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Abstract. We prove the following generalization of a theorem of Ferry concerning selections of
strongly regular multivalued maps onto the class of paracompact spaces: Let8: X → (Z, ρ) be a
map of a paracompact spaceX into a metric space(Z, ρ)whose values8(x) are complete subspaces
of Z and absolute extensors (AE), for everyx ∈ X. Suppose that8 can be represented as8 = 0 ◦ϕ,
whereϕ: X → Y is a continuous singlevalued map ofX onto some finite-dimensional paracompact
spaceY and0: Y → (Z, ρ) is a strongly regular map. Then for every closed subsetA ⊂ X and
every selectionr: A → Z of the map8|A: A → Z, there exists an extensionr̂: X → Z of r such
that r̂ is a selection of the map8. We also prove a local version of this theorem.
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1. Introduction

A classical theorem of Michael [3] asserts that every lower semicontinuous (lsc)
map8: X → Z of an(n+ 1)-dimensional paracompact spaceX into a complete
metric spaceZ has a continuous selection, provided that all values8(x) aren-
connected closed subsets and that the collection{8(x) | x ∈ X} of all values of
8 is an equi-LCn family (we quote here the global version from [3]). The problem
of finding purely topological conditions for the collection{8(x) | x ∈ X} which
would guarantee the existence of selections of8 in the case whenX is infinite-
dimensional, has been around ever since the theory of selections was originated
in 1956. It remains unsolved and there are good reasons for the absence of such a
solution [4].

In 1974 Pixley [6] generalized a construction of Borsuk and obtained an ex-
ample of a lower semicontinuous map of the Hilbert cube into itself, all values
of which are cubes (of various dimensions), the collection of all values has the



346 S. M. AGEEV AND D. REPOVŠ

property of uniform local absolute extendability (UE-LAE), but the map has no
selection. It is natural in such a situation to strengthen the type of continuity of the
map8 and preserve good topological properties of the collection{8(x) | x ∈ X}.
Such an approach was already suggested by Pixley [6]. Namely, he proposed to
either strengthen the UE-LAE property to the uniform Lefschetz property (UE-
Lf), or to consider continuous instead of semicontinuous maps. The first approach
was carried out for compact metric spaces and continuous maps by Moiseev [5].

In the present paper we make the first step in the other direction. Namely, we
strengthen semicontinuity of8 not only to continuity but to strong regular conti-
nuity of the map8, which roughly speaking, means that for close pointsx, x′ ∈ X,
their values8(x) and8(x′) are homotopy equivalent and the homotopies do not
significantly change the distance. This property plays a significant role in one of the
main results of Ferry [1], to the effect that every strongly regular compact-valued
mapping8: Y → Q of a finite-dimensional separable metric spaceY into the
Hilbert cubeQ, all of whose images8(y) of pointsy ∈ Y are absolute extensors
(AE), is a fiberwise retraction of the constant map8′: Y → Q, which sends every
pointy ∈ Y onto the entireQ,8′(y) = Q. This means that the restriction of some
continuous mapr: Y ×Q → Y ×Q onto{y} ×Q is a retraction of{y} ×8(y).
Therefore the selection properties of the maps8 and8′ are the same.

The main result of the present paper is a generalization of Ferry’s theorem to
the class of all paracompact spaces:

THEOREM 1.1. Let8: X → (Z, ρ) be a map of a paracompact spaceX into a
metric space(Z, ρ) whose values8(x) are complete subspaces ofZ and absolute
extensors(AE), for everyx ∈ X. Suppose that8 can be represented as8 =
0 ◦ ϕ, whereϕ: X → Y is a continuous singlevalued map ofX onto some finite-
dimensional paracompact spaceY and0: Y → (Z, ρ) is a strongly regular map.
Then for every closed subsetA ⊂ X and every selectionr: A → Z of the map
8|A: A → Z, there exists an extension̂r: X → Z of r such thatr̂ is a selection
of8.

We also prove the following local version of Theorem 1.1:

THEOREM 1.2. Suppose that we replace theAE-condition in the hypotheses of
Theorem1.1 by the assumption that the values8(x) are absolute neighborhood
extensors(ANE). Then the selectionr can be extended locally, i.e., there exist an
open setU ⊃ A and an extension̂r: U → Z such thatr̂ is a selection of the
restriction8|U : U → Z.

Note that if the selectionr can be factorized through a closed subset ofY , then
the proofs of Theorems 1.1 and 1.2 are easily reduced to the finite-dimensional
selection theorem.

A simple argument shows that under the hypotheses of Theorem 1.1, the multi-
valued map8: X → (Z, ρ) is a fiberwise retraction of the constant map8′: X →
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L,8′(x) = L, ofX onto a linear normed spaceLwhich contains(Z, ρ) as a closed
subspace.

Our proof is based on the fact (cf. Theorem 3.2) that strong regularity of a mul-
tivalued map8 with ANE-values implies the uniform super Lefschetz property of
8. This allows for an application in the proof of a well-known method of extending
partial δ-realizations of polyhedra to their fullε-realizations. The main technical
tool of the proof is the notion of thesupercover, which represents a family of the
covers of one topological space, parametrized by the points of another topological
space, with some additional properties.

We shall denote the family of all open covers of the spaceZ by cov(Z). Every
point z ∈ Z is contained in several elements of the cover{Wµ} ∈ cov(Z). By
the Axiom of choice there exists a mappingz ∈ Z 7→ Wµ = Wµ(z), such that
z ∈ Wµ. We shall callz thecenterof Wµ(z). In this way we arrive at the notion of
thecenteredcovers ofZ, i.e., coversw = {W } ∈ cov(Z) with a fixed map of sets
z ∈ Z 7→ W = W(z) ∈ w, such thatz ∈ W(z). So a centered cover can be written
as{W(z) | z ∈ W(z), for everyz ∈ Z} and has the cardinality of the spaceZ. We
shall denote the family of all centered covers ofZ by cov0(Z).

DEFINITION 1.3. (a) LetX be any set andZ any topological space. A map
1: X → cov(Z), given by1(x) = 1x is called anX-coverof the spaceZ.

(b) LetX andZ be any topological spaces andw = {W(x)} ∈ cov0(X). AnX-
cover1: X → cov(Z) of the spaceZ is called anw-coverof Z if for everyx ∈ X
and everyx′ ∈ W(x), the cover1x is a refinement of the cover1x ′,1x > 1x ′.

(c) AnX-cover of a spaceZ is called anX-supercover(or simply asupercover
of Z when it is clear whatX is) if it is anw-cover ofZ, for somew ∈ cov0(X).

Every open coverω ∈ cov(X×Z) (whereX is any topological space) generates
anX-cover, defined by the following formula:

(1) 1x = {U ⊂ Z | {x} × U is the intersection of some element ofω with the
fiber {x} × Z}.

