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THE METHOD OF APPROXIMATIVE EXTENSION
OF MAPPINGS IN THE THEORY OF EXTENSORS

S. M. Ageev and D. Repovš UDC 515.126.83

Abstract: We develop the method of approximative extension of mappings which enables us not only
to simplify the proofs of many available theorems in the theory of extensors but also to obtain a series
of new results. Combined with Ancel’s theory of fiberwise trivial correspondences, this method leads
to considerable progress in the characterization of absolute extensors in terms of local contractivity.
We prove the following assertions: Suppose that a space X is represented as the union of countably
many closed ANE-subspaces Xi and a countably dimensional subspace D: 1. If each Xi is a strict
deformation neighborhood retract of X and X ∈ LC, then X ∈ ANE. 2. If X ∈ LEC then X ∈ ANE.
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§ 1. Introduction

This article is devoted to extensions of continuous mappings f : A→ X from closed subspaces A ⊂ Z
of metric spaces Z to some neighborhoods of A. The spaces X, possessing this extension property for
all partial mappings Z ←↩ A

f−→ X, are called absolute neighborhood extensors (X ∈ ANE). The problem
of recognizing ANE-spaces is rather urgent in modern topology and is solved by distinguishing vari-
ous subclasses P of the class of all ANE-spaces which admit a convenient description in some sense:
the class of convex subsets in a locally convex vector space (Dugungji’s theorem [1]), the class of count-
ably dimensional locally contractible metric spaces (Haver’s theorem [2]), the class of metric spaces
with a contractible base all of whose finite intersections are also contractible (Toruńczyk’s theorem [3]),
etc. In all principally important cases, the class P is invariant under the product by the half-interval
J = [0, 1): P ⊃ P × J . In such situation, the problem of exact extension of mappings f : A → X is
solved by reducing it to a less burdensome problem of approximative extension of a partial mapping.

Definition 1.1. A space X is called an approximative neighborhood extensor (X ∈ A-ANE) if, for

every covering ω ∈ cov X and every partial mapping Z ←↩ A
f−→ X, there exists a mapping f̃ : U → X

on a neighborhood U of A such that dist(f, f̃�A) ≺ ω.
The following theorem plays a principal role in this exposition.

Theorem 1.2. Suppose that a class P of metric spaces is closed under the product by J . Then
P ⊂ ANE if and only if P ⊂ A-ANE.

If the condition of the theorem is violated (i.e., the class P is not closed under the product by J) then
we only have the strict inclusion ANE∩P & A-ANE∩P. As an example of a compact approximative
absolute neighborhood extensor that is not an absolute neighborhood extensor, we can take the one-point
compactification of the set of naturals.

This criterion is encountered in implicit form in the articles [3–5], but its fundamental role in the the-
ory of absolute extensors becomes clear only now. The main thesis of this article is that, to simplify
the proofs of the majority of available theorems and to obtain new results, we should use the notion of
approximative ANE. Indeed, to construct an approximate extension of a mapping is much easier than
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to construct an exact extension. And if the class P is closed under the product by a half-interval then
the problem of recognizing ANE within P is identical to that of recognizing an approximative ANE.
Finally, the notion of approximative ANE interacts harmoniously with various notions and constructions
of the theory of extensors. In particular, this article demonstrates such harmonious interaction with
Ancel’s technique [6] developed for fiberwise trivial correspondences (mappings).

To illustrate the above thesis, we give some similar proofs of Haver’s and Toruńczyk’s theorems and
establish some new unexpected result.

Theorem 1.3. If a countably dimensional space X has an open base {Wγ} of weakly homotopy
trivial sets (i.e., the homotopy groups πi(Wγ) are trivial for all γ ∈ Γ and i ≥ 0) then X ∈ ANE.

It is reasonable to compare the last theorem with that of Toruńczyk [3]: If we additionally require
in Theorem 1.3 that the base {Wγ} is multiplicative then each (not necessarily countably dimensional)
space is an absolute neighborhood extensor.

The concluding part of the article is devoted to studying interrelations between the three most
important classes in the theory of extensors: ANE, locally equiconnected (LEC), and locally contractible
spaces (LC). Clearly, ANE ⊂ LEC ⊂ LC. The problem of coincidence of the first two classes was open
for a long time [7, p. 246]. The metric vector space by Cauty [8] gives an example of an LEC-space which
is not ANE. Therefore, the problem is urgent of finding a widest class of spaces for which the easier
properties LEC and LC imply ANE.

We indicate some available results in this direction. The intersections of the above three classes with
countably dimensional spaces coincide (Haver’s theorem [2]). The intersections of the first two classes
with the spaces admitting a countable increasing filtration of closed ANE-subspaces coincide as well (Nhu
and Sakai’s theorem [9]), whereas the intersections of the second and third classes differ (Borsuk’s exam-
ple [10]). However, both Haver’s theorem and Nhu and Sakai’s theorem can be considerably generalized;
moreover, their proofs can be simplified essentially.

Theorem 1.4. Suppose that a space X is represented as the union of countably many closed ANE-
subspaces Xi and a countably dimensional subspace D. If each Xi is a strict deformation neighborhood
retract of X and X ∈ LC then X ∈ ANE.

Note that all assertions involving the condition of countable dimensionality can be strengthened if
only we use the notion of C-spaces; moreover, this is done by a literal analogy to the arguments in
the article (see [11]).

Theorem 1.5. Suppose that a space X is represented as the union of countably many closed ANE-
spaces Xi and a countably dimensional subspace D. If X ∈ LEC then X ∈ ANE.

These theorems are in turn manifestations of some more general fact about LEC-embedded subspaces.

Theorem 1.6. Suppose that an LC-space X is represented as the union of countably many closed
subspaces Xi =

⋃∞
j=1 Fij and a countably dimensional subspace D: X =

⋃∞
i=1 Xi∪D. If every embedding

Xi ↪→ X is locally equiconnected (LEC) and each partial mapping Z ←↩ A
ϕ−→ Fij has a neighborhood

extension ϕ̂ : U → Xi then X ∈ ANE.

Since a strict deformation neighborhood locally equiconnected retract is LEC-embedded in the ambi-
ent space while every subspace of an LEC-space is LEC-embedded, Theorems 1.4 and 1.5 are particular
instances of Theorem 1.6. If X =

⋃∞
j=1 Cj is the countable union of compact sets and if the LEC-space

X is an absolute neighborhood extensor for the class of compact spaces, then it is easy to see that all
conditions of Theorem 1.6 are satisfied and X ∈ ANE. This is the main result of [9, Main Theorem].
We also note that Theorems 1.4–1.6 can be easily transformed into some theorems about preservation of
the class of ANE-spaces under compactifications with countably dimensional appendix.

Since all conditions of Theorems 1.4–1.6 are preserved under the product by the half-interval J , in
view of Theorem 1.2 it suffices to establish the relation X ∈ A-ANE in them. This makes it possible to
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use in the proofs of the theorems the fiberwise trivial mappings in the Ancel sense [6] in view of their
connection with A-ANE.

Proposition 1.7. If for every partial mapping Z ←↩ A
ϕ−→ X the projection πϕ : Gϕ → A of

the graph Gϕ ⊂ Z ×X of ϕ to A is fiberwise trivial within the projection p 
 prZ : Z ×X → Z, then
X ∈ A-ANE.

