSITION 5.6. Letek-> e > 0 and Vk € L(n) - • V. Then (Vk)ek - • Ve.

PROOF. Let Rk = (Vk)et and R = Ve. Suppose that the assertion of the proposition
is false, that is, that Rk •/*• R. Then there exist a > 0 and a sequence &, - • oo such
that

(10) x0 # N(Rk.;a), for somcxo e R; or
(11) there exists xt € Rki, i > 1, with *, ^ N(R;a).

In the first case, XoOyo - £ ' f° r s o m e >o e V. w i m lljoll = lUoll- Since Vk -> V,
there exists a sequence ^ e H -> y0. It is easy to see that there exists a sequence
xk € Bn -+ x0, xk0yk < et, IJJCt || = \\yk||. It means that xk e (Vt)£t = Rk, for every A:
and the limit point x0 of [xk] belongs to N(Rkj;a), for some £,. This contradicts (10).

In the second case, there exists a sequence {y, € V̂ .} such that ||y,-|| = ||JC,- ||
and yfixj < eki. By compactness of B", we can suppose that there exist the limits
yi ->• y e V and x,; -*• x e B". Then \\y\\ = ||JC|| and xOy < e. Therefore,
x e Ve = R. This contradicts the fact that *; £ N(R; a). •

Consider the following set-valued map:

F:Le(n) -• K+, F(V) = { / > 0 | fi"\iV(V;0 ^ 0 } ,

where Â ( V; 0 is the open /-neighbourhood of V in B".
Since N(V;/) is a continuous set-valued map from Ls(n) x K+ into fi" (in the

Hausdorff metric) and B" \ V ^ 0, the map F is lower semicontinuous and has domain
Le(n). Let us consider the function / : Graph(F) —>• K+ given by / (V, t) = t and
defined on the graph F. Then the function g : Le(n) -> K+, defined by

g(V) = sup{t > 0 | Bn \ N(V;t) ^ 0} = s u p { f ( V , t)\(V,t)e G r a p h ( F ) }

is well defined and lower semi-continuous [9, page 48] (in set-valued analysis g is
called a marginal function [24]).

By the Dowker theorem [13], there exists a continuous function y : Le(n) —•
R+ with )/(V) < 5 • g(V), V € L£(n). By Proposition 5.6, it is clear that VY(V)

continuously depends on V e Le(n). The desired continuous O(«)-map/! : Le(n) —>
Lc(n) is defined by setting/i(V) =Conv(VJ,(V)). By (9) , / ! andldtc(n) arecS-close.
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Let dist(v, w) be the spherical distance between v, w e Sn~l and Nsph(A; R) be the
closed R -neighbourhood of the subset A C S"~' with respect to the spherical distance.
By Lemma 5.5 (8),

a O / , (V) = Conv(Vy(V)) n 5""1 = VylV) n S""' = ^ ( V ; y ( V ) ) .

The last equality means the boundary of fx (V) to contain an open (nonempty) subset
S""1, for every V e Ls(n). The mapping/2 will be constructed without such property
and therefore Im/, n Im/2 = 0.

Step 3. Construction of f2

THEOREM 5.7. Foreverya > 0, there exists an O(n) -mapping F : Lg(ri) -*• C(n)
such that

(12) p(F, ldUM) <o;and
(13) for every V € Ls{n), F(V) = Conv(^7=1 A.,-Df), wAere D, is a/i Hrorbit, Hi
is a proper subgroup of O(n) and X^Li ẑ = 1« ^i — 0-

In connection with this theorem we formulate a geometric conjecture, which is
trivially true in dimension 2. If Conjecture 5.8 is valid then our proof of Theorem 1.2
immediately generalizes to arbitrary n > 2.

CONJECTURE 5.8. The body £™=1 ̂ A (Aence a/so Conv(£7=i A.,-0,0) in
(13) 'essentially differs' from the ball, that is, its boundary does not contain

open subsets of the sphere.

PROOF. By the Palais theorem (Theorem 2.5) any orbit O(n) V, V e Lg(,n), allows
an O (n) -retraction r'v : ̂ v -»• O(n)V, r'v(V) = V. Here we can assume that:
(14) pH(W, r'v (W)) < a/2, for all W<=<%v.

LEMMA 5.9. For every 9 > 0 there exists a finite set K C Bd V such that:

(i) W = Conv(Stv K) and V have equal stabilizers; and
(ii) pH(V, W)<9.

PROOF. It follows from the existence of slices that for some numbers 6 > 9{ > 0
from pH(V, V) < 9 and Sty 2 Stv, it always follows that Sty = Stv. Consider a
discrete subset K c Bd V such that pH( V, Conv K) < 0,. Then

V 2 Conv(StK K) = W 2 Conv K

and therefore pw (V, W) < 9X. Next, it follows from St ̂  = StcOnv<stv JO = StStl, * 2 St v

and p( V, W) < 0! that Stw = Stv. •
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For every V e Lg(n), fix V = Conv(HKv) e C(n) such that H = Sty, Kv C
Bd V, \KV\ < oo and pH( V, V) < a/2. Let us introduce the composition

r = h v o r': <&V - • O(n) V -* O(n) V,

where h v(g V) = g V is an O(n)-homeomorphism.
If we get V sufficiently close to V then we obtain the following:

(15) dist( W, TV W) < a, for every W € &v.

We inscribe a locally finite cover {7^} into the open cover {^v/ O(n)} of the orbit
space Lg{n)/O(n) = Qg(n). Let 7; c n(UvJ.

We now define the desired O(w)-map F : Lg(n) —> C(n) as follows:

W

where {y (̂-)} is a continuous partition of unity, subordinate to the cover
We verify the conditions (12) and (13) of Theorem 5.7. Let Tu . . . . Tm € {7M}

be all the elements which contain n W and let 7] c TT(UV.). It follows by (4) that
PH( W, rVj(W)) < a, for all i. Then by convexity of the ball of radius a at C(n) we
have that dist( W, FW) <a. Thus (12) has been verified.

Condition (13) follows, since H Conv K is a union of a finite number of H -orbits
for every proper subgroup H < O(n) and finite K. •

It is well known [2] that there exists a O(n)-retraction R : C(n) —*• L(ji) which
takes Cg («) into Lg (n). But we need the following precise result which follows from
geometric considerations:

THEOREM 5.10. There exists a continuous O(n)-retraction R : C(n) -*• L(n),
such that V and R(V) are affinely equivalent, for every V € C(ri).

PROOF. Let L( V) be the Lowner ellipsoid, circumscribed around V, g € GL(n),
g(L(V)) = B". As is well known, g can be represented as g = g2 o gu where
g2 6 O(n) and g, is self-adjoint. Here /?(V) = g,( V). •

Since L(n) is compact, for every 8 > 0 there exists a > 0, a < 8/2, such that for
every V € L(n) and every W e C(n),

pH(V, W) < a =» pH(W, R(W)) < 8/2.

By Theorem 5.7 there is a mapping F : Lg(n) —»• C(«) such that p(F, Id/,^(n)) < <r.
The desired map f2 is /? o F.
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Indeed,

< pH(V, F(V)) + pH(F(V), R(FV)) <a+8/2<8.

Since for n = 2, the boundary F( V), V e Lg(ri), does not contain an open subset
of a sphere, / 2 ( V) which is affinely equivalent F( V), also does not contain any open
subsets of the sphere. Therefore, lmf{ n Im/2 = 0. •
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