In fact we can prove a more general proposition: EveryX-cover is precisely the
cover of the productX×Z (not necessarily open) whose elements are open subsets
of the fibers{x} × Z.

A trivial example of anX-supercoverof a spaceZ is a map1: X → {δ},
whereδ is a fixed cover ofZ. A less trivial example is the rectangle productω =
{Oλ ×Wµ} ∈ cov(X × Z), satisfying the following condition:

(2) For everyx ∈ X, there exists a neighborhoodO(x) such thatO(x) ⊂ Oλ,
wheneverx ∈ Oλ.

It can easily be seen that the formula (2) generates a supercover1: X →
cov(Z) of the spaceZ. Let us now consider the most significant example of a
supercover, revealing the nature of this notion, which shall hereafter be called a
canonicalsupercover.
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EXAMPLE 1.4. For everyY -cover5 of a spaceZ and for every centered cover
w ∈ cov0(Y ) of a paracompact spaceY , there exists acanonicalsupercover8:
Y → cov(Z) of Z, with the following property:

(3) For everyy ∈ Y , there exist an neighborhoodO(y) and an elementW(y1) ∈
w, such thaty ∈ W(y1) and the cover8y2 is a refinement of the cover5y1,
for everyy2 ∈ O(y), i.e.,8y2 > 5y1.

Construction. Let w = {W(y) | y ∈ Y } ∈ cov0(Y ) and letw′ = {W ′
λ |

λ ∈ 3} ∈ cov(Y ) be a locally finite refinement of the coverw. Without loss of
generality, we can assume that clw′ = {clW ′

λ | λ ∈ 3} > w. For everyλ ∈ 3, fix
a pointy(λ) ∈ Y such that clW ′

λ ⊂ W(y(λ)).
Let

8y =
∧{

5y(λ) | λ ∈ 3, y ∈ clW ′
λ ⊂ W(y(λ))

}
.

Clearly, for every pointy one considers in this equality only the intersection of
finitely many covers5y(λ). As usually, the intersection

∧n
i=1wi of finitely many

coversw1, . . . , wn is the cover which consists of the intersections
⋂{Wi | Wi ∈

wi, i 6 n} of elements of the coverswi.
It is easy to see that8: Y → cov(Z) is a supercover of the spaceZ with the

property (3). LetO(y) ⊂ W ′
λ be a neighborhood, intersecting only those elements

of clw′ which contain the pointy. Then8y > 8y2 and8y2 > 5y(λ), for every
y2 ∈ O(y). This supercover1 will be called thecanonical supercoverinduced by
y 7→ 5y and the cover{W(y)}.

Every continuous mapϕ: X → Y induces a map which transfers everyY -
supercover1 of Z into anX-supercover1ϕ of Z via the formula(1ϕ)x = 1ϕ(x),
x ∈ X. For properties ofX-supercovers whenX is paracompact, see Section 3. In
conclusion, we state a result which we shall need in the proofs of Theorems 1.1
and 1.2. It essentially allows for a construction of a genuine selectionr ′ from a
1-selectionr, with a control of the distance of ‘approximate’ selectionsr from the
‘exact’ selectionsr ′ of the map8. This theorem is an analogue of [3, Theorem 4.1].

THEOREM 1.5. Let ϕ: X → Y , 0: Y → (Z, ρ) and8 = 0 ◦ ϕ be as in the
hypotheses of Theorem1.2. Then for everyY -supercoverE: Y → cov(Z), there
exists aY -supercover1: Y → cov(Z) of the spaceZ, such that for every(1ϕ)-
selectionr: X → Z of the map8, there exists an exact selectionr ′: X → Z of
the map8 which is(Eϕ)-nearr.

If, in addition8(x) ∈ AE, for everyx ∈ X, then for the trivialY -supercover
E(y) = {Z}, theY -supercover1 is also trivial and hence, there always exists an
exact selectionr ′: X → Z.

In Theorem 1.5,(1ϕ) and(Eϕ) areX-supercovers ofZ, induced by the mapϕ.
Also, r is (Eϕ)-nearr ′ means that for everyx ∈ X, the pointsr(x) andr ′(x) lie in
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some common element of the coverEϕx , and a(1ϕ)-selection means that for every
x ∈ X, the pointr(x) lies in some element of the cover1ϕ

x which intersects the set
8(x).

2. Preliminaries

By mesh(w) we shall denote sup{diamU | U ∈ w}. Thestar of the setA ⊂ X

with respect to the coverw ∈ cov(X) is the set

st(A,w) =
⋃

{U | U ∈ w andU ∩ A 6= ∅}.
Thestar of a coverw with respect to another coverw′ is the cover

St(w,w′) = {St(U,w′) | U ∈ w} .
Multiple stars St(w1,St(w2, . . . , (wn), . . .) will be denoted bywn ◦ · · · ◦ w2 ◦ w1

and ifwi are the same, then by(w1)
k. Thebodyof a system of open setsw is the

set ⋃
w =

⋃
{U | U ∈ w} .

As always,w > w1 will mean that the coverw is a refinement ofw1. If f, g: X →
Y are any maps andw ∈ cov(Y ), then the property thatf is w-closeto g will be
denoted byρ(f, g) < w.

The nerveof a coverw = {Uβ | β ∈ B} is the polyhedronN 〈w〉 in the
Whitehead weak topology, whose vertices〈Uβ〉 are in one-to-one correspondence
with the index setB, andw = 〈Uβ1, . . . , Uβs 〉 is an (s − 1)-dimensional sim-
plex of N 〈w〉 with vertices〈Uβi 〉 if and only if

⋂
Uβi 6= ∅. Furthermore, the

k-dimensionalskeletonof the nerveN 〈w〉 is the subpolyhedronN 〈w〉(k) of N 〈w〉,
consisting of at mostk-dimensional simplices. Finally,N 〈w〉(−1) = ∅.

If the imagef (σ ) of a coverσ under the mapf : A → B is a refinement of the
coverw, then a simplicial mapπ(σ,w): N 〈σ 〉 → N 〈w〉 is defined, taking every
vertex〈H 〉 ∈ N 〈σ 〉 into a vertex〈U 〉 ∈ N 〈w〉 such thatf (H) ⊂ U . We shall say
that the mapπ is inducedby the relationf (σ ) > w. A mapϑ : X → N 〈w〉 is

said to becanonical if the preimageϑ−1(
◦
St〈U 〉) of every open star

◦
St〈U 〉 of the

elementU ∈ w, is contained inU . It is well known that for every open coverw of
a paracompact spaceX there exists a canonical map [2].