We emphasize just away that we need only some small part of the whole Ancel theory which is large
and rich in ideas. Moreover, we want to give a lucid exposition of its main concepts which is independent
of [6]. Therefore, we especially devote § 5 to the Ancel theory as seen from the viewpoint of the theory
of extensors.

§ 2. Preliminaries

All spaces (single-valued mappings) are assumed to be metric (continuous), unless they appear as
a result of special constructions.

The set of all open coverings of a space X is denoted by cov X, and ω ∈ cov X stands for some
open covering of X. The star (or neighborhood) of a set A ⊂ X relative to ω ∈ cov X is the set⋃
{U | U ∈ ω, U ∩ A 6= ∅}, denoted by St(A;ω) or N(A;ω). The star of a covering ω relative to

another covering ω′ is the covering St(ω;ω′) = {St(U ;ω′) | U ∈ ω}. For brevity, the repeated stars
St(ω1; St(ω2; . . . ;ωn) . . . ) are denoted by ωn ◦ · · · ◦ ω2 ◦ ω1, and if ωi are equal to one another then we
denoted them by (ω1)k. The carrier of a system ω of open sets is the set

⋃
{U | U ∈ ω}, denoted by

⋃
ω.

The record ω � ω1 means as usual that the covering ω is a refinement of the covering ω1. It is
well known that every covering σ ∈ cov X of a metric space X admits a starlike refinement ω ∈ cov X,
namely, a covering such that ω ◦ ω � σ (Stone’s theorem [12]). The following convenient criterion of
starlike refinement belongs to folklore and we give it without proof.

Proposition 2.1. A covering σ = {Sλ | λ ∈ Λ} is a starlike refinement of a covering ω = {Wβ | β ∈
B} if and only if for every λ there exists β = β(λ) such that

⋂
λ∈Λ′ Sλ 6= ∅ for a subset Λ′ ⊂ Λ implies

(1)
⋃

λ∈Λ′ Sλ ⊂
⋂

λ∈Λ′ Wβλ
.

If f, g : X → Y are mappings and ω ∈ cov Y then the fact of ω-proximity of f and g is designated as
dist(f, g) ≺ ω. The restriction of a mapping f to a subset A ⊂ X is denoted by f�A.

The nerve of a covering ω = {Uβ | β ∈ B} is a polyhedron N〈ω〉, with weak Whitehead topology,
whose vertices 〈Uβ〉 are in a one-to-one correspondence with the index set B and ω = 〈Uβ0 , . . . , Uβs〉 is
an s-dimensional simplex of N〈ω〉 with vertices 〈Uβi

〉 if and only if
⋂

Uβi
6= ∅. The k-dimensional skeleton

N〈ω〉(k) is the subpolyhedron of N〈ω〉 that comprises at most k-dimensional simplices; N〈ω〉(−1) = ∅.

The open star
◦
St〈Uβ0〉 of a vertex 〈Uβ0〉 is the set {

∑
αβ · 〈Uβ〉 ∈ N〈ω〉 | αβ0 6= 0}.

A mapping θ : X → N〈ω〉 is called canonical if the preimage θ−1(
◦
St〈Uβ〉) of the open star of each

vertex 〈Uβ〉 lies in Uβ . A canonical mapping is well known [1] to exist for every open covering ω of
a paracompact space X.

We introduce a series of notions that are connected with the extension of mappings. A space X is
called an absolute neighborhood extensor, in writing X ∈ ANE, if every mapping ϕ : A → X defined on
a closed subset A ⊂ Z of a metric space Z and called a partial mapping extends to some neighborhood
U ⊂ Z of A, ϕ̂ : U → X, ϕ̂�A = ϕ. If ϕ extends always to U = Z then X is called an absolute extensor, in
writing X ∈ AE. In case X ∈ A[N]E, we say that the space X possesses the property of A[N]E-absolute
(neighborhood) extendibility. Note that the notions of absolute (neighborhood) extensor and absolute
(neighborhood) retract coincide whenever X is a metric space [1].

The property X ∈ ANE is equivalent to extendibility of partial realizations to global realizations
[1, p. 156]. In the sequel, we only need the definition of realization of a nerve.

Definition 2.2. Let α be a system of open sets of a space X and let N0 be a subpolyhedron of
a polyhedron N which contains all vertices. A partial α-realization of N is a mapping N0

ϕ−→ Z such
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that ϕ(∆ ∩ N0) lies in some element V ∈ α for each simplex ∆ ∈ N. If N0 = N then ϕ is an α-global
realization of N.

Every ANE-space is locally contractible (X ∈ LC) and locally equiconnected (X ∈ LEC). We give
the relevant definitions.

Definition 2.3. A space X possesses the property of local contractivity (X ∈ LC) if for every point
x in X and every neighborhood U(x) of x there exists a neighborhood V (x) such that the embedding
V (x) ↪→ U(x) and the constant mapping c : V (x)→ {x} ↪→ U(x) are homotopic in U(x).

Definition 2.4. An embedding X ′ ↪→ X is locally equiconnected (LEC) if there exist a neighborhood
U of the diagonal ∆X ′ in X ′×X and a mapping λ : U ×I → X such that λ(x′, x, 0) = x′, λ(x′, x, 1) = x,
and λ(x′, x′, t) = x′ for all (x′, x) ∈ U and t ∈ I.

A space X is locally equiconnected if the identity embedding X ′ ↪→ X is locally equiconnected [6].
Every ANE-space is well known to be locally equiconnected and in consequence locally contractible.
An important example of an LEC-embedding X ′ ↪→ X is one in which X ′ is a strict deformation neigh-
borhood retract of X.

Definition 2.5. A subspace X ′ ⊂ X is a strict deformation neighborhood retract of X if there exist
a neighborhood U , X ′ ⊂ U ⊂ X, and a homotopy F : U × I → X such that F0 = IdU , Ft�X′ = IdX′ ,
t ∈ I, and F1 is a retraction of U to X ′.

Since X ′ is a retract of U , it follows that X ′ is closed in U and in consequence closed in X.

Proposition 2.6. If an ANE-space X ′ lies in X and is a strict deformation neighborhood retract
of X then X ′ ↪→ X is an LEC-embedding.

Proof. Since X ′ ∈ ANE, it follows that X ′ ∈ LEC and so there exist a neighborhood V ⊂ X ′×X ′

of the diagonal ∆X ′ and a mapping λ′ : V × I → X ′ such that λ′(x1, x2, 0) = x1, λ′(x1, x2, 1) = x2,
and λ′(x1, x1, t) = x1 for all (x1, x2) ∈ V and t ∈ I. Since X ′ is a strict deformation neighborhood
retract of X, we can easily deduce the existence of a neighborhood U ⊂ X ′ × X of the diagonal ∆X ′

and a mapping λ′′ : U × I → X such that λ′′(x′, x, 1) = x, (x′, λ′′(x′, x, 0)) ∈ V , and λ′′(x′, x′, t) = x′

for all (x′, x) ∈ U and t ∈ I. Then the sought mapping λ : U × I → X, guaranteeing the LEC-
embedding of X ′ into X, is defined by the formula λ(x′, x, t) = λ′′(x′, x, 2t − 1) for 1/2 ≤ t ≤ 1 and
λ(x′, x, t) = λ′(x′, λ′′(x′, x, 0), 2t) for 0 ≤ t ≤ 1/2. �

Finally, we recall that a space D is countably dimensional if D =
⋃∞

i=1 Di and Di is zero-dimensional
for every i. The following important assertion about countably dimensional subsets holds:

Proposition 2.7. If a partial mapping Z ←↩ A
ϕ−→ X is such that A or ϕ(A) is countably dimensional

then for every sequence of coverings ωi ∈ cov X, i ≥ 1, there exist countably many disjoint families σi of
open sets in Z such that

(2) σ 

⋃∞

i=1 σi covers A and ϕ(σi) � ωi for all i ≥ 1.

The proof is perfectly analogous to that, for example, in [6, p. 10].

§ 3. The Approximative Criterion for Extendibility of Mappings

In the product X × J of a metric space X and the half-open interval J = [0, 1), consider an open
covering ω adherent to the top X × {1}. This means that, for every point a ∈ X × {1} and every
neighborhood U = U(a) in X × [0, 1], there is a neighborhood V = V (a) such that the star of V relative
to ω lies in U . We note just away that one of the possibilities of arranging such adherent covering relates
to a sequence of open coverings ωi ∈ cov X, i ≥ 1, satisfying the conditions:

(1) ωn ◦ ωn � ωn−1 for all n > 1;
(2) for every point x ∈ X, the sequence of the sets {ωn(x)} converges to this point.
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We call such sequences shallowing. If we now fix an open covering ∆ = {∆n} of multiplicity 2 by
intervals ∆n for which 0 ∈ ∆1, ∆n ∩ ∆n+1 6= ∅ for all n ≥ 1 (in this case obviously diam ∆n → 0 as
n → ∞) then the open covering ω = {ωn × ∆n | n = 1, 2, . . . } of the product X × J is adherent to
X × {1}.

The following theorem allows us to reduce the problem of exact extension of partial mappings to
the less burdensome problem of approximate extension.

Theorem 3.1 (the approximative criterion for extendibility of a partial mapping). Let an open

covering ω ∈ cov X × [0, 1) adhere to the top X × {1}. Then the partial mapping Z ⊇ A
f−→ X has

a global (neighborhood) extension if and only if the partial mapping Z × J ⊇ A × J
f×Id−−−→ X × J has

an ω-extension to Z × J (the neighborhood A× J).

From Theorem 3.1 we derive the following corollary.

Theorem 3.2. If the product X × J is an approximative absolute (neighborhood) extensor then
X ∈ A[N]E.

Proof of Theorem 3.1. Only sufficiency is nontrivial. Therefore, it remains to construct an ex-
tension for an arbitrary partial mapping Z ⊇ A

f−→ X. By hypothesis, for the partial mapping
Z × J ⊇ A × J

g−→ X × J , where g = f × IdJ , there exists a mapping g̃ : Z × J → X × J (a map-
ping g̃ : U → X × J) such that (g, g̃�A×J) ≺ ω.

Assertion 3.3. The mapping d : A × [0, 1] → X × [0, 1], defined by the formula d�A×J = g̃�A×J ,
d�A×{1} = f × {1}, is continuous.

Proof. It suffices to verify continuity of d at the point a × {1}. To this end, fix an arbitrary
neighborhood V × [t, 1] of the point b = (f(a), 1) and find another neighborhood V1 × [r, 1], t < r < 1, of
this point such that St(V1 × [r, 1];ω) ⊆ V × [t, 1]. Since the mapping f : A → X is continuous, there is
a neighborhood O(a) ⊆ V1 of a such that f(O(a)) ⊆ V1. Using the condition of ω-proximity of g = f×IdJ

and g̃�A×J , we easily conclude that d(O(a)× [r, 1]) ⊆ St(V1 × [r, 1];ω) ⊆ V × [t, 1]. �

The following is easy and we omit the proof.

Assertion 3.4. Suppose that a mapping α : F ∪W → T is defined on the union of a closed set
F and an open set W of a space S and that the restrictions α�F and α�W of this mapping to F and
W are continuous. Then there exists a closed set F , F1 ⊇ F , of S such that α�F1

is continuous and
F ∩W ⊆ IntF1.

If we put S 
 Z × I, T 
 X × I, F 
 A × I ∪ Z × {0}, W 
 Z × J (F 
 A × I, W 
 U
respectively), and α = d ∪ g̃, then there exists a closed set H, H ⊇ Z × I, such that

A× I ∪ Z × J ⊇ H ⊇ A× I ∪ Z × {0} (A× I ∪ U ⊇ H ⊇ A× I),

and also
A× [0, 1) ∪ Z × {0} ⊆ IntH (resp. A× [0, 1) ⊆ IntH),

while the restriction of α to H is continuous. Now, we use the following assertion whose proof is easy
and also omitted.

Assertion 3.5. There are a sequence of neighborhoods V1 ⊇ V2 ⊇ · · · ⊇ Vi ⊇ Cl(Vi+1),
⋂

Vi = A,
and a monotone increasing numeric sequence 0 = r0 < r1 < r2 < . . . , lim ri = 1, for which Vi×[0, ri] ⊆ H.

Let ξi : Z → [ri−2, ri−1], i ≥ 2, be continuous functions such that ξi�Bd Vi
≡ ri−1 and ξi�Bd Vi−1

≡ ri−2.
Then the function ξ : Z → [0, 1], ξ�Z\V1

= 0, ξ�Vi−1\Vi
= ξi for i ≥ 2, ξ�A ≡ Id, is continuous and

(v, ξ(v)) ∈ H, v ∈ Z (resp. (v, ξ(v)) ∈ H, v ∈ V1). The sought extension f̂ of the partial mapping f is
given by the formula f̂(v) = α(v, ξ(v)), v ∈ Z (v ∈ V1). �
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Closing the section, we formulate a few more easy facts about the interrelation of the classes ANE
and A-ANE. These facts are not used in the article and therefore their proofs are omitted. Sometimes it
is reasonable to transform Theorem 3.2 into the following assertion.

Theorem 3.6. A necessary and sufficient condition for X ∈ A[N]E is as follows:
(3) There are an A-A[N]E-space P and mappings α : X × J → P and β : P → X × J such that

(β ◦ α, IdX×J) ≺ ω (here ω ∈ cov X × [0, 1) stands for an open covering adherent to the top X × {1}).
Which necessary conditions should we impose on an approximative absolute extensor X to guarantee

the membership X ∈ AE? The following theorem shows that it suffices to require that X is locally
equiconnected.

Theorem 3.7. If X ∈ A-A[N]E∩LEC then X is an absolute (neighborhood) extensor.

§ 4. Application of the Approximative
Criterion for Extendibility of Mappings

Almost all criteria for absolute extensors and retracts can be deduced from Theorems 3.1 and 3.2
rather easily. Therefore, it is natural to call these theorems the main criteria for ANE-spaces.

With these theorems taken into account, the problem of exact extension of mappings for a wide
class of spaces is solved by reducing it to that of approximative extension of mappings. An ω-extension
ϕ : Z → X of a partial mapping Z ⊇ A

ϕ−→ X is in turn sought usually in the form of the composite of
the canonical mapping θ : X → N〈σ〉, generated by some covering σ ∈ cov Z, and a continuous mapping
µ : N〈σ〉 → Z. Which sufficient conditions on µ would guarantee ω-proximity of the composite µ ◦ θ
to ϕ? To answer this question, we recall some facts that can be traced back to Michael [13].