PROPOSITION 2.1.Let ϕ: X → Y be a map between paracompact spacesX

andY , and suppose thatdimY 6 n. Then for every coverw ∈ cov(Y ), there exists
a coverτ ∈ cov(X) with ϕ(τ) > w and a simplicial mapπ : N 〈τ 〉 → N 〈w〉,
induced by the relationϕ(τ) > w, such that for every canonical mapϑ : X →
N 〈τ 〉 the imageπ ◦ ϑ(X) ⊂ N 〈w〉(n) (or equivalently,ϑ(X) ⊂ π−1(N 〈w〉(n))).

Proof. Since by hypothesis, dimY 6 n, one can construct a refinementw′ ∈
cov(Y ) of w of order at mostn+ 1. We take forτ the coverϕ−1(w′) and forπ the
composition

N 〈τ 〉 π1→ N 〈w′〉 π2→ N 〈w〉
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of simplicial maps, induced by the relationsϕ(τ) > w′ andw′ > w, respectively.
Since the nerveN 〈w′〉 coincides with the skeletonN 〈w′〉(n) it follows that

(π ◦ ϑ)(X) = π2(π1(ϑ(X))) ⊂ π2(N 〈w′〉(n)) ⊂ N 〈w〉(n). 2
We shall assume throughout the paper that all single-valued maps are continu-

ous, unless they arise as a result of some special constructions – in which case we
shall separately check whether the property of continuity holds or not.

Next, we introduce some notions from the multivalued analysis. A multivalued
map8: X → Z is said to beclosed-valued(resp.compact-valued, complete-
valued) if the image8(x) of every pointx ∈ X is a closed (resp. compact,
complete) subset ofZ. A multivalued map8: X → Z is said to besurjective
if 8(X) = ⋃{8(x) | x ∈ X} coincides withZ.

A singlevalued mapr: X → Z is said to be aselectionof a map8: X → Z

if r(x) ∈ 8(x), for every pointx ∈ X. A multivalued map8: X → Z is said to
be continuousif for every pointx0 ∈ X and every coverε ∈ cov(Z0) of the set
Z0 = 8(X), there exists a neighborhoodU(x0) ⊂ X, such that for every pair of
pointsa, b ∈ U(x0), it follows that8(a) ⊂ St(8(b), ε).

A multivalued map8: X → Z is said to bestrongly regularif for every point
x0 ∈ X and every coverε ∈ cov(Z0) of Z0 = 8(X), there exists a neighborhood
U(x0) ⊂ X such that for every pointx′ ∈ U(x0), there exist mapsg: 8(x0) →
8(x′), f : 8(x′) → 8(x0) and homotopiesht : 8(x0) → 8(x0), kt : 8(x′) →
8(x′) with the following properties:

(i) ρ(g, Id8(x0)) < ε andρ(f, Id8(x ′)) < ε;
(ii) For everyt ∈ [0,1], ρ(ht , Id8(x0)) < ε andρ(kt , Id8(x ′)) < ε; and

(iii) h0 = f ◦ g, k0 = g ◦ f , h1 = Id8(x0) andk1 = Id8(x ′).

Note that every strongly regular map is continuous. It is also clear that8: X →
Z is strongly regular (resp. continuous) if and only if8: X → 8(X) is strongly
regular (resp. continuous). For the statements and proofs of more important facts
on strongly regular maps, we need to introduce some concepts connected with the
name of Lefschetz.

DEFINITION 2.2. Letα be a system of open subsets of a spaceZ and letN0

be a subpolyhedron of the polyhedronN , containing all vertices. Apartial α-

realization of the polyhedronN is a mapN0
f→ Z such that for every simplex

1 ∈ N , the setf (1 ∩ N0) is contained in some elementV ∈ α.

DEFINITION 2.3. A family G = {Zα} of closed subsets of a metric spaceZ is
said to have theuniform Lefschetzproperty (equi-Lf), provided that for every cover
δ ∈ cov(

⋃
G) of the body of the familyG, there exists a coverγ ∈ cov(

⋃
G) such

that for every setZα, every partialγ -realizationN ⊂ N0
ξ→ Zα of any polyhedron

N can be extended to a fullδ-realizationN
ξ→ Zα.
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Remarks. (1) If the body
⋃

G is closed inZ, then instead of a cover of the body⋃
G in Definition 2.3 one must take a cover of the spaceZ itself.
(2) The dependence ofγ onδ will be denoted byγ = equi-LfG(δ). If the family

G consists of only one elementZ0, then we shall writeγ = LfZ0(δ).

DEFINITION 2.4. Topological spaceZ is called anabsolute[neighborhood]
extensor, if every continuous mapϕ: A → Z, defined on a closed subspaceA of
a metric spaceM, can be continuously extended on the whole spaceM [on some
neighborhood ofA]. A class of all absolute [neighborhood] extensors is denoted
by A[N]E.

It is known that the class of absolute [neighborhood] retracts (A[N]R) is con-
tained in the class of A[N]E and these two classes coincide for metric spaces [2].
Another well-known fact deals with a coincidence of ANE’s and spaces with Lef-
schetz’s property: A metric spaceZ is an ANE if and only if for everyδ ∈ cov(Z),
there existsγ ∈ cov(Z) such thatγ = LfZ(δ) (see [2]).

DEFINITION 2.5. A closed-valued map8: X → Z is said to beuniformly
Lefschetzif the family {8(x) | x ∈ X} of its values has the equi-Lf property.

It is clear, that the uniform Lefschetz property implies uniform local absolute
extendability and the equi-LC∞ property of the family{8(x) | x ∈ X} (cf. [2, 6]).

3. Uniformly Super LefschetzM-Maps

Note that the concept of a uniform Lefschetz property is very useful. However, it
is more restrictive than the notion ofstrongregularity. In order to be able to com-
pare them with respect to their strength and usefulness, we give below a modified
version of Definition 2.5 in which covers have been replaced by supercovers.

DEFINITION 3.1. A closed map8: X → Z is said to beuniformly super
Lefschetzif the family of its values{8(x) | x ∈ X} has the following property:

(A) For everyX-supercoverE: X → Z of the spaceZ there exists anX-super-
cover1: X → Z such that for every pointx ∈ X and every partial1x-

realizationN ⊃ M
ξ→ 8(x) of any polyhedronN , there exists its extension

to a fullEx-realizationN
ζ→ 8(x).

Remark. The dependence of the supercover1 on the supercoverE will be
denoted by1 = (A)(E).

THEOREM 3.2. If 8: X → Z is a strongly regular multivalued map of para-
compact spaceX into a metric spaceZ, the images8(x) of all pointsx ∈ X are
ANE’s, and the image8(X) of the entire spaceX is Z, then the multivalued map
8 is uniformly super Lefschetz.
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Remark. In fact, the uniform super Lefschetz property is equivalent to the strong
regularity of theM-map8. However, we shall not need this fact.