Definition 4.1. Assume given a mapping ϕ : A → X between metric spaces and coverings σ =
{Va} ∈ cov A and γ, λ ∈ cov X. We say that a mapping µ : N〈σ〉 → X from the nerve N〈σ〉 into X
satisfies the (λ, γ)-condition relative to ϕ if

(1) µ is a γ-realization;
(2) µ(〈V 〉) ⊆ N(ϕ(a);λ) for all V ∈ σ and a ∈ V .

Theorem 4.2. The composite A
θ−→N〈σ〉 µ−→ X of an arbitrary canonical mapping θ with a mapping

µ satisfying the (λ, γ)-condition relative to a mapping ϕ : A→ X is (λ ◦ γ)-close to ϕ.

Proof. Suppose that a ∈ A, a ∈
⋂

Vi, and θ(a) =
∑

αi〈Vi〉. Since µ is a γ-realization, we have
{µ◦θ(a), µ〈Vi〉 | i} ⊆ U ∈ γ. Condition (2) implies that {ϕ(a), µ〈Vi〉 | i} ⊆W ∈ λ. This yields the sought
proximity between the mappings: dist(µ ◦ θ(a), ϕ(a)) ≺ λ ◦ γ. �

In the rest of this section we give a series of theorems which use Theorem 3.2 and imply both
Theorem 1.3 and Haver’s and Toruńczyk’s theorems.

Theorem 4.3. Suppose that one of the following two conditions holds for a countably dimensional
metric space X:

(3) X ∈ LC;
(4) X has an open base of weakly homotopy trivial sets; i.e., πiX = 0 for all i ≥ 0.
Then X ∈ A-ANE.

Proof. We establish a stronger fact: If in the case (3) or (4) for a partial mapping Z ⊇ A
f−→ X

one of the two spaces A and f(A) is countably dimensional then for every covering ω ∈ cov X there is
a neighborhood ω-extension f̂ : U → X of f .

The case of local contractivity of X. Given an arbitrary natural number i ≥ 0 and
an arbitrary point x ∈ X, we can choose neighborhoods Vi(x) ⊆ Ui(x) ⊆ Vi−1 and contractions
F x,i : Vi(x) × I → Ui(x) of Vi(x) within Ui(x) to x such that the covering {U0(x) | x ∈ X} is a re-
finement of ω and the covering {Ui(x) | x ∈ X} is a starlike refinement of the covering {Vi−1(x) | x ∈ X}
for all i ≥ 1. For definiteness, we consider F x,i �Vi(x)×{0}= Id and F x,i �Vi(x)×{1}= x.
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Since A or f(A) is countably dimensional, by Proposition 2.7 there are open families σ and σi, i ≥ 2,
in Z for which σ =

⋃∞
i=1 σi covers A, mult. σi = 1, and f(σi ∩ A) � {Vi(x) | x ∈ X}. Without loss of

generality, we may assume that the nerves of σ and σ �A are isomorphic to each other; i.e.,

k⋂
i=1

Wi 6= ∅⇐⇒
k⋂

i=1

(Wi ∩A) 6= ∅

for Wi ∈ σ. Our purpose is to extend f to the carrier
⋃

σ of σ which is a neighborhood of A.
To this end, we consider the nerve N〈σ〉 = N and the canonical mapping θ :

⋃
σ → N. The sought

mapping f is constructed as the composite of θ and some mapping g : N → X. Before defining g, we
emphasize the important circumstance that the set of vertices of an arbitrary simplex of the nerve is
furnished with some natural linear order. If ∆ = 〈W0, . . . ,Wk〉, Wi ∈ σni , is a k-dimensional simplex
then

⋂k
i=0 Wi 6= ∅ and all numbers ni are distinct (this important observation follows from the fact that

the multiplicity of the system σni equals one). Therefore, we can linearly order the vertices of the simplex
∆ so that the indices ni of the system σi constitute an increasing sequence n0 < n1 < · · · < nk.

For W ∈ σi we have f(W ∩ A) ⊆ S ∈ {Vi(x)}, and since St(S; {Ui(x)}) ⊆ Vi−1(xW ) for some point
xW , this yields

(5) St(f(W ∩A); {Ui(x)}) ⊆ Vi−1(xW ).
Define g0 : N(0) → X by the formula g0(〈W 〉) = xW . Next, we successively extend g0 to some

mappings gi : Ni 7→ X, i = 1, . . . , k − 1, defined on the ith skeleton of the nerve, each time requiring the
validity of the condition

(6) for every simplex ∆k−1 = 〈W0, . . . ,Wk−1〉, k > 1,

f(W0 ∩A) ∪ gk−1(∆k−1) ⊆ Un0−1(xW0).

Construct gk : N(k) → X, gk�N(k−1) = gk−1, assuming that gk−1 : N(k−1) → X satisfying (6) are
already available.

Lemma 4.4. If ∆k = 〈W0,W1, . . . ,Wk〉 is a k-dimensional simplex of N then gk−1(∆k−1) ⊆
Vn0−1(xW0), where ∆k−1 = 〈W1, . . . ,Wk〉 is a face of ∆k.

Proof of the lemma. By (6) we have f(W1∩A)∪gk−1(∆k−1) ⊆ Un1−1(xW1). Since
⋂k

i=0 Wi∩A 6=
∅ and so f(W0 ∩A) ∩ f(W1 ∩A) 6= ∅, it follows that

f(W1 ∩A) ∪ gk−1(∆k−1) ⊆ St(f(W0 ∩A); {Un1−1(x)}).

By (5) we have St(f(W0 ∩ A);Un1−1(x)) ⊆ Vn1−2(xW0). Since n0 ≤ n1 − 1; therefore, Vn1−2(xW0) ⊆
Vn0−1(xW0) ⊆ Vn0−1(xW0) and so gk−1(∆k−1) ⊂ Vn0−1(xW0). �

Now, the mapping gk�∆k can be soundly defined by the formula

gk(t · 〈W0〉+ (1− t) · v) = F xW0
,n0−1(gk−1(v), t), where ∈ 〈W1, . . . ,Wk〉.

From the inclusion Im F xW0
,n0−1 ⊆ Un0−1(xW0) we can easily deduce the following fact.

Lemma 4.5. f(W0 ∩A) ∪ gk(∆k) ⊆ Un0−1(xW0).

Lemma 4.6. gk�∂∆k = gk−1.