The proof of Theorem 3.2 is based on the following proposition:

PROPOSITION 3.3.Under the hypotheses of Theorem3.2, for every pointx0 ∈ X
and every coverε ∈ cov(Z), there exist a coverδ ∈ cov(Z) and a neighborhood
U(x0) ⊂ X such that:

(4) For every pointx′ ∈ U(x0) and every partialδ-realizationN ⊃ M
ξ→ 8(x′)

of any polyhedronN , there exists its extension to a fullε-realizationN
ζ→

8(x′).

Proof. Let ε1, ε2, andδ be covers such that(ε1)
3 > ε, ε2 = Lf8(x0)(ε1), and

(δ)3 > ε2. Then the coverδ is the desired one. Let us verify that. Since8 is a
strongly regular map it follows that for every pointx0 ∈ X and every coverδ, there
exists its neighborhoodU(x0) ⊂ X for which the conditions of strong regularity
are satisfied.

Let x′ ∈ U(x0) andN ⊃ M
ξ→ 8(x′) be a partialδ-realization of an arbitrary

polyhedronN . ThenN ⊃ M
ξ→ 8(x′)

f→ 8(x0) is a partial(ε2)-realization of

the polyhedronN . Sinceε2 = Lf8(x0)(ε1), there exists a full(ε1)-realizationN
ζ̃→

8(x′) of the polyhedronN . Thereforeζ = g ◦ ζ̃ will be the desiredε-realization

N
ζ→ 8(x′) of the polyhedronN . 2

Proof of Theorem 3.2.Letw = {U(x) | x ∈ X} ∈ cov(X) be a cover such that
for every pointx′ ∈ U(x),Ex is a refinement ofEx ′. Apply Proposition 3.3 for the
point x and the coverEx ∈ cov(Z). We obtain a neighborhoodO(x) ⊂ U(x) and
a coverδx ∈ cov(Z) which satisfy the property (4) above.

Consider the canonical supercover1: X 7→ cov(Z), 1(x) = 1x, induced by
x 7→ δx , and the cover{O(x)}. It follows by property (3) from Example 1.4 that:

(5) For everyx ∈ X, there exists a neighborhoodO(x′), x ∈ O(x′), such that
1x > δx ′.

Let N ⊃ M
ξ→ 8(x) be a partial1x-realization of an arbitrary polyhedronN .

It follows from (5) thatξ is a partialδx ′-realization. It follows from (4) that there

is a fullEx ′-realizationN
ζ→ 8(x) such thatζ |M = ξ . Observe thatEx ′ > Ex for

pointsx ∈ O(x′) ⊂ U(x′). Thereforeζ is anEx-realization. 2
Supercovers have many properties of ordinary covers. Let1: X → cov(Z) be

anX-supercover. We shall say that mapsf, g: X → Z are1-closeif for every
x ∈ X, the imagesf (x) andg(x) lie in a common element of the cover1x . The
notion of a1-selection is introduced in an analogous manner: a mapr: X → Z is
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called a1-selectionof a map8: X → Z if for every pointx ∈ X, its imager(x)
belongs to the star St(8(x),1x) of the image8(x) with respect to the cover1x .

For paracompact spaces the property of extendability of star refinement of su-
percovers holds:

LEMMA 3.4. For everyn and for everyY -supercoverE, there exists aY -super-
cover1 such that(1x)

n > Ex , for everyx ∈ X.
Proof.Letw = {O(x) | x ∈ X} ∈ cov0(X) be a cover such that for every point

x′ ∈ O(x), the coverEx is a refinement ofEx ′ . We associate to the pointx a cover
5x ∈ cov(Z) so that(5x)

n > Ex . This correspondence and the coverw induce a
canonical supercover1: X 7→ Z,1(x) = 1x , with property (5). Sincex ∈ O(x′),
it follows that(1x)

n > (5x ′)n > Ex ′ > Ex . 2
LEMMA 3.5. For everyn and everyX-supercoverE, there exist anX-supercover
1 and a coverσ = {W(x)} ∈ cov0(X) with the property that for everyn-tuple of
pointsa1, . . . , an ∈ W(x), the multiple star1an ◦ · · · ◦ 1a1 is a refinement of the
coverEx .

Remark. We shall denote this property of supercovers by(1)n > E. We shall
also say that the coverσ realizesthe given refinability of the supercover.

Proof. Let Ẽ be anX-supercover such that(Ẽx)n > 1x, for everyx ∈ X.
Consider a coverw = {O(x) | x ∈ X} ∈ cov0(X) such thatẼx ′ is a refinement
of Ẽx , for every pointx ∈ O(x′). Consider the canonical supercover1: X 7→ Z,
1(x) = 1x, such that for everyx ∈ X, there exists a neighborhoodW(x) and
a elementO(x′) ∈ w, x ∈ O(x′), with 1x ′′ > Ẽx ′, for eachx′′ ∈ W(x). Let
ai ∈ W(x). Then(1an ◦ · · · ◦1a1) > (Ẽx ′)n > Ex . 2

A more detailed study of the concept of uniformly super Lefschetz mappings
and refinements of supercovers will only be needed in the proof of Theorem 1.1
(cf. Sections 4–6).

Let X be a paracompact space,X1 ⊃ X2 ⊃ · · · a nested sequence of closed
subspaces, such that for everyk, Xk+1 ⊂ IntXk. LetZ be a Banach space with a
fixed nested sequenceV1 ⊃ V2 ⊃ · · · of closed convex subsets such that for every
k, Vk+1 ⊂ IntVk, and letV = ⋂

k>1Vk.

DEFINITION 3.6. A closed map8: X → Z is said to bestrongly uniformly
super Lefschetzfor the filtrations{Xk} and{Vk} if {8(x) | x ∈ X} has the following
property:

(SA) For everyk and everyX-supercoverE: X → Z of Z such that8(x) ⊆ V

andVk > Ex , for everyx ∈ Xk, there exists anX-supercover1: X → Z

such that:

(iv) Vk+1 > 1x , for everyx ∈ Xk+1; and
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(v) For everyx ∈ X and every partial1x-realizationN ⊃ M
ξ→ 8(x)

of any polyhedronN , there exists its extension to a fullEx-realization

N
ξ→ 8(x).

Remarks. (1)Vk > Ex means thatVk is contained in some element ofEx ; and
(2) The dependence of1 onE will be denoted by1 = (SA)(E).

The following claim is quite evident:

LEMMA 3.7. For every coverσ ∈ cov(Z) withVk > σ and every integern, there
exists a coverγ ∈ cov(Z) such thatVk+1 > γ andγ n > σ .

Using this lemma, analogous version of 3.2–3.5 can be proved for strongly
uniformly super Lefschetz mappings.

THEOREM 3.8. If 8: X → Z is a strongly regular multivalued map of para-
compact spaceX into a metric spaceZ, the images8(x) of all pointsx ∈ X are
ANE’s, and the image8(X) of the entire spaceX is Z, then the multivalued map
8 is strongly uniformly super Lefschetz.

THEOREM 3.9. Let k andm be arbitrary natural numbers. Then for every inte-
gern and everyX-supercoverE, such thatVk > Ex , for everyx ∈ Xm, there exists
anX-supercover1 and a coverσ = {W(x)} ∈ cov0(X) such that1an◦· · ·◦1a1 >

Ex , for everya1, . . . , an ∈ W(x), andVk+1 > 1x , for everyx ∈ Xm.

Remark. We shall denote this property of supercovers by1n >SA E.

4. Proofs of Theorems 1.1 and 1.2

From the very beginning we shall be proving Theorems 1.1 and 1.2 by means of the
following simplification:Z = L,8(X) = 0(Y ) = L, whereL is a Banach space.
Let us show that this causes no loss of generality. In fact, we take an isometrical
embedding of the image8(X) into some Banach spaceL (see [2]). It is clear
that if 0 was a strongly regular map then the map0′: Y

∐{∗} → L, 0′|Y =
0, and0′(∗) = L will also be strongly regular. We define a multivalued map
8′: X

∐{∗} → L by the formula8′ = 0′ ◦ ϕ′, whereϕ′: X
∐{∗} → Y

∐{∗} is a
singlevalued map such thatϕ′|X = ϕ andϕ′(∗) = ∗. It is clear that if the extension
problem can be solved for the partial selectionX′ = X

∐{∗} ⊃ A
r→ L in the

simplified situation then it can also be solved in the original situation.
Theorems 1.1 and 1.2 will be deduced from Theorem 1.5 and the following

proposition:

PROPOSITION 4.1.Let1 be aY -supercover. Then every partial selectionr: A →
L of the map8 can be extended onto some neighborhoodO(A) to a(1ϕ)-selection
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r̂: O(A) → L. Moreover, there exists a closedGδ-subsetĀ, A ⊂ Ā ⊂ O(A) such
that r̂|Ā is the genuine selection ofϕ.

Proof.Since the Banach spaceL is an absolute extensor for paracompact spaces
[2], there exists an extension̂r: X → L of the mapr. Consider aY -supercover̃1
which is a star-refinement of1, (1̃)2 > 1, and a coverw = {U(x)} ∈ cov0(X)

such that(1ϕ)x > (1ϕ)x ′, for everyx′ ∈ U(x). Without losing generality we
may assume that̂r(U(a)) ⊂ St(8(a), 1̃ϕ(a)), for everya ∈ A and that8(x) ⊂
St(8(x′), 1̃ϕ(x)), for everyx′ ∈ U(x) (since8 is continuous).

For everyx ∈ U(a) ⊂ O(A)
def= ⋃{U(a) | a ∈ A}, we have that

r̂(x) ∈ St(8(a), 1̃ϕ(a)) ⊂ St(8(x), (1̃ϕ(a))
2) ⊂ St(8(x),1ϕ(a))

⊂ St(8(x),1ϕ(x)).

ThereforeO(A) is the desired neighborhood. Since8 is a continuousM-map,
Aε = {x ∈ X | r̂(x) ∈ St(8(x); ε)}, ε > 0, satisfies the following properties:

(vi) Int Aε ⊇ ClAε′, for everyε > ε′; and

(vii) B
def= ⋂∞

n=1A1/n coincides with{x ∈ X | r̂(x) ∈ 8(x)}.
Let C ⊂ O(A) be a closed neighborhood ofA. ThenĀ = B ∩ C is a closed

Gδ-subset ofX, A ⊂ Ā ⊂ O(A) andr̂|Ā is a genuine selection. 2
Deduction of Theorems 1.1 and 1.2 from Theorem 1.5 and Proposition 4.1. Let

r be a partial selection of8. By Proposition 4.1 we can assume thatA is a closed
Gδ-subset. Multiply everything byR to get a partial selectioñr: Ã → L̃ of a
multivalued map̃8 = 8 × Id, whereÃ = A × R, X̃ = X × R, Ỹ = Y × R,
L̃ = L × R, ϕ̃ = ϕ × Id, and r̃ = r × Id (note thatX̃ is again paracompact).
The map8̃ is strongly regular and it satisfies all the hypotheses of Theorem 1.5.
Therefore all conclusions of Theorem 1.5 are valid for the map8̃.

The centered familyε = {E(l, t) | (l, t) ∈ L̃}, defined byE(l, t) = L ×
(−2,2), if |t| < 2 andE(l, t) is a neighborhood of(l, t) of diametert−2, if |t| > 2,
generates the trivial̃Y -supercoverE. Let us consider the nested sequence{Vk =
L×[−1 − 1

k
,1 + 1

k
]} of closed convex subsets of̃L, V = ⋂

k>1Vk = L×[−1,1],
and the nested sequence{

Xk = X ×
[
−1

2
− 1

2k
,

1

2
+ 1

2k

]}

of closed subsets of̃X. It can be easily seen that̃8(x̃) ⊆ V andVk > E(ϕ̃(x̃)), for
everyx̃ ∈ Xk andk > 1. By Theorem 3.8,̃8 is the strong uniform super Lefschetz
mapping for the filtrations{Xk} and{Vk}.

The following easily verifiable property of the coverε is stated separately.

LEMMA 4.2. LetX be a paracompact space,f : A×[−∞,∞] → L×[−∞,∞],
f (A × t) ⊂ L × t , for everyt ∈ [−∞,∞], a continuous map andg: U → L̃ a
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continuous map from neighborhoodU ⊂ X̃ of Ã such that for everỹa ∈ Ã, g(ã)
and f (ã) lie in an element ofε (i.e., g|Ã is ε-close tof |Ã). Then there exists a
neighborhoodW ⊂ U of Ã in X̃ such that a composed maph: Ŵ = W ∪ A ×
[−∞,∞] → L̃, h|W = g, h|A×[−∞,∞] = f , defined onŴ ⊂ X × [−∞,∞], is
also continuous.

Hint. It is enough to consider only the simplest case|A| = 1.

Proof of Theorem 1.2.Applying Theorem 1.5 to the trivial̃Y -supercoverE,
we obtain aỸ -supercover1. By Proposition 4.1, we can assumẽA to be aGδ-
subset inX̃ and that a partial selectioñr can be extended to some1ϕ-selection
u: O(Ã) → L̃, whereO(Ã) ⊃ Ã is a neighborhood of̃A in X̃. By Theorem 1.5,
there exists a genuine selectionû: O(Ã) → L̃ of the map8̃, which isε-close to
u. Hence the projection of the pointû(x, t) ∈ L̃ ontoL belongs to8(x).