Proof of Lemma 4.6. Put u = t · 〈W0〉 + (1 − t) · v ∈ ∂∆k. If t = 0 then u = v ∈ 〈W1, . . . ,Wk〉
and gk(u) = gk−1(v) = gk−1(u). If t > 0 then v ∈ ∂〈W1, . . . ,Wk〉. The formula for gk readily yields
the equalities gk(u) = F xW0

,n0−1(gk−1(v), t) and gk−1(u) = F xW0
,n0−1(gk−2(v), t). Since the equality

gk−1�∂〈W1,...,Wk〉 = gk−2 has been already established, we have gk−2(v) = gk−1(v), which completes
the proof of the lemma. �
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We now demonstrate that the sought ω-extension f̂ :
⋃

σ → X is given by f̂ = g ◦ θ; this will finish
the proof of (3). Indeed, if a ∈ A, a ∈

⋂k
i=1 Wi, and θ(a) =

∑k
i=1 αi · 〈Wi〉, then by condition (6) applied

to the simplex 〈W0, . . . ,Wk〉 we have

f(W0 ∩A) ∪ g(θ(a)) ⊆ Un0−1(xW0) ⊆ Vn0−2(xW0);

i.e., f(a) and f̂(a) are ω-close (because n0 ≥ 2 while {Vn0−2(x)} � ω for n0 − 1 ≥ 1).
The case in which X has an open base of weakly homotopy trivial sets. For all i ≥ 0

and an arbitrary point x ∈ X we can choose neighborhoods Vi(x) such that
(a) all homotopy groups πm(Vi(x)) are trivial;
(b) the covering {V0(x) | x ∈ X} is a refinement of ω;
(c) the covering {Vi(x) | x ∈ X} is a starlike refinement of the covering {Vi−1(x) | x ∈ X} for all

i ≥ 1.
Proceeding as in the first part of this theorem, we construct open (in Z) systems σ =

⋃
i≥1 σi such

that mult. σi = 1, f(σi
⋂

A) � {Vi(x) | x ∈ X}, and
⋃

σ ⊃ A. Without loss of generality, we assume that
N〈σ〉 = N〈σ �A〉. As before we linearly order the vertices of the simplices ∆ = 〈W0, . . . ,Wk〉, Wi ∈ σni ,
in the nerve N〈σ〉 
 N of σ, requiring that the indices ni of the systems σi constitute an increasing
sequence n0 < n1 < · · · < nk.

We construct the sought mapping f as the composite of the canonical mapping θ :
⋃

σ → N and
some mapping g : N→ X.

For W ∈ σi, we have f(W ∩ A) ⊆ S ∈ {Vi(x)}, and since St(S; {Vi(x)}) ⊆ Vi−1(xW ) for some point
xW , this yields

(7) St(f(W ∩A); {Vi(x)}) ⊆ Vi−1(xW ).
Define g0 : N(0) → X by the formula g0(〈W 〉) = xW . Now, we successively extend g0 to mappings

gi : Ni 7→ X, i = 1, . . . , k − 1, defined on the ith skeleton, each time requiring validity of the condition
(8) for every simplex ∆k−1 = 〈W0, . . . ,Wk−1〉, Wi ∈ σni , k > 1,

f(W0 ∩A) ∪ gk−1(∆k−1) ⊆ Vn0−1(xW0).

By analogy to Lemma 4.4, we prove the next

Lemma 4.7. If ∆k = 〈W0, . . . ,Wk〉 is a k-dimensional simplex of N then

gk−1(∆k−1
0 ) ⊂ Vn0−1(xW0)

and so
gk−1(∂∆k) ⊆ Vn0−1(xW0)

(here ∂∆k =
⋃

∆k−1
i , ∆k−1

i = 〈W0, . . . , W̌i, . . . ,Wk〉).
Since Vn0−1(x) is (k − 1)-connected, there is a mapping

gk : ∆k → Vn0−1(xW0), gk�∂∆k = gk−1.

So we have constructed a mapping gk : N(k) → X that extends gk−1, is defined on the k-dimensional
skeleton, and satisfies (8).

Thus, the mapping g : N → X is constructed; moreover, condition (8) is valid for every simplex ∆.
Demonstrate that the sought ω-extension f̂ :

⋃
σ → X is given by f̂ = g ◦ θ. Indeed, if a ∈ A, a ∈

⋂
Vi,

and θ(a) =
∑

ai · 〈Vi〉 then by condition (8) applied to the simplex 〈W0, . . . ,Wk〉 we have

f(W0 ∩A) ∪ g(θ(a)) ⊆ Vn0−1(xW0).

In view of {Vn0−1(x)} � ω for n0 − 1 ≥ 0, this implies the ω-proximity of f and f̂ . �

598



Theorem 4.8. Suppose that a metric space X has an open base B all of whose finite intersections are
homotopy trivial (and so the elements of the base are homotopy trivial themselves). Then X ∈ A-ANE.

Proof. Obviously, X ∈ LCn for all n. The Mayer–Vietoris theorem [14] easily implies the following

Assertion 4.9. If Wi ∈ B, i = 1, . . . , n, have a nonempty intersection then all homotopy groups of⋃n
i=1 Wi are trivial.

Suppose that ω = {Uβ} ∈ cov X and let Z ⊇ A
f−→ X be an arbitrary partial mapping. Without loss

of generality, we may assume that the covering ω consists of elements of the base B.
Delate the covering σ = f−1(ω) ∈ cov A to a system σ̃ = {Vγ} of open sets in Z (this means that⋂m

i=1 Vγi 6= ∅ implies Vγi ∩A ∈ σ and
⋂m

i=1(Vγi ∩A) 6= ∅). Assigning to each element Vγ ∈ σ̃ an element
Uβ ∈ ω such that f(Vγ ∩ A) ⊆ U

β(γ), we thereby define the mapping g0 : N(0) → X, g0(〈Vγ〉) ∈ U
β(γ) on

the zero-dimensional skeleton of the nerve N(σ̃). Now, we successively extend g0 to mappings gi : Ni 7→
X, i = 1, . . . , k− 1, defined on the ith skeleton of the nerve, each time requiring validity of the condition

(9) for every simplex ∆k−1 = 〈V0, . . . , Vk−1〉, k > 1,(
k−1⋃
i=0

f(Vi ∩A)

)
∪ gk−1(∆k−1) ⊆

k−1⋃
i=0

U
β(γi).

Note that condition (9) follows easily from gk−1(∂∆k) ⊆
⋃k

i=0 U
β(γi) for every k-dimensional simplex

∆k = 〈V0, . . . , Vk〉.
Since

⋂k
i=0 U

β(γi) ⊇ f((∩Vi) ∩A) 6= ∅, by Assertion 4.9 we have
⋃k

i=0 U
β(γi) ∈ C∞. Therefore, there

is an extension gk : ∆k →
⋃k

i=0 U
β(γi) of gk−1.

From (9) it follows easily that the mapping g is an ω2-realization. From Theorem 4.2 we obtain the
ω4-proximity of f to the composite g ◦ (θ�A) : A → X and so g ◦ θ :

⋃
σ̃ → X is a sought ω4-extension

of f . By the arbitrariness of ω, this implies X ∈ A-ANE. �

§ 5. Fiberwise Trivial Mappings

Consider the projection p
 prM : M ×N →M of the product of metric spaces onto the first factor.
Let the image p(X) of a (not necessarily closed) subset X ⊂M ×N lie in Y ⊂M . Denote the restriction
of p to X by π : X → Y . In general, we require neither surjectivity of π nor even density of π(X) in Y .