It is easy to see that Lemma 4.2 applies tof = r×Id[−∞,∞] andg = û: O(Ã) →
L̃. Then there exists a neighborhoodW ⊂ O(Ã) of Ã such that composed map
h: Ŵ = W ∪A×[−∞,∞] → L̃, h|W = û, h|A×[−∞,∞] = f , is continuous. Since
Ã is aGδ-set,A is also aGδ-set. It is also easy to see that the graph{(x, χ(x))}
of a continuous functionχ : V → [0,∞], V is a neighborhood ofA in X, which
assumes the value∞ only at points fromA, can be inscribed in̂W if and only ifA
is aGδ-subset ofX. Finally, the desired selection̂r: V → L of the map8 is given
by r̂(x)|A = r and r̂(x) is the projection of the pointh(x, χ(x)) ∈ L̃ ontoL, for
x ∈ V \ A. Continuity of r̂ is thus evident. 2

Proof of Theorem 1.1.Here we need the following strengthening of Theorem 1.5
for M-mapping with filtration:

THEOREM 4.3. Let V1 ⊃ V2 ⊃ · · ·, Vk+1 ⊂ IntVk, be a nested sequence of
closed convex subsets of a Banach spaceL, V = ⋂

k>1Vk. LetX1 ⊃ X2 ⊃ · · ·,
Xk+1 ⊂ IntXk, be a nested sequence of closed subspaces of a paracompact space
X and letϕ: X → Y , 0: Y → L,8 = 0 ◦ ϕ,8(x) ⊆ V , for everyx ∈ X1, be as
in the hypotheses of Theorem1.2. Then for everyY -supercoverE: Y → cov(Z)
with Vk > Eϕ(x), x ∈ Xk, there exist anY -supercover1: Y → cov(Z) of Z and
an integerm, such thatVk+m > 1ϕ(x), x ∈ Xk+m, and for every(1ϕ)-selection
r: X → Z of the map8, there exists an exact selectionr ′: X → Z of8 which is
(Eϕ)-nearr.

Remark. The proof of Theorem 4.3 is similar to the proof of Theorem 1.5 (see
Section 5).

Applying Theorem 4.3 to the trivial̃Y -supercoverE, we obtain ãY -supercover
1, with L× [−1,1] > 1ϕ̃(x̃), for everyx̃ ∈ X× [−1,1] = ⋂

Xi . As L̃× [−1,1]
is convex, an extension̂r: X̃ → L̂ of r̃ can be choosen witĥr(X × [−1,1]) ⊂
L×[−1,1]. Repeating the proof of Proposition 4.1 respectively forr̂, we obtain the
coverω = {U(x̃)} ∈ cov0(X̃) from Proposition 4.1 which can be choosen so that
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U(x,0) = L× (−1
2,

1
2), for everyx ∈ X. Therefore the neighborhoodO(Ã) of Ã

containsL×(−1
2,

1
2). The rest of the proof of this case coincides with the local one

because a neighborhoodW ⊂ O(Ã) of Ã can be choosen withL× (−1
2,

1
2) ⊂ W

and the domain of the functionξ can be extended over the whole spaceX. 2

5. Proof of Theorems 1.5 and 4.3

Let 8: X
ϕ→ Y

0→ L be a multivalued map which satisfies the hypotheses of
Theorems 1.2 and 4.3. By Section 4, the proofs of Theorems 1.1 and 1.2 reduce
to the proofs of Theorems 1.5 and 4.3. We can explicitly construct the supercover
{1y} from Theorem 1.5 (and shall briefly explain what additional constructions
have to be done for Theorem 4.3). For this purpose we consider the following
sequence ofY -supercovers of the spaceL:

E, Ẽ,En,E
′
n,

En−1, E
′
n−1 . . .

. . . , E0, E
′
0,

1

(∗)

which satisfies the following properties:

(6) E′
i = (A)(Ei), for 0 6 i 6 n (E′

i = (SA)(Ei) in the case of Theorem 4.3);
(7) (Ei)3 > E′

i+1 (E3
i >SA E

′
i+1 in the case of Theorem 4.3), for 06 i < n; and

(8) (Ẽ)3 > E, (En)4 > Ẽ, and18 > E′
0 (Ẽ3 >SA E, E4

n >SA Ẽ, and18 >SA E
′
0

in the case of Theorem 4.3).

The supercover1 will be the desired one. Since the supercover1 is defined
in Theorem 1.5 by means of the supercoverE, we shall briefly denote it by1 =
(B)(E).

Due to the obvious dependence of1 on E the following can be observed. If
0(y) ∈ AE, for all y, the supercoverE is trivial, andEy consists of only one
element, namely the spaceL, for everyy, then in the sequence(∗) all supercovers
can be taken to be equal toE (including1).

We shall reduce the proof of Theorem 1.5 to the following proposition:

PROPOSITION 5.1.LetE and1 beY -supercovers such that1 = (B)(E) and
supercover̃E is the second term of the sequence(∗). Then

(C) For every(1)ϕ-selectionr: X → L and everyY -supercoverM there exists
anMϕ-selectionr ′: X → L of the map8 which is(Ẽ)ϕ-close to the(1)ϕ-
selectionr.

Remark. We shall denote the dependence of theMϕ-selectionr ′ on all others by
r ′ = (C)(E, Ẽ,1, r,M).
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Proof of Theorem 1.5.Let E and1 beY -supercovers such that1 = (B)(E)

and theY -supercoverẼ1, (Ẽ1)
3 > E, is the second term of the sequence(∗).

Analogously, let11 = (B)(Ẽ1) andY -supercover̃E2, (Ẽ2)
3 > Ẽ1, be the second

term of the corresponding sequence(∗), etc. Without losing generality we may
assume that mesh1i < 2−i and mesh̃Ei < 2−i .

Apply Proposition 5.1 to the1ϕ-selectionr in order to get a(11)
ϕ-selection

r1: X → L, ri = (C)(E, Ẽ1,1, r,11), which is(Ẽ1)
ϕ-close tor. Analogously,

introduce(1i)
ϕ-selections

ri = (C)(Ẽi−1, Ẽi ,1i−1, ri−1,1i), i ∈ {2,3, . . .}.
As a result we have constructed(1i)

ϕ-selectionsri such thatρ(ri, ri+1) < Ẽi+1.
It is easy to get the estimates:

ρ(rn, rm) < (Ẽn+1)
ϕ ◦ · · · ◦ (Ẽm)ϕ

and

(Ẽn+1)
ϕ ◦ · · · ◦ (Ẽm)ϕ > (Ẽn)ϕ .

Therefore the sequence of maps{ri} is fundamental. Sinceri(x) ∈ St(8(x),1i)

and8(x) is complete, the fundamental sequence{ri} converges to some continuous
mapr ′: X → L, for whichr ′(x) ∈ 8(x). Sinceρ(r, r ′) < (Ẽϕ1 )

3 while (Ẽ1)
3 > E

this completes the proof of Theorem 1.5. 2
Before we procede with the proof of Proposition 5.1, we pause for the following

important technical result:

PROPOSITION 5.2.For everyY -supercoverA of the spaceL, there exists aY -
supercoverB such that:

(D) Every mapψ : P → St(0(y), By) of a paracompact spaceP into a By-
neighborhood of the fiber0(y) can beAy-approximated by a map̃ψ : P →
0(y).

Remark. The dependence of the supercoverB onA will be simply denoted by
B = (D)(A).

Proof. Let (A1)
3 > A, A2 = (A)(A1), and(B)3 > A2 beY -supercovers, and

let w = {Wλ} = ψ−1(By) be a cover ofP . Let N 〈w〉 be the nerve of the cover

w, N 〈w〉 ξ0→ 0(y) be a map, given on its 0-dimensional skeleton, which takes the
vertex〈Wλ〉 into a pointtλ ∈ 0(y) such thattλ ∈ ψ(Wλ) andψ(Wλ) is contained
in some element of the coverBy. The mapξ0 defines a partialA2-realization of
the nerveN 〈w〉. Let ξ : N 〈w〉 → 0(y), ξ |N 〈w〉(0) = ξ0, be the existing(A1)y-

realization of the nerve. Then the compositionψ̃ : P
ϑ→ N 〈w〉 ξ→ 0(y), whereϑ

is the canonical map, is the desiredAy-approximation ofψ . 2
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6. Proof of Proposition 5.1

Let us construct another sequence ofY -supercovers of the spaceL:

1,M,Mn, M̃n−1,Mn−1, M̃n−2,Mn−2, . . . , M̃0,M0 (∗∗)

such that:

(9) M̃k = (D)(Mk+1) for 0 6 k < n;
(10) (Mk)

2 > M̃k for 0 6 k < n; and
(11) (Mn)

2 > M,M > 1.

Without losing generality, we may assume thatM,Mk andM̃k are convexY -
supercovers, i.e., the coversMy, (Mk)y and (M̃k)y consist of convex sets, every
subsequent supercover in(∗) and(∗∗) is a refinement of the preceding one.

Consequently, we construct for everyk ∈ {n, n − 1, . . . ,0}, coverswk =
{Wk(y) | y ∈ Y } ∈ cov0(Y ) such that:

(α) (wk)3 > wk+1;
(β) 0(a) ⊂ St(0(b), (M0)y), for every pair of pointsa, b ∈ Wk(y) ∈ wk; and
(γ ) Every coverwk realizes all conditions of refinability ofY -supercovers (6)–

(11) (see remark after Lemma 3.5).

Let dimY = n. By Proposition 2.1, there exist a coverτ ′ ∈ cov(X) and a
simplicial mapπ ′: N 〈τ ′〉 → N 〈w0〉, induced by the refinability of the covers
ϕ(τ ′) > w0, such that for every canonical mapϑ ′: X → N 〈τ ′〉, the imageπ ′ ◦
ϑ ′(X) lies inN 〈w0〉(n).

We can find a refinementτ = {V (x) | x ∈ X} ∈ cov0(X) of the coverτ ′ ∈
cov(X) such that the imager(V (x)) lies in an element of the cover(M0)ϕ(x) ∈
cov(L). From this and from the hypothesis thatr is a1ϕ-selection it follows that:

(12) r(V (x)) ⊂ St(0(ϕ(x)),1ϕ(x) ◦ (M0)ϕ(x)).

Let ϑ : X → N 〈τ 〉 be a canonical map andπ ′′: N 〈τ 〉 → N 〈τ ′〉 a simplicial
map, induced by the refinabilityτ > τ ′. Sinceϑ ′ = π ′′ ◦ ϑ : X → N 〈τ ′〉 is the
canonical map,π ′ ◦ ϑ ′(X) = π ′ ◦ π ′′(ϑX) ⊂ N 〈w0〉(n). Therefore

ϑ(X) ⊂ (π ′ ◦ π ′′)−1(N 〈w0〉(n)) = π−1(N 〈w0〉(n)),
whereπ = π ′ ◦ π ′′: N 〈τ 〉 → N 〈w0〉.

We shall construct the desiredMϕ-selectionr ′ as the composition

X
ϑ→ π−1(N 〈w0〉(n)) ψ→ L

of mapsϑ andψ . The mapψ will be constructed by induction on the preimages
π−1(N 〈w0〉(k)) of the skeleta of the nerveN 〈w0〉:

ψk: π
−1(N 〈w0〉(k)) → L,ψk+1 | π−1(N 〈w0〉(k)) = ψk, k = 0,1,2, . . . , n,

such that for everyx ∈ X, ϑ(x) ∈ π−1(N 〈w0〉(k)):
(δ)k ψk(ϑ(x)) andr(x) areẼϕ(x)-close; and
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(ε)k ψx(ϑ(x)) ∈ St(8(x),Mϕ(x)).

We first construct the mapψ0. Let 〈W0(y)〉 be a vertex ofN 〈w0〉(0) and〈V (x)〉
be a vertex fromπ−1(〈W0(y)〉). Thenϕ(V (x)) ⊂ W0(y). By (β) and (12) we get

(13) r(V (x)) ⊂ St(0(y),1ϕ(x) ◦ (M0)ϕ(x) ◦ (M0)y).

Since the coverw0 realizes all refinabilities of the supercovers it follows that:

(14) 1ϕ(x) ◦ (M0)ϕ(x) ◦ (M0)y > 1ϕ(x) ◦12
y .

It follows from the above that:

(15) r(V (x)) ⊂ St(0(y),1ϕ(x) ◦12
y) and, consequently,

0(y) ∩ St(r(V (x)),1ϕ(x) ◦12
y) 6= ∅.

If we define the mapψ ′
0 on the vertex〈V (x)〉 as the point:

(16) vx ∈ 0(y) ∩ St(r(V (x)),1ϕ(x) ◦12
y), we get a map:

M = π−1(〈W0(y)〉) ⊃ π−1(〈W0(y)〉)(0)
ψ ′

0→ 0(y)

which is a partial(E′
0)y-realization of polyhedronM. Indeed, ifσ = 〈V (x0), . . . ,

V (xk)〉 ∈ M, then:

(17) π(V (xi)) ⊂ W0(y), for everyi;
(18) V = ⋂k

i=0V (xi) 6= ∅.

Let v ∈ V ; and

(19) ψ ′
0(

⋃k
i=0〈V (xi)〉) = ⋃k

i=0 vxi ⊂ St(r(V (xi)),1ϕ(x) ◦ 12
y) ⊂ St(v,1ϕ(x) ◦

12
y ◦ (M0)ϕ(x)) ⊂ St(v,5), where5 = 1ϕ(x) ◦13

y.