We introduce some new notions. We say that an embedding A ↪→ B of subsets A and B of the product
M×N is fiberwise contractible within p if there is a mapping g : p(A)→ B, p◦g = Idp(A), and a homotopy
Ht : A→ B such that

(1) p ◦Ht = p for all t ∈ I (the condition that the homotopy Ht is fiberwise);
(2) H0 = IdA;
(3) H1 = g ◦ p (the condition that H1 factors through the projection p).
In this section we fix a collection ΩX of neighborhoods of X such that
(4) the image p(U ) includes Y for all U ∈ ΩX ;
(5) for every neighborhood U ∈ ΩX and every point y ∈ Y , there is a neighborhood O 
 O(y) ⊂M

such that O × prN (O• ∩X) ⊂ U (here and below, C• stands for the product C × N = p−1(C), where
C ⊂M).

Suppose that U ,V ∈ ΩX and V ⊂ U . We say that a mapping π : X → Y is fiberwise U V -
contractible within the projection p if there exists a neighborhood W ⊂ πV of Y such that the embedding
W • ∩ V ↪→ W • ∩ U is fiberwise contractible within p. We say that a mapping π : X → Y is fiberwise
trivial within p if for every neighborhood U ∈ ΩX there exists a smaller neighborhood V ∈ ΩX , V ⊂ U ,
such that the mapping π : X → Y is fiberwise U V -contractible within p. We say that π is locally
fiberwise trivial within the projection p if for every neighborhood U ∈ ΩX there exist a neighborhood
V ∈ ΩX , V ⊂ U , and a family σ = {O(y) | y ∈ Y } of open sets in M which cover Y and are such that
p(V ) ⊃

⋃
σ and O(y)• ∩ V ↪→ O(y)• ∩U is fiberwise contractible within p for all y ∈ Y .
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Proposition 5.1. Suppose that V1 ⊃ V2 ⊃ V3 ⊃ . . . is a sequence of neighborhoods in ΩX and
the space Y lies in the union W =

⋃∞
i=1 Wi of open subsets of M . If the conditions

(6) p(Vi+1) ⊃Wi for all i ≥ 1;
(7) the embedding W •

i ∩ Vi+1 ↪→W •
i ∩ Vi is fiberwise contractible within p for all i ≥ 1

are satisfied then V 

⋃∞

i=1 W •
i ∩Vi+1 ∈ ΩX and the projection π is fiberwise V1V -contractible within p.

Proof. By [13] there is a countable open system
{
W ′

i

}∞
i=1

in M which covers Y and for which
ClW W ′

i ⊂Wi. Clearly, ClW Fn ⊂ En, where Fn =
⋃n

i=1 W ′
i and En =

⋃n
i=1 Wi.

By assumption (7), there exist mappings gi : Wi → Vi and homotopies Gi : (W •
i ∩Vi+1)×I →W •

i ∩Vi

such that
(9) p ◦ (Gi)t = p for all t ∈ I;
(10) (Gi)0 = Id;
(11) (Gi)1 = gi ◦ p.
The plan of the further proof of the proposition consists in constructing mappings hn : En → V1 and

homotopies Hn : ((En)• ∩ Vn+1)× I → V1, n ≥ 1, such that
(12) p ◦ (Hn)t = p for all t ∈ I;
(13) (Hn)0 = Id;
(14) (Hn)1 = hn ◦ p;
(15) Hn+1�((Fn)• ∩ Vn+2) = Hn�((Fn)• ∩ Vn+2).
Thereby hn+1�Fn will coincide with hn�Fn and the formulas
(α) h(y) = hn(y), where y belongs to the neighborhood F∞ =

⋃∞
i=1 Fn =

⋃∞
i=1 W ′

i of Y in M and
the index n is such that y ∈ Fn,

(β) H(x, t) = Hn(x, t), where x ∈ V ∩ (F∞)• and the index n is such that x ∈ (Fn)• ∩ Vn+1,
will soundly define a continuous mapping h : F∞ → V1 and a continuous homotopy H : V ∩(F∞)• → V1.
This will establish that the projection π is fiberwise V1V -contractible.

Take h1 and H1 to be g1 and G1. Suppose that h1, . . . , hn and H1, . . . ,Hn, satisfying (12)–(15),
have been already constructed. In the metric space C 
 En ∪Wn+1 = En+1, consider the closed sets
A 
 Wn+1 \ En and ClC B, where B 
 (En \ Wn+1) ∪ Fn. Once ClW (Fn) ⊂ En, it follows that
A and ClC B are disjoint and hence there is an Urysohn function γ : C → [0, 2] such that γ−1(0) is
a neighborhood of B and γ−1(2) is a neighborhood of A. Then the functions α(c) = 2−max(1, γ(c)) and
β(c) = min(1, γ(c)) carry C into the interval [0, 1] and possess the following properties:

(16) α−1(1) ∪ β−1(1) = C, i.e., α(x) = 1 or β(x) = 1 for every point x ∈ C;
(17) β−1(0) coincides with γ−1(0) and is a neighborhood of B, whereas α−1(0) coincides with γ−1(2)

and is a neighborhood of A.
Define the mapping Hn+1 : ((En+1)• ∩ Vn+2)× I → V1 by the formula

Hn+1(x, t) =


Hn(x, t) if x ∈ B• ∩ Vn+2, t ∈ I;
Gn+1(x, t) if x ∈ A• ∩ Vn+2, t ∈ I;
Hn(Gn+1(x, β(p(x)) · t), α(p(x)) · t) if x ∈ (En ∪Wn+1)• ∩ Vn+2, t ∈ I.

Since the value of the function α(p(x)) at the point p(x) ∈ Wn+1 \ En = A equals 0 while (Hn)0 = Id;
therefore, Hn+1 is a well defined continuous homotopy.

Clearly, (Hn+1)0 = Id. The fact that the homotopies Hn and Gn+1 are fiberwise implies that so is
the homotopy Hn+1 : (Hn+1)t ◦ p = p for all t ∈ I. Since (Hn)1 and (Gn+1)1 carry all points of a single
fiber to one point while (16) implies that β(p(x)) = 1 or α(p(x)) = 1, it follows that (Hn+1)1 also carries
all points of a single fiber to one point. If p(x) ∈ Fn (i.e., γ(p(x)) = 0) then it is easy to see that
β(p(x)) = 0 and α(p(x)) = 1. Hence, Hn+1(x, t) = Hn(x, t); i.e., (15) holds.

Consider the mapping hn+1 : En+1 → V1 defined by the formula

hn+1(y) =
{

hn(y) if y ∈ β−1(0);
Hn(Gn+1(gn+1(y), β(y)), α(y)) if y ∈Wn+1.
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Clearly, this mapping is well defined at the points y ∈ β−1(0)∩Wn+1. It remains to establish the continuity
of hn+1 and the coincidence of (Hn+1)1 with hn+1 ◦ p, which can be done without effort. It is also easy
to prove that the neighborhood V satisfies conditions (4) and (5), i.e., V ∈ ΩX . �

We now formulate a series of conditions on X that will guarantee validity of the properties of local
fiberwise triviality and fiberwise triviality for the projections of a graph (Propositions 5.2–5.4).

Proposition 5.2. Suppose that Z ←↩ A
ϕ−→ X ∈ LC is a partial mapping and Gϕ 
 {(a, ϕ(a)) | a ∈

A} ⊂ Z ×X is the graph of ϕ. Then the projection π : Gϕ → A of Gϕ to A is locally fiberwise trivial
within the projection p : Z ×X → Z.