Hence,ψ ′
0(σ ∩ M(0)) is contained in some element of52 which is, by (8), a re-

finement of(E′
0)y. SinceE′

0 = (A)E0, there exists an(E0)y-realizationψ0: M →
0(y) such thatψ0|M(0) = ψ ′

0. By studying the value ofψ0 on all the vertices
〈W0(y)〉, we obtain a mapψ0: π−1(N 〈w0〉(0)) → L which satisfies the properties
(a)k and (b)k stated below and(δ)k–(ε)k, for k = 0. Difficult verifications of(δ)k
and(ε)k, for everyψk will be realized in (25)–(26).

Formulation of properties(a)k and(b)k . For everyk-simplex

δ = 〈W0(y0), . . . ,W0(yk)〉 ∈ N 〈w0〉(k)
(

i.e.,
k⋂
i=0

W0(yi) 6= ∅
)
,

there exists a pointy ∈ Y and an elementWk(y) ∈ wk, Wk(y) ⊃ ⋃k
i=0W0(yi),

with the following properties:

(a)k ψk(π−1(δ)) ⊂ St(0(y), (Mk)y); and

(b)k The restrictionπ−1(δ)
ψk→ L of the mapψk onπ−1(δ) is an(Ek)2y-realization

of the polyhedronπ−1(δ).
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Suppose that we have already constructed mapsψi , i 6 k, satisfying (a)i
and (b)i , and such thatψi andψi−1 agree on the common part of their domains.
Consider an arbitrary(k + 1)-simplex

δ = 〈W0(y0), . . . ,W0(yk+1)〉 ∈ N 〈w0〉(k+1).

Denote byδi the k-simplices of the boundary∂δ. It follows from (a)k that
ψk(π

−1(δj )) ⊂ St(0(zj ), (Mk)zj ), wherezj is the center of a neighborhoodWk(zj )

∈ wk, such thatWk(zj ) contains all elementsW0(yi), corresponding to the vertices
δj . Consequently,Wk(zj ) ⊃ ⋂k+1

i=0 W0(yi) 6= ∅ for all j , and hence
⋂k+1
j=0Wk(zj) 6=

∅.
By (α), there exists an elementWk+1(y) ∈ wk+1, containing

⋃k+1
j=0Wk(zj ).

From (a)k and (β) we obtain the inclusion:

(20) ψk(π−1(∂δ)) = ⋃
ψk(π

−1(δj )) ⊂ ⋃
St(0(zj ), (Mk)zj ) ⊂ St(0(y),

(Mk)zj ◦ (M0)y).

SinceMk ◦M0 > M̃k andM̃k = (D)(Mk+1), there exists a mapχ : π−1(∂δ) →
0(y), such thatρ(χ,ψk) < (Mk+1)y. Since the cover(Mk+1)y is convex, the linear
homotopyH : π−1(∂δ) → L fromψk to χ is realizable inside St(0(y), (Mk+1)y).

Therefore, and by (b)k , it follows that the mapπ−1(δ) ⊃ π−1(∂δ)
χ→ 0(y) is a

partial(Mk+1)y ◦(E2
k )y-realization of the polyhedronπ−1(δ). Since(E2

k )◦Mk+1 >

(E2
k ) ◦ δ > E′

k+1 andE′
k+1 = (A)(Ek+1), there exists anEk+1-realization:

ψ ′
k+1: π

−1(δ) → 0(y) such thatψ ′
k+1|∂δ = χ.

So we have constructed the homotopyH : Q × [0,1] → L of polyhedronQ =
π−1(∂δ) and the mapψ ′

k+1: P × {1} → L defined on the upper boundary of the
polyhedral cylinderP × [0,1],P = π−1(δ). These maps agree on the common
domainQ ×{1}. Since(P ,Q) is a polyhedral Borsuk pair (see [2]), the homotopy
H can be extended to homotopŷH : P × [0,1] → L such that:

(21) Ĥ |Q × [0,1] = H ;
(22) Ĥ |P × {1} = ψ ′

k+1; and
(23) Ĥ (σ × [0,1]) = ψk+1(σ × {1}) ∪ H((σ ∩ Q) × [0,1]), for every simplex

σ ∈ P .

Let us denote the restriction of̂H onto the lower boundaryP × {0} by

ψδ
k+1: P = π−1(δ) → L.

So there exists a map

ψk+1: π
−1(N 〈w0〉(k+1)) → L with ψk+1|π−1(δ) = ψδ

k+1.

By (23),

ψk+1(π
−1(δ)) = ψδ

k+1(π
−1(δ)) ⊂ ψ ′

k+1(P ) ∪H(Q × [0,1])
⊂ St(0(y), (Mk+1)y).
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Thus the property (a)k+1 has been verified.
Now let us verify (b)k+1. By (23) we have that

(24) ψδ
k+1(σ ) ⊂ ψ ′

k+1(σ ) ∪ H((σ ∩ Q) × [0,1]) ⊂ St(ψ ′
k+1(σ ), (Mk+1)y), for

every simplexσ ∈ π−1(δ).

But ψ ′
k+1(σ ) lies in an element of(Ek+1)y, and(Ek+1)y ◦ (Mk+1)y > (E2

k+1)y .
Henceψδ

k+1 is a(E2
k+1)y-realization of polyhedronπ−1(δ).

In this way we have constructed a mapψ : π−1(N 〈w0〉(n)) → L, satisfying
(a)n and (b)n. Let us show thatr ′ = ψ ◦ ϑ : X → L is anMϕ-selection of8 and

ρ(r, r ′) < (Ẽ)ϕ (hereX
ϑ→ π−1(N 〈w0〉(n)) is the canonical map).

Indeed, let

x ∈
k⋂
i=0

V (xi), ϑ(x) ∈ σ = 〈V (x0), . . . , V (xk)〉 ⊂ π−1(N 〈w0〉(n)).

By (a)n–(b)n, there existsWn(y) ∈ wn with Wn(y) ⊃ ⋃k
i=0 ϕ(V (xi)) such that

ψn(σ ) ⊂ St(0(y), (Mn)y) andψn(σ ) ⊂ W ∈ (En)2y. From (β) andϕ(x) ∈ Wn(y)

we have0(y) ⊂ St(0(ϕ(x)), (M0)y). Therefore:

(25) r ′(x) = ψn(ϑ(x)) ⊂ ψn(σ ) ⊂ St(0(y), (Mn)y)) ⊂
⊂ St(0(ϕ(x)), (M0)y ◦ (Mn)y) ⊂ St(0(ϕ(x)),Mϕ(x))

and, hence,

(26) ψn(σ ) ⊂ St(ψn(〈V (x0)〉), (En)2y) = St(vx0, (En)
2
y) ⊂ W ∈ (En)4y > Ẽy. 2
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