Proof. It is easy to observe that the family ΩGϕ coincides with the collection of all neighborhoods
of the graph Gϕ in Z ×X. (This observation will be utilized in Propositions 5.3–5.5 too.)

Let U ⊃ Gϕ be a closed neighborhood in Z × X. To prove the proposition, we have to find
a neighborhood V ∈ ΩGϕ , Gϕ ⊂ V ⊂ U , in Z ×X such that

(a) For every point a0 ∈ A, there is a neighborhood O = O(a0) ⊂ Z for which the embedding
O• ∩ V ↪→ O• ∩U is fiberwise contractible, where O• 
 O ×X.

To start, we consider the multivalued mapping Φ : A R+, Φ(a) = {r > 0 | N(a; r)× N(ϕ(a); r) ⊂
U } ⊂ R+. It is easy to see that Φ is a lower semicontinuous convex-valued mapping; hence, by Dowker’s
theorem [13, 5.5.20] there exists a continuous selection r : A → (0,∞). We have another multivalued
mapping Ψ : A R+, Ψ(a) = {r(a) ≥ t > 0 | N(ϕ(a); t) contracts in Cl(N(ϕ(a); r(a))) to a point} ⊂ R+

which is lower semicontinuous and convex-valued and which has a continuous selection t : A→ (0,∞) by
Dowker’s theorem; moreover, t(a) ≤ r(a).

We use continuity of ϕ and diminish the neighborhood N(a; r(a)) to a neighborhood W (a) such that
(b) N(ϕ(a′); t(a′)/2) ⊂ N(ϕ(a); t(a)) for every point a′ ∈W (a) ∩A.
By paracompactness of A, there exists a family σ′ = {W ′(a) ⊂ W (a) | a ∈ A} of neighborhoods of

points in A which is a starlike refinement of σ 
 {W (a) | a ∈ A}, σ′ ◦σ′ � σ. Assign to each point a ∈ A
a point za ∈ A such that

Stσ′(a)

⋃

a∈W ′(b)

W ′(b) ⊂W (za).

Proposition 2.1 yields
(c)
⋂n

i=1 W ′(ai) 6= ∅ implies
⋃n

i=1 W ′(ai) ⊂
⋂n

i=1 W (zai).
Finally, define the sought neighborhood V ∈ ΩGϕ by

V 

⋃

a∈A
W ′(a)×N(ϕ(a); t(a)/2).

Clearly, Gϕ ⊂ V ⊂ U . To verify (a), consider an arbitrary point a0 ∈ A and its neighborhood O = W ′(a0)
and demonstrate that the embedding O• ∩ V ↪→ O• ∩U admits fiberwise contraction.

Take z ∈ O. The explicit formulas for V and O imply that
(d) (z ×X) ∩ V = {z} ×

⋃
λ∈Λz

N(ϕ(aλ); t(aλ)/2);
(e) (z ×X) ∩U ⊃ {z} ×

⋃
λ∈Λz

N(ϕ(zaλ
); r(zaλ

)), where Λz = {λ |W ′(aλ) 3 {z}}.
Since W ′(a0) 3 {z} for all z ∈ O, the index λ0, corresponding to W ′(a0), belongs to

⋂
z∈O Λz. If we

show that
⋃

z∈O

⋃
λ∈Λz

N(ϕ(aλ); t(aλ)/2) contracts to a point in the set
⋂

z∈O

⋃
λ∈Λz

N(ϕ(zaλ
); r(zaλ

)),
then (z×X)∩V will contract to a point in (z×X)∩U (moreover, the contraction would be independent
of z) and so the embedding O• ∩ V ↪→ O• ∩U will be fiberwise contractible.

We turn the reader’s attention to the fact that, by (c),
⋃

z∈O

⋃
λ∈Λz

aλ ⊂ W (zaλ0
), whereas (b)

implies that ⋃
z∈O

⋃
λ∈Λz

N(ϕ(aλ); t(aλ)/2) ⊂ N(ϕ(zaλ0
); t(zaλ0

)).

Since t : A→ (0,∞) is a selection of Ψ, it follows that N(ϕ(zaλ0
); t(zaλ0

)) contracts in N(ϕ(zaλ0
); r(zaλ0

))
to a point, which establishes the sought property (a). �
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Proposition 5.3. Suppose that an embedding X ′ ↪→ X is LEC, X ′ ∈ ANE, and Z ←↩ A
ϕ−→ X ′ is

a partial mapping. Then the projection π : Gϕ → A of the graph of ϕ to A is fiberwise trivial within
the projection p : Z ×X → Z.

Proof. Let a closed neighborhood O ⊂ X ′ × X and a mapping λ : O × I → X be taken from
the definition of LEC-embedding. Fix a closed neighborhood U ⊃ Gϕ in Z × X. Since X ′ ∈ ANE,
the mapping ϕ admits an extension ϕ̂ : W → X ′ to some closed neighborhood W ⊃ A such that
Gϕ̂ ⊂ U .

Consider the multivalued mapping Φ : W  R+, Φ(w) = {r > 0 | N(w; r) × NX(ϕ̂(w); r) ⊂ U
and NX′(ϕ̂(w); r)× NX(ϕ̂(w); r) ⊂ O}. Obviously, Φ is a lower semicontinuous convex-valued mapping;
hence, by Dowker’s theorem there exists a continuous selection r : W → (0,∞).

We have one more multivalued mapping Ψ : W  R+, Ψ(w) = {r(w) ≥ t > 0 | λ(NX′(ϕ̂(w); ε) ×
NX(ϕ̂(w); t) × I) ⊂ NX(ϕ̂(w); r(w)) for some ε} which is also lower semicontinuous and convex-valued
and so by Dowker’s theorem has a continuous selection t : W → (0,∞); moreover, t(w) ≤ r(w).

We define the sought neighborhood V ∈ ΩGϕ by

V 

⋃

w∈Int W
w ×NX(ϕ̂(w); t(w)).

Obviously, Gϕ ⊂ V ⊂ U . The fiberwise contraction of V in U is arranged as follows: if w ∈ IntW
then Ft(w, x) 
 w × λ(ϕ̂(w), x, t) ∈ w × NX(ϕ̂(w), r(w)) ⊂ U ∩ (w × X), where x ∈ N(ϕ̂(w), t(w)),
0 ≤ t ≤ 1. Clearly, Ft is a homotopy connecting F1 = IdV with the mapping F0 which factors through
the projection p, i.e., F0 = ϕ̂ ◦ p. �

The following assertion is a strengthening of Proposition 5.3 and has a similar proof.

Proposition 5.4. Suppose that an embedding X ′ ↪→ X is equiconnected and the space X ′ is

represented as a countable union of subspaces Fi, i ≥ 1; moreover, each partial mapping Z ←↩ A
ϕ−→ Fi

has a neighborhood extension ϕ̂ : U → X ′. Then for every i ≥ 1 the projection π : Gϕ → A of the graph of

an arbitrary partial mapping Z ←↩ A
ϕ−→ Fi to A is fiberwise trivial within the projection p : Z ×X → Z.

Closing the section, we state a strengthening of Proposition 1.7 which allows us to interrelate fiberwise
trivial mappings and A-ANE-spaces.

Proposition 5.5. Let X be a closed subset of a normed space Z. If the projection πϕ : Gϕ → X of

the graph Gϕ ⊂ Z ×X of a partial mapping Z ←↩ X
ϕ
IdX−−−−→ X is fiberwise trivial within the projection

p
 prZ : Z ×X → Z, then X ∈ A-ANE.

Proof. We demonstrate that for an arbitrary covering ω = {Wγ | γ ∈ Γ} ∈ cov X there exists
a mapping ϕ̃ : W → X, where W is a neighborhood of A in Z, such that dist(ϕ, ϕ̃�X) ≺ ω. Afterwards
X ∈ A-ANE by the following lemma which appears easily from the definition of A-ANE and the fact
that Z ∈ AE.

Lemma 5.6. If a partial mapping Z ←↩ X
ϕ
IdX−−−−→ X has a neighborhood ω-extension for every

covering ω ∈ cov X then X ∈ A-ANE.

Consider a covering ω′ = {W ′
β} ∈ cov X which is a starlike refinement of ω: ω′ ◦ ω′ � ω. By Propo-

sition 2.1, there exists a mapping β 7→ γ = γ(β) of the index sets which satisfies 2.1(1). Also, con-
sider an open system σ = {Sλ} in Z covering X and such that {ϕ(Sλ ∩ X)} � ω′. Suppose that
ϕ(Sλ ∩X) ⊂W ′

β=β(λ) ⊂Wγ=γ(β).
Since the mapping πϕ : Gϕ → X is fiberwise trivial within p : Z × X → Z, for the neighborhood

U 

⋃

λ Sλ × W ′
β(λ) ∈ ΩGϕ of the graph Gϕ there are neighborhoods W , Z ⊃ W ⊃ X, and V ,

Gϕ ⊂ V ⊂ U , such that p(V ) ⊃ W and W • ∩ V contracts fiberwise in W • ∩ U . Hence, there exists
a mapping ϕ̃ : W → X such that (x, ϕ̃(x)) ∈ U for all x ∈ X. We demonstrate that ϕ̃ is a sought
mapping.
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Given x0 ∈ X, put Λ′ 
 {λ | x0 ∈ Sλ}. It is easy to see that x•0 ∩ U =
⋃

λ∈Λ′ x0 × W ′
β(λ) =

x0 ×
(⋃

λ∈Λ′ W ′
β(λ)

)
. Since x0 = ϕ(x0) ∈

⋂
λ∈Λ′ ϕ(Sλ ∩ A) ⊂

⋂
λ∈Λ′ W ′

β(λ), property 2.1(1) implies that
x•0 ∩U ⊂ x0×

⋂
λ∈Λ′ Wγ(β(λ)). In view of (x0, ϕ̃(x0)) ∈ U , we have ϕ̃(x0) ∈

⋂
λ∈Λ′ Wγ(β(λ)). Thus, ϕ(x0)

and ϕ̃(x0) belong to the element Wγ(β(λ0)) of ω, where λ0 is the element of Λ′ for which ϕ(x0) ∈W ′
β(λ0). �

§ 6. Proof of Theorem 1.6

Theorem 6.1. Suppose that a space Y is represented as a countable union
⋃∞

i=1 Y2i−1∪D of closed
subspaces Y2i−1 and a countably dimensional subspace D. If

(a) the restriction π2i−1 : X2i−1 → Y2i−1 of the projection π : X → Y to X2i−1 = π−1(Y2i−1) is
fiberwise trivial within the projection p : M ×N →M for every i ≥ 1;

(b) the projection π is locally fiberwise trivial within p in case D 6= ∅,
then the projection π is fiberwise trivial within p.

Proof. Let ΩX (ΩXi) be a collection of neighborhoods of X (Xi) in M ×N satisfying (4) and (5)
of § 5. Fix V1 ∈ ΩX . Since the projection π1 is fiberwise trivial within p, there exists V ′

2 ∈ ΩX1 such that
π1 is a fiberwise V1V ′

2 -contractible projection. Since X1 is closed in Y , it is easy to construct V2 ∈ ΩX such
that π1 is fiberwise V1V2-contractible within p : M ×N →M . Since the projection π is locally fiberwise
trivial within p, there is an open family σ1 = {O1(y) | y ∈ Y } in M covering Y and there is a neighborhood
V3 ⊂ V2, V3 ∈ ΩX , such that p(V3) ⊃

⋃
σ1 and the embedding (O1(y))•∩V3 ↪→ (O1(y))•∩V2 is fiberwise

contractible within p for all y ∈ Y .
Similarly, for i ≥ 4 and j ≥ 2 we construct neighborhoods Vi ∈ ΩX , Vi ⊂ Vi−1, and families

σj = {Oj(y) | y ∈ Y } of open sets in M which cover Y and are such that
(1) σj � σj−1;
(2) πj is a fiberwise V2j−1V2j-contractible projection within p;
(3) p(V2j+1) ⊃

⋃
σj and the embedding (Oj(y))• ∩ V2j+1 ↪→ (Oj(y))• ∩ V2j is fiberwise contractible

within the projection p for all y ∈ Y .
Since D is countably dimensional, by Proposition 2.7

D ⊂
∞⋃

j=1

⋃
λ∈Λj

D2j(λ),

where {D2j(λ) | λ ∈ Λj} is a family of open sets in M which has multiplicity 1 and is a refinement of σj .
Put

W2j =
⋃

λ∈Λj

D2j(λ) for j ≥ 1.

Also, consider a neighborhood W2j−1 for which p(V2j) ⊃W2j−1 ⊃ Y2j−1 and the neighborhood (W2j−1)•∩
V2j ↪→ (W2j−1)• ∩ V2j−1 is fiberwise contractible within p. Clearly, p(Vj+1) ⊃ Wj for all j ≥ 1 and
the embedding W •

j ∩ Vj+1 ↪→W •
j ∩ Vj is fiberwise contractible within p. Thereby conditions (6) and (7)

of Proposition 5.1 are satisfied. Hence, V 

⋃∞

j=1 W •
j ∩ Vj+1 ∈ ΩX and π is fiberwise V1V -contractible

within p. This completes the proof of the theorem. �

Proof of Theorem 1.6. Since the class of spaces X satisfying the hypothesis of Theorem 1.6 is
invariant under the product by [0, 1), in view of Theorem 1.2 it suffices to prove that X ∈ A-ANE.

Let Z ←↩ X
ϕ
IdX−−−−→ X, Gϕ ⊂ Z×X, πϕ : Gϕ → X, and p : Z×X → Z be taken from Proposition 5.5.

We demonstrate that πϕ is a fiberwise trivial projection within p. Then Proposition 5.5 would imply
X ∈ A-ANE. (The existence of a closed embedding of X in a normed vector space Z follows from [10].)

Since X ∈ LC, by Proposition 5.2 πϕ is a locally fiberwise trivial projection within p. Moreover,
Proposition 5.4 implies that

πϕ�π−1
ϕ (Xi)

: π−1
ϕ (Xi)→ Xi, i ≥ 1,

is a fiberwise trivial projection within p. Since X = D ∪
⋃∞

i=1 Xi, all conditions of Theorem 6.1 are
satisfied and so πϕ is a fiberwise trivial projection within p. �
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15. Repovš D. and Semenov P., Continuous Selections of Multivalued Mappings, Kluwer, Dordrecht (1998). (Math. Appl.;

455.)

